JP4560479B2 - Manufacturing method of multimode optical interference device - Google Patents

Manufacturing method of multimode optical interference device Download PDF

Info

Publication number
JP4560479B2
JP4560479B2 JP2005351802A JP2005351802A JP4560479B2 JP 4560479 B2 JP4560479 B2 JP 4560479B2 JP 2005351802 A JP2005351802 A JP 2005351802A JP 2005351802 A JP2005351802 A JP 2005351802A JP 4560479 B2 JP4560479 B2 JP 4560479B2
Authority
JP
Japan
Prior art keywords
crystal
waveguide
layer
mask
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005351802A
Other languages
Japanese (ja)
Other versions
JP2007156143A (en
Inventor
浩 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Semiconductor Co Ltd filed Critical Oki Semiconductor Co Ltd
Priority to JP2005351802A priority Critical patent/JP4560479B2/en
Priority to US11/607,992 priority patent/US7593610B2/en
Publication of JP2007156143A publication Critical patent/JP2007156143A/en
Application granted granted Critical
Publication of JP4560479B2 publication Critical patent/JP4560479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、光通信、光交換、光配線等で使用される多モード光干渉デバイス(Multi-Mode Interference device、以下「MMI」という)の製造方法に関するものである。 The present invention relates to a method for manufacturing a multi-mode interference device (hereinafter referred to as “MMI”) used in optical communication, optical switching, optical wiring, and the like.

特開2001−215452号公報Japanese Patent Laid-Open No. 2001-215542 米国特許第5563968号明細書US Pat. No. 5,563,968

図2(a),(b)は、従来のMMIの構造を示す平面図である。
例えば、図2(a)のMMIは、光の導波路を形成する直方体の長手方向の一端に幅の狭いシングルモード導波路A,Bを設け、他端にも幅の狭いシングルモード導波路C,Dを設けたものである。シングルモード導波路A,Bと、シングルモード導波路C,Dの間は、幅の広いマルチモード導波路Mとなっている。また、シングルモード導波路A,Bの間は、このシングルモード導波路A,Bに対して垂直に端面T1が形成されている。また、シングルモード導波路C,Dの間は、このシングルモード導波路C,Dに対して垂直に端面T2が形成されている。
2 (a) and 2 (b) are plan views showing the structure of a conventional MMI.
For example, the MMI of FIG. 2A is provided with narrow single mode waveguides A and B at one end in the longitudinal direction of a rectangular parallelepiped forming an optical waveguide, and a narrow single mode waveguide C at the other end. , D are provided. A wide multimode waveguide M is formed between the single mode waveguides A and B and the single mode waveguides C and D. Further, between the single mode waveguides A and B, an end face T1 is formed perpendicular to the single mode waveguides A and B. Further, between the single mode waveguides C and D, an end face T2 is formed perpendicular to the single mode waveguides C and D.

このようなMMIでは、シングルモード導波路Aから入射された光は、幅の広いマルチモード導波路Mで複数のマルチモードに結合し、そのマルチモード間の干渉効果により、出射側のシングルモード導波路C,Dに分波されて出射される。これにより、分波器としての機能を果たす。また、シングルモード導波路A,Bから、それぞれ異なる光を入射すると、これらの光が合波されてシングルモード導波路C,Dから出力されるという合波器としても機能する。   In such an MMI, the light incident from the single mode waveguide A is coupled to a plurality of multimodes by the wide multimode waveguide M, and the single-mode guide on the output side is caused by the interference effect between the multimodes. The light is demultiplexed into the waveguides C and D and emitted. This fulfills the function as a duplexer. In addition, when different lights are incident from the single mode waveguides A and B, they also function as a multiplexer in which these lights are combined and output from the single mode waveguides C and D.

しかしながら、図2(a)のMMIでは、シングルモード導波路Aから入射されてマルチモード導波路Mを通った光が、出射端の垂直な端面T2に当たって一部の光が反射してシングルモード導波路Aに戻り、このシングルモード導波路Aに接続された光源の特性に悪影響を与えることが知られている。   However, in the MMI of FIG. 2 (a), the light incident from the single mode waveguide A and passing through the multimode waveguide M hits the vertical end face T2 of the emission end, and a part of the light is reflected so Returning to the waveguide A, it is known that the characteristics of the light source connected to the single mode waveguide A are adversely affected.

一方、図2(b)のMMIは、前記特許文献2に記載されたもので、シングルモード導波路A,Bの間の端面T1、及びシングルモード導波路C,Dの間の端面T2を、その導波路内で光軸に対して傾けることにより、この端面T2に当った光を導波路の平面内で角度を付けて反射させるようにし、反射光がシングルモード導波路Aに直接戻らないように工夫を施している。   On the other hand, the MMI in FIG. 2B is described in Patent Document 2, and the end surface T1 between the single mode waveguides A and B and the end surface T2 between the single mode waveguides C and D are represented by By tilting with respect to the optical axis in the waveguide, the light hitting the end face T2 is reflected at an angle in the plane of the waveguide so that the reflected light does not return directly to the single mode waveguide A. Has been devised.

しかしながら、前記図2(b)のMMIでは、図2(a)のMMIに比べて反射の影響は低減されるものの、出射側の端面T2で反射された光が、入射側の端面T1で再び反射されて出射側の端面T2に戻り、このような反射が導波路の平面内で繰り返される。そして、反射光の一部がシングルモード導波路Aに戻ってしまう。このため、図2(a)のMMIに比べて反射の影響は低減されるものの、反射光の影響を完全に無くすことができないという問題があった。   However, in the MMI of FIG. 2 (b), although the influence of reflection is reduced compared to the MMI of FIG. 2 (a), the light reflected by the end face T2 on the emission side is again reflected on the end face T1 on the incident side. Reflected and returned to the end face T2 on the exit side, such reflection is repeated in the plane of the waveguide. Then, a part of the reflected light returns to the single mode waveguide A. For this reason, although the influence of reflection is reduced as compared with the MMI of FIG. 2A, there is a problem that the influence of reflected light cannot be completely eliminated.

本発明は、簡単な構造で反射光の戻りを完全に除去することができるMMIの製造方法を提供することを目的としている。 An object of the present invention is to provide a method of manufacturing an MMI that can completely remove the return of reflected light with a simple structure.

本発明は、マルチモード導波路の両端に単数または複数の幅の狭いシングルモード導波路を設け、入力側のシングルモード導波路から入射した光を前記マルチモード導波路で干渉させて出力側のシングルモード導波路から出射させる多モード光干渉デバイスの製造方法において、表面が結晶方向(0 1 1)と結晶方向(0 1 −1)で規定される平面となるように形成されたInP結晶基板を下側クラッド層として、前記結晶基板上に導波路を構成するInGaAsP結晶による光導波路層、InP結晶による上側クラッド層、InGaAsP結晶またはInGaAs結晶によるキャップ層、及びエッチング用のSiOIn the present invention, one or a plurality of narrow single mode waveguides are provided at both ends of the multimode waveguide, and light incident from the single mode waveguide on the input side is caused to interfere with the multimode waveguide to output a single mode on the output side. In a method for manufacturing a multimode optical interference device that emits light from a mode waveguide, an InP crystal substrate formed so that a surface is a plane defined by a crystal direction (0 1 1) and a crystal direction (0 1 -1) As a lower clad layer, an optical waveguide layer made of InGaAsP crystal constituting a waveguide on the crystal substrate, an upper clad layer made of InP crystal, a cap layer made of InGaAsP crystal or InGaAs crystal, and SiO2 for etching 2 によるマスク層を順次形成する工程と、前記マスク層と前記キャップ層とをパターニングし、前記マルチモード導波路と前記シングルモード導波路の方向が前記結晶基板の前記結晶方向(0 1 1)に一致するようにマスクパターンを形成する工程と、前記マスクパターンをマスクとして、InGaAsPはエッチングせずInPのみをエッチングする選択エッチング液を用いて、前記光導波路層はエッチングせず前記上側クラッド層のみをエッチングし、前記マルチモード導波路の両端で前記シングルモード導波路が設けられていない壁面が、前記上側クラッド層の結晶面に沿って前記結晶基板の表面に対して約54.8°をなすように形成する工程と、前記マスクパターンをマスクとして前記上側クラッド層、前記光導波路層、及び前記結晶基板をドライエッチングし、前記光導波路層の壁面が前記結晶基板の表面に対して約54.8°を維持した状態で所定の厚さだけ垂直方向に除去する工程とを順次行うことを特徴としている。Forming a mask layer in sequence, patterning the mask layer and the cap layer, and the directions of the multimode waveguide and the single mode waveguide coincide with the crystal direction (0 1 1) of the crystal substrate Forming a mask pattern, and using the mask pattern as a mask, using a selective etchant that etches only InP without etching InGaAsP, and etches only the upper cladding layer without etching the optical waveguide layer. The wall surfaces where the single mode waveguide is not provided at both ends of the multimode waveguide form an angle of about 54.8 ° with respect to the surface of the crystal substrate along the crystal plane of the upper cladding layer. Forming the upper clad layer, the optical waveguide layer, and the mask pattern as a mask; and A step of performing dry etching of the crystal substrate and sequentially removing a predetermined thickness in a vertical direction while maintaining a wall surface of the optical waveguide layer at about 54.8 ° with respect to the surface of the crystal substrate. It is said.

本発明によって製造されたMMIでは、マルチモード導波路の両端でシングルモード導波路が設けられていない光軸方向に垂直な壁面が、基板の表面に対し約54.8°の傾斜を有している。これにより、一部の光が基板の表面に対して約54.8°の傾斜面を形成する壁面で反射される。反射された光は、基板の表面に向かって進むが、この基板に対する入射角が小さいため、ほとんどの光は基板の表面で反射されずに基板内に放射される。従って、壁面で反射された光が、導波路に戻るおそれがなくなる。従って、簡単な構造で反射光の戻りを完全に除去することができるという効果がある。 In the MMI manufactured according to the present invention, the wall surface perpendicular to the optical axis direction where the single mode waveguide is not provided at both ends of the multimode waveguide has an inclination of about 54.8 ° with respect to the surface of the substrate. Yes. Thereby, a part of light is reflected by the wall surface forming an inclined surface of about 54.8 ° with respect to the surface of the substrate. The reflected light travels toward the surface of the substrate, but since the incident angle with respect to the substrate is small, most of the light is radiated into the substrate without being reflected by the surface of the substrate. Therefore, there is no possibility that the light reflected by the wall surface returns to the waveguide. Therefore, there is an effect that the return of the reflected light can be completely removed with a simple structure.

このMMIの製造は次のような工程で行うことができる。
まず、表面が結晶方向(0 1 1)と結晶方向(0 1 −1)で規定される平面となるように形成されたInP結晶基板を下側クラッド層として、前記結晶基板上に導波路を構成するInGaAsP結晶による光導波路層、InP結晶による上側クラッド層、InGaAsP結晶またはInGaAs結晶によるキャップ層、及びエッチング用のSiOによるマスク層を順次形成する。次に、前記マスク層と前記キャップ層とをパターニングして前記マルチモード導波路と前記シングルモード導波路の方向が前記結晶基板の前記結晶方向(0 1 1)に一致するようにマスクパターンを形成する。次に、前記マスクパターンをマスクとして、InGaAsPはエッチングせずInPのみをエッチングする選択エッチング液を用いて、前記光導波路層はエッチングせず前記上側クラッド層のみをエッチングし、前記マルチモード導波路の両端で前記シングルモード導波路が設けられていない壁面が、前記上側クラッド層の結晶面に沿って前記結晶基板の表面に対して約54.8°をなすように形成する。そして、前記マスクパターンをマスクとして前記上側クラッド層、前記光導波路層、及び前記結晶基板をドライエッチングし、前記光導波路層の壁面が前記結晶基板の表面に対して約54.8°を維持した状態で所定の厚さだけ垂直方向に除去する。
This MMI can be manufactured by the following steps.
First, an InP crystal substrate formed so that the surface is a plane defined by a crystal direction (0 1 1) and a crystal direction (0 1 -1) is used as a lower cladding layer, and a waveguide is formed on the crystal substrate. An optical waveguide layer made of InGaAsP crystal, an upper cladding layer made of InP crystal, a cap layer made of InGaAsP crystal or InGaAs crystal, and a mask layer made of SiO 2 for etching are sequentially formed. Next, the mask layer and the cap layer are patterned to form a mask pattern so that the directions of the multimode waveguide and the single mode waveguide coincide with the crystal direction (0 1 1) of the crystal substrate. To do. Next, using the mask pattern as a mask, a selective etchant that etches only InP without etching InGaAsP, etches only the upper cladding layer without etching the optical waveguide layer, and forms the multimode waveguide. The wall surface where the single mode waveguide is not provided at both ends is formed so as to form about 54.8 ° with respect to the surface of the crystal substrate along the crystal plane of the upper clad layer. Then, the upper cladding layer, the optical waveguide layer, and the crystal substrate were dry-etched using the mask pattern as a mask, and the wall surface of the optical waveguide layer was maintained at about 54.8 ° with respect to the surface of the crystal substrate . In the state, a predetermined thickness is removed in the vertical direction.

この発明の前記並びにその他の目的と新規な特徴は、次の好ましい実施例の説明を添付図面と照らし合わせて読むと、より完全に明らかになるであろう。但し、図面は、もっぱら解説のためのものであって、この発明の範囲を限定するものではない。   The above and other objects and novel features of the present invention will become more fully apparent when the following description of the preferred embodiment is read in conjunction with the accompanying drawings. However, the drawings are for explanation only, and do not limit the scope of the present invention.

図1(a)〜(c)は、本発明の実施例を示すMMIの構成図であり、同図(a)は斜視図、同図(b)は同図(a)中のX1−X2に沿う部分の断面図、及び同図(c)は同図(a)中のY1−Y2に沿う部分の断面図である。   1A to 1C are configuration diagrams of an MMI showing an embodiment of the present invention, where FIG. 1A is a perspective view, and FIG. 1B is X1-X2 in FIG. 1A. Sectional drawing of the part which follows this, and the figure (c) are sectional drawings of the part which follows Y1-Y2 in the figure (a).

このMMIは、下側のクラッド層となるInP結晶による基板1の上に、厚さ0.5μm程度のInGaAsP結晶によって導波路を構成する光導波層2と、厚さ2〜4μm程度のInP結晶による上側のクラッド層3を順次積層し、これを長さが100〜500μmで、幅が15〜100μm程度のほぼ直方体の形状に加工して形成したものである。   This MMI is composed of an optical waveguide layer 2 having a waveguide formed of an InGaAsP crystal having a thickness of about 0.5 μm and an InP crystal having a thickness of about 2 to 4 μm on a substrate 1 made of InP crystal serving as a lower cladding layer. The upper clad layer 3 is sequentially laminated and processed into a substantially rectangular parallelepiped shape having a length of 100 to 500 μm and a width of about 15 to 100 μm.

図1(a)に示すように、直方体のXY表面は、X軸方向が結晶方向(0 1 1)、Y軸方向が結晶方向(0 1 −1)で規定される面に一致するように設定され、この直方体の長手方向であるX軸方向、即ち導波路の方向は、結晶方向(0 1 1)となるように設定されている。   As shown in FIG. 1 (a), the XY surface of the rectangular parallelepiped coincides with the plane defined by the crystal direction (0 1 1) in the X-axis direction and the crystal direction (0 1 -1) in the Y-axis direction. The X-axis direction that is the longitudinal direction of the rectangular parallelepiped, that is, the direction of the waveguide is set to be the crystal direction (0 1 1).

導波路の中央部は、直方体のY軸方向の幅全体で構成されるマルチモード導波路Mとなっている。導波路の一端には、マルチモード導波路Mの中央部を削除して形成された端面T1が設けられ、この端面T1の両側に残された導波路がシングルモード導波路A,Bとなっている。シングルモード導波路A,Bの幅は光の波長とほぼ同じ2μm程度に形成され、長さは10μm程度またはそれ以上となっている。一方、シングルモード導波路A,Bの間に設けられた端面T1は、基板1の表面に対して約54.8°の角度θとなるように斜めに形成されている。即ち、この端面T1は、光軸方向に垂直な壁面が、厚さ方向に傾斜を付けられて形成されている。   The central portion of the waveguide is a multimode waveguide M configured by the entire width of the rectangular parallelepiped in the Y-axis direction. One end of the waveguide is provided with an end face T1 formed by deleting the central portion of the multimode waveguide M, and the waveguides left on both sides of the end face T1 become single mode waveguides A and B. Yes. The widths of the single mode waveguides A and B are formed to be about 2 μm which is substantially the same as the wavelength of light, and the length is about 10 μm or more. On the other hand, the end face T1 provided between the single mode waveguides A and B is formed obliquely with respect to the surface of the substrate 1 so as to have an angle θ of about 54.8 °. That is, the end face T1 is formed by inclining the wall surface perpendicular to the optical axis direction in the thickness direction.

また、導波路の他端にも、シングルモード導波路A,B及び端面T1に対して対称となるように、シングルモード導波路C,D及び端面T2が形成されている。   Also, the single mode waveguides C and D and the end face T2 are formed at the other end of the waveguide so as to be symmetric with respect to the single mode waveguides A and B and the end face T1.

図3は、図1のMMIの製造方法を示す工程図である。なお、この工程図の各工程における右側の断面図は図1(b)のX1−X2断面に対応し、左側の断面図は図1(c)のY1−Y2断面に対応するものである。以下、この図3を参照しつつ、図1のMMIの製造方法を説明する。   FIG. 3 is a process diagram showing a method of manufacturing the MMI of FIG. In addition, the right side cross-sectional view in each step of this process diagram corresponds to the X1-X2 cross section of FIG. 1B, and the left cross-sectional view corresponds to the Y1-Y2 cross section of FIG. Hereinafter, a method of manufacturing the MMI of FIG. 1 will be described with reference to FIG.

(1) 工程1
表面が結晶方向(0 1 1)と結晶方向(0 1 −1)で規定される平面となるように形成されたInP結晶による基板1を準備し、この基板1の表面に、図3(a)に示すように、導波路を構成する厚さ0.5μm程度のInGaAsP結晶による光導波層2と、厚さ2〜4μm程度のInP結晶によるクラッド層3と、後のウェットエッチングでマスクとして使用するInGaAsP結晶またはInGaAs結晶によるキャップ層4と、SiOによるマスク層5を、順次形成する。
(1) Process 1
A substrate 1 made of an InP crystal formed so that the surface is a plane defined by a crystal direction (0 1 1) and a crystal direction (0 1 -1) is prepared. ), The optical waveguide layer 2 made of an InGaAsP crystal having a thickness of about 0.5 μm, the cladding layer 3 made of an InP crystal having a thickness of about 2 to 4 μm, and used as a mask in subsequent wet etching, as shown in FIG. A cap layer 4 made of InGaAsP crystal or InGaAs crystal and a mask layer 5 made of SiO 2 are sequentially formed.

(2) 工程2
通常のホトリソグラフィ技術と、ClとArの混合ガスを用いたリアクティブ・イオン・エッチング技術を使用して、マスク層5とキャップ層4をエッチングし、図3(b)に示すように、これらのマスク層5とキャップ層4によるマスクパターンMSKを形成する。なお、図3中にマスクパターンMSKの平面図は記載されていないが、図1(a)のクラッド層3の表面と同じ形状である。このとき、マスクパターンMSKのX軸方向は、結晶方向(0 1 1)に一致するように設定する。
(2) Process 2
The mask layer 5 and the cap layer 4 are etched using a normal photolithography technique and a reactive ion etching technique using a mixed gas of Cl 2 and Ar, as shown in FIG. A mask pattern MSK is formed by the mask layer 5 and the cap layer 4. In addition, although the top view of mask pattern MSK is not described in FIG. 3, it is the same shape as the surface of the clad layer 3 of FIG. At this time, the X-axis direction of the mask pattern MSK is set to coincide with the crystal direction (0 1 1).

(3) 工程3
マスクパターンMSKをエッチングマスクとして、InGaAsPはエッチングせずにInPのみをエッチングするHCl等の選択エッチング液を用い、選択ウェットエッチングを行う。この選択ウェットエッチングでは、クラッド層3のInPが、結晶面に沿ってエッチングされる。従って、図3(c)に示すように、クラッド層3のX1−X2断面は結晶面に一致し、基板1の表面に対して約54.8°の傾斜面となる。一方、クラッド層3のY1−Y2断面は、垂直に形成される。また、クラッド層3の下側のInGaAsPによる光導波層2は、エッチングされずに、そのまま残る。なお、マスクパターンMSKを構成するキャップ層4は、クラッド層3との密着性が良いので、選択エッチング液がマスクパターンMSKとクラッド層3の間に浸入することによるサイドエッチを防止する効果がある。
(3) Process 3
Using the mask pattern MSK as an etching mask, selective wet etching is performed using a selective etching solution such as HCl that etches only InP without etching InGaAsP. In this selective wet etching, InP of the cladding layer 3 is etched along the crystal plane. Therefore, as shown in FIG. 3C, the X1-X2 cross section of the clad layer 3 coincides with the crystal plane, and becomes an inclined surface of about 54.8 ° with respect to the surface of the substrate 1. On the other hand, the Y1-Y2 cross section of the cladding layer 3 is formed vertically. Further, the optical waveguide layer 2 made of InGaAsP below the cladding layer 3 is left without being etched. Note that the cap layer 4 constituting the mask pattern MSK has good adhesion to the cladding layer 3, and therefore has an effect of preventing side etching due to the selective etchant entering between the mask pattern MSK and the cladding layer 3. .

(4) 工程4
選択ウェットエッチングの後、再び、ClとArの混合ガスを用いたリアクティブ・イオン・エッチングを施す。これにより、図3(c)の断面形状を保ったまま垂直にエッチングが進み、クラッド層3と、光導波層2と、基板1が同じ厚さだけ均一にエッチングされて除去される。基板1の表面が1〜3μm程度エッチングされた時点で、エッチングを停止する。これにより、クラッド層3の下側と、光導波層2と、基板1の一部のX1−X2断面が、この基板1の表面に対して約54.8°の傾斜面となる。また、光導波層2と基板1のY1−Y2断面は、垂直に形成される。これにより、図3(d)に示す形状のMMIが形成される。この後、マスクパターンMSKを除去することによって、図1に示すようなMMIが完成する。
(4) Process 4
After selective wet etching, reactive ion etching using a mixed gas of Cl 2 and Ar is performed again. Thereby, the etching proceeds vertically while maintaining the cross-sectional shape of FIG. 3C, and the cladding layer 3, the optical waveguide layer 2, and the substrate 1 are uniformly etched by the same thickness and removed. The etching is stopped when the surface of the substrate 1 is etched by about 1 to 3 μm. Thereby, the X1-X2 cross section of the lower side of the cladding layer 3, the optical waveguide layer 2, and a part of the substrate 1 becomes an inclined surface of about 54.8 ° with respect to the surface of the substrate 1. Moreover, the Y1-Y2 cross section of the optical waveguide layer 2 and the substrate 1 is formed vertically. As a result, the MMI having the shape shown in FIG. Thereafter, the MMI as shown in FIG. 1 is completed by removing the mask pattern MSK.

このMMIでは、例えば分波器として使用する場合、光ファイバで導かれた光やレーザダイオードから出力された光等を、レンズを介してシングルモード導波路Aに入射する。屈折率がほぼ3.5の光導波層2に入射された光は、この光導波層2を挟む屈折率がほぼ3.1の基板1とクラッド層3との間で全反射されながら、この光導波層2中を進む。そして、幅の広いマルチモード導波路Mで複数のマルチモードに結合し、そのマルチモード間の干渉効果により、出射側のシングルモード導波路C,Dに分波されて出射される。この時、一部の光は、基板1の表面に対して約54.8°の傾斜面を形成する端面T2で反射される。反射された光は、基板1の表面に向かって進むが、この基板1に対する入射角が小さいため、ほとんどの光は基板1の表面で反射されずに基板1内に放射される。従って、端面T2で反射された光が、シングルモード導波路Aに戻るおそれがなくなる。   In this MMI, for example, when used as a duplexer, light guided by an optical fiber, light output from a laser diode, or the like enters the single mode waveguide A through a lens. The light incident on the optical waveguide layer 2 having a refractive index of approximately 3.5 is totally reflected between the substrate 1 having a refractive index of approximately 3.1 and the clad layer 3 sandwiching the optical waveguide layer 2. Proceeds through the optical waveguide layer 2. Then, the multimode waveguide M having a wide width is coupled to a plurality of multimodes, and is demultiplexed and emitted to the single-mode waveguides C and D on the emission side by the interference effect between the multimodes. At this time, a part of the light is reflected by the end face T <b> 2 that forms an inclined surface of about 54.8 ° with respect to the surface of the substrate 1. The reflected light travels toward the surface of the substrate 1, but since the incident angle with respect to the substrate 1 is small, most of the light is radiated into the substrate 1 without being reflected by the surface of the substrate 1. Therefore, there is no possibility that the light reflected by the end face T2 returns to the single mode waveguide A.

また、このMMIは、例えばシングルモード導波路A,Bから、それぞれ異なる光を入射し、マルチモード導波路Mでこれらの光を合波してシングルモード導波路C,Dから出力する合波器としても使用することができる。この場合も、端面T2で反射された光が、シングルモード導波路A,Bに戻るおそれはない。   In addition, this MMI is, for example, a multiplexer that receives different light beams from the single mode waveguides A and B, multiplexes these lights in the multimode waveguide M, and outputs them from the single mode waveguides C and D. Can also be used. Also in this case, there is no possibility that the light reflected by the end face T2 returns to the single mode waveguides A and B.

このように、本実施例のMMIは、基板1の表面に対して傾斜面を有する端面T1,T2を有しているので、これらの端面T1,T2で反射された光は基板1を通して外部に放射され、シングルモード導波路A,Bに光が戻って光源の特性に悪影響を与えるおそれがないという利点がある。   As described above, the MMI of the present embodiment has the end surfaces T1 and T2 having inclined surfaces with respect to the surface of the substrate 1, so that the light reflected by these end surfaces T1 and T2 is transmitted to the outside through the substrate 1. There is an advantage that there is no possibility that the light is radiated and the light returns to the single mode waveguides A and B to adversely affect the characteristics of the light source.

また、傾斜面を有する端面T1,T2は、基板1、光導波層2及びクラッド層3を構成するInP結晶の特性を利用したエッチングによって形成しているので、複雑な工程を必要とせず、簡単に傾斜面を形成することができるという利点がある。   Further, the end surfaces T1 and T2 having inclined surfaces are formed by etching utilizing the characteristics of the InP crystals constituting the substrate 1, the optical waveguide layer 2 and the cladding layer 3, so that a complicated process is not required and simple. There is an advantage that an inclined surface can be formed.

なお、上記実施例で示した寸法や材料は一例であり、適用するMMIに応じて任意の寸法や材料を使用することができる。   Note that the dimensions and materials shown in the above embodiments are examples, and arbitrary dimensions and materials can be used according to the applied MMI.

また、構造も図示したものに限定されない。即ち、マルチモード導波路Mの両側に設けられるシングルモード導波路の数は、それぞれ2個ずつに限定されない。例えば、3分岐の場合は、入射側に1個、出射側に3個を設けて構成することができる。   Further, the structure is not limited to the illustrated one. That is, the number of single mode waveguides provided on both sides of the multimode waveguide M is not limited to two each. For example, in the case of three branches, one can be provided on the incident side and three can be provided on the emission side.

本発明の実施例を示すMMIの構成図である。It is a block diagram of MMI which shows the Example of this invention. 従来のMMIの構造を示す平面図である。It is a top view which shows the structure of the conventional MMI. 図1のMMIの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of MMI of FIG.

符号の説明Explanation of symbols

1 基板
光導波層
3 クラッド層
4 キャップ層
5 マスク層
A,B,C,D シングルモード導波路
M マルチモード導波路
T1,T2 端面
1 substrate 2 optical waveguide layer 3 clad layer 4 cap layer 5 mask layer A, B, C, D single mode waveguide M multimode waveguide T1, T2 end face

Claims (3)

マルチモード導波路の両端に単数または複数の幅の狭いシングルモード導波路を設け、入力側のシングルモード導波路から入射した光を前記マルチモード導波路で干渉させて出力側のシングルモード導波路から出射させる多モード光干渉デバイスの製造方法において、Single or multiple narrow single-mode waveguides are provided at both ends of the multi-mode waveguide, and light incident from the input-side single-mode waveguide is caused to interfere with the multi-mode waveguide from the output-side single-mode waveguide. In the manufacturing method of the multimode optical interference device to emit,
表面が結晶方向(0 1 1)と結晶方向(0 1 −1)で規定される平面となるように形成されたInP結晶基板を下側クラッド層として、前記結晶基板上に導波路を構成するInGaAsP結晶による光導波路層、InP結晶による上側クラッド層、InGaAsP結晶またはInGaAs結晶によるキャップ層、及びエッチング用のSiOA waveguide is formed on the crystal substrate with the InP crystal substrate formed so that the surface becomes a plane defined by the crystal direction (0 1 1) and the crystal direction (0 1 -1) as a lower clad layer. Optical waveguide layer made of InGaAsP crystal, upper cladding layer made of InP crystal, cap layer made of InGaAsP crystal or InGaAs crystal, and SiO for etching 2 によるマスク層を順次形成する工程と、Sequentially forming a mask layer by
前記マスク層と前記キャップ層とをパターニングし、前記マルチモード導波路と前記シングルモード導波路の方向が前記結晶基板の前記結晶方向(0 1 1)に一致するようにマスクパターンを形成する工程と、Patterning the mask layer and the cap layer, and forming a mask pattern so that directions of the multimode waveguide and the single mode waveguide coincide with the crystal direction (0 1 1) of the crystal substrate; ,
前記マスクパターンをマスクとして、InGaAsPはエッチングせずInPのみをエッチングする選択エッチング液を用いて、前記光導波路層はエッチングせず前記上側クラッド層のみをエッチングし、前記マルチモード導波路の両端で前記シングルモード導波路が設けられていない壁面が、前記上側クラッド層の結晶面に沿って前記結晶基板の表面に対して約54.8°をなすように形成する工程と、Using the mask pattern as a mask, a selective etchant that etches only InP without etching InGaAsP, etches only the upper cladding layer without etching the optical waveguide layer, and at both ends of the multimode waveguide Forming a wall surface not provided with a single mode waveguide so as to form about 54.8 ° with respect to the surface of the crystal substrate along the crystal plane of the upper clad layer;
前記マスクパターンをマスクとして前記上側クラッド層、前記光導波路層、及び前記結晶基板をドライエッチングし、前記光導波路層の壁面が前記結晶基板の表面に対して約54.8°を維持した状態で所定の厚さだけ垂直方向に除去する工程とを、Using the mask pattern as a mask, the upper cladding layer, the optical waveguide layer, and the crystal substrate are dry etched, and the wall surface of the optical waveguide layer is maintained at about 54.8 ° with respect to the surface of the crystal substrate. Removing a predetermined thickness in the vertical direction,
順次行うことを特徴とする多モード光干渉デバイスの製造方法。A method of manufacturing a multimode optical interference device, which is performed sequentially.
前記光導波路層は、厚さ0.5μm程度のInGaAsP結晶であり、The optical waveguide layer is an InGaAsP crystal having a thickness of about 0.5 μm,
前記上側クラッド層は、厚さ2〜4μm程度のInP結晶であることを特徴とする請求項1記載の多モード光干渉デバイスの製造方法。2. The method of manufacturing a multimode optical interference device according to claim 1, wherein the upper clad layer is an InP crystal having a thickness of about 2 to 4 [mu] m.
前記選択エッチング液は、HClであることを特徴とする請求項1又は2に記載の多モード光干渉デバイスの製造方法。The method for manufacturing a multimode optical interference device according to claim 1, wherein the selective etching solution is HCl.
JP2005351802A 2005-12-06 2005-12-06 Manufacturing method of multimode optical interference device Active JP4560479B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005351802A JP4560479B2 (en) 2005-12-06 2005-12-06 Manufacturing method of multimode optical interference device
US11/607,992 US7593610B2 (en) 2005-12-06 2006-12-04 Multi-mode optical coherence device and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005351802A JP4560479B2 (en) 2005-12-06 2005-12-06 Manufacturing method of multimode optical interference device

Publications (2)

Publication Number Publication Date
JP2007156143A JP2007156143A (en) 2007-06-21
JP4560479B2 true JP4560479B2 (en) 2010-10-13

Family

ID=38118852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005351802A Active JP4560479B2 (en) 2005-12-06 2005-12-06 Manufacturing method of multimode optical interference device

Country Status (2)

Country Link
US (1) US7593610B2 (en)
JP (1) JP4560479B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045135A (en) * 2012-08-28 2014-03-13 Furukawa Electric Co Ltd:The Integrated optical semiconductor device
JP5901509B2 (en) * 2012-12-21 2016-04-13 三菱電機株式会社 Optical demultiplexer
WO2016169054A1 (en) * 2015-04-24 2016-10-27 华为技术有限公司 Waveguide structure and silicon-based chip
WO2018198193A1 (en) * 2017-04-25 2018-11-01 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273432A (en) * 1992-03-27 1993-10-22 Fujikura Ltd Optical waveguide module
JPH0675130A (en) * 1992-08-26 1994-03-18 Sony Corp Optical guide device
JPH06230236A (en) * 1993-02-02 1994-08-19 Nippon Telegr & Teleph Corp <Ntt> Optical circuit
JPH08502606A (en) * 1993-08-04 1996-03-19 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Multimode imaging device and ring laser having the same
JPH1187844A (en) * 1997-07-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical coupling circuit and its manufacture
JP2001324647A (en) * 2000-05-16 2001-11-22 Fujikura Ltd Optical fiber array, optical waveguide chip and optical module connecting them
JP2004085731A (en) * 2002-08-23 2004-03-18 Matsushita Electric Ind Co Ltd Method for manufacturing optical transmission structure, and optical transmission mechanism
JP2004511820A (en) * 2000-10-09 2004-04-15 ブッカム・テクノロジー・ピーエルシー Waveguide spatial filter
JP2004117706A (en) * 2002-09-25 2004-04-15 Sumitomo Electric Ind Ltd Optical integrated element, its manufacturing method, and light source module
JP2004118117A (en) * 2002-09-27 2004-04-15 Toshiba Corp Optical waveguide array film
JP2005004204A (en) * 2003-06-09 2005-01-06 Samsung Electronics Co Ltd Optical hybrid module and its manufacturing method
WO2005022223A1 (en) * 2003-08-28 2005-03-10 Nec Corporation Optical device of waveguide type and its production method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142596A (en) * 1990-07-24 1992-08-25 Matsushita Electric Industrial Co., Ltd. Tapered light wave guide and wavelength converting element using the same
US5640474A (en) * 1995-09-29 1997-06-17 The United States Of America As Represented By The Secretary Of The Army Easily manufacturable optical self-imaging waveguide
JP3244115B2 (en) * 1997-08-18 2002-01-07 日本電気株式会社 Semiconductor laser
KR100269173B1 (en) * 1997-09-12 2000-10-16 윤종용 Planar waveguide chip with absorptin pad and its fabrication method
JP2001215452A (en) 2000-01-28 2001-08-10 Hitachi Cable Ltd Mach-zehnder optical circuit
US6798795B2 (en) * 2000-02-29 2004-09-28 The Regents Of The University Of California Ultra-compact room temperature rapidly tunable infrared sources
US7085453B2 (en) * 2002-11-25 2006-08-01 Matsushita Electric Industrial Co., Ltd. Optical functional device and optical module
AU2003293539A1 (en) * 2002-12-17 2004-07-29 Massachusetts Institute Of Technology Waveguide-to-semiconductor device coupler
GB2407648B (en) * 2003-10-31 2006-10-25 Bookham Technology Plc Polarisation rotators
US7253077B2 (en) * 2003-12-01 2007-08-07 Asml Netherlands B.V. Substrate, method of preparing a substrate, method of measurement, lithographic apparatus, device manufacturing method and device manufactured thereby, and machine-readable storage medium

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273432A (en) * 1992-03-27 1993-10-22 Fujikura Ltd Optical waveguide module
JPH0675130A (en) * 1992-08-26 1994-03-18 Sony Corp Optical guide device
JPH06230236A (en) * 1993-02-02 1994-08-19 Nippon Telegr & Teleph Corp <Ntt> Optical circuit
JPH08502606A (en) * 1993-08-04 1996-03-19 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Multimode imaging device and ring laser having the same
JPH1187844A (en) * 1997-07-08 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical coupling circuit and its manufacture
JP2001324647A (en) * 2000-05-16 2001-11-22 Fujikura Ltd Optical fiber array, optical waveguide chip and optical module connecting them
JP2004511820A (en) * 2000-10-09 2004-04-15 ブッカム・テクノロジー・ピーエルシー Waveguide spatial filter
JP2004085731A (en) * 2002-08-23 2004-03-18 Matsushita Electric Ind Co Ltd Method for manufacturing optical transmission structure, and optical transmission mechanism
JP2004117706A (en) * 2002-09-25 2004-04-15 Sumitomo Electric Ind Ltd Optical integrated element, its manufacturing method, and light source module
JP2004118117A (en) * 2002-09-27 2004-04-15 Toshiba Corp Optical waveguide array film
JP2005004204A (en) * 2003-06-09 2005-01-06 Samsung Electronics Co Ltd Optical hybrid module and its manufacturing method
WO2005022223A1 (en) * 2003-08-28 2005-03-10 Nec Corporation Optical device of waveguide type and its production method

Also Published As

Publication number Publication date
US7593610B2 (en) 2009-09-22
JP2007156143A (en) 2007-06-21
US20070127868A1 (en) 2007-06-07

Similar Documents

Publication Publication Date Title
US11156789B2 (en) Surface coupled laser and laser optical interposer
US7643709B2 (en) Slanted segmented coupler
KR101121459B1 (en) Method and apparatus for compactly coupling an optical fiber and a planar optical wave guide
US7088890B2 (en) Dual “cheese wedge” silicon taper waveguide
JP6360911B2 (en) Suspended ridge oxide waveguide
JP2009246241A (en) Semiconductor optical element, and optical module
JP2018040925A (en) Optical integrated circuit device mounted with optical fiber
JP2006251063A (en) Optical connector, optical coupling method and optical element
JP4560479B2 (en) Manufacturing method of multimode optical interference device
JP2007199254A (en) Optical module and manufacturing method thereof
JP2017173710A (en) Optical fiber mounted optical integrated circuit device
JP5173925B2 (en) Optical element
JP4549949B2 (en) Optical element
JPH0560928A (en) Waveguide type spot size converting element
KR100401204B1 (en) Optical communication module comprising an optical device with a curved optical waveguide
JPH09297235A (en) Optical waveguide and its production as well as optical waveguide module using the same
JP2006323136A (en) Optical waveguide and manufacturing method therefor
JP4707614B2 (en) Planar waveguide element
JP2002323629A (en) Optical waveguide element and semiconductor laser beam device
JP4206964B2 (en) Optical splitter
JPH05173036A (en) Method for forming optical waveguide
KR20170011941A (en) Planar lightwave circuit based integrated optical chip
JP2000056168A (en) Optical transmitter
WO2023223432A1 (en) Mode field conversion optical circuit
JP3786648B2 (en) Mode size conversion optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

R150 Certificate of patent or registration of utility model

Ref document number: 4560479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250