JP4558258B2 - Plate heat pipe and manufacturing method thereof - Google Patents

Plate heat pipe and manufacturing method thereof Download PDF

Info

Publication number
JP4558258B2
JP4558258B2 JP2002132374A JP2002132374A JP4558258B2 JP 4558258 B2 JP4558258 B2 JP 4558258B2 JP 2002132374 A JP2002132374 A JP 2002132374A JP 2002132374 A JP2002132374 A JP 2002132374A JP 4558258 B2 JP4558258 B2 JP 4558258B2
Authority
JP
Japan
Prior art keywords
plate
outer peripheral
plate member
heat pipe
peripheral portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002132374A
Other languages
Japanese (ja)
Other versions
JP2003254685A (en
Inventor
達彦 植木
雅章 山本
裕一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2002132374A priority Critical patent/JP4558258B2/en
Publication of JP2003254685A publication Critical patent/JP2003254685A/en
Application granted granted Critical
Publication of JP4558258B2 publication Critical patent/JP4558258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular

Description

【0001】
【発明の属する技術分野】
本発明は、電気・電子部品、たとえば半導体チップ等の高発熱量の被冷却素子等を冷却するのに好適な、板型ヒートパイプの製造方法と、その実装方法に関する。
【0002】
【従来の技術】
パソコンのCPU、レーザ発光ダイオード、パワートランジスター等の電気・電子機器に搭載されている半導体素子等の電子部品は、その使用によってある程度の発熱が避け難く、近年、その冷却が重要な技術課題となりつつある。冷却を要する電気・電子素子(以下、「被冷却素子」と称する)を冷却する方法としては、例えば機器にファンを取り付けて、機器筐体内の空気の温度を下げる方法や、被冷却素子に冷却体を取り付けることによって、その被冷却素子を直接的に冷却する方法等が代表的に知られている。
【0003】
被冷却素子に取り付ける冷却体として、例えば銅材やアルミニウム材などの伝熱性に優れた材料の板材や、或いは板型ヒートパイプ等が適用されることが多い。板型ヒートパイプは、板状のヒートパイプであり、その他に、平面型ヒートパイプまたは平板型ヒートパイプと呼称されることもある。以下、板型ヒートパイプと呼称する。
【0004】
ヒートパイプについて簡単に説明する。ヒートパイプは空洞部を有するコンテナであり、その空洞部に作動流体(作動流体)が封入されている。その空洞部は真空引きされており、作動流体の蒸発が起きやすくなっている。作動流体としては、コンテナの材質との適合性を考慮して、水、アルコール、代替フロン等が用いられる。
【0005】
ヒートパイプの作動について簡単に説明する。即ち、ヒートパイプの吸熱側において、ヒートパイプを構成する容器(コンテナ)の材質中を熱伝導して伝わってきた熱により、作動流体が蒸発し、その蒸気がヒートパイプの放熱側に移動する。放熱側では、作動流体の蒸気は冷却されて、再び液相状態に戻る。そして液相に戻った作動流体は、再び吸熱側に移動(還流)する。このような作動流体の相変態や移動により、熱の移動がなされる。
【0006】
作動流体の還流は、重力や毛細管現象によってなされる。重力式のヒートパイプの場合は、吸熱部を放熱部より下方に配置することによって、作動流体は還流する。毛細管現象によって作動流体を還流させるヒートパイプの場合は、空洞部の内壁に溝を設けたり、空洞内部に金属メッシュ、多孔質体等のウイックを挿入し、溝またはウイックによる毛細管現象によって、作動流体が還流する。
このように、ヒートパイプにおいては、ヒートパイプの密閉された空洞部内に封入された作動流体の相変態と移動により大量の熱の輸送が行われる。もちろん、ヒートパイプを構成する容器(コンテナ)を熱伝導することによって、運ばれる熱もあるが、その量は相対的に少ない。
【0007】
上述した吸熱側には、被冷却部品を熱的に接続させる。そして放熱側には、例えば、放熱用フインを取り付ける。このような構成によって、被冷却部品の熱の大部分が、ヒートパイプによって移動されて、放熱用フインから放散される。
さて、板型ヒートパイプの場合、その形状の特徴によって、被冷却部品とヒートパイプを接続させやすい利点がある。即ち、半導体素子等の被冷却部品を、ヒートパイプの主面に接触させることによって、ある程度広い面積で接触させることができるからである。
【0008】
なお、被冷却部品とヒートパイプの接触は、両者の間に伝熱グリスや伝熱ゴム等を挟む場合もあり、両者をハンダ付け等によって接合させる場合もある。また板型ヒートパイプの被冷却部品を接触させた主面の反対側の面には、放熱用のフインやヒートシンク、更に、ファン等を取り付けると良い。このように配置することによって、スペース効率にも優れた冷却構造が実現しうる。この場合には、半導体素子等の被冷却部品と接触するヒートパイプの主面に変形が生じると、熱抵抗が高くなるので、ヒートパイプの主面に変形が無いことが必要である。
【0009】
特に、近年では、CPUの高集積化、高速化によって、発熱密度が高くなる傾向にあり、ヒートパイプの性能も、熱を移動するだけでなく、高密度の熱流束を低密度に拡散するという熱の拡散に関する要求にも対応しなければならない。また、CPUが実装された基板は、様々な向きに配置されるので、ヒートパイプも様々な向きに配置された状態で性能を発揮しなげればならない。従って、ヒートパイプ内部における、高発熱密度の発熱体が接触する部分に、低密度に拡散する機能を備えた伝熱ブロックを配置したり、金属メッシュ、多孔質体等のウイックを適切に配置することによって、ドライアウト(吸熱部での蒸発に、作動流体の供給が追いつかず、吸熱部が乾ききってしまって、ヒートパイプとしての作動が続かなくなることをいう)の発生を防止する必要がある。伝熱ブロックは、別部品を挿入しても良いし、コンテナと一体の部材に形成されていても良い。
【0010】
【発明が解決しようとする課題】
板型ヒートパイプのコンテナの形成は、プレス等によって成形した2枚の板状部材をロウ付け等で接合する方法(例えば特願平8−312980)、折り込みで封入・接合する方法(特願平10−099781)などが提案されている。
しかし、密閉体のコンテナを形成するための部材の接合方法として、ロウ付け(またはハンダ付け)をその接合の主たる手段として用いると、ロウ材と作動流体との適合性、または、フラックスの種類によっては、ヒートパイプの性能が劣化しやすいという問題がある。ロウ材と作動流体との適合性の向上のためには、不純物の少ない、母材と近い組成のロウ材を用いることが望ましいが、その場合には、ロウ材の融点が必然的に母材の融点と近くなるので、母材が焼鈍されて強度が低下するなどの問題がある。更に、加工に要する時間や、ロウ材等の他部材を用いることによるコスト上昇も避けられない。
【0011】
一方、折り込みによる封止の場合は、外形に制約があり、単純な形状でなければ適用できないという問題点がある。また、この方法によると、部材同士の金属的な接合が困難であることから、密封性を長期にわたって維持することができない、即ち、ヒートパイプとしての長期信頼性を損なうという問題点がある。そのため、単純にこの手法だけでヒートパイプのための気密性の高い密封体を製造することが困難である。
従って、この発明の目的は、ヒートパイプの板材の強度を低下させることなく、長期信頼性がある、気密性の高い、主面に変形の無いコンテナを備えたヒートパイプおよびその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
発明者は、上述した従来の問題点を解決するために鋭意研究を重ねた。その結果、その表面に被冷却素子が熱的に接続される板材と、それと組合わされて内部に空洞部を形成する別の板材とを組合わせた外周部を、清浄な状態に維持しつつ圧下すると、両板材の接合面に新生面が形成されて、新生面どうしが圧着されて、金属接合され、気密性に優れた強度の低下しないコンテナを備えたヒートパイプを作製することができることが判明した。更に、板材および別の板材に、板材および別の板材の接合面に沿った方向における板材の変形を吸収する吸収構造を設けると、板材および別の板材を組合わせて、外周部を圧接したときに、上述した吸収構造によって、接合面に沿った方向における板材の変形を吸収することができるので、変形の無い主面を備えたコンテナを形成することが判明した。
【0013】
この発明は、上述した研究結果に基づいてなされたものであって、この発明の板型ヒートパイプの製造方法は、少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、前記別の板材は、前記空洞部を形成する部分の外周部の近傍に環状溝部を備え、前記板材は、前記外周部および前記空洞部を形成する所定の高さの凹部を備え、前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状溝部と前記凹部の側面部とで吸収する吸収構造をなし、前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法である。
【0016】
この場合において、前記環状溝部の深さbが、前記外周部の板厚aよりも大きくなるように前記板材および前記別の板材を調製する、板型ヒートパイプの製造方法である。
【0017】
また、この発明の板型ヒートパイプの製造方法は、少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、前記別の板材は、前記外周部の近傍に、前記空洞部を形成する面が環状に窪み、他方の面が凸状に突出する環状逆U字部を備え、前記板材は、前記外周部および前記空洞部を形成する所定の高さの凹部を備え、前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状逆U字部と前記凹部の側面部とで吸収する吸収構造をなし、前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法である。
【0019】
この場合において、前記環状溝部の深さbが、前記外周部の板厚aよりも大きくなるように前記板材および前記別の板材を調製する、板型ヒートパイプの製造方法である。
【0023】
また、板材と前記別の板材の外周部の圧接が、圧下による金属接合によって行われる、板型ヒートパイプの製造方法である。
【0024】
さらに、前記圧下によって、前記板材と前記別の板材の外周部のそれぞれの接合面に新生面を形成し、前記新生面どうしが圧着されて金属接合される、板型ヒートパイプの製造方法である。
【0025】
この発明の板型ヒートパイプの製造方法は、少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、前記板材は、前記空洞部を形成する部分の外周部の近傍に環状逆U字部を備え、前記別の板材は、前記外周部および前記板材の前記環状U字部と嵌め合いによって組み合わされる側面部とを備え、前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状U字部と前記側面部とで吸収する吸収構造をなし、前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法である。
【0027】
この場合において、前記環状U字部の窪みの深さが、板材の板厚よりも大きくなるように板材および別の板材を調製する、板型ヒートパイプの製造方法である。
【0028】
この発明の板型ヒートパイプは、少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、前記板材は、前記空洞部を形成する部分の外周部の近傍に環状逆U字部を備え、前記別の板材は、前記外周部および前記板材の前記環状U字部と嵌め合いによって組み合わされる側面部とを備え、前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状U字部と前記側面部とで吸収する吸収構造をなし、前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、前記環状逆U字部の窪みの深さbが、前記板材の板厚aよりも大きくなるように前記板材および前記別の板材を調製し、前記別の板材にフィンがクリンプされて固定されている、板型ヒートパイプである。
【0029】
この発明の板型ヒートパイプは、前記別の板材にフィンがクリンプされて固定されている、板型ヒートパイプである。
【0030】
この発明の板型ヒートパイプの製造方法は、少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、前記板材は、前記外周部および空洞部を形成する所定の高さの凹部を備え、前記別の板材は、前記外周部の近傍に、空洞部に面する側が空洞部内に突出する環状U字部を備え、前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状U字部と前記凹部の側面部とで吸収する吸収構造をなし、前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法である。
【0031】
この場合において、前記環状U字部の窪みの深さが、別の板材の板厚よりも大きくなるように板材および別の板材を調製する、板型ヒートパイプの製造方法である。
【0033】
【発明の実施の形態】
この発明の板型ヒートパイプの製造方法は、その表面に少なくとも1つの被冷却素子が熱的に接続される板材と、板材と組合わされて内部に空洞部を形成する別の板材とを調製し、板材および別の板材の少なくとも一方の板材に、板材および別の板材の接合面に沿った方向における板材の変形を吸収する吸収構造を設け、
板材および別の板材を組合わせて、外周部を圧接し、吸収構造によって、接合面に沿った方向における板材の変形を吸収して、変形の無い主面を備えたコンテナを形成し、このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法である。
上述した接合が、圧下による金属接合によって行われる。即ち、上述した圧下によって、板材と別の板材の外周部のそれぞれの接合面に新生面を形成し、新生面どうしが圧着されて金属接合される。
【0034】
図5は、この発明における板型ヒートパイプの外周部の圧接の一例を説明する図である。図5(a)に示すように、圧接は、先ず、板型ヒートパイプの主面を形成する2つの板材、即ち、上板材1および下板材2の外周部4を重ね合わせる。次いで、図5(b)に示すように、このように重ね合わせた上板材1および下板材2の外周部4を両方向、即ち、上下から圧下する。圧下量は、上板材および下板材の材質、表面の状態、圧下する環境(真空中、大気中)によって異なる。例えば、両板材の表面を清浄にし、真空中で圧下する場合には、圧下量は、2〜3%でよい場合もあり、大気中で圧下する場合には、少なくとも30%、好ましくは50%以上の肉厚減少を与える程度の圧下が必要である。
【0035】
図5(c)に示すように、接合面を重ね合わせて、圧下することによって、変形を受けた部分に新生面(酸化皮膜や吸着膜のない、清浄な金属表面)を露出させ、新生面どうしが圧着されて金属接合を生じ、2個の部材が接合する。この場合の金属接合された部分は、図5(c)の点線で示す箇所である。なお、金属接合された部材は、2つの板材を剥がす方向に力を加えると、元の板材に分離せず、接合部分に母材破断が生じるように、強固に金属接合され、コンテナは気密性に優れている。圧接時の温度は、板材の融点未満の温度であればよく、例えば、常温でもよい。
【0036】
圧接方法は、接合部を塑性変形させる方法であれば良く、平押し、鍛造、絞り、しごき等の様々な加工方法が使用可能である。加工方法は、ヒートパイプの外形形状や、内部構造によって選択される。接合面は、接合前に極力清浄にして、酸化物、水酸化物、有機物等の被膜や付着物を取り除いておく必要があるが、その方法としては、ブラッシング、サンダー等の機械的な方法や、ドライエッチング等の化学的な方法がある。
【0037】
表面の清掃から圧接が終了するまでの間、接合すべき部分には、ゴミや水分や油分の付着、あるいは酸化皮膜の生成を極力避けなければならない。短時間であれば大気中でも問題なく、たとえば大気中でブラッシングし、直後に接合面を合わせて平押しすることで圧接が可能である。また、真空チャンバー中で部材の接合部をプラズマによってクリーニングし、真空または不活性雰囲気に保ったままチャンバー内で圧接することもでき、この場合には圧下量が小さくて済む場合もある。
【0038】
なお、上述した圧接においては、上板材1および下板材2の外周部の接合面にに沿った方向(即ち、図5における水平方向に沿って左または右方向)に力が加わる。接合面に沿った方向の力が所定値を超えると、(図5における水平方向にそって左方向に力が加わり)上板材または下板材に変形が生じる恐れが有る。この発明の板型ヒートパイプの製造方法は、吸収構造を備えて、圧接によって上述した上板材または下板材に生じる変形を吸収する。以下、具体的に説明する。
【0039】
図1は、この発明の板型ヒートパイプの製造方法の1つの態様を説明する図である。図1(a)は、圧接前の板材の組合わせ状態を説明する図である。図1(b)は、圧接終了後の状態を説明する図である。
この態様においては、厚さの異なる、その表面に少なくとも1つの被冷却素子が熱的に接続される、外周部および空洞部を形成する所定の高さの凹部からなっている板材と、板材と組合わされて内部に空洞部を形成する別の板材とを調製し、板厚の大きい別の板材の空洞部を形成する面に環状溝部を設け、
板材および別の板材を組合わせて、外周部を圧接し、環状溝部および凹部の側面からなる吸収構造によって、接合面に沿った方向における板材の変形を吸収して、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する。
【0040】
即ち、ヒートパイプのコンテナを形成する上板材1は、概ね平板状であり、下板材は、空洞部を形成するようにプレス成形されている。厚さの大きい上板材1の空洞部3を形成する面に環状溝部Bを設け、外周部Aの厚さは、上板材1の本体の厚さよりも小さくなるように形成される。下板材2は、外周部Aおよび空洞部3を形成する所定の高さの凹部からなっており、側面部Cおよび主面部G2を備えている。下板材2の厚さは、上板材1の外周部の厚さと概ね等しい。なお、上述した環状溝部の深さbが、板材1の外周部Aの板厚aよりも大きくなるように上板材1および下板材2を調製する。
【0041】
上板材1と下板材2とを、それぞれの外周部A、Aにおいて接し、内部に空洞部を形成するように組合わせる。このように組合わされた上板材および下板材の外周部A、Aを、図5に示した方法によって圧接する。図1(b)に示すように、外周部A、Aの接合部4は、図の垂直方向の力を受けて、A’、A’のように圧接されて厚さが薄くなり、水平方向に幅が広がる。水平方向の幅の広がりはD方向だけでなく、E方向にも起きる。従って、E方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、F1、F2のように変形する。
【0042】
上板材1の空洞部を形成する面には環状溝部Bが設けられているので、F1に示す変形は、環状溝部B内に向かって進んで、吸収され、上板材1の主面部G1が変形することはない。更に、下板材2の側面部Cと接合部4とによって形成される角部におけるF2に示す変形は、上述した環状溝部と相俟って、吸収され、下板材2の主面部G2が変形することはない。
【0043】
なお、図6に、環状溝部が形成されていない上板材および下板材を使用し、外周部に圧接を施した場合の状態を示す。図6(a)に示すように、外周部の接合部は、図の垂直方向の力を受けて、A’’、A’’のように圧接されて厚さが薄くなり、水平方向に幅が広がる。水平方向の幅の広がりはD方向だけでなく、E方向にも起きる。従って、E方向への幅の広がりによって、上板材110の本来平であるべき主面部G11がH方向に膨らんだり、図6(b)に示すように、主面部G11がI方向に凹んだりする。このような変形を型によって拘束したり、コンテナ形成後に変形を矯正することは、多大の労力を要し、完全に拘束または矯正することは困難である。
上述した態様における吸収構造は、環状溝部と、空洞部を形成する所定の高さの凹部の側面部とからなっている。
【0044】
図2は、この発明の板型ヒートパイプの製造方法の他の1つの態様を説明する図である。図2(a)は、圧接前の板材の組合わせ状態を説明する図である。図2(b)は、圧接終了後の状態を説明する図である。
この態様においては、組合わされて内部に空洞部を形成する、同一厚さの、それぞれが外周部、および、空洞部を形成する所定の高さの凹部からなっている、その表面に少なくとも1つの被冷却素子が熱的に接続される板材と、別の板材とを調製し、板材および別の板材の接合面に沿った方向における板材の変形を吸収する吸収構造を設け、板材および別の板材を、凹部が対向するように組合わせて、外周部を圧接し、吸収構造によって、接合面に沿った方向における板材の変化を吸収して、変形の無い主面を備えたコンテナを形成し、このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する。上述した吸収構造が、対向する凹部の側面部からなっている。更に、凹部の側面部の高さcが、板材の板厚aよりも大きくなるように板材および別の板材を調製する。
【0045】
即ち、図2(a)に示すように、ヒートパイプのコンテナを形成する上板材11および下板材12は、何れも、外周部A、および、空洞部13を形成する所定の高さの凹部からなっており、対向する凹部を組合わせて、空洞部13を形成するようにプレス成形されている。上板材11および下板材12の厚さは等しく形成されている。上板材11は、外周部A、凹部の側面部Cおよび主面部G1を備えている。下板材12は、外周部A、凹部の側面部Cおよび主面部G2を備えている。なお、上述した側面部の高さcが、板材11、12の板厚aよりも大きくなるように上板材11および下板材12を調製する。
【0046】
上板材11と下板材12とを、それぞれの外周部A、Aにおいて接し、凹部が対向するように組合わせる。このように組合わされた上板材および下板材の外周部A、Aを、図5に示した方法によって圧接する。図2(b)に示すように、外周部A、Aの接合部14は、図の垂直方向の力を受けて、A’、A’のように圧接されて厚さが薄くなり、水平方向に幅が広がる。水平方向の幅の広がりはD方向だけでなく、E方向にも起きる。従って、E方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、F1、F2のように変形する。F1およびF2に示す変形は、上板材11の側面部Cと接合部14によって形成される角部、および、下板材12の側面部Cと接合部14とによって形成される角部が、接合面に沿って進んで、吸収され、上板材11の主面部G11および下板材12の主面部G12が変形することはない。
【0047】
即ち、この態様においては、上板材11の側面部Cおよび下板材12の側面部Cが吸収構造を形成している。
なお、上述したように、外周部の接合部は圧接されて厚さが薄くなり、水平方向に幅が広がる。しかしながら、側面部の高さcが、板材11、12の板厚aよりも小さいときには、E方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、F1、F2のように変形せず、上板材11の主面部G11、または、下板材12の主面部G12に沿って直接力が加わり、主面部G11、または、G12が垂直方向に沿って膨らんだり、凹んだりする。従って、側面部の高さcが、板材11、12の板厚aよりも小さいときには、吸収構造を形成しない。
【0048】
図3は、この発明の板型ヒートパイプの製造方法の他の1つの態様を説明する図である。図3(a)は、圧接前の板材の組合わせ状態を説明する図である。図3(b)は、圧接終了後の状態を説明する図である。
この態様においては、同一厚さの、その表面に少なくとも1つの被冷却素子が熱的に接続される、外周部および空洞部を形成する所定の高さの凹部からなっている板材と、板材と組合わされて内部に空洞部を形成する別の板材とを調製し、別の板材の外周部の近傍に、空洞部を形成する面が環状に窪み、他方の面が凸状に突出するように、別の板材を加工して、環状逆U字部を設け、
板材および別の板材を組合わせて、外周部を圧接し、環状逆U字部および凹部の側面からなる吸収構造によって、接合面に沿った方向における板材の変形を吸収して、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する。
【0049】
上述した環状逆U字部の窪みの深さbが、板材の板厚aよりも大きくなるように板材および別の板材を調製する。
即ち、上板材21および下板材22の厚さは等しく、ヒートパイプのコンテナを形成する上板材21は、環状逆U字部Bを除いて、主面部G21は概ね平板状であり、環状逆U字部Bは、プレス成形等によって成形され、外側に向かって凸状に突出し、空洞部に面する側には、環状の窪み15が形成されている。下板材22は、空洞部を形成するようにプレス成形され、外周部および空洞部を形成する所定の高さの凹部からなっている。凹部は、側面部Cおよび主面部G22を備えている。環状逆U字部の窪みの深さbが、板材の板厚aよりも大きくなるように板材および別の板材が調製されている。
【0050】
上板材21と下板材22とを、それぞれの外周部A、Aにおいて接し、内部に空洞部を形成するように組合わせる。このように組合わされた上板材および下板材の外周部A、Aを、図5に示した方法によって圧接する。図3(b)に示すように、外周部A、Aの接合部24は、図の垂直方向の力を受けて、A’、A’のように圧接されて厚さが薄くなり、水平方向に幅が広がる。水平方向の幅の広がりはD方向だけでなく、E方向にも起きる。従って、E方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、F1、F2のように変形する。
【0051】
上板材21の空洞部を形成する面には環状逆U字部Bの環状窪み15が設けられているので、F1に示す変形は、環状窪み15内に向かって進んで、吸収され、上板材21の主面部G21が変形することはない。更に、下板材22の側面部Cと接合部24とによって形成される角部におけるF2に示す変形は、上述した環状窪み15と相俟って、吸収され、下板材22の主面部G22が変形することはない。
【0052】
この態様によると、上板材および下板材を同一厚さの板材で調製することができ、特に、上板材の外周部と主面部の厚さを変えることなく、プレス成形等によって、環状逆U字部を形成するだけでよいので、作製が容易である。上述した態様における吸収構造は、環状逆U字部Bと、空洞部を形成する所定の高さの凹部の側面部Cとからなっている。
環状逆U字部の窪みの深さbが、板材の板厚aよりも小さいときには、外周部の接合部が圧接されて厚さが薄くなり、水平方向のE方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、F1、F2のように変形せず、上板材21の主面部G21、または、下板材22の主面部G22に沿って直接力が加わり、主面部G21、または、G22が垂直方向に沿って膨らんだり、凹んだりする。従って、環状逆U字部の窪みの深さbが、板材21、22の板厚aよりも小さいときには、吸収構造を形成しない。
【0053】
図7は、この発明の板型ヒートパイプの製造方法の他の1つの態様を説明する図である。図7(a)は、圧接前の板材の組合わせ状態を説明する図である。図7(b)は、圧接終了後の状態を説明する図である。
この態様においては、同一厚さの、その表面に少なくとも1つの被冷却素子が熱的に接続される、外周部および空洞部を形成する所定の高さの凹部からなり、外周部の近傍には環状逆U字型の構造とその外側のフランジ状の外周部を備えている板材と、前記板材の前記環状逆U字部と嵌め合いによって組合わされる側面部とその外側のフランジ状の外周部を備えた、前記板材と組合わされて内部に空洞部を形成する別の板材とを調製し、
板材および別の板材を組合わせて、外周部を圧接し、板材の環状逆U字部および別の板材の側面部からなる吸収構造によって、接合面に沿った方向における板材の変形を吸収して、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する。
上述した環状逆U字部の窪みの深さbが、板材の板厚aよりも大きくなるように板材および別の板材を調製する。
即ち、上板材41および下板材42の厚さは等しく、ヒートパイプのコンテナを形成する上板材41は、側面部C1および外周部Aを除いて、主面部G41は平板状であり、側面部C1および外周部Aは、プレス成形等によって成形される。下板材42は、空洞部を形成するようにプレス成形され、外周部および空洞部を形成する所定の高さの凹部からなり、さらに外周部と凹部の間に環状逆U字部Bを備えている。外周部A、環状逆U字部Bおよび側面部C2は、プレス成形等によって成形される。環状逆U字部の窪みの深さbが、板材の板厚aよりも大きくなるように板材および別の板材が調製されている。
【0054】
上板材41と下板材42とを、それぞれの外周部A、Aにおいて接し、内部に空洞部を形成するように組合わせる。このように組合わされた上板材および下板材の外周部A、Aを、図5に示した方法によって圧接する。図7(b)に示すように、外周部A、Aの接合部44は、図の垂直方向の力を受けて、A'、A'のように圧接されて厚さが薄くなり、水平方向に幅が広がる。水平方向の幅の広がりはD方向だけでなく、E方向にも起きる。従って、E方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、Fのように変形する。
【0055】
下板材42の空洞部を形成する側面は外側には、環状逆U字部Bの環状窪み45が設けられているので、Fに示す変形は、環状窪み45内に向かって進んで、吸収され、上板材41の主面部G41、および下板材42の主面部G42が変形することはない。
【0056】
この態様によると、上板材および下板材を同一厚さの板材で調製することができ、特に、上板材の外周部と主面部の厚さを変えることなく、プレス成形等によって、環状逆U字部や側面部を形成するだけでよいので、作製が容易である。上述した態様における吸収構造は、環状逆U字部Bと、空洞部を形成する所定の高さの凹部の側面部C1とからなっている。さらに、主面部G41、G42には出っ張りが生じないので、被冷却部材や放熱フィンとの接合部の設計の自由度が大きいという利点もある。
環状逆U字部の窪みの深さbが、板材の板厚aよりも小さいときには、外周部の接合部が圧接されて厚さが薄くなり、水平方向のE方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、Fのように変形せず、上板材41の主面部G41、または、下板材42の主面部G42に沿って直接力が加わり、主面部G41、または、G42が垂直方向に沿って膨んだり、凹んだりする。従って、環状逆U字部の窪みの深さbが、板材41、42の板厚aよりも小さいときには、吸収構造を形成しない。
【0057】
図8は、この発明の板型ヒートパイプの製造方法の他の1つの態様を説明する図である。図8(a)は、圧接前の板材の組合わせ状態を説明する図である。図8(b)は、圧接終了後の状態を説明する図である。
この態様においては、同一厚さの、その表面に少なくとも1つの被冷却素子が熱的に接続される、外周部および空洞部を形成する所定の高さの凹部からなる板材と、前記板材と組合わされて内部に空洞部を形成する別の板材を調製し、前記別の板材の外周部の近傍に、空洞部に面する側が空洞部内に突出するように、別の板材を加工して、環状U字部を設け、
板材および別の板材を組合わせて、外周部を圧接し、別の板材の環状U字部および板材の側面部からなる吸収構造によって、接合面に沿った方向における板材の変形を吸収して、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する。
【0058】
上述した環状U字部の窪みの深さが、板材の板厚よりも大きくなるように板材および別の板材を調製する。
即ち、上板材61および下板材62の厚さは等しく、ヒートパイプのコンテナを形成する上板材61は、環状U字部を除いて、主面部G61は平板状であり、環状U字部Bは、プレス成形等によって成形され、コンテナの内側に向かって凸状に突出し、コンテナの外側には、環状の窪み65が形成されている。下板材62は、空洞部63を形成するようにプレス成形され、外周部および空洞部を形成する所定の高さの凹部からなっている。凹部は、側面部Cおよび主面部G62を備えている。環状逆U字部の窪みの深さが、板材の板厚よりも大きくなるように板材および別の板材が調製されている。
【0059】
上板材61と下板材62とを、それぞれの外周部A、Aにおいて接し、内部に空洞部を形成するように組合わせる。このように組合わされた上板材および下板材の外周部A、Aを、図5に示した方法によって圧接する。図8(b)に示すように、外周部A、Aの接合部64は、図の垂直方向の力を受けて、A’、A’のように圧接されて厚さが薄くなり、水平方向に幅が広がる。水平方向の幅の広がりはD方向だけでなく、E方向にも起きる。従って、E方向への幅の広がりによって、外周部の環状U字部側の端部は、接合面に沿った方向に、Fのように変形する。
【0060】
上板材61の空洞部を形成する面には環状U字部Bの環状窪み65が設けられているので、Fに示す変形は、環状窪み65内に向かって進んで、吸収され、上板材61の主面部G61および下板材62の主面部G62が変形することはない。
この態様によると、上板材および下板材を同一厚さの板材で調製することができ、特に、上板材の外周部と主面部の厚さを変えることなく、プレス成形等によって、環状U字部を形成するだけでよいので、作製が容易である。上述した態様における吸収構造は、環状U字部Bと、空洞部を形成する所定の高さの凹部の側面部Cの上端部とからなっている。
【0061】
環状U字部の窪みの深さが、板材の板厚よりも小さいときには、外周部の接合部が圧接されて厚さが薄くなり、水平方向のE方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、Fのように変形せず、上板材61の主面部G61、または、下板材62の主面部G62に沿って直接力が加わり、主面部G61、または、G62が垂直方向に沿って膨らんだり、凹んだりする。従って、環状逆U字部の窪みの深さが、板材61、62の板厚よりも小さいときには、吸収構造を形成しない。
【0062】
図4は、この発明の板型ヒートパイプの製造方法の他の態様を説明する図である。図4(a)は、圧接前の板材の組合わせ状態を説明する図である。図4(b)は、圧接終了後の状態を説明する図である。
この態様においては、厚さの異なる、その表面に少なくとも1つの被冷却素子が熱的に接続される、外周部および空洞部を形成する所定の高さの凹部からなっている板材と、板材と組合わされて内部に空洞部を形成する別の板材とを調製し、板厚の大きい別の板材の空洞部を形成する面に環状溝部を設け、他方の面に放熱フィンを備え、
板材および別の板材を組合わせて、外周部を圧接し、環状溝部および凹部の側面からなる吸収構造によって、接合面に沿った方向における板材の変形を吸収して、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する。
【0063】
即ち、ヒートパイプのコンテナを形成する上板材31は、概ね平板状であり、下板材32は、空洞部を形成するようにプレス成形されている。厚さの大きい上板材31の空洞部33を形成する面に環状溝部Bを設け、他方の面に放熱フィン37を備える。外周部Aの厚さは、上板材31の本体の厚さよりも小さくなるように形成される。下板材32は、外周部Aおよび空洞部33を形成する所定の高さの凹部からなっており、側面部Cおよび主面部G32を備えている。下板材32の厚さは、上板材31の外周部の厚さと概ね等しい。なお、上述した環状溝部の深さbが、板材31の外周部Aの板厚aよりも大きくなるように上板材31および下板材32を調製する。
【0064】
上板材31と下板材32とを、それぞれの外周部A、Aにおいて接し、内部に空洞部を形成するように組合わせる。このように組合わされた上板材および下板材の外周部A、Aを、図5に示した方法によって圧接する。図4(b)に示すように、外周部A、Aの接合部34は、図の垂直方向の力を受けて、A’、A’のように圧接されて厚さが薄くなり、水平方向に幅が広がる。水平方向の幅の広がりはD方向だけでなく、E方向にも起きる。従って、E方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、F1、F2のように変形する。
【0065】
上板材31の空洞部を形成する面には環状溝部Bが設けられているので、F1に示す変形は、環状溝部B内に向かって進んで、吸収され、上板材31の主面部G31が変形することはない。従って、上板材31に設けられている放熱フィンには何ら影響が及ばない。更に、下板材32の側面部Cと接合部34とによって形成される角部におけるF2に示す変形は、上述した環状溝部と相俟って、吸収され、下板材32の主面部G32が変形することはない。
【0066】
上述した態様における吸収構造は、環状溝部と、空洞部を形成する所定の高さの凹部の側面部とからなっている。
なお、上述したように、外周部の接合部は圧接されて厚さが薄くなり、水平方向に幅が広がる。しかしながら、環状溝部の深さbが、板材31の外周部Aの板厚aよりも小さいときには、E方向への幅の広がりによって、外周部の空洞部側の端部は、接合面に沿った方向に、F1、F2のように変形せず、上板材31の主面部G31に沿って直接力が加わり、主面部G31が垂直方向に沿って膨らんだり、凹んだりする。主面部G31が膨らんだり凹んだりすると、上板材31の外側の面に、例えば、クリンプ(かしめ接合)にて設けられている放熱フィンが外れ、その補修が困難となる。従って、環状溝部の深さbが、板材31の外周部Aの板厚aよりも小さいときには、吸収構造を形成しない。
【0067】
この発明の板型ヒートパイプは、上述した製造方法によって製造された板型ヒートパイプである。
即ち、この発明の板型ヒートパイプの1つの態様は、その表面に少なくとも1つの被冷却素子が熱的に接続される板材と、板材と組合わされて内部に空洞部を形成する別の板材とを調製し、板材および別の板材の少なくとも一方の板材に、板材および別の板材の接合面に沿った方向における板材の変形を吸収する吸収構造を設け、板材および別の板材を組合わせて、外周部を圧接し、吸収構造によって、接合面に沿った方向における板材の変形を吸収して、変形の無い主面を備えたコンテナを形成し、このように形成されたコンテナの内部に作動流体を封入して製造された、気密性に優れ、コンテナの両主面の平坦度が高い、板型ヒートパイプである。上述した板材および別の板材の厚さが異なっている、板型ヒートパイプである。
【0068】
更に、別の板材にフィンが挿入可能な凹部、例えば、溝や穴にフィンの一端を挿入した後、前記凹部近傍を治具を用いて押圧変形させてクリンプされて固定されている、板型ヒートパイプである。
このように、別の板材にフィンがクリンプにより固定されている場合、前記別の板材が変形すると、クリンプされたフィンが外れる、または、前記別の板材とフィンとの間にすき間が生じてフィンの熱伝導抵抗が高まり、放熱性能を低下させる問題を、前記吸収構造により解決することができる。
【0069】
この発明の板型ヒートパイプの他の態様は、組合わされて内部に空洞部を形成する、同一厚さの、それぞれが外周部、および、空洞部を形成する所定の高さの凹部からなっている、その表面に少なくとも1つの被冷却素子が熱的に接続される板材と、別の板材とを調製し、板材および別の板材の接合面に沿った方向における板材の変形を吸収する吸収構造を設け、板材および別の板材を、凹部が対向するように組合わせて、外周部を圧接し、吸収構造によって、接合面に沿った方向における板材の変形を吸収して、変形の無い主面を備えたコンテナを形成し、このように形成されたコンテナの内部に作動流体を封入して製造された、気密性に優れ、コンテナの両主面の平坦度が高い、板型ヒートパイプである。
この発明の板型ヒートパイプは、上述した形状のコンテナからなっており、その空洞部内に、ウイックが配置されている。更に、熱伝導性ブロックを配置してもよい。
【0070】
なお、図には示していないが、コンテナの一部に注液・脱気のための口を設けて、作動流体(純水)を注入し、脱気することによって、板型ヒートパイプを作製することができる。
【0071】
更に、圧接された外周部に更にろう付けまたはハンダ付けを施してもよい。圧接された外周部の接合部をロウ付けまたはハンダ付けによって補強することによって、機械的強度を補強する、および/または、接合界面の腐食を防止するなどの効果がある。即ち、本発明の板型ヒートパイプにおいては、外周部が圧接によって気密性に優れた状態で密封されているので、外周部における圧接部に対して外側からロウ付けまたはハンダ付けによって補強しても、ロウまたはハンダはヒートパイプ内面には侵入せず、作動流体と接触することはない。ロウ付け、ハンダ付け方法として、真空炉、雰囲気炉、トーチ、ハンダゴテ等の方法が可能である。これらの方法は、ヒートパイプのコンテナの材質、形状、大きさ、ヒートパイプに要求される熱性能、作動流体との相互作用などによって適宜選択される。
【0072】
更に、圧接された外周部に更に溶接を施してもよい。圧接によって、耐圧性等の機械的強度は十分に得られても、密閉が完全でなく、微少な漏れのおそれがある場合には、溶接を併用しても良い。その場合でも、接合強度の大部分は圧接によって担っている。溶接方法として、TIG溶接、プラズマ溶接、レーザー溶接、電子ビーム溶接などの溶接方法が可能である。これらの溶接方法は、ヒートパイプのコンテナの材質、形状、大きさ、ヒートパイプに要求される熱性能、作動流体との相互作用などによって適宜選択される。
【0073】
更に、被冷却素子が熱的に接続される一方の板材に、被冷却素子を効率良く冷却するための凸部が一体的に形成されていてもよい。凸部の形状は、基板上に実装される被冷却素子および他の部品の配置等によってきまる。
通常、コンテナの材料は、銅ならば銅、アルミニウムならばアルミニウムのように、一種類の材料のみで構成されるが、板材にクラッド材を用いてもよい。クラッド材を用いる場合には、クラッド材のコンテナの内面側を形成する材料には、作動流体との適合性の高い材料、例えば、銅を用い、外面側を形成する材料には、機械的強度および外観の要求に応じて、高強度・安価・軽量などの材料、例えば、アルミニウムを用いることができ、さらに設計の自由度を高くし、コストを下げることが可能である。
【0074】
更に、この発明の板型ヒートパイプは、上述した板型ヒートパイプの主面に被冷却素子が実装された基板が接合され、別の主面にヒートシンクが接合され、更に、ヒートシンクに送風するファンが所定の位置に備えられて、実装される。
この発明を実施例によって更に詳細に説明する。
【0075】
【実施例】
実施例1
図1に示すように、外周部の厚さ1mm、主面部の厚さ2.6mmの80mm×60mmの平らな上板材1、厚さ1mの箱状にプレス成形された下板材2を純銅板によって調製した。上板材の空洞部を形成する面の接合部近傍に、幅0.8mm、深さ1.2mmの環状溝部Bを設けた。次いで、上板材1および下板材2の外周部4を組合わせ、中に、純銅製のウイックが配置された。なお、組合わせる前に、上板材1および下板材2が接合される外周部の面を、ブラッシングによって清浄して、酸化物、水酸化物、有機物等の被膜や付着物を取り除いた。
【0076】
このように接合される外周部の面が清浄な状態に維持されたまま上板材1および下板材2を組合わせて、大気中において、常温で、外周部を圧下した。そのときの圧下量は、70%であった。外周部Aは、図1(b)に示すように、厚さが薄くなり、水平方向に幅が広がった。E方向への幅の広がりによって、外周部と主面部の境界部分および外周部と側面部の境界部分が空洞部側に向かって僅かに移動し、変形した。このとき、上板材1および下板材2の主面部の何れにも、膨らみ、凹み等の変形は見られなかった。即ち、上板材に設けられた環状溝部および下板材の側面部が吸収構造として機能し、接合面に沿った方向における板材の変形を吸収することができるので、変形の無い主面を備えたコンテナを形成することができた。このように外周部を圧接して、内部にウイックが配置された、全体のサイズが80mm×60mm×7mmの気密性に優れたコンテナを作製した。更に、コンテナの一部に注液・脱気のための口を設けて、作動流体(純水)を注入し、脱気して、板型ヒートパイプを作製した。
【0077】
このように作製された板型ヒートパイプの圧接された接合部の強度および気密性を試験したところ、 強度は、加圧試験において140kPaでもはがれない強さであり、気密性は、Heリーク試験において、リーク量1×10-9Pa・m3/s以下であった。更に、主面部の平坦性は優れていた。
【0078】
【発明の効果】
この発明によると、コンテナを形成する板材の強度を低下させることなく、接合強度が高く、気密性の高い、長期信頼性に優れた、主面に変形の無いコンテナを備えた板型ヒートパイプを提供することができる。更に、この発明によると、ヒートパイプを構成する部材点数を減少し、製造工程を簡略にし、安価でかつ信頼性の高い、半導体素子等の高発熱量の被冷却素子を冷却する板型ヒートパイプを製造することができる。
【図面の簡単な説明】
【図1】図1は、この発明の板型ヒートパイプの製造方法の1つの態様を説明する図である。図1(a)は、圧接前の板材の組合わせ状態を説明する図である。図1(b)は、圧接終了後の状態を説明する図である。
【図2】図2は、この発明の板型ヒートパイプの製造方法の他の1つの態様を説明する図である。図2(a)は、圧接前の板材の組合わせ状態を説明する図である。図2(b)は、圧接終了後の状態を説明する図である。
【図3】図3は、この発明の板型ヒートパイプの製造方法の他の1つの態様を説明する図である。図3(a)は、圧接前の板材の組合わせ状態を説明する図である。図3(b)は、圧接終了後の状態を説明する図である。
【図4】図4は、この発明の板型ヒートパイプの製造方法の他の態様を説明する図である。図4(a)は、圧接前の板材の組合わせ状態を説明する図である。図4(b)は、圧接終了後の状態を説明する図である。
【図5】図5は、この発明における板型ヒートパイプの外周部の圧接の一例を説明する図である。
【図6】図6は、環状溝部が形成されていない上板材および下板材を使用し、外周部に圧接を施した場合の状態を示す図である。
【図7】図7は、この発明の板型ヒートパイプの製造方法の1つの態様を説明する図である。図7(a)は、圧接前の板材の組合わせ状態を説明する図である。図7(b)は、圧接終了後の状態を説明する図である。
【図8】図8は、この発明の板型ヒートパイプの製造方法の1つの態様を説明する図である。図8(a)は、圧接前の板材の組合わせ状態を説明する図である。図8(b)は、圧接終了後の状態を説明する図である。
【符号の説明】
1、11、21、31、41、61.上板材
2、12、22、32、42、62.下板材
3、13、23、33、43、63.空洞部
4、14、24、34、44、64.接合部
A.外周部
B.環状溝部
C、C1、C2.側面部
G1、G11、G21、G31、G41、G61.主面部
G2、G12、G22、G32、G42、G62.主面部
D.幅の広がり方向
E.幅の広がり方向
F.変形
F1.変形
F2.変形
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a plate heat pipe suitable for cooling an element to be cooled, such as a semiconductor chip, which has a high calorific value, and a mounting method therefor.
[0002]
[Prior art]
Electronic components such as semiconductor elements mounted on electrical and electronic equipment such as personal computer CPUs, laser light-emitting diodes, and power transistors are difficult to avoid due to their use. In recent years, cooling has become an important technical issue. is there. As a method of cooling an electric / electronic element (hereinafter referred to as “cooled element”) that requires cooling, for example, a method of lowering the temperature of air in the equipment housing by attaching a fan to the equipment or cooling the cooled element. A method of directly cooling an element to be cooled by attaching a body is typically known.
[0003]
As a cooling body attached to the element to be cooled, for example, a plate material made of a material having excellent heat conductivity such as a copper material or an aluminum material, or a plate heat pipe is often used. The plate-type heat pipe is a plate-shaped heat pipe, and may also be referred to as a flat heat pipe or a flat plate heat pipe. Hereinafter, it is referred to as a plate heat pipe.
[0004]
The heat pipe will be briefly described. A heat pipe is a container having a cavity, and a working fluid (working fluid) is sealed in the cavity. The cavity is evacuated and the working fluid tends to evaporate. As the working fluid, water, alcohol, CFC substitute, etc. are used in consideration of compatibility with the material of the container.
[0005]
The operation of the heat pipe will be briefly described. That is, on the heat absorption side of the heat pipe, the working fluid evaporates due to heat transferred through the material of the container (container) constituting the heat pipe, and the vapor moves to the heat radiation side of the heat pipe. On the heat radiating side, the working fluid vapor is cooled and returned to the liquid phase again. Then, the working fluid that has returned to the liquid phase again moves (refluxs) to the heat absorption side. Heat is transferred by such phase transformation and movement of the working fluid.
[0006]
The working fluid is circulated by gravity or capillary action. In the case of a gravitational heat pipe, the working fluid flows back by disposing the heat absorbing portion below the heat radiating portion. In the case of a heat pipe that circulates the working fluid by capillary action, a groove is provided on the inner wall of the cavity, or a wick such as a metal mesh or porous body is inserted inside the cavity, and the working fluid is caused by capillary action by the groove or wick. Reflux.
Thus, in the heat pipe, a large amount of heat is transported by the phase transformation and movement of the working fluid sealed in the sealed cavity of the heat pipe. Of course, there is heat that is carried by conducting heat through containers (containers) that constitute the heat pipe, but the amount is relatively small.
[0007]
A component to be cooled is thermally connected to the heat absorption side described above. For example, a heat dissipation fin is attached to the heat dissipation side. With such a configuration, most of the heat of the component to be cooled is moved by the heat pipe and dissipated from the heat radiation fin.
Now, in the case of a plate-type heat pipe, there is an advantage that the component to be cooled and the heat pipe can be easily connected due to the shape characteristics. That is, it is because a part to be cooled, such as a semiconductor element, can be brought into contact with a large area by contacting the main surface of the heat pipe.
[0008]
The contact between the component to be cooled and the heat pipe may include heat transfer grease, heat transfer rubber, or the like between them, or may be joined by soldering or the like. Further, a fin, a heat sink, a fan or the like for heat radiation may be attached to the surface opposite to the main surface of the plate heat pipe that is in contact with the part to be cooled. By arranging in this way, a cooling structure excellent in space efficiency can be realized. In this case, if the main surface of the heat pipe that comes into contact with the component to be cooled, such as a semiconductor element, is deformed, the thermal resistance is increased, so that it is necessary that the main surface of the heat pipe is not deformed.
[0009]
In particular, in recent years, the heat generation density tends to increase due to the high integration and high speed of the CPU, and the performance of the heat pipe not only moves the heat but also diffuses a high density heat flux to a low density. The demand for heat diffusion must be met. In addition, since the board on which the CPU is mounted is arranged in various directions, the performance must be exhibited in a state where the heat pipe is arranged in various directions. Therefore, a heat transfer block having a function of diffusing at a low density is disposed in a portion where a heat generating element having a high heat generation density is in contact with the heat pipe, and a wick such as a metal mesh or a porous body is appropriately disposed. Therefore, it is necessary to prevent the occurrence of dryout (which means that the supply of the working fluid cannot catch up with the evaporation in the heat absorption part, and the heat absorption part has dried out, which means that the operation as a heat pipe will not continue). . A separate part may be inserted into the heat transfer block, or the heat transfer block may be formed as a member integral with the container.
[0010]
[Problems to be solved by the invention]
The plate-type heat pipe container is formed by a method of joining two plate-shaped members formed by pressing or the like by brazing (for example, Japanese Patent Application No. 8-321980) or a method of enclosing and joining by folding (Japanese Patent Application No. Hei. 10-099781) has been proposed.
However, when brazing (or soldering) is used as the main means of joining as a method of joining members for forming a sealed container, depending on the compatibility between the brazing material and the working fluid or the type of flux Has a problem that the performance of the heat pipe is likely to deteriorate. In order to improve the compatibility between the brazing material and the working fluid, it is desirable to use a brazing material having a low impurity content and a composition close to that of the base material. Therefore, there is a problem that the base material is annealed and the strength is lowered. Furthermore, the time required for processing and the cost increase due to the use of other members such as a brazing material are unavoidable.
[0011]
On the other hand, in the case of sealing by folding, there is a problem that there is a limitation on the outer shape and it cannot be applied unless the shape is simple. In addition, according to this method, since it is difficult to metallicly join the members, there is a problem that the sealing performance cannot be maintained for a long time, that is, the long-term reliability as a heat pipe is impaired. Therefore, it is difficult to manufacture a highly airtight sealed body for a heat pipe simply by this method.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heat pipe having a long-term reliable, airtight, and non-deformable container on its main surface without reducing the strength of the plate material of the heat pipe, and a method for manufacturing the same. There is.
[0012]
[Means for Solving the Problems]
  The inventor has intensively studied to solve the above-described conventional problems. As a result, the outer peripheral portion, which is a combination of a plate material to which the element to be cooled is thermally connected to the surface and another plate material combined with the plate material to form a hollow portion inside, is maintained while maintaining a clean state. Then, it was found that a new surface was formed on the joint surfaces of both plate members, the new surfaces were pressure-bonded to each other, metal-bonded, and a heat pipe provided with a container that was excellent in airtightness and did not deteriorate in strength. In addition, a plate and another plateIn addition,When an absorption structure that absorbs deformation of the plate material in the direction along the bonding surface of the plate material and another plate material is provided, when the outer periphery is pressed by combining the plate material and another plate material, the above-described absorption structure is used to join Since the deformation of the plate material in the direction along the surface can be absorbed, it has been found that a container having a main surface without deformation is formed.
[0013]
  This invention was made based on the above-mentioned research results, and the manufacturing method of the plate heat pipe of this invention is:A plate material to which at least one element to be cooled is thermally connected, and another plate material that is combined with the plate material to form a hollow portion inside the plate material are prepared. An annular groove portion is provided in the vicinity of the outer peripheral portion of the portion that forms the plate, the plate member includes a concave portion having a predetermined height that forms the outer peripheral portion and the cavity portion, and the outer peripheral portion of the plate member and the other plate member is press-contacted. An absorption structure that absorbs the deformation of the plate member and the other plate member in the direction along the joining surface that occurs when joining is absorbed by the annular groove portion and the side surface portion of the recess, and the plate member and the another plate member are assembled. In addition, the outer peripheral part is press-contacted, the container having a main surface without deformation is formed by the absorption structure, the working fluid is sealed in the container formed in this way, and the plate type having excellent airtightness Manufacturing heat pipes, Method of manufacturing a type heat pipeIt is.
[0016]
  In this case,In the plate heat pipe manufacturing method, the plate member and the another plate member are prepared such that a depth b of the annular groove portion is larger than a plate thickness a of the outer peripheral portion.
[0017]
  Also,The manufacturing method of the plate heat pipe of the present invention is:A plate material to which at least one element to be cooled is thermally connected, and another plate material that is combined with the plate material to form a hollow portion in the plate material are prepared. The surface forming the cavity is annularly recessed, and the other surface is provided with an annular inverted U-shape projecting in a convex shape, and the plate member has a predetermined height for forming the outer peripheral portion and the cavity portion. The annular inverted U-shaped portion and the concave portion in the direction along the joining surface that occurs when the outer peripheral portion of the plate material and the another plate material is press-welded. An absorption structure that absorbs with the side surface portion of the plate, and the outer peripheral portion is pressed by combining the plate material and the other plate material, and the container having a main surface without deformation is formed by the absorption structure in this way. Enclose working fluid inside the formed container Te, to produce excellent plate-type heat pipe in an airtight, method of manufacturing the plate type heat pipeIt is.
[0019]
  thisIn some casesThe plate heat pipe is manufactured by preparing the plate member and the another plate member so that the depth b of the annular groove portion is larger than the plate thickness a of the outer peripheral portion.
[0023]
  Also,It is a manufacturing method of a plate-type heat pipe, wherein the press contact between the plate member and the outer peripheral portion of the another plate member is performed by metal bonding by reduction.
[0024]
  further,In the plate-type heat pipe manufacturing method, a new surface is formed on each joint surface of the outer periphery of the plate material and the other plate material by the reduction, and the new surfaces are pressure-bonded to each other and metal-bonded.
[0025]
  Manufacturing method of plate heat pipe of this inventionPrepares a plate material to which at least one element to be cooled is thermally connected, and another plate material that is combined with the plate material to form a cavity inside the plate material, and the plate material includes the cavity portion. An annular inverted U-shaped portion is provided in the vicinity of the outer peripheral portion of the portion that forms the plate, and the another plate material includes the outer peripheral portion and a side surface portion that is combined with the annular U-shaped portion of the plate material, and the plate material And an absorption structure that absorbs deformation of the plate member and the other plate member in a direction along the joining surface that occurs when the outer peripheral portion of the another plate member is press-welded by the annular U-shaped portion and the side surface portion. The plate material and the other plate material are combined and the outer peripheral portion is pressure-welded, and the container having a main surface without deformation is formed by the absorption structure, and the working fluid is enclosed in the container thus formed Excellent airtightness And producing a plate-type heat pipe, a manufacturing method of the plate-type heat pipeIt is.
[0027]
  thisIn some cases, Depth of depression in the annular U-shaped partbIs the plate thicknessaIt is the manufacturing method of a plate-type heat pipe which prepares a board | plate material and another board | plate material so that it may become larger.
[0028]
  The plate heat pipe of this invention isA plate material to which at least one element to be cooled is thermally connected, and another plate material that is combined with the plate material to form a cavity inside the plate material are prepared, and the plate material forms the cavity portion An annular inverted U-shaped portion is provided in the vicinity of the outer peripheral portion of the portion to be performed, and the another plate material includes the outer peripheral portion and a side surface portion combined by fitting with the annular U-shaped portion of the plate material, and the plate material and the An absorption structure that absorbs the deformation of the plate member and the other plate member in the direction along the joint surface generated when the outer peripheral portion of another plate member is press-welded is formed by the annular U-shaped part and the side part, A plate member and the other plate member are combined to press contact the outer peripheral portion, and the container having a main surface without deformation is formed by the absorption structure, and the depth b of the recess of the annular inverted U-shaped portion is the plate member To be larger than the plate thickness a The plate and the further plate is prepared, the fins on the separate sheet is secured is crimped,It is a plate-type heat pipe.
[0029]
  Plate heat pipe of the present inventionIsIt is a plate-type heat pipe in which fins are crimped and fixed to the other plate material.
[0030]
  The method for manufacturing a plate heat pipe according to the present invention includes: a plate member to which at least one element to be cooled is thermally connected; and another plate member that is combined with the plate member to form a cavity inside the plate member. The prepared plate member has a recess of a predetermined height that forms the outer peripheral portion and the cavity portion, and the another plate member has an annular shape in the vicinity of the outer peripheral portion, the side facing the cavity portion protruding into the cavity portion. A U-shaped portion, and the deformation of the plate material and the another plate material in the direction along the joining surface that occurs when the outer peripheral portion of the plate material and the other plate material is press-welded. An absorption structure that absorbs with the side surface part is formed, the outer peripheral part is pressed by combining the plate material and the other plate material, and the container having a main surface without deformation is formed by the absorption structure, and thus formed. Working flow inside the sealed container Encapsulating a, to produce excellent plate-type heat pipe airtightness, a manufacturing method of a plate-type heat pipe.
[0031]
  In this case, it is a manufacturing method of a plate-type heat pipe, in which a plate material and another plate material are prepared such that the depth of the recess of the annular U-shaped portion is larger than the plate thickness of another plate material.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
The method for manufacturing a plate heat pipe according to the present invention comprises preparing a plate material in which at least one element to be cooled is thermally connected to the surface thereof, and another plate material that is combined with the plate material to form a hollow portion therein. The at least one plate member of the plate member and another plate member is provided with an absorption structure that absorbs deformation of the plate member in the direction along the joining surface of the plate member and the other plate member,
Combining the plate material and another plate material, pressing the outer periphery, absorb the deformation of the plate material in the direction along the joining surface by the absorption structure, and form a container with the main surface without deformation, like this The plate-type heat pipe is manufactured by enclosing a working fluid in the container formed in the above, and manufacturing a plate-type heat pipe excellent in airtightness.
The above-described joining is performed by metal joining by reduction. That is, by the above-described reduction, a new surface is formed on each joint surface of the outer peripheral portion of the plate material and another plate material, and the new surfaces are pressure-bonded to be joined to each other.
[0034]
FIG. 5 is a diagram for explaining an example of the pressure contact of the outer peripheral portion of the plate heat pipe in the present invention. As shown in FIG. 5 (a), the pressure welding first superimposes the two plate members forming the main surface of the plate heat pipe, that is, the outer peripheral portion 4 of the upper plate member 1 and the lower plate member 2. Next, as shown in FIG. 5B, the outer peripheral portion 4 of the upper plate member 1 and the lower plate member 2 superposed in this way is pressed down from both directions, that is, from the top and bottom. The amount of reduction varies depending on the material of the upper plate material and the lower plate material, the surface condition, and the environment in which the reduction is performed (in a vacuum or in the atmosphere). For example, when the surfaces of both plate materials are cleaned and reduced in a vacuum, the reduction amount may be 2 to 3%, and when reduced in the atmosphere, at least 30%, preferably 50%. It is necessary to reduce the thickness so as to reduce the thickness.
[0035]
As shown in FIG. 5 (c), the joining surfaces are overlapped and pressed down to expose the new surface (a clean metal surface having no oxide film or adsorbed film) on the deformed portion, and the new surfaces are separated from each other. Crimping results in metal bonding and the two members are bonded. In this case, the metal-bonded portion is a portion indicated by a dotted line in FIG. In addition, the metal-bonded member is firmly metal-bonded so that when the force is applied in the direction of peeling the two plate materials, the original plate material is not separated, and the base material breaks at the bonded portion, and the container is airtight. Is excellent. The temperature at the time of pressure welding should just be the temperature below melting | fusing point of a board | plate material, for example, normal temperature may be sufficient.
[0036]
The pressing method may be any method that plastically deforms the joint, and various processing methods such as flat pressing, forging, drawing, and ironing can be used. The processing method is selected according to the outer shape of the heat pipe and the internal structure. Before joining, it is necessary to clean the joining surface as much as possible and remove oxides, hydroxides, organics and other coatings and deposits, but this method includes mechanical methods such as brushing and sanding. There are chemical methods such as dry etching.
[0037]
From the cleaning of the surface to the end of the pressure welding, it is necessary to avoid as much as possible the adhesion of dust, moisture and oil, or the generation of an oxide film on the parts to be joined. For a short time, there is no problem even in the atmosphere, for example, brushing is performed in the atmosphere, and immediately after that, the joining surfaces are brought together and pressed flatly. In addition, the joint portion of the member can be cleaned with plasma in the vacuum chamber and pressed in the chamber while maintaining a vacuum or an inert atmosphere. In this case, the reduction amount may be small.
[0038]
In the above-described pressure welding, a force is applied in a direction along the joint surface of the outer peripheral portion of the upper plate 1 and the lower plate 2 (that is, left or right along the horizontal direction in FIG. 5). If the force in the direction along the joint surface exceeds a predetermined value (the force is applied in the left direction along the horizontal direction in FIG. 5), there is a possibility that the upper plate member or the lower plate member is deformed. The manufacturing method of the plate type heat pipe of the present invention includes an absorption structure and absorbs the deformation generated in the upper plate member or the lower plate member described above by the pressure welding. This will be specifically described below.
[0039]
FIG. 1 is a diagram for explaining one embodiment of a method for manufacturing a plate heat pipe of the present invention. Fig.1 (a) is a figure explaining the combined state of the board | plate material before pressure welding. FIG. 1B is a diagram for explaining a state after the press contact is completed.
In this aspect, a plate member made of a concave portion having a predetermined height that forms an outer peripheral portion and a cavity portion, at which at least one element to be cooled is thermally connected to the surface thereof, and having a different thickness, and a plate member, Prepare another plate material that is combined to form a hollow portion inside, and provide an annular groove on the surface that forms the hollow portion of another plate material with a large plate thickness,
Combines a plate material and another plate material, presses the outer peripheral part, absorbs deformation of the plate material in the direction along the joint surface by the absorption structure consisting of the annular groove part and the concave part, and has a main surface without deformation Forming a container
A working fluid is sealed in the container formed in this way, and a plate-type heat pipe having excellent airtightness is manufactured.
[0040]
That is, the upper plate 1 forming the heat pipe container is generally flat, and the lower plate is press-formed so as to form a cavity. An annular groove B is provided on the surface of the upper plate 1 having a large thickness where the cavity 3 is formed, and the thickness of the outer peripheral portion A is formed to be smaller than the thickness of the main body of the upper plate 1. The lower plate member 2 is formed of a concave portion having a predetermined height that forms the outer peripheral portion A and the hollow portion 3, and includes a side surface portion C and a main surface portion G2. The thickness of the lower plate material 2 is substantially equal to the thickness of the outer peripheral portion of the upper plate material 1. The upper plate material 1 and the lower plate material 2 are prepared so that the above-described depth b of the annular groove portion is larger than the plate thickness a of the outer peripheral portion A of the plate material 1.
[0041]
The upper plate member 1 and the lower plate member 2 are combined so as to be in contact with each other at the outer peripheral portions A and A so as to form a hollow portion therein. The outer peripheral portions A and A of the upper plate member and the lower plate member combined in this way are pressed by the method shown in FIG. As shown in FIG. 1 (b), the joint 4 of the outer peripheral parts A and A receives the force in the vertical direction in the figure, and is pressed into a thickness as shown by A 'and A' to reduce the thickness. The width expands. The spread of the width in the horizontal direction occurs not only in the D direction but also in the E direction. Therefore, the end of the outer peripheral portion on the cavity side is deformed as F1 and F2 in the direction along the joint surface due to the expansion of the width in the E direction.
[0042]
Since the annular groove B is provided on the surface forming the cavity of the upper plate 1, the deformation shown in F <b> 1 proceeds into the annular groove B and is absorbed, and the main surface G <b> 1 of the upper plate 1 is deformed. Never do. Further, the deformation indicated by F2 in the corner portion formed by the side surface portion C and the joint portion 4 of the lower plate material 2 is absorbed together with the above-described annular groove portion, and the main surface portion G2 of the lower plate material 2 is deformed. There is nothing.
[0043]
In addition, in FIG. 6, the state at the time of using the upper board | plate material and lower board | plate material in which the annular groove part is not formed, and pressurizing to an outer peripheral part is shown. As shown in FIG. 6 (a), the joint portion at the outer peripheral portion receives a force in the vertical direction in the drawing and is pressed into contact with A ″ and A ″ to reduce the thickness and width in the horizontal direction. Spread. The spread of the width in the horizontal direction occurs not only in the D direction but also in the E direction. Therefore, the main surface portion G11 that should be essentially flat of the upper plate member 110 swells in the H direction due to the expansion of the width in the E direction, or the main surface portion G11 is recessed in the I direction as shown in FIG. 6B. . Constraining such deformation by a mold or correcting the deformation after forming a container requires a great deal of labor, and it is difficult to completely constrain or correct the deformation.
The absorption structure in the aspect mentioned above consists of the annular groove part and the side part of the recessed part of the predetermined height which forms a cavity part.
[0044]
FIG. 2 is a diagram for explaining another embodiment of the plate heat pipe manufacturing method of the present invention. Fig.2 (a) is a figure explaining the combined state of the board | plate material before pressure welding. FIG. 2B is a diagram for explaining a state after the press contact is completed.
In this aspect, at least one surface on the surface, which is formed of a combination having a hollow portion formed therein and having the same thickness, each including an outer peripheral portion and a concave portion having a predetermined height forming the hollow portion. A plate material to which the element to be cooled is thermally connected and another plate material are prepared, and an absorption structure for absorbing the deformation of the plate material in the direction along the joining surface of the plate material and the other plate material is provided. Are combined so that the recesses face each other, the outer peripheral portion is pressed, and the absorption structure absorbs the change in the plate material in the direction along the joining surface to form a container having a main surface without deformation, A working fluid is sealed in the container formed in this way, and a plate-type heat pipe having excellent airtightness is manufactured. The absorption structure mentioned above consists of the side part of the recessed part which opposes. Furthermore, a plate material and another plate material are prepared so that the height c of the side surface portion of the recess is larger than the plate thickness a of the plate material.
[0045]
That is, as shown in FIG. 2A, the upper plate member 11 and the lower plate member 12 that form the container of the heat pipe are both formed from the outer peripheral portion A and the recessed portion having a predetermined height that forms the cavity portion 13. It is press-molded so as to form the cavity 13 by combining opposing concave portions. The upper plate member 11 and the lower plate member 12 are formed to have the same thickness. The upper plate member 11 includes an outer peripheral portion A, a concave side surface portion C, and a main surface portion G1. The lower plate member 12 includes an outer peripheral portion A, a side surface portion C of a concave portion, and a main surface portion G2. The upper plate member 11 and the lower plate member 12 are prepared so that the above-described height c of the side surface portion is larger than the plate thickness a of the plate members 11 and 12.
[0046]
The upper plate member 11 and the lower plate member 12 are combined so that the outer peripheral portions A and A are in contact with each other and the concave portions are opposed to each other. The outer peripheral portions A and A of the upper plate member and the lower plate member combined in this way are pressed by the method shown in FIG. As shown in FIG. 2 (b), the joint 14 of the outer peripheral parts A and A receives the force in the vertical direction in the drawing and is pressed into contact with each other as shown by A 'and A' to reduce the thickness. The width expands. The spread of the width in the horizontal direction occurs not only in the D direction but also in the E direction. Therefore, the end of the outer peripheral portion on the cavity side is deformed as F1 and F2 in the direction along the joint surface due to the expansion of the width in the E direction. In the deformation shown in F1 and F2, the corner formed by the side surface portion C and the joint portion 14 of the upper plate member 11 and the corner portion formed by the side surface portion C and the joint portion 14 of the lower plate member 12 are joined surfaces. The main surface portion G11 of the upper plate member 11 and the main surface portion G12 of the lower plate member 12 are not deformed.
[0047]
That is, in this aspect, the side surface portion C of the upper plate material 11 and the side surface portion C of the lower plate material 12 form an absorption structure.
Note that, as described above, the joint portion at the outer peripheral portion is pressed and thinned, and the width is increased in the horizontal direction. However, when the height c of the side surface portion is smaller than the plate thickness a of the plate members 11 and 12, the end of the outer peripheral portion on the cavity side is in the direction along the joining surface due to the widening of the width in the E direction. F1 and F2 are not deformed and a force is directly applied along the main surface portion G11 of the upper plate member 11 or the main surface portion G12 of the lower plate member 12, and the main surface portion G11 or G12 swells in the vertical direction. Or dents. Therefore, when the height c of the side surface portion is smaller than the plate thickness a of the plate members 11 and 12, no absorption structure is formed.
[0048]
FIG. 3 is a view for explaining another embodiment of the plate heat pipe manufacturing method of the present invention. FIG. 3A is a diagram for explaining a combined state of the plate materials before pressure contact. FIG. 3B is a diagram for explaining a state after the press contact is completed.
In this aspect, a plate material having a predetermined height and having a predetermined height forming an outer peripheral portion and a cavity, at least one element to be cooled is thermally connected to the surface of the same thickness, and a plate material, Prepare another plate material that is combined to form a hollow portion inside, and in the vicinity of the outer peripheral portion of another plate material, the surface forming the hollow portion is recessed in an annular shape, and the other surface protrudes in a convex shape , Processing another plate material, providing an annular inverted U-shaped part,
A plate material and another plate material are combined, the outer peripheral portion is pressed, and the deformation structure of the plate material in the direction along the joint surface is absorbed by the absorption structure consisting of the annular inverted U-shaped portion and the side surface of the concave portion. Forming a container with a surface,
A working fluid is sealed in the container formed in this way, and a plate-type heat pipe having excellent airtightness is manufactured.
[0049]
A plate material and another plate material are prepared so that the depth b of the recess of the annular inverted U-shaped portion described above is greater than the plate thickness a of the plate material.
That is, the upper plate member 21 and the lower plate member 22 have the same thickness, and the upper plate member 21 forming the heat pipe container has a substantially flat main surface portion G21 except for the annular inverted U-shaped portion B. The letter B is formed by press molding or the like, protrudes in a convex shape toward the outside, and an annular recess 15 is formed on the side facing the cavity. The lower plate member 22 is press-molded so as to form a hollow portion, and includes a concave portion having a predetermined height that forms an outer peripheral portion and a hollow portion. The concave portion includes a side surface portion C and a main surface portion G22. A plate material and another plate material are prepared such that the depth b of the recess of the annular inverted U-shaped portion is larger than the plate thickness a of the plate material.
[0050]
The upper plate material 21 and the lower plate material 22 are combined so as to be in contact with each other at the outer peripheral portions A and A so as to form a hollow portion therein. The outer peripheral portions A and A of the upper plate member and the lower plate member combined in this way are pressed by the method shown in FIG. As shown in FIG. 3 (b), the joint portion 24 of the outer peripheral portions A and A receives the force in the vertical direction in the drawing and is pressed into contact as A ′ and A ′ to reduce the thickness, and the horizontal direction The width expands. The spread of the width in the horizontal direction occurs not only in the D direction but also in the E direction. Therefore, the end of the outer peripheral portion on the cavity side is deformed as F1 and F2 in the direction along the joint surface due to the expansion of the width in the E direction.
[0051]
Since the annular recess 15 of the annular inverted U-shaped portion B is provided on the surface forming the cavity of the upper plate member 21, the deformation shown in F1 proceeds toward the annular recess 15 and is absorbed. The main surface portion G21 of 21 is not deformed. Further, the deformation indicated by F2 in the corner portion formed by the side surface portion C and the joint portion 24 of the lower plate material 22 is absorbed together with the annular recess 15 described above, and the main surface portion G22 of the lower plate material 22 is deformed. Never do.
[0052]
According to this aspect, the upper plate material and the lower plate material can be prepared with a plate material having the same thickness, and in particular, an annular inverted U-shape can be formed by press molding or the like without changing the thickness of the outer peripheral portion and the main surface portion of the upper plate material. Since it is only necessary to form the part, it is easy to manufacture. The absorption structure in the aspect mentioned above consists of the cyclic | annular reverse U-shaped part B and the side part C of the recessed part of the predetermined height which forms a cavity part.
When the depth b of the recess of the annular inverted U-shaped portion is smaller than the plate thickness a of the plate material, the joint portion of the outer peripheral portion is pressed and the thickness is reduced, and by the spread of the width in the horizontal E direction, The end of the outer peripheral portion on the cavity side is not deformed like F1 and F2 in the direction along the joint surface, and directly along the main surface portion G21 of the upper plate member 21 or the main surface portion G22 of the lower plate member 22. A force is applied, and the main surface portion G21 or G22 swells or dents along the vertical direction. Therefore, when the depth b of the recess of the annular inverted U-shaped portion is smaller than the plate thickness a of the plate materials 21 and 22, no absorption structure is formed.
[0053]
FIG. 7 is a diagram for explaining another embodiment of the plate heat pipe manufacturing method of the present invention. Fig.7 (a) is a figure explaining the combined state of the board | plate material before pressure welding. FIG. 7B is a diagram for explaining a state after the press contact is completed.
In this aspect, it is composed of a concave portion of a predetermined height that forms an outer peripheral portion and a cavity portion, at least one element to be cooled is thermally connected to the surface of the same thickness, and in the vicinity of the outer peripheral portion. A plate member having an annular inverted U-shaped structure and an outer flange-like outer peripheral portion thereof, a side portion combined by fitting with the annular inverted U-shaped portion of the plate member, and an outer flange-like outer peripheral portion thereof And another plate material that is combined with the plate material to form a hollow portion therein, and
Combining a plate material and another plate material, pressure-welding the outer periphery, and absorbing the deformation of the plate material in the direction along the joint surface by the absorption structure consisting of the annular inverted U-shaped portion of the plate material and the side surface portion of another plate material Forming a container with a main surface without deformation,
A working fluid is sealed in the container formed in this way, and a plate-type heat pipe having excellent airtightness is manufactured.
A plate material and another plate material are prepared so that the depth b of the recess of the annular inverted U-shaped portion described above is greater than the plate thickness a of the plate material.
That is, the upper plate 41 and the lower plate 42 have the same thickness, and the upper plate 41 forming the heat pipe container has a flat main surface G41 except for the side surface C1 and the outer peripheral portion A, and the side surface C1. The outer peripheral portion A is formed by press molding or the like. The lower plate member 42 is press-molded so as to form a hollow portion, and includes an outer peripheral portion and a concave portion having a predetermined height that forms the hollow portion, and further includes an annular inverted U-shaped portion B between the outer peripheral portion and the concave portion. Yes. The outer peripheral portion A, the annular inverted U-shaped portion B, and the side surface portion C2 are formed by press molding or the like. A plate material and another plate material are prepared such that the depth b of the recess of the annular inverted U-shaped portion is larger than the plate thickness a of the plate material.
[0054]
The upper plate material 41 and the lower plate material 42 are combined so as to be in contact with each other at the outer peripheral portions A and A so as to form a hollow portion therein. The outer peripheral portions A and A of the upper plate member and the lower plate member combined in this way are pressed by the method shown in FIG. As shown in FIG. 7B, the joint portion 44 of the outer peripheral portions A and A receives the force in the vertical direction in the drawing and is pressed into contact with each other as A ′ and A ′ to reduce the thickness, and the horizontal direction The width expands. The spread of the width in the horizontal direction occurs not only in the D direction but also in the E direction. Therefore, the end of the outer peripheral portion on the cavity side is deformed like F in the direction along the joint surface due to the widening of the width in the E direction.
[0055]
Since the side surface forming the hollow portion of the lower plate member 42 is provided with the annular recess 45 of the annular inverted U-shaped portion B on the outside, the deformation shown in F proceeds toward the inside of the annular recess 45 and is absorbed. The main surface portion G41 of the upper plate material 41 and the main surface portion G42 of the lower plate material 42 are not deformed.
[0056]
According to this aspect, the upper plate material and the lower plate material can be prepared with a plate material having the same thickness, and in particular, an annular inverted U-shape can be formed by press molding or the like without changing the thickness of the outer peripheral portion and the main surface portion of the upper plate material. Since it is only necessary to form the part and the side part, the production is easy. The absorption structure in the aspect mentioned above consists of the cyclic | annular reverse U-shaped part B and the side part C1 of the recessed part of the predetermined height which forms a cavity part. Furthermore, since no protrusion occurs in the main surface portions G41 and G42, there is an advantage that the degree of freedom in designing the joint portion with the member to be cooled and the heat radiating fins is large.
When the depth b of the recess of the annular inverted U-shaped portion is smaller than the plate thickness a of the plate material, the joint portion of the outer peripheral portion is pressed and the thickness is reduced, and by the spread of the width in the horizontal E direction, The end of the outer peripheral portion on the cavity side is not deformed like F in the direction along the joining surface, and a force is directly applied along the main surface portion G41 of the upper plate member 41 or the main surface portion G42 of the lower plate member 42. In addition, the main surface portion G41 or G42 swells or dents along the vertical direction. Therefore, when the depth b of the recess of the annular inverted U-shaped portion is smaller than the plate thickness a of the plate members 41 and 42, the absorption structure is not formed.
[0057]
FIG. 8 is a diagram for explaining another embodiment of the plate heat pipe manufacturing method of the present invention. FIG. 8A is a diagram for explaining the combined state of the plate materials before pressure welding. FIG. 8B is a diagram for explaining a state after the press contact is completed.
In this aspect, a plate material having a predetermined thickness and a recess having a predetermined height forming an outer peripheral portion and a cavity portion, at least one element to be cooled is thermally connected to the surface of the same thickness, and the plate material Prepare another plate material that is combined to form a hollow portion inside, and process another plate material in the vicinity of the outer peripheral portion of the other plate material so that the side facing the cavity portion protrudes into the hollow portion. A U-shaped part,
Combining the plate material and another plate material, pressing the outer peripheral portion, absorb the deformation of the plate material in the direction along the joint surface by the absorption structure consisting of the annular U-shaped portion of the other plate material and the side surface portion of the plate material, Form a container with a main surface without deformation,
A working fluid is sealed in the container formed in this way, and a plate-type heat pipe having excellent airtightness is manufactured.
[0058]
A plate material and another plate material are prepared so that the depth of the depression of the annular U-shaped portion described above is greater than the plate thickness of the plate material.
That is, the upper plate 61 and the lower plate 62 are equal in thickness, and the upper plate 61 forming the heat pipe container has a flat plate shape except for the annular U-shaped portion, and the annular U-shaped portion B is These are formed by press molding or the like, projecting in a convex shape toward the inside of the container, and an annular recess 65 is formed on the outside of the container. The lower plate material 62 is press-molded so as to form the cavity 63, and includes a concave portion having a predetermined height that forms the outer peripheral portion and the cavity. The concave portion includes a side surface portion C and a main surface portion G62. A plate material and another plate material are prepared such that the depth of the recess of the annular inverted U-shaped portion is greater than the plate thickness of the plate material.
[0059]
The upper plate material 61 and the lower plate material 62 are combined so as to be in contact with each other at the outer peripheral portions A and A so as to form a hollow portion therein. The outer peripheral portions A and A of the upper plate member and the lower plate member combined in this way are pressed by the method shown in FIG. As shown in FIG. 8 (b), the joint portion 64 of the outer peripheral portions A and A receives the force in the vertical direction in the drawing and is pressed into contact with each other as shown by A 'and A' to reduce the thickness, and the horizontal direction. The width expands. The spread of the width in the horizontal direction occurs not only in the D direction but also in the E direction. Therefore, the end on the annular U-shaped side of the outer peripheral portion is deformed like F in the direction along the joint surface due to the widening of the width in the E direction.
[0060]
Since the annular recess 65 of the annular U-shaped portion B is provided on the surface forming the hollow portion of the upper plate member 61, the deformation shown in F proceeds toward the inside of the annular recess 65 and is absorbed, and the upper plate member 61 is absorbed. The main surface portion G61 and the main surface portion G62 of the lower plate member 62 are not deformed.
According to this aspect, the upper plate member and the lower plate member can be prepared with a plate member having the same thickness. In particular, the annular U-shaped portion can be formed by press molding or the like without changing the thickness of the outer peripheral portion and the main surface portion of the upper plate member. Since it is only necessary to form, fabrication is easy. The absorption structure in the aspect mentioned above consists of the cyclic | annular U-shaped part B and the upper end part of the side part C of the recessed part of the predetermined height which forms a cavity part.
[0061]
When the depth of the recess of the annular U-shaped portion is smaller than the plate thickness of the plate material, the joint portion of the outer peripheral portion is pressed and thinned, and the width of the outer peripheral portion is increased due to the expansion of the width in the horizontal E direction. The end on the cavity side is not deformed like F in the direction along the joint surface, and a force is applied directly along the main surface portion G61 of the upper plate member 61 or the main surface portion G62 of the lower plate member 62, The surface part G61 or G62 bulges or dents along the vertical direction. Therefore, when the depth of the recess of the annular inverted U-shaped portion is smaller than the plate thickness of the plate members 61 and 62, the absorption structure is not formed.
[0062]
FIG. 4 is a diagram for explaining another aspect of the method for manufacturing the plate heat pipe of the present invention. Fig.4 (a) is a figure explaining the combined state of the board | plate material before pressure welding. FIG. 4B is a diagram for explaining a state after the press contact is completed.
In this aspect, a plate member made of a concave portion having a predetermined height that forms an outer peripheral portion and a cavity portion, at which at least one element to be cooled is thermally connected to the surface thereof, and having a different thickness, and a plate member, Prepare another plate material that is combined to form a cavity portion inside, provide an annular groove on the surface forming the cavity portion of another plate material with a large plate thickness, and include a radiation fin on the other surface,
Combines a plate material and another plate material, presses the outer peripheral part, absorbs deformation of the plate material in the direction along the joint surface by the absorption structure consisting of the annular groove part and the concave part, and has a main surface without deformation Forming a container
A working fluid is sealed in the container formed in this way, and a plate-type heat pipe having excellent airtightness is manufactured.
[0063]
That is, the upper plate 31 forming the heat pipe container is substantially flat, and the lower plate 32 is press-formed so as to form a cavity. An annular groove B is provided on the surface of the upper plate 31 having a large thickness on which the cavity 33 is formed, and the heat radiating fins 37 are provided on the other surface. The thickness of the outer peripheral portion A is formed to be smaller than the thickness of the main body of the upper plate material 31. The lower plate member 32 is formed of a concave portion having a predetermined height that forms the outer peripheral portion A and the cavity portion 33, and includes a side surface portion C and a main surface portion G32. The thickness of the lower plate material 32 is substantially equal to the thickness of the outer peripheral portion of the upper plate material 31. The upper plate material 31 and the lower plate material 32 are prepared so that the above-described depth b of the annular groove portion is larger than the plate thickness a of the outer peripheral portion A of the plate material 31.
[0064]
The upper plate material 31 and the lower plate material 32 are combined so that the outer peripheral portions A and A are in contact with each other, and a hollow portion is formed inside. The outer peripheral portions A and A of the upper plate member and the lower plate member combined in this way are pressed by the method shown in FIG. As shown in FIG. 4B, the joint portion 34 of the outer peripheral portions A and A receives the force in the vertical direction in the drawing and is pressed into contact with each other as A ′ and A ′ to reduce the thickness, and the horizontal direction. The width expands. The spread of the width in the horizontal direction occurs not only in the D direction but also in the E direction. Therefore, the end of the outer peripheral portion on the cavity side is deformed as F1 and F2 in the direction along the joint surface due to the expansion of the width in the E direction.
[0065]
Since the annular groove B is provided on the surface forming the cavity of the upper plate 31, the deformation shown in F <b> 1 proceeds into the annular groove B and is absorbed, and the main surface G <b> 31 of the upper plate 31 is deformed. Never do. Therefore, the heat radiating fins provided on the upper plate 31 are not affected at all. Further, the deformation indicated by F2 in the corner formed by the side surface portion C and the joint portion 34 of the lower plate material 32 is absorbed together with the above-described annular groove portion, and the main surface portion G32 of the lower plate material 32 is deformed. There is nothing.
[0066]
The absorption structure in the aspect mentioned above consists of the annular groove part and the side part of the recessed part of the predetermined height which forms a cavity part.
Note that, as described above, the joint portion at the outer peripheral portion is pressed and thinned, and the width is increased in the horizontal direction. However, when the depth b of the annular groove portion is smaller than the plate thickness a of the outer peripheral portion A of the plate member 31, the end portion on the cavity portion side of the outer peripheral portion is along the joining surface due to the widening of the width in the E direction. In the direction, F1 and F2 are not deformed, and a force is directly applied along the main surface portion G31 of the upper plate member 31, and the main surface portion G31 swells or dents along the vertical direction. When the main surface portion G31 swells or is recessed, for example, a heat dissipating fin provided by crimping (crimping) on the outer surface of the upper plate member 31 is detached, and repair thereof becomes difficult. Therefore, when the depth b of the annular groove portion is smaller than the plate thickness a of the outer peripheral portion A of the plate material 31, no absorption structure is formed.
[0067]
The plate type heat pipe of this invention is a plate type heat pipe manufactured by the manufacturing method mentioned above.
That is, one aspect of the plate heat pipe of the present invention includes a plate member on which at least one element to be cooled is thermally connected to the surface, and another plate member that is combined with the plate member to form a hollow portion therein. And at least one of the plate member and another plate member is provided with an absorption structure that absorbs deformation of the plate member in the direction along the bonding surface of the plate member and the other plate member, and the plate member and another plate member are combined, The outer peripheral portion is pressure-welded, the deformation of the plate material in the direction along the joint surface is absorbed by the absorption structure, a container having a main surface without deformation is formed, and the working fluid is formed inside the container thus formed Is a plate-type heat pipe with excellent airtightness and high flatness of both main surfaces of the container. It is a plate-type heat pipe in which the plate material described above and another plate material have different thicknesses.
[0068]
Furthermore, a plate mold in which a fin can be inserted into another plate material, for example, after one end of the fin is inserted into a groove or a hole, and then the vicinity of the recess is pressed and deformed using a jig to be crimped and fixed. It is a heat pipe.
In this way, when the fin is fixed to another plate by crimping, if the other plate is deformed, the crimped fin comes off or a gap is generated between the other plate and the fin. The problem of increasing the heat conduction resistance and lowering the heat radiation performance can be solved by the absorption structure.
[0069]
Another aspect of the plate-type heat pipe of the present invention is formed of a concave portion having a predetermined thickness, each having an outer peripheral portion and a hollow portion, which are combined to form a hollow portion in the inside and are of the same thickness. An absorption structure for preparing a plate member on which at least one element to be cooled is thermally connected to the surface and another plate member and absorbing deformation of the plate member in a direction along a joint surface of the plate member and the other plate member The main surface without deformation is formed by combining a plate material and another plate material so that the recesses face each other, pressing the outer peripheral portion, and absorbing the deformation of the plate material in the direction along the joining surface by the absorption structure Is a plate type heat pipe that is manufactured by enclosing a working fluid inside the container formed in this way, and having excellent airtightness and high flatness of both main surfaces of the container. .
The plate-type heat pipe of the present invention is composed of the container having the above-described shape, and a wick is disposed in the cavity. Furthermore, you may arrange | position a heat conductive block.
[0070]
Although not shown in the figure, a plate-type heat pipe is manufactured by providing a mouth for injecting and degassing a part of the container, injecting working fluid (pure water), and degassing. can do.
[0071]
Further, brazing or soldering may be further performed on the outer peripheral portion that is pressed. By reinforcing the joined portion of the outer peripheral portion that has been press-welded by brazing or soldering, there are effects such as reinforcing mechanical strength and / or preventing corrosion at the joining interface. That is, in the plate heat pipe of the present invention, the outer peripheral portion is sealed in a state of excellent airtightness by pressure contact, so that the pressure contact portion in the outer peripheral portion can be reinforced by brazing or soldering from the outside. , Solder or solder does not penetrate the inner surface of the heat pipe and does not come into contact with the working fluid. As a brazing or soldering method, a vacuum furnace, an atmospheric furnace, a torch, a soldering iron or the like can be used. These methods are appropriately selected depending on the material, shape, and size of the heat pipe container, the thermal performance required for the heat pipe, the interaction with the working fluid, and the like.
[0072]
Further, welding may be further performed on the outer peripheral portion that is press-contacted. Although sufficient mechanical strength such as pressure resistance can be obtained by pressure welding, if sealing is not complete and there is a possibility of slight leakage, welding may be used in combination. Even in that case, most of the bonding strength is borne by pressure welding. As a welding method, welding methods such as TIG welding, plasma welding, laser welding, and electron beam welding are possible. These welding methods are appropriately selected depending on the material, shape, and size of the heat pipe container, the thermal performance required for the heat pipe, the interaction with the working fluid, and the like.
[0073]
Furthermore, the convex part for efficiently cooling a to-be-cooled element may be integrally formed in one board | plate material to which a to-be-cooled element is thermally connected. The shape of the convex portion is determined by the arrangement of the element to be cooled and other components mounted on the substrate.
Usually, the container material is composed of only one kind of material, such as copper for copper and aluminum for aluminum, but a clad material may be used for the plate material. When a clad material is used, the material forming the inner surface side of the clad material container is made of a material having high compatibility with the working fluid, for example, copper, and the material forming the outer surface side is mechanical strength. Depending on the appearance requirements, materials such as high strength, low cost, and light weight, such as aluminum, can be used, and the degree of design freedom can be increased and the cost can be reduced.
[0074]
Furthermore, the plate-type heat pipe of the present invention is a fan in which a substrate on which an element to be cooled is mounted is bonded to the main surface of the plate-type heat pipe described above, a heat sink is bonded to another main surface, and further, the fan blows air to the heat sink. Are mounted in a predetermined position.
The present invention will be described in more detail with reference to examples.
[0075]
【Example】
Example 1
As shown in FIG. 1, a flat upper plate 1 of 80 mm × 60 mm with a thickness of 1 mm at the outer peripheral portion and a thickness of 2.6 mm at the main surface portion, and a lower plate material 2 press-molded into a box shape with a thickness of 1 m are made of pure copper plate. It was prepared by. An annular groove B having a width of 0.8 mm and a depth of 1.2 mm was provided in the vicinity of the joint portion of the surface forming the cavity of the upper plate material. Then, the outer peripheral part 4 of the upper board | plate material 1 and the lower board | plate material 2 was combined, and the wick made from a pure copper was arrange | positioned in it. Prior to the combination, the outer peripheral surface to which the upper plate 1 and the lower plate 2 were joined was cleaned by brushing to remove coatings and deposits such as oxides, hydroxides, and organic substances.
[0076]
The upper plate member 1 and the lower plate member 2 were combined with the surfaces of the outer peripheral portions to be joined maintained in a clean state, and the outer peripheral portions were reduced at room temperature in the atmosphere. The amount of reduction at that time was 70%. As shown in FIG. 1B, the outer peripheral portion A became thinner and widened in the horizontal direction. Due to the spread of the width in the E direction, the boundary portion between the outer peripheral portion and the main surface portion and the boundary portion between the outer peripheral portion and the side surface portion moved slightly toward the cavity portion side and deformed. At this time, no deformation such as swelling or dent was observed in any of the main surface portions of the upper plate member 1 and the lower plate member 2. That is, the annular groove portion provided on the upper plate material and the side surface portion of the lower plate material function as an absorption structure and can absorb the deformation of the plate material in the direction along the joint surface, so that the container having the main surface without deformation Could be formed. Thus, the outer peripheral part was press-contacted and the container excellent in the airtightness of the whole size 80mmx60mmx7mm which the wick was arrange | positioned inside was produced. Furthermore, a mouth for injecting and degassing was provided in a part of the container, working fluid (pure water) was injected, and deaeration was performed to produce a plate heat pipe.
[0077]
The strength and hermeticity of the pressure-bonded joints of the plate heat pipes produced in this way were tested. The strength was a strength that could not be removed at 140 kPa in the pressure test, and the hermeticity was determined in the He leak test. , Leak amount 1 × 10-9Pa · mThree/ S or less. Furthermore, the flatness of the main surface portion was excellent.
[0078]
【The invention's effect】
According to the present invention, without reducing the strength of the plate material forming the container, the plate-type heat pipe having a container with no deformation on the main surface with high bonding strength, high airtightness, excellent long-term reliability. Can be provided. Furthermore, according to the present invention, the number of members constituting the heat pipe is reduced, the manufacturing process is simplified, and the plate type heat pipe that cools the element to be cooled, such as a semiconductor element, having a high heat generation amount, is inexpensive and highly reliable. Can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining one embodiment of a method for manufacturing a plate heat pipe of the present invention. Fig.1 (a) is a figure explaining the combined state of the board | plate material before pressure welding. FIG. 1B is a diagram for explaining a state after the press contact is completed.
FIG. 2 is a diagram for explaining another embodiment of the method for manufacturing a plate heat pipe of the present invention. Fig.2 (a) is a figure explaining the combined state of the board | plate material before pressure welding. FIG. 2B is a diagram for explaining a state after the press contact is completed.
FIG. 3 is a diagram for explaining another embodiment of the method for manufacturing a plate heat pipe of the present invention. FIG. 3A is a diagram for explaining a combined state of the plate materials before pressure contact. FIG. 3B is a diagram for explaining a state after the press contact is completed.
FIG. 4 is a diagram for explaining another aspect of the manufacturing method of the plate heat pipe of the present invention. Fig.4 (a) is a figure explaining the combined state of the board | plate material before pressure welding. FIG. 4B is a diagram for explaining a state after the press contact is completed.
FIG. 5 is a view for explaining an example of pressure contact of an outer peripheral portion of a plate heat pipe according to the present invention.
FIG. 6 is a diagram showing a state in which an upper plate member and a lower plate member in which an annular groove portion is not formed are used and pressure contact is applied to the outer peripheral portion.
FIG. 7 is a diagram for explaining one embodiment of a method for manufacturing a plate heat pipe according to the present invention. Fig.7 (a) is a figure explaining the combined state of the board | plate material before pressure welding. FIG. 7B is a diagram for explaining a state after the press contact is completed.
FIG. 8 is a diagram for explaining one embodiment of a method for manufacturing a plate heat pipe according to the present invention. FIG. 8A is a diagram for explaining the combined state of the plate materials before pressure welding. FIG. 8B is a diagram for explaining a state after the press contact is completed.
[Explanation of symbols]
1, 11, 21, 31, 41, 61. Upper plate material
2, 12, 22, 32, 42, 62. Lower plate material
3, 13, 23, 33, 43, 63. Cavity
4, 14, 24, 34, 44, 64. Junction
A. The outer periphery
B. Annular groove
C, C1, C2. Side part
G1, G11, G21, G31, G41, G61. Main surface
G2, G12, G22, G32, G42, G62. Main surface
D. Width direction
E. Width direction
F. Deformation
F1. Deformation
F2. Deformation

Claims (11)

少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、
前記別の板材は、前記空洞部を形成する部分の外周部の近傍に環状溝部を備え、
前記板材は、前記外周部および前記空洞部を形成する所定の高さの凹部を備え、
前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状溝部と前記凹部の側面部とで吸収する吸収構造をなし、
前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法。
Prepared a plate which at least one of the cool elements are thermally connected, and another plate member to form a cavity is combined with the plate to the inside of said sheet material,
The another plate member includes an annular groove portion in the vicinity of the outer peripheral portion of the portion forming the cavity portion ,
The plate member includes a recess having a predetermined height that forms the outer peripheral portion and the hollow portion,
Absorbing structure that absorbs deformation of the plate member and the other plate member in the direction along the joint surface that occurs when the outer peripheral portion of the plate member and the other plate member is press-welded by the annular groove and the side surface portion of the recess. ,
Combining the plate material and the other plate material, press the outer peripheral portion, by the absorption structure, to form a container having a main surface without deformation,
A plate-type heat pipe manufacturing method for manufacturing a plate-type heat pipe excellent in airtightness by enclosing a working fluid in the container thus formed.
前記環状溝部の深さbが、前記外周部の板厚aよりも大きくなるように前記板材および前記別の板材を調製する、請求項1に記載の板型ヒートパイプの製造方法。The manufacturing method of the plate-type heat pipe according to claim 1 , wherein the plate member and the another plate member are prepared so that a depth b of the annular groove portion is larger than a plate thickness a of the outer peripheral portion. 少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、
前記別の板材は、前記外周部の近傍に、前記空洞部を形成する面が環状に窪み、他方の面が凸状に突出する環状逆U字部を備え、
前記板材は、前記外周部および前記空洞部を形成する所定の高さの凹部を備え、
前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状逆U字部と前記凹部の側面部とで吸収する吸収構造をなし、
前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法。
Prepared a plate which at least one of the cool elements are thermally connected, and another plate member to form a cavity is combined with the plate to the inside of said sheet material,
The another plate includes an annular inverted U-shaped portion in the vicinity of the outer peripheral portion, the surface forming the cavity is recessed in an annular shape and the other surface protrudes in a convex shape ,
The plate member includes a recess having a predetermined height that forms the outer peripheral portion and the hollow portion,
Absorption of deformation of the plate member and the another plate member in the direction along the joining surface that occurs when the outer peripheral portion of the plate member and the other plate member is press-welded by the annular inverted U-shaped portion and the side surface portion of the recess. Make the absorption structure,
Combining the plate material and the other plate material, press the outer peripheral portion, by the absorption structure, to form a container having a main surface without deformation,
A plate-type heat pipe manufacturing method for manufacturing a plate-type heat pipe excellent in airtightness by enclosing a working fluid in the container thus formed.
前記環状逆U字部の深さbが、前記外周部の板厚aよりも大きくなるように前記板材および前記別の板材を調製する、請求項3に記載の板型ヒートパイプの製造方法。The manufacturing method of the plate-type heat pipe according to claim 3 , wherein the plate member and the another plate member are prepared so that a depth b of the annular inverted U-shaped portion is larger than a plate thickness a of the outer peripheral portion. 板材と前記別の板材の外周部の圧接が、圧下による金属接合によって行われる、請求項1から4の何れか1項に記載の板型ヒートパイプの製造方法。The manufacturing method of the plate-type heat pipe according to any one of claims 1 to 4 , wherein the press contact between the plate member and the outer peripheral portion of the another plate member is performed by metal bonding by reduction. 前記圧下によって、前記板材と前記別の板材の外周部のそれぞれの接合面に新生面を形成し、前記新生面どうしが圧着されて金属接合される、請求項5に記載の板型ヒートパイプの製造方法。The manufacturing method of the plate type heat pipe according to claim 5 , wherein a new surface is formed on each joint surface of the outer periphery of the plate material and the other plate material by the reduction, and the new surfaces are pressure-bonded to each other and metal-bonded. . 少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、
前記板材は、前記空洞部を形成する部分の外周部の近傍環状逆U字部を備え、
前記別の板材は、前記外周部および前記板材の前記環状U字部と嵌め合いによって組み合わされる側面部とを備え、
前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状U字部と前記側面部とで吸収する吸収構造をなし、
前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法。
Prepared a plate which at least one of the cool elements are thermally connected, and another plate member to form a cavity is combined with the plate to the inside of said sheet material,
The plate member includes an annular inverted U-shaped portion in the vicinity of the outer peripheral portion of the portion forming the cavity portion ,
The another plate includes a side portion combined by fitting with the outer peripheral portion and the annular U-shaped portion of the plate,
Absorbing structure that absorbs deformation of the plate member and the other plate member in a direction along the joining surface that occurs when the outer peripheral portion of the plate member and the another plate member is press-welded by the annular U-shaped portion and the side surface portion. ,
Combining the plate material and the other plate material, press the outer peripheral portion, by the absorption structure, to form a container having a main surface without deformation,
A plate-type heat pipe manufacturing method for manufacturing a plate-type heat pipe excellent in airtightness by enclosing a working fluid in the container thus formed.
前記環状逆U字部窪みの深さbが、前記板材の板厚aよりも大きくなるように前記板材および前記別の板材を調製する、請求項7に記載の板型ヒートパイプの製造方法。The manufacturing method of the plate-type heat pipe according to claim 7 , wherein the plate member and the another plate member are prepared so that a depth b of the recess of the annular inverted U-shaped portion is larger than a plate thickness a of the plate member. . 少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、
前記板材は、前記空洞部を形成する部分の外周部の近傍環状逆U字部を備え、
前記別の板材は、前記外周部および前記板材の前記環状U字部と嵌め合いによって組み合わされる側面部とを備え、
前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状U字部と前記側面部とで吸収する吸収構造をなし、
前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、
前記環状逆U字部の窪みの深さbが、前記板材の板厚aよりも大きくなるように前記板材および前記別の板材を調製し、
前記別の板材にフィンがクリンプされて固定されている、板型ヒートパイプ。
Prepared a plate which at least one of the cool elements are thermally connected, and another plate member to form a cavity is combined with the plate to the inside of said sheet material,
The plate member includes an annular inverted U-shaped portion in the vicinity of the outer peripheral portion of the portion forming the cavity portion ,
The another plate includes a side portion combined by fitting with the outer peripheral portion and the annular U-shaped portion of the plate,
Absorbing structure that absorbs deformation of the plate member and the other plate member in a direction along the joining surface that occurs when the outer peripheral portion of the plate member and the another plate member is press-welded by the annular U-shaped portion and the side surface portion. ,
Combining the plate material and the other plate material, press the outer peripheral portion, by the absorption structure, to form a container having a main surface without deformation,
Preparing the plate and the other plate so that the depth b of the recess of the annular inverted U-shaped portion is larger than the plate thickness a of the plate,
A plate heat pipe in which fins are crimped and fixed to the other plate material.
少なくとも1つの被冷却素子が熱的に接続される板材と、前記板材と組合わされて前記板材との内部に空洞部を形成する別の板材とを調製し、
前記板材は、前記外周部および空洞部を形成する所定の高さの凹部を備え、
前記別の板材は、前記外周部の近傍に、空洞部に面する側が空洞部内に突出する環状U字部を備え、
前記板材および前記別の板材の外周部を圧接接合する際に生ずる前記接合面に沿った方向における前記板材および前記別の板材の変形を前記環状U字部と前記凹部の側面部とで吸収する吸収構造をなし、
前記板材および前記別の板材を組合わせて外周部を圧接し、前記吸収構造によって、変形の無い主面を備えたコンテナを形成し、
このように形成されたコンテナの内部に作動流体を封入して、気密性に優れた板型ヒートパイプを製造する、板型ヒートパイプの製造方法。
Prepared a plate which at least one of the cool elements are thermally connected, and another plate member to form a cavity is combined with the plate to the inside of said sheet material,
The plate member includes a recess having a predetermined height that forms the outer peripheral portion and the cavity portion,
The other plate member is provided with an annular U-shaped portion in the vicinity of the outer peripheral portion, the side facing the cavity portion protruding into the cavity portion,
The annular U-shaped portion and the side surface portion of the recess absorb the deformation of the plate material and the other plate material in the direction along the joining surface that occurs when the outer peripheral portion of the plate material and the other plate material is pressure-welded. Absorbing structure,
Combining the plate material and the other plate material, press the outer peripheral portion, by the absorption structure, to form a container having a main surface without deformation,
A plate-type heat pipe manufacturing method for manufacturing a plate-type heat pipe excellent in airtightness by enclosing a working fluid in the container thus formed.
前記環状U字部の窪みの深さが、別の板材の板厚よりも大きくなるように板材および別の板材を調製する、請求項10に記載の板型ヒートパイプの製造方法。The manufacturing method of the plate-type heat pipe of Claim 10 which prepares a board | plate material and another board | plate material so that the depth of the hollow of the said cyclic | annular U-shaped part may become larger than the board thickness of another board | plate material.
JP2002132374A 2001-10-01 2002-05-08 Plate heat pipe and manufacturing method thereof Expired - Fee Related JP4558258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132374A JP4558258B2 (en) 2001-10-01 2002-05-08 Plate heat pipe and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001-305064 2001-10-01
JP2001305064 2001-10-01
JP2001-393816 2001-12-26
JP2001393816 2001-12-26
JP2002132374A JP4558258B2 (en) 2001-10-01 2002-05-08 Plate heat pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003254685A JP2003254685A (en) 2003-09-10
JP4558258B2 true JP4558258B2 (en) 2010-10-06

Family

ID=28678698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132374A Expired - Fee Related JP4558258B2 (en) 2001-10-01 2002-05-08 Plate heat pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4558258B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI381144B (en) * 2009-07-31 2013-01-01 Sintered heat pipe, manufacturing method thereof and manufacturing method for groove tube thereof
CN104114010A (en) * 2014-04-03 2014-10-22 东莞汉旭五金塑胶科技有限公司 Uniform temperature plate with cooling fins
JP5788069B1 (en) * 2014-08-29 2015-09-30 古河電気工業株式会社 Flat type heat pipe
CN114111410A (en) * 2018-07-31 2022-03-01 株式会社村田制作所 Vapor chamber
US10816274B2 (en) 2019-03-15 2020-10-27 Murata Manufacturing Co., Ltd. Vapor chamber
CN111954789B (en) * 2019-03-15 2021-11-19 株式会社村田制作所 Vapor chamber
JP2023166634A (en) * 2020-09-30 2023-11-22 尼得科超▲しゅう▼科技股▲ふん▼有限公司 Thermal conduction unit and cooler
CN114952051B (en) * 2022-06-16 2023-08-25 中国船舶重工集团公司第七二五研究所 Connection process for heat pipe and partition plate of titanium heating pipe type heat exchanger

Also Published As

Publication number Publication date
JP2003254685A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US6871701B2 (en) Plate-type heat pipe and method for manufacturing the same
US20010004934A1 (en) Compressed mesh wick, method for manufacturing same, and plate type heat pipe including compressed mesh wick
US6490160B2 (en) Vapor chamber with integrated pin array
US20010022219A1 (en) Plate type heat pipe and its mounting structure
JP4989552B2 (en) Electronic components
JP4826887B2 (en) Electronic component package with liquid-cooled heat exchanger and method for forming the same
TWI824229B (en) steam room
JP4558258B2 (en) Plate heat pipe and manufacturing method thereof
JP2002310581A (en) Plate type heat pipe and its mounting method
JP2003080378A (en) Method for manufacturing planar heat pipe and method for mounting this tube
JP5144285B2 (en) Pressure welding heat pipe
JP4278720B2 (en) Plate heat pipe
CN113039875B (en) Heat pipe, heat dissipation module and terminal equipment
JP2002168575A (en) Heat pipe
US20070277962A1 (en) Two-phase cooling system for cooling power electronic components
JPH11317482A (en) Heat sink
JP3106429B2 (en) Plate type heat pipe and cooling structure using it
CN101552212B (en) Method for jointing semiconductor element with thermotube
JPH10227585A (en) Heat spreader and cooler employing the same
EP1863085A2 (en) Two-phase cooling system for cooling power electronic components
JP2003083688A (en) Plate heat-pipe integrated with fin and its manufacturing method
JP2005294792A (en) Method of manufacturing semiconductor device
CN219421450U (en) Integrated heat dissipation module structure
JP2004037074A (en) Plate-like heat pipe and cooling structure using this heat pipe
JP2000035293A (en) Plate type heat pipe and cooling structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080523

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081023

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R151 Written notification of patent or utility model registration

Ref document number: 4558258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees