JP4547498B2 - Evoked potential test apparatus and evoked potential test system using the same - Google Patents

Evoked potential test apparatus and evoked potential test system using the same Download PDF

Info

Publication number
JP4547498B2
JP4547498B2 JP2005058258A JP2005058258A JP4547498B2 JP 4547498 B2 JP4547498 B2 JP 4547498B2 JP 2005058258 A JP2005058258 A JP 2005058258A JP 2005058258 A JP2005058258 A JP 2005058258A JP 4547498 B2 JP4547498 B2 JP 4547498B2
Authority
JP
Japan
Prior art keywords
evoked potential
signal data
potential signal
function
wavelet transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005058258A
Other languages
Japanese (ja)
Other versions
JP2006239096A (en
Inventor
信子 井川
隆嗣 谷萩
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2005058258A priority Critical patent/JP4547498B2/en
Publication of JP2006239096A publication Critical patent/JP2006239096A/en
Application granted granted Critical
Publication of JP4547498B2 publication Critical patent/JP4547498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、誘発電位検査装置に関し、特に、聴性脳幹反応(Auditory Brainstem Response、以下「ABR」という)の検査に好適なものである。   The present invention relates to an evoked potential test apparatus, and is particularly suitable for testing an auditory brainstem response (hereinafter referred to as “ABR”).

ABRとは、両耳あるいは方耳から音刺激を与えてから10ms以内の潜時をもって現れる短潜時の聴性誘発反応であって、その反応は、1μV以下の低電位の振幅を有し、また、第I波から第VII波と呼ばれる波を含んで構成される多様性の陽性波として観測される。   ABR is a short-latency auditory evoked response that appears with a latency of 10 ms after applying sound stimulation from both ears or ears, and the response has a low potential amplitude of 1 μV or less, and It is observed as a variety of positive waves composed of waves called the I-wave to the VII-wave.

ABRの信号(以下「ABR信号」という。)におけるピーク潜時は安定した一次反応であって再現性が高く、また、生理学及び解剖学においてその起源がほぼ特定され、脳幹聴覚経路上のどの部分であるかがほぼ明らかにされている。したがって、このABRを検査することで聴覚障害又は脳幹障害の診断補助、脳幹内病変が聴覚系神経路に与える障害の程度の診断、及び、意識障害や脳死判定の補助等臨床検査を行うことが可能であり、また、耳鼻科においては他覚的聴覚検査としても利用することができる。なお他覚的聴覚検査とは、新生児や乳幼児を含め、被験者が自分で“聞こえるか聞こえないか”について正確な意思表示ができない場合、全身麻酔下の被験者や重症な身体障害により意思表示が困難な場合、更には、犯罪捜査などで被験者が“聞こえているのに聞こえないふりをする”いわゆる詐称難聴の可能性のある場合などにおいて実施される検査である。   The peak latency in the ABR signal (hereinafter referred to as “ABR signal”) is a stable primary response with high reproducibility, and its origin is almost specified in physiology and anatomy. This is almost clear. Therefore, by examining this ABR, it is possible to perform diagnostic tests such as diagnosis assistance for hearing impairment or brainstem disorder, diagnosis of the degree of damage caused by brainstem lesions to the auditory nerve tract, and assistance in determining consciousness disorder or brain death. It is possible and can also be used as an objective hearing test in otolaryngology. Objective auditory test is difficult to express due to a subject under general anesthesia or severe physical disability if the subject, including newborns and infants, cannot express his / her intention about “whether it can be heard or not” In such a case, the test is further performed in cases where there is a possibility of so-called deception deafness, such as when the subject “pretends to be heard but pretend to be heard” in a criminal investigation or the like.

ところで、ABR信号は微弱な信号であって多くのノイズが含まれており、精度の高い検査のためにはこのノイズを除去する必要がある。ノイズを除去する方法としては例えばABR信号を複数加算し、その平均を算出する方法がある(以下「加算平均法」という。例えば下記非特許文献1参照)。   By the way, the ABR signal is a weak signal and contains a lot of noise, and it is necessary to remove this noise for a highly accurate inspection. As a method of removing noise, for example, there is a method of adding a plurality of ABR signals and calculating the average (hereinafter referred to as “addition averaging method”, for example, see Non-Patent Document 1 below).

しかしながら、上記加算平均法では、多数回(2000回程度)のABR信号測定を行う必要があるため、測定に時間がかかるという課題が残る。例えば加算平均法の典型的な例では検査に20分程度要してしまい、被験者に与える負担は大きい。   However, in the above-mentioned averaging method, since it is necessary to perform ABR signal measurement many times (about 2000 times), there remains a problem that the measurement takes time. For example, in a typical example of the averaging method, the examination takes about 20 minutes, and the burden on the subject is large.

また一方で、上記加算平均法の平均回数を低減する方法として、例えば下記非特許文献2及び3にはカルマンフィルタを用いてABR伝達関数を求める方法が記載されている。   On the other hand, as a method for reducing the average number of times of the above averaging method, for example, the following Non-Patent Documents 2 and 3 describe a method for obtaining an ABR transfer function using a Kalman filter.

「誘発電位検査装置Neuropackμ」、日本光電総合カタログ、日本光電株式会社、2001年"Evoked potential testing device Neuropackμ", Nihon Kohden General Catalog, Nihon Kohden Corporation, 2001 井川信子、谷萩隆嗣“カルマンフィルタを適用した最小分散推定による聴性脳幹反応波形の伝達関数の推定と特徴抽出”、Journal of Signal Processing(信号処理)、2004年、8巻、4号、335〜349頁Nobuko Igawa, Takaaki Tanibe “Estimation and feature extraction of auditory brainstem response waveform by minimum variance estimation using Kalman filter”, Journal of Signal Processing, 2004, Vol. 8, No. 4, 335-349 page Nobuko Ikawa, Takashi Yahagi、“FeatureExtraction and Identification of Transfer Function for Auditory BrainstemResponse,”、Journal of Signal Processing, 2004, Vol. 8,No.6, pp.473-484Nobuko Ikawa, Takashi Yahagi, “FeatureExtraction and Identification of Transfer Function for Auditory BrainstemResponse,”, Journal of Signal Processing, 2004, Vol. 8, No.6, pp.473-484

確かに上記非特許文献2及び3に記載の方法によると加算平均の回数を低減することができる。しかしながら、その場合であっても、従来手法の半分程度の検査時間がかかってしまい、やはり検査を受ける者にとって負担となるものであって、更なる測定時間の短縮を行う必要がある。   Certainly, according to the methods described in Non-Patent Documents 2 and 3, the number of averaging operations can be reduced. However, even in such a case, it takes about half of the inspection time of the conventional method, which is also a burden for the person receiving the inspection, and it is necessary to further reduce the measurement time.

そこで、本発明は上記課題を鑑み、高い検査精度を有しながらも測定時間の短縮を行うことのできる誘発電位検査装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an evoked potential inspection apparatus capable of reducing measurement time while having high inspection accuracy.

上記目的を達成するために本発明者らが鋭意検討を行った結果、誘発電位信号に対してWavelet変換を行い、この変換された誘発電位信号を解析することでノイズに埋もれて検出できないような低い加算回数の誘発電位信号から精度良く所望の波を検出することができることを見出した。すなわち、本発明にかかる誘発電位検査装置は、誘発電位信号データを記録する誘発電位信号データ記録部と、この誘発電位信号データ記録部が記録した誘発電位信号データに対してWavelet変換を行うWavelet変換部と、を有することを特徴の一つとする。   As a result of intensive studies by the present inventors in order to achieve the above object, Wavelet transform is performed on the evoked potential signal, and the converted evoked potential signal is analyzed so that it is buried in noise and cannot be detected. It has been found that a desired wave can be detected with high accuracy from an evoked potential signal having a low number of additions. That is, the evoked potential inspection apparatus according to the present invention includes an evoked potential signal data recording unit that records evoked potential signal data, and Wavelet conversion that performs Wavelet conversion on the evoked potential signal data recorded by the evoked potential signal data recording unit. One of the features.

ここで、「誘発電位信号データ」とは、誘発電位反応検査において測定した時間に誘発電位信号の強度が対応して格納されるデータであって、例えば誘発電位検査装置に接続される複数の電極を介して取得されるデータである。   Here, the “evoked potential signal data” is data in which the intensity of the evoked potential signal is stored corresponding to the time measured in the evoked potential response test, for example, a plurality of electrodes connected to the evoked potential test device It is the data acquired via.

また、本発明にかかる誘発電位検査装置における「Wavelet変換部」とは、誘発電位信号データに対してWavelet変換を行う部である。なおWavelet変換部が行うWavelet変換の基底関数としては種々採用することができ、例えばGauss関数、Mexicican Hat関数、Meyer関数、Daubechies関数、Biorthogonal関数などを用いることができる。   In addition, the “Wavelet conversion unit” in the evoked potential inspection apparatus according to the present invention is a unit that performs Wavelet conversion on evoked potential signal data. Various base functions of the Wavelet transform performed by the Wavelet transform unit can be employed, for example, a Gauss function, a Mexican Hat function, a Meyer function, a Daubechies function, a Biorgonal function, or the like.

また、本発明にかかる誘発電位検査装置におけるWavelet変換の対象となる誘発電位信号データは、加算平均されている場合であっても加算平均されていない場合であっても適用は可能である。ただし、必要最小限加算を行っておくことは好ましい(例えば加算平均回数としては10回以下、より望ましくは100回以下である)。   In addition, the evoked potential signal data to be subjected to Wavelet conversion in the evoked potential inspection apparatus according to the present invention can be applied regardless of whether it is averaged or not. However, it is preferable to perform the minimum necessary addition (for example, the average number of additions is 10 times or less, more preferably 100 times or less).

また本発明にかかる誘発電位検査システムは、上記の誘発電位検査装置を備えてなるものであって、具体的には被験者に装着される複数の電極と、被験者に音刺激を与えるためのイヤホンと、表示装置と、複数の電極から取得される誘発電位信号データを記録する誘発電位データ記録部、誘発電位データ記録部が記録した前記誘発電位信号データに対してWavelet変換を行うWavelet変換部、Wavelet変換部が変換した前記誘発電位データを表示装置に表示する際に表示画面の制御を行う表示部、イヤホンに対して音刺激を出力させる音出力部、を有する誘発電位検査装置と、を有することとする。   An evoked potential test system according to the present invention comprises the above-described evoked potential test apparatus, and more specifically, a plurality of electrodes attached to the subject, and an earphone for giving a sound stimulus to the subject. A display device, an evoked potential data recording unit that records evoked potential signal data acquired from a plurality of electrodes, a Wavelet transform unit that performs Wavelet transform on the evoked potential signal data recorded by the evoked potential data recording unit, and Wavelet An evoked potential inspection device having a display unit that controls a display screen when the evoked potential data converted by the conversion unit is displayed on a display device, and a sound output unit that outputs sound stimulation to the earphone. And

また本発明にかかる誘発電位検査方法は、被験者から誘発電位信号データを取得し、取得した誘発電位信号データに対しWavelet変換を行い、Wavelet変換された前記誘発電位信号データを解析することとする。なおこの場合において、被験者から取得する誘発電位信号データは、聴性脳幹反応に基づくデータであること、Wavelet変換は、基底関数としてGauss関数、Mexicican Hat関数、Meyer関数、Daubechies関数、Biorthogonal関数の少なくともいずれかを用いることも望ましい。   The evoked potential test method according to the present invention acquires evoked potential signal data from a subject, performs wavelet transform on the acquired evoked potential signal data, and analyzes the evoked potential signal data subjected to wavelet transform. In this case, the evoked potential signal data acquired from the subject is data based on the auditory brainstem response, and the Wavelet transform is a Gauss function, a Mexican Hat function, a Meyer function, a Daubechies function, or a Biorgonal function as a basis function. It is also desirable to use

以上により、高い測定精度でありながらも測定時間の短縮を行うことのできる誘発電位検査装置更にはそれを用いた誘発電位検査システムを提供することができる。   As described above, it is possible to provide an evoked potential test apparatus capable of reducing the measurement time with high measurement accuracy, and also an evoked potential test system using the evoked potential test system.

以下、本発明を実施するための形態について図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1に本実施形態にかかる誘発電位検査システムの構成概略図を示す。本誘発電位検査システム1は、被験者に装着される複数の電極3、被験者の耳に音信号を伝達するイヤホン4、複数の電極及びイヤホンに接続され、これらに対し様々な処理を行う誘発電位信号検出装置2と、様々な処理が行われた誘発電位信号について表示を行う表示装置5と、を有して構成されている。   FIG. 1 is a schematic configuration diagram of an evoked potential inspection system according to the present embodiment. The evoked potential test system 1 includes a plurality of electrodes 3 attached to a subject, an earphone 4 that transmits a sound signal to the ear of the subject, a plurality of electrodes and earphones, and an evoked potential signal that performs various processes on these electrodes. The detection device 2 includes a display device 5 that displays an evoked potential signal subjected to various processes.

本実施形態に係る誘発電位検査システム1の機能ブロック図を図2に示す。
この機能ブロック図を図2に示す。
A functional block diagram of the evoked potential test system 1 according to the present embodiment is shown in FIG.
This functional block diagram is shown in FIG.

図2の表現によると、本誘発電位検査システム1における本誘発電位検査装置2は、被験者に装着された複数の電極から入力される誘発電位信号を増幅するアンプ21と、誘発電位信号から所望の周波数範囲の誘発電位信号を選択するフィルタ22と、誘発電位信号をデジタル信号(以下「誘発電位信号データ」という)に変換するA/D変換器23と、この誘発電位信号データを記録する誘発電位信号データ記録部24と、この誘発電位信号データ記録部が記録した誘発電位信号データに対してWavelet変換を行うWavelet変換部25と、このWavelet変換された誘発電位信号データを表示装置に表示させるための制御を行う表示制御部26と、を有して構成されている。また、誘発電位検査装置には、被験者に対して音刺激を与えるためのイヤホンに信号を送信する音刺激発生部27も設けられている。   2, the evoked potential test apparatus 2 in the evoked potential test system 1 includes an amplifier 21 that amplifies evoked potential signals input from a plurality of electrodes attached to a subject, and a desired evoked potential signal based on the evoked potential signal. A filter 22 for selecting an evoked potential signal in the frequency range, an A / D converter 23 for converting the evoked potential signal into a digital signal (hereinafter referred to as “evoked potential signal data”), and an evoked potential for recording the evoked potential signal data. A signal data recording unit 24, a Wavelet conversion unit 25 for performing Wavelet conversion on the evoked potential signal data recorded by the evoked potential signal data recording unit, and for displaying the Wavelet converted evoked potential signal data on a display device. And a display control unit 26 that performs the above control. In addition, the evoked potential test apparatus is also provided with a sound stimulus generator 27 that transmits a signal to an earphone for applying sound stimuli to a subject.

アンプ21は、微弱な誘発電位信号を増幅するためのものであって、装置の精度をより高くするためには設けることが極めて望ましいものである。用いるアンプとしては周知のアンプを採用することができる。   The amplifier 21 is for amplifying a weak evoked potential signal, and it is highly desirable to provide it in order to increase the accuracy of the apparatus. A well-known amplifier can be adopted as the amplifier to be used.

フィルタ22は、被験者に装着された複数の電極から入力される誘発電位信号のうち所望の範囲の周波数の誘発電位信号のみを選択するために設けられるものであって、データ処理の高速化のためには設けることが極めて望ましい。用いるフィルタとしては周知のものを採用することができるが、選択する周波数の望ましい範囲としては0Hz〜2000Hzの範囲が望ましく、より望ましくは100Hz〜1500Hzの範囲である。   The filter 22 is provided for selecting only an evoked potential signal having a frequency in a desired range from among evoked potential signals input from a plurality of electrodes attached to the subject, and for speeding up data processing. Is highly desirable. A well-known filter can be used as the filter to be used, but a desirable range of the frequency to be selected is desirably a range of 0 Hz to 2000 Hz, and more desirably a range of 100 Hz to 1500 Hz.

A/D変換器23は、アナログ信号である誘発電位信号をデータ処理のためにデジタルデータに変換するものである。A/D変換器23としては周知のものを採用することができるが、この構成をソフトウェア処理により実現することもできる。   The A / D converter 23 converts an evoked potential signal, which is an analog signal, into digital data for data processing. A well-known A / D converter 23 can be employed, but this configuration can also be realized by software processing.

誘発電位信号データ記録部24は、上記のとおり、複数の電極を介して得られる被験者からの誘発電位信号を誘発電位信号データとして記録することができるものであって、例えば、ハードディスク等の記録媒体に誘発電位信号データを格納可能とすることで実現できる。ここで誘発電位信号データは、時間に対する誘発電位の変化を示すデータであって、より具体的には時間データに対応する誘発電位データの組を複数有して構成されている。   As described above, the evoked potential signal data recording unit 24 can record evoked potential signals from a subject obtained through a plurality of electrodes as evoked potential signal data. For example, a recording medium such as a hard disk This can be realized by making the evoked potential signal data storable in. Here, the evoked potential signal data is data indicating changes in the evoked potential with respect to time, and more specifically, includes a plurality of sets of evoked potential data corresponding to the time data.

Wavelet変換部25は、上記の誘発電位信号データ記録部に記録された誘発電位信号データに対してWavelet変換を行う部であって、時間に対する誘発電位の変化を、時間に対する誘発電位を構成する周波数の変化に変換する。より具体的には、時間に対する誘発電位を構成する周波数のデータの組を複数有したデータ構成に変換する。Wavelet変換部は、上記機能を奏する限りにおいて様々な形態を採用することができるが、例えば上記機能を実現できるプログラムをハードディスク等の記録媒体に格納し、実行させることにより実現できる。   The Wavelet conversion unit 25 is a unit that performs Wavelet conversion on the evoked potential signal data recorded in the evoked potential signal data recording unit, and the change in the evoked potential with respect to time is a frequency constituting the evoked potential with respect to time. Convert to changes. More specifically, the data structure is converted into a data structure having a plurality of data sets of frequencies constituting the evoked potential with respect to time. The Wavelet conversion unit can adopt various forms as long as the function is achieved. For example, the Wavelet conversion unit can be realized by storing a program capable of realizing the function in a recording medium such as a hard disk and executing the program.

Wavelet変換部25は、上記の変換を行うことができる限り制限されるものではないが、具体的には、基底関数としてGauss関数を用いたもの、Mexicican Hat関数を用いたもの、Meyer関数を用いたもの、Daubechies関数を用いたもの、Biorthogonal関数を用いたもの等が好適である。   The Wavelet conversion unit 25 is not limited as long as the above conversion can be performed. Specifically, the Wavelet conversion unit 25 uses a Gauss function as a basis function, uses a Mexican Hat function, or uses a Meyer function. And those using the Daubechies function and those using the Biorgonal function are suitable.

Wavelet変換の形態としては、連続Wavelet変換、離散Wavelet変換が可能であり、連続Wavelet変換としては例えばCWT(One Dimensional Wavelet Transform、1次元連続ウェーブレット変換)が、離散Wavelet変換としては例えばSWT(One Discrete Stationary Wavelet Transform、1次元離散Wavelet変換)、WaveletPacketが可能である。   As the form of the Wavelet transform, continuous Wavelet transform and discrete Wavelet transform are possible. As the continuous Wavelet transform, for example, CWT (One Dimensional Wavelet Transform, one-dimensional continuous wavelet transform) is used, and as the discrete Wavelet transform, for example, SWT (One Discrete transform). Stationary Wavelet Transform, one-dimensional discrete Wavelet transform), and WaveletPacket are possible.

CWTは、連続Wavelet変換係数を計算し、これをプロットすることにより行う。
具体的には、例えば誘発電位信号をs(t)として1≦x1<x2≦length(S)の範囲で、XLIM=[x1 x2]とする。ここでΨをWavelet(基底関数)とするとスケールaと位置bでsのWavelet変換係数は次式のようになる。
CWT is performed by calculating continuous Wavelet transform coefficients and plotting them.
Specifically, for example, XLIM = [x1 x2] is set in a range of 1 ≦ x1 <x2 ≦ length (S) where the evoked potential signal is s (t). Here, if Ψ is a Wavelet (basis function), the Wavelet transform coefficient of s at scale a and position b is as follows.

なおここでs(t)は離散信号のため、k=1,length(s)で、s(k) の区分的定数内挿を使うことが好適である。ベクトルSCALESの中の各スケールaに対して、Wavelet変換係数 Ca,b はb = 1からls = length(s)までで計算し、a = SCALES(i)の場合、COEFS(i,:)にストアすることによって得られる。なお出力引数COEFSは、la行ls列の行列であり(la はSCALESの長さを示す)、出力引数COEFSはウェーブレットタイプ(基底関数)に依存した実数行列である。なおスケールは信号を構成する周波数に対応し、スケール値が小さいほど高い周波数を表すこととなる。   Here, since s (t) is a discrete signal, it is preferable to use piecewise constant interpolation of s (k) with k = 1, length (s). For each scale a in the vector SCALES, the Wavelet transform coefficient Ca, b is calculated from b = 1 to ls = length (s), and when a = SCALES (i), COEFS (i, :) Obtained by storing. The output argument COEFS is a la × ls matrix (la indicates the length of SCALES), and the output argument COEFS is a real matrix that depends on the wavelet type (basis function). The scale corresponds to the frequency constituting the signal, and the smaller the scale value, the higher the frequency.

SWTは、ノイズ除去、信号の分解・合成等のために上記CWTを下記の式に従い変換してプロットすることにより行う。即ち、上記式(1)から下記式を得て行う。
The SWT is performed by converting and plotting the CWT according to the following equation for noise removal, signal decomposition / synthesis, and the like. That is, the following equation is obtained from the above equation (1).

なおここでは、任意のスケール a に対し、b が1からlength(s)までのWavelet係数Ca,b は、信号sとWavelet関数の積分のコンボリューションの有限差分を使って得ることができる。ここにおいて、例えばレベルNの1次元Wavelet分解を実施する場合、Wavelet分解ベクトルCと、その大きさを要素とするベクトルLである。その構造を、レベル3の分割の例で次に示す。最初のステップでは、信号sから始めて、2組の係数(Approximation係数(CA1)、Detail係数(CD1)が作成される。これらのベクトルは、CA1に対してはsとローパスフィルタLo_Dとの畳み込みで(信号F)、CD1に対しては、ハイパスフィルタHi_Dとの畳み込み(信号G)により得ることができる。なお各々のフィルタの長さは2Nである。n = length(s) の場合、信号FとGは、同じ長さn+2N−1になる。そして、係数cA1と cD1を作成する。 なお、次のステップではsをcA1で置き換え、同じ方法を使いcA2、cD2を作成する。レベルjで、解析された信号sのウエーブレット分解は、構造[cAj,cDj,・・・,cD1]になる。   Here, for an arbitrary scale a, a Wavelet coefficient Ca, b with b ranging from 1 to length (s) can be obtained by using a finite difference of convolution of the integration of the signal s and the Wavelet function. Here, for example, when performing one-dimensional Wavelet decomposition of level N, the Wavelet decomposition vector C and the vector L having the size as an element. The structure is shown below with an example of level 3 partitioning. In the first step, starting from the signal s, two sets of coefficients (Approximation coefficient (CA1), Detail coefficient (CD1) are created. These vectors are convolved with s and the low-pass filter Lo_D for CA1. (Signal F) and CD1 can be obtained by convolution (signal G) with the high-pass filter Hi_D, where the length of each filter is 2 N. When n = length (s), the signal F And G have the same length n + 2N-1, and create coefficients cA1 and cD1 In the next step, s is replaced with cA1, and cA2 and cD2 are created using the same method at level j. The wavelet decomposition of the analyzed signal s becomes the structure [cAj, cDj,..., CD1].

Wavelet Packetsは、信号解析のための可能性をより拡張することを提唱する離散Wavelet変換の一つの概念である。SWTでは信号をApproximation及びDetailの二つに分け、そしてApproximationはそれ自身をつぎのレベルのApproximationとDetailの二つに分け、その操作を繰り返す。これに対しWavelet
Packet変換は、SWTにおけるレベル1のApproximationと同じようにレベル1のDetailも分割する。すなわち、信号をApproximation及びDetailの二つに分け、それらの各々を更に同様にApproximationとDetailに分けることを繰り返し、レベルnの全てのApproximation及びDetailに対してレベルnにおいて分解又は符号化する。なおSWTではn+1通りの分解が可能である。
Wavelet Packet変換では、2の2n+1乗通りの分解が可能となるが、再構成の場合、必要であれば異なるレベルの分解を選択して合成することが可能である。
Wavelet Packets is one concept of discrete Wavelet transform that proposes extending the possibilities for signal analysis. In SWT, the signal is divided into two, Approximation and Detail, and Approximation divides itself into two levels, Approximation and Detail, and repeats the operation. On the other hand, Wavelet
The Packet transform also divides Level 1 Detail in the same manner as Level 1 Application in SWT. That is, the signal is divided into two, Approximation and Detail, and each of them is further similarly divided into Approximation and Detail, and is decomposed or encoded at level n with respect to all Apploximation and Detail at level n. Note that SWT can be decomposed in n + 1 ways.
In the Wavelet Packet transform, decomposition of 2 to the 2n + 1 power is possible. However, in the case of reconstruction, if necessary, it is possible to select and synthesize different levels of decomposition.

音刺激発生部27は、イヤホンを介して被験者に対して音信号を伝達するためのものであり、これに接続されるイヤホンを通じて被験者に音信号を伝達することができる。また本誘発電位信号検査システムは、この音信号に基づく誘発電位信号を検出して検査を行うため、音刺激発生部はイヤホンに音信号を伝達するとともにその時刻を誘発電位信号データ格納部24に送信する。   The sound stimulus generator 27 is for transmitting a sound signal to the subject via the earphone, and can transmit the sound signal to the subject through the earphone connected thereto. In addition, since the present evoked potential signal inspection system detects the evoked potential signal based on this sound signal and performs the inspection, the sound stimulus generation unit transmits the sound signal to the earphone and the time is transmitted to the evoked potential signal data storage unit 24. Send.

表示部26は、Wavelet変換された誘発電位信号データの表示を表示装置に行うものである。なお出力部はプリンタにも接続可能となっており、必要に応じてWavelet変換されたデータ等の出力も指示することが可能である。   The display unit 26 displays the evoked potential signal data subjected to Wavelet conversion on the display device. Note that the output unit can also be connected to a printer, and can instruct the output of wavelet-converted data or the like as necessary.

以上の構成により、本誘発電位検査システムは高い測定精度でありながらも測定時間の短縮を行うことができる。   With the above configuration, the evoked potential inspection system can reduce the measurement time while having high measurement accuracy.

(実施例1:Daubechies関数、加算平均2000回)
本実施形態の実施の例について、より具体的な例を用いて説明する。本実施例ではABRのうち、より再現性が高く特徴的な波であるため、聴覚検査や脳死判定などの臨床検査補助として主要に用いられる第V波を中心に検討を行った。なお、下記実施例では着目するABRの波として第V波に着目しているが、他の波に対しても適宜応用は可能であって、これに限定されるものではない。
(Example 1: Daubechies function, addition average 2000 times)
An example of implementation of this embodiment will be described using a more specific example. In the present example, since the wave is more reproducible and characteristic among the ABRs, the investigation was focused on the V-wave mainly used as a clinical test aid such as an auditory test and a brain death determination. In the following embodiment, the V-th wave is focused as the focused ABR wave, but the present invention can be appropriately applied to other waves and is not limited thereto.

本実施例では、上記構成に基づき聴力正常成人に対して実際に検査を行った。本検査ではABR信号のうち第V波に着目して検査を評価し、用いたWavelet変換の基底関数としてはDaubechies関数を用いた。本実施例の誘発電位検査は聴力正常成人及び脳死の患者を対象に行い、加算平均回数は2000回、刺激音圧は80dBnHLとした。この結果を図3〜図7に示す。図3〜図6は聴力正常成人を検査した場合の結果を、図7は脳死の患者を検査した場の結果を示す図である。なお各図において複数のグラフが示されているが、一番上の段が元の誘発電位信号データを示すものであり、二段目〜三段目がDaubechies関数を用いたCWTによるWavelet変換後の誘発電位信号データを示す。また各グラフにおいて横軸は時間を示し、一段目のグラフの縦軸は信号強度を、二段目〜四段目の縦軸は周波数を示している。   In this example, an examination was actually performed on an adult with normal hearing based on the above configuration. In this test, the test was evaluated by paying attention to the V wave in the ABR signal, and the Daubechies function was used as the basis function of the used Wavelet transform. The evoked potential test of this example was performed on normal hearing adults and brain-dead patients, the average number of additions was 2000, and the stimulation sound pressure was 80 dBnHL. The results are shown in FIGS. FIGS. 3 to 6 are diagrams showing results when a normal hearing adult is examined, and FIG. 7 is a diagram showing results when a brain-dead patient is examined. In each figure, a plurality of graphs are shown. The top stage shows the original evoked potential signal data, and the second to third stages are after Wavelet conversion by CWT using the Daubechies function. The evoked potential signal data is shown. In each graph, the horizontal axis represents time, the vertical axis of the first graph represents the signal intensity, and the vertical axes of the second to fourth columns represent the frequency.

図3〜図6で示される聴力正常成人の場合、第V波のピーク潜時は5.8ms〜6.5ms前後と考えられ(図3〜図6においては250〜310の位置に相当)、どの図においても波の存在を確認することができた(例えば図3〜図6中の楕円部分参照)。一方、脳死の患者の場合、同様の領域において波の存在を確認することはできなかった。   In the case of a normal hearing adult shown in FIGS. 3 to 6, the peak latency of the V wave is considered to be around 5.8 ms to 6.5 ms (corresponding to positions 250 to 310 in FIGS. 3 to 6), The presence of waves could be confirmed in any of the figures (for example, refer to the ellipse portion in FIGS. 3 to 6). On the other hand, in the case of a patient with brain death, the presence of waves could not be confirmed in the same region.

以上により、ABR信号データに対しWavelet変換を行うことで高い検査精度を有することが確認できた。なお脳死の患者の場合は第V波の欠落という顕著な事例であるが、聴覚障害などの場合は欠落ではなく存在するが潜時の遅延などの特徴を有することが知られている。本誘発電位検査システムにおいてWavelet変換を行うことで同様に潜時の遅延などの特徴を確認し、聴覚障事例に適用することも可能である。   As described above, it has been confirmed that the wavelet conversion is performed on the ABR signal data to have high inspection accuracy. In the case of a patient with brain death, this is a remarkable case of lack of the V wave. However, in the case of hearing impairment or the like, it is known that it has a feature such as a latency delay although it is not missing. In the present evoked potential inspection system, wavelet conversion can be performed to confirm characteristics such as latency delay and to apply to a hearing impairment case.

またWavelet変換された誘発電位信号データを細かい周波数範囲(8つの範囲)で分割した場合の結果(SWTによる)を図8、図9に示す。なお図8は図3の結果(聴力正常成人の場合)に、図9は図7の結果(脳死の患者の場合)がそれぞれ対応する。また、各図中左側は誘発電位を構成するよりも高い周波数を含む誘発電位信号データをも含めた場合の図を、右側はそのうち誘発電位を構成するよりも高い周波数を含む誘発電位信号データ(d〜dの領域の周波数範囲)をノイズとして除外した場合の図である。この結果、図8のd6の範囲のグラフにおいて、5.8ms〜6.5ms前後の位置(250〜310の位置範囲)でピークを観測することができ、第V波の存在を確認できた。また図示は省略したが他の聴力正常成人においても同様のピークを観測することができた。なお一方、脳死の患者の場合(図9)、同様のグラフの同様の領域において波の存在を確認することはできなかった。 8 and 9 show the results (by SWT) when the wavelet-transformed evoked potential signal data is divided into fine frequency ranges (eight ranges). 8 corresponds to the result of FIG. 3 (in the case of an adult with normal hearing), and FIG. 9 corresponds to the result of FIG. 7 (in the case of a patient with brain death). Further, the left side in each figure shows a diagram including evoked potential signal data including a higher frequency than that constituting the evoked potential, and the right side shows evoked potential signal data including a higher frequency than that constituting the evoked potential ( is a diagram of excluding d 1 to d 3 of the frequency range) of the region as a noise. As a result, in the graph in the range of d 6 in FIG. 8, a peak was observed at a position around 5.8 ms to 6.5 ms (position range of 250 to 310), and the presence of the V wave was confirmed. . Although not shown, similar peaks could be observed in other adults with normal hearing ability. On the other hand, in the case of a patient with brain death (FIG. 9), the presence of waves could not be confirmed in the same region of the same graph.

以上によっても、ABR信号データに対しWavelet変換を行うことで高い検査精度を有することが確認できた。なお、本実施例ではABR信号の構成周波数を絞り込んでSWTを用いた例を示しているが、上述のとおり、SWTではなくWavelet Packetを行うことも可能である。なお、離散Wavelet変換を用いることで必要な分解レベルを選択して信号を再構成し、より精度良く誘発電位信号データを解析することが可能となる。   Also from the above, it was confirmed that high inspection accuracy was obtained by performing Wavelet conversion on ABR signal data. In the present embodiment, an example in which the SBR is used by narrowing down the constituent frequency of the ABR signal is shown. However, as described above, Wavelet Packet can be performed instead of SWT. It should be noted that by using the discrete Wavelet transform, it is possible to select a necessary decomposition level and reconstruct the signal, and to analyze the evoked potential signal data with higher accuracy.

(実施例2:Daubechies関数、加算平均100回)
上記実施例1と同様の測定対象に対し、加算平均の回数を異ならせた以外同様の検査について行った。この結果を図10に示す。なお加算平均は100回であり、図10は聴力正常成人に対する結果を示すものである。
(Example 2: Daubechies function, addition average 100 times)
The same test was performed on the same measurement object as in Example 1 except that the number of addition averages was varied. The result is shown in FIG. The addition average is 100 times, and FIG. 10 shows the results for adults with normal hearing.

この結果においても5.8ms〜6.5ms前後の位置(250〜310の位置)に第V波と見られる波の存在を確認でき、Wavelet変換による高い検査精度を有することが確認できた。なお図示は省略したが他の聴力正常成人に対する結果も同様に第V波と見られる波の存在を確認することができた。特に本実施例の場合は100回と従来に比べてきわめて回数を減らしたにもかかわらず同様に判定が可能であった。また実施例1と同様に細かい周波数範囲で分割した場合(SWTによる場合)も同様に第V波の存在を確認することができた。なお図10に対応するこの結果を図11に示す。   Also in this result, the presence of the wave seen as the V-th wave was confirmed at a position around 5.8 ms to 6.5 ms (positions 250 to 310), and it was confirmed that the inspection accuracy was high by Wavelet transform. Although illustration is omitted, the presence of a wave seen as the V-wave was also confirmed in the results for other adults with normal hearing ability. In particular, in the case of the present embodiment, the same determination was possible even though the number of times was reduced to 100 times compared with the conventional case. In addition, the presence of the V-th wave could be confirmed in the same manner when the frequency was divided in a fine frequency range as in Example 1 (in the case of SWT). This result corresponding to FIG. 10 is shown in FIG.

(実施例3:Dauvechies関数、加算平均30回)
上記実施例1と同様の測定対象に対し、加算平均の回数を異ならせた以外同様の検査について行った。この結果を図12に示す。なお加算平均は30回であった。先ほどと同様、図12は聴力正常成人の結果を示す。
(Example 3: Daubechies function, addition average 30 times)
The same test was performed on the same measurement object as in Example 1 except that the number of addition averages was varied. The result is shown in FIG. The average of addition was 30 times. As before, FIG. 12 shows the results for normal hearing adults.

この結果においても5.8ms〜6.5ms前後の位置(250〜310の位置)に第V波と見られる波の存在を確認でき、脳死の患者には波の存在を確認することができず、Wavelet変換による高い検査精度を有することが確認できた。なお図示は省略したが他の聴力正常成人に対する結果も同様に第V波と見られる波の存在を確認することができた。本実施例の場合は30回と従来に比べてきわめて回数を減らしたにもかかわらず同様に判定が可能であった。また実施例1における図8の場合と同様に細かい周波数範囲で分割した場合(SWTによる場合)も同様に第V波の存在を確認することができた。   Even in this result, the presence of the wave seen as the V-wave can be confirmed at a position around 5.8 ms to 6.5 ms (position of 250 to 310), and the presence of the wave cannot be confirmed in the brain-dead patient. , It was confirmed that it has high inspection accuracy by Wavelet transform. Although illustration is omitted, the presence of a wave seen as the V-wave was also confirmed in the results for other adults with normal hearing ability. In the case of the present embodiment, the determination could be made in the same manner even though the number of times was reduced to 30 times as compared with the conventional case. Similarly to the case of FIG. 8 in the first embodiment, the presence of the V-wave could be confirmed in the same manner when the frequency range was divided (in the case of SWT).

(実施例4:Dauvechies関数、加算平均10回)
上記実施例1と同様の測定対象に対し、加算平均の回数を異ならせた以外同様の検査について行った。この結果を図13に示す。なお加算平均は10回であった。先ほどと同様、図13は聴力正常成人のCWTによる結果を示す。
(Example 4: Daubechies function, addition average 10 times)
The same test was performed on the same measurement object as in Example 1 except that the number of addition averages was varied. The result is shown in FIG. The addition average was 10 times. As before, FIG. 13 shows CWT results for adults with normal hearing.

この結果においても5.8ms〜6.5ms前後の位置(250〜310の位置)に第V波と見られる波の存在を確認でき、脳死の患者には波の存在を確認することができず、Wavelet変換による高い検査精度を有することが確認できた。特に本実施例の場合は10回ときわめて回数を減らしたにもかかわらず同様に判定が可能であった。なお図示は省略したが他の聴力正常成人に対する結果も同様に第V波と見られる波の存在を確認することができた。また実施例1における図8と同様に細かい周波数範囲で分割した場合(SWTによる場合)も同様に第V波の存在を確認することができた。この結果を図14に示しておく。   Even in this result, the presence of the wave seen as the V-wave can be confirmed at a position around 5.8 ms to 6.5 ms (position of 250 to 310), and the presence of the wave cannot be confirmed in the brain-dead patient. , It was confirmed that it has high inspection accuracy by Wavelet transform. In particular, in the case of the present embodiment, it was possible to make the same determination even though the number of times was extremely reduced to 10. Although illustration is omitted, the presence of a wave seen as the V-wave was also confirmed in the results for other adults with normal hearing ability. Further, in the same manner as in FIG. 8 in Example 1, the presence of the V-th wave could be confirmed in the same manner when the frequency was divided in a fine frequency range (in the case of SWT). The result is shown in FIG.

以上、加算平均を従来の2000回に比べ200分の1程度の10回に減らした場合であってもきわめて精度高く検査を行うことができることを確認した。   As described above, it was confirmed that the inspection can be performed with extremely high accuracy even when the addition average is reduced to 10 times about 200 times that of the conventional 2000 times.

(実施例5:Biothorgonal関数、加算平均100回)
本実施例ではWavelet関数の基底関数をBiothorgonal関数とした以外は上記の実施例2と同様の対象に対して測定を行った。この結果を図15、図16に示す。図15は上記の実施例2と同様聴力正常成人の一検査結果を示す図であって、図16は脳死の患者に対する検査の結果を示す図である。
(Example 5: Biological function, addition average 100 times)
In the present example, measurement was performed on the same object as in Example 2 except that the basis function of the Wavelet function was changed to a biological function. The results are shown in FIGS. FIG. 15 is a diagram showing a test result of a normal hearing adult as in Example 2, and FIG. 16 is a diagram showing a test result for a brain dead patient.

これら図においても、先ほどと同様、5.8ms〜6.5ms前後の位置(250〜310の位置)に第V波と見られる波の存在を確認でき、脳死の患者には波の存在を確認することができず、Wavelet変換による高い検査精度を有することが確認できた。なお図示は省略したが他の聴力正常成人に対する結果も同様に第V波と見られる波の存在を確認することができた。特に本実施例の場合は100回と従来技術に比べきわめて回数を減らしたにもかかわらず同様に判定が可能であった。また実施例2における図11と同様に細かい周波数範囲で分割した場合も同様に第V波の存在を確認することができた。この結果を図17(聴力正常成人の場合)、図18(脳死の場合)に示しておく。   In these figures, as before, the presence of the wave seen as the V-wave can be confirmed at a position around 5.8 ms to 6.5 ms (positions 250 to 310), and the presence of the wave can be confirmed for brain-dead patients. Therefore, it was confirmed that the inspection accuracy was high by wavelet transform. Although illustration is omitted, the presence of a wave seen as the V-wave was also confirmed in the results for other adults with normal hearing ability. In particular, in the case of the present embodiment, it was possible to make the same determination even though the number of times was reduced to 100 times compared with the prior art. Further, the presence of the V-wave could be confirmed in the same manner when the frequency was divided in a fine frequency range as in FIG. The results are shown in FIG. 17 (in the case of a normal hearing adult) and FIG. 18 (in the case of brain death).

(実施例6:Biothogonal関数、加算平均10回)
上記実施例5と同様の測定対象に対し、加算平均の回数を異ならせた以外同様の検査について行った。この結果を図19に示す。なお加算平均は10回であった。先ほどと同様、図19は聴力正常成人の結果を示す。
(Example 6: Biothogonal function, addition average 10 times)
The same test was performed on the same measurement target as in Example 5 except that the number of addition averages was varied. The result is shown in FIG. The addition average was 10 times. As before, FIG. 19 shows the results for adults with normal hearing.

この結果においても5.8ms〜6.5ms前後の位置(250〜310の位置)に第V波と見られる波の存在を確認でき、脳死の患者には波の存在を確認することができず、Wavelet変換による高い検査精度を有することが確認できた。特に本実施例の場合は10回ときわめて回数を減らしたにもかかわらず同様に判定が可能であった。また実施例1における図8と同様に細かい周波数範囲で分割した場合(SWTによる場合)も同様に第V波の存在を確認することができた。なおこの場合の結果を図20に示しておく。   Even in this result, the presence of the wave seen as the V-wave can be confirmed at a position around 5.8 ms to 6.5 ms (position of 250 to 310), and the presence of the wave cannot be confirmed in the brain-dead patient. , It was confirmed that it has high inspection accuracy by Wavelet transform. In particular, in the case of the present embodiment, it was possible to make the same determination even though the number of times was extremely reduced to 10. Further, in the same manner as in FIG. 8 in Example 1, the presence of the V-th wave could be confirmed in the same manner when the frequency was divided in a fine frequency range (in the case of SWT). The result in this case is shown in FIG.

(実施例7:Gauss関数、加算平均100回)
本実施例ではWavelet関数の基底関数をGauss関数とした以外は上記の実施例2と同様の対象に対して測定を行った。この結果を図21、図22に示す。図21は上記の実施例2と同様聴力正常成人の検査結果を示す図であり、図22は脳死の患者の検査結果を示す図である。
(Example 7: Gauss function, addition average 100 times)
In this example, measurement was performed on the same object as in Example 2 except that the basis function of the Wavelet function was changed to a Gauss function. The results are shown in FIGS. FIG. 21 is a diagram showing the test results of normal hearing adults as in Example 2 above, and FIG. 22 is the diagram showing the test results of brain-dead patients.

これら図においても、先ほどと同様、5.8ms〜6.5ms前後の位置(250〜310の位置)に第V波と見られる波の存在を確認でき、脳死の患者には波の存在を確認することができず、Wavelet変換による高い検査精度を有することが確認できた。なお図示は省略したが他の聴力正常成人に対する結果も同様に第V波と見られる波の存在を確認することができた。特に本実施例の場合は100回と従来技術に比べきわめて回数を減らしたにもかかわらず同様に判定が可能であった。また実施例2と同様に、細かい周波数範囲で分割した場合(SWTによる場合)も同様に行ったところ、第V波の存在を確認することができた。   In these figures, as before, the presence of the wave seen as the V-wave can be confirmed at a position around 5.8 ms to 6.5 ms (positions 250 to 310), and the presence of the wave can be confirmed for brain-dead patients. Therefore, it was confirmed that the inspection accuracy was high by wavelet transform. Although illustration is omitted, the presence of a wave seen as the V-wave was also confirmed in the results for other adults with normal hearing ability. In particular, in the case of the present embodiment, it was possible to make the same determination even though the number of times was reduced to 100 times compared with the prior art. Similarly to Example 2, when the frequency was divided in a fine frequency range (in the case of SWT), the same operation was performed, and the existence of the V-th wave could be confirmed.

(実施例8:Gauss関数、加算平均10回加算)
上記実施例7と同様の測定対象に対し、加算平均の回数を異ならせた以外同様の検査について行った。この結果を図23に示す。なお加算平均は10回であった。先ほどと同様、図23は聴力正常成人の結果を示す。
(Example 8: Gauss function, addition average 10 times addition)
The same test was performed on the same measurement target as in Example 7 except that the number of addition averages was varied. The result is shown in FIG. The addition average was 10 times. As before, FIG. 23 shows the results for a normal hearing adult.

この結果においても5.8ms〜6.5ms前後の位置(250〜310の位置)に第V波と見られる波の存在を確認でき、脳死の患者には波の存在を確認することができず、Wavelet変換による高い検査精度を有することが確認できた。なお図示は省略したが他の聴力正常成人に対する結果も同様に第V波と見られる波の存在を確認することができた。特に本実施例の場合は10回ときわめて回数を減らしたにもかかわらず同様に判定が可能であった。また実施例1における図8と同様に細かい周波数範囲で分割した場合(SWTによる場合)も同様に第V波の存在を確認することができた。   Even in this result, the presence of the wave seen as the V-wave can be confirmed at a position around 5.8 ms to 6.5 ms (position of 250 to 310), and the presence of the wave cannot be confirmed in the brain-dead patient. , It was confirmed that it has high inspection accuracy by Wavelet transform. Although illustration is omitted, the presence of a wave seen as the V-wave was also confirmed in the results for other adults with normal hearing ability. In particular, in the case of the present embodiment, it was possible to make the same determination even though the number of times was extremely reduced to 10. Further, in the same manner as in FIG. 8 in Example 1, the presence of the V-th wave could be confirmed in the same manner when the frequency was divided in a fine frequency range (in the case of SWT).

以上、Wavelet変換を用いることで精度を維持したまま加算平均の回数を低減させることが可能な誘発電位検査システムを提供することができる。また上記により様々なWavelet変換の基底関数を用いることができることも確認できた。   As described above, it is possible to provide an evoked potential inspection system capable of reducing the number of times of averaging while maintaining accuracy by using Wavelet transform. Moreover, it has also been confirmed that various wavelet transform basis functions can be used.

実施形態に係る誘発電位検査システムの構成概略図。1 is a schematic configuration diagram of an evoked potential inspection system according to an embodiment. 実施形態に係る誘発電位検査システムの機能ブロック図。The functional block diagram of the evoked potential test | inspection system which concerns on embodiment. 実施例1に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 1 (CWT, an adult with normal hearing) 実施例1に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 1 (CWT, an adult with normal hearing) 実施例1に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 1 (CWT, an adult with normal hearing) 実施例1に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 1 (CWT, an adult with normal hearing) 実施例1に係るWavelet変換結果を示す図(CWT、脳死患者)The figure which shows the Wavelet conversion result which concerns on Example 1 (CWT, brain death patient) 実施例1に係るWavelet変換結果を示す図(SWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 1 (SWT, a normal hearing adult) 実施例1に係るWavelet変換結果を示す図(SWT、脳死患者)The figure which shows the Wavelet conversion result which concerns on Example 1 (SWT, brain death patient) 実施例2に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 2 (CWT, an adult with normal hearing) 実施例2に係るWavelet変換結果を示す図(SWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 2 (SWT, an adult with normal hearing) 実施例3に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 3 (CWT, an adult with normal hearing) 実施例4に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 4 (CWT, an adult with normal hearing) 実施例4に係るWavelet変換結果を示す図(SWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 4 (SWT, an adult with normal hearing) 実施例5に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 5 (CWT, a normal hearing adult) 実施例5に係るWavelet変換結果を示す図(CWT、脳死患者)The figure which shows the Wavelet conversion result which concerns on Example 5 (CWT, brain death patient) 実施例5に係るWavelet変換結果を示す図(SWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 5 (SWT, an adult with normal hearing) 実施例5に係るWavelet変換結果を示す図(SWT、脳死患者)The figure which shows the Wavelet conversion result which concerns on Example 5 (SWT, brain death patient) 実施例6に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 6 (CWT, a normal hearing adult) 実施例6に係るWavelet変換結果を示す図(SWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 6 (SWT, a normal hearing adult) 実施例7に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 7 (CWT, hearing normal adult) 実施例7に係るWavelet変換結果を示す図(CWT、脳死患者)The figure which shows the Wavelet conversion result which concerns on Example 7 (CWT, brain death patient) 実施例8に係るWavelet変換結果を示す図(CWT、聴力正常成人)The figure which shows the Wavelet conversion result which concerns on Example 8 (CWT, a normal hearing adult)

符号の説明Explanation of symbols

1…誘発電位検査システム、2…誘発電位検査装置、3…電極、4…イヤホン、5…表示装置、21…アンプ、22…フィルタ、23…A/D変換器、24…誘発電位信号データ記録部、25…Wavelet変換部、26…表示制御部、27…音刺激発生部

DESCRIPTION OF SYMBOLS 1 ... Evoked potential test | inspection system, 2 ... Evoked potential test apparatus, 3 ... Electrode, 4 ... Earphone, 5 ... Display apparatus, 21 ... Amplifier, 22 ... Filter, 23 ... A / D converter, 24 ... Evoked potential signal data recording 25, Wavelet conversion unit, 26 ... Display control unit, 27 ... Sound stimulus generation unit

Claims (8)

聴性脳幹反応に基づく、時間に対する誘発電位信号データを記録する誘発電位信号データ記録部と、
前記誘発電位信号データ記録部が記録した前記時間に対する誘発電位信号データに対して連続Wavelet変換を行い、時間に対する周波数の変化に変換するWavelet変換部と、
第V波における前記時間データに対する周波数の変化を、表示装置に表示する表示制御部と、を有する誘発電位検査装置。
An evoked potential signal data recording unit for recording evoked potential signal data with respect to time based on an auditory brainstem reaction;
A wavelet transform unit that performs continuous wavelet transform on the evoked potential signal data recorded by the evoked potential signal data recording unit and converts the evoked potential signal data into a change in frequency with respect to time;
An evoked potential testing device comprising: a display control unit that displays a change in frequency with respect to the time data in the V-th wave on a display device.
前記Wavelet変換部が行うWavelet変換の基底関数は、Gauss関数、Mexican Hat関数、及びMeyer関数の少なくともいずれかであることを特徴とする請求項1記載の誘発電位検査装置。 The evoked potential testing apparatus according to claim 1, wherein the basis function of the Wavelet transform performed by the Wavelet transform unit is at least one of a Gauss function, a Mexican Hat function, and a Meyer function. 被験者に装着される複数の電極と、
被験者に音圧刺激を与えるためのイヤホンと、
表示装置と、
前記複数の電極から取得される、聴性脳幹反応に基づく、時間に対する誘発電位信号データを記録する誘発電位信号データ記録部、前記誘発電位信号データ記録部が記録した前記時間に対する誘発電位信号データに対して連続Wavelet変換を行い、時間に対する周波数の変化に変換するWavelet変換部、第V波における前記時間データに対する周波数の変化を表示装置に表示する表示制御部、前記イヤホンに対して音圧刺激を出力させる音出力部、を有する誘発電位検査装置と、を有する誘発電位検査システム。
A plurality of electrodes attached to the subject;
An earphone for applying sound pressure stimulation to the subject;
A display device;
The evoked potential signal data recording unit for recording evoked potential signal data with respect to time based on the auditory brainstem response obtained from the plurality of electrodes, for the evoked potential signal data with respect to time recorded by the evoked potential signal data recording unit Wavelet conversion unit that performs continuous Wavelet conversion and converts to frequency change with time, display control unit that displays frequency change with respect to the time data in the Vth wave on a display device, and outputs sound pressure stimulus to the earphone An evoked potential test apparatus having a sound output unit, and an evoked potential test system.
前記誘発電位検査装置における前記Wavelet変換部が行うWavelet変換の基底関数は、Gauss関数、Mexican Hat関数、及びMeyer関数の少なくともいずれかであることを特徴とする請求項3記載の誘発電位検査システム。 4. The evoked potential test system according to claim 3, wherein a basis function of Wavelet transform performed by the Wavelet transform unit in the evoked potential test apparatus is at least one of a Gauss function, a Mexican Hat function, and a Meyer function. 聴性脳幹反応に基づく、時間に対する誘発電位信号データを記録する誘発電位信号データ記録部と、
前記誘発電位信号データ記録部が記録した前記時間に対する誘発電位信号データに対して離散Wavelet変換を行い、前記誘発電位信号データを、第V波の存在する周波数範囲を含む複数の周波数範囲で分割するWavelet変換部と、
前記Wavelet変換部が変換した、第V波の存在する周波数範囲を含む複数の周波数範囲で分割された前記誘発電位信号データを、表示装置に表示する表示制御部と、を有する誘発電位検査装置。
An evoked potential signal data recording unit for recording evoked potential signal data with respect to time based on an auditory brainstem reaction;
The evoked potential signal data recorded by the evoked potential signal data recording unit is subjected to discrete wavelet transform on the evoked potential signal data with respect to the time, and the evoked potential signal data is divided into a plurality of frequency ranges including a frequency range in which the V-th wave exists. A Wavelet transform unit;
An evoked potential inspection apparatus comprising: a display control unit configured to display on the display device the evoked potential signal data divided by a plurality of frequency ranges including the frequency range in which the V-th wave exists, converted by the Wavelet conversion unit.
前記Wavelet変換部が行うWavelet変換の基底関数は、Gauss関数、Mexican Hat関数、Meyer関数、Daubechies関数、Biorthogonal関数の少なくともいずれかであることを特徴とする請求項1記載の誘発電位検査装置。 The evoked potential inspection apparatus according to claim 1, wherein a basis function of the Wavelet transform performed by the Wavelet transform unit is at least one of a Gauss function, a Mexican Hat function, a Meyer function, a Daubechies function, and a Biorgonal function. 被験者に装着される複数の電極と、
被験者に音圧刺激を与えるためのイヤホンと、
表示装置と、
前記複数の電極から取得される、聴性脳幹反応に基づく、時間に対する誘発電位信号データを記録する誘発電位信号データ記録部、前記誘発電位信号データ記録部が記録した前記時間に対する誘発電位信号データに対して離散Wavelet変換を行い、前記誘発電位信号データを、第V波の存在する周波数範囲を含む複数の周波数範囲で分割するWavelet変換部、前記Wavelet変換部が変換した、第V波の存在する周波数範囲を含む複数の周波数範囲で分割された前記誘発電位信号データを、表示装置に表示する表示制御部、前記イヤホンに対して音圧刺激を出力させる音出力部、を有する誘発電位検査装置と、を有する誘発電位検査システム。
A plurality of electrodes attached to the subject;
An earphone for applying sound pressure stimulation to the subject;
A display device;
The evoked potential signal data recording unit for recording evoked potential signal data with respect to time based on the auditory brainstem response acquired from the plurality of electrodes, for the evoked potential signal data with respect to time recorded by the evoked potential signal data recording unit A discrete wavelet transform, and a wavelet transform unit that divides the evoked potential signal data into a plurality of frequency ranges including a frequency range in which the V wave exists, and a frequency at which the V wave exists, which is converted by the Wavelet transform unit. An evoked potential inspection device having a display control unit that displays the evoked potential signal data divided in a plurality of frequency ranges including a range on a display device, and a sound output unit that outputs a sound pressure stimulus to the earphone; Evoked potential test system.
前記誘発電位検査装置における前記Wavelet変換部が行うWavelet変換の基底関数は、Gauss関数、Mexican Hat関数、Meyer関数、Daubechies関数、Biorthogonal関数の少なくともいずれかであることを特徴とする請求項7記載の誘発電位検査システム。 The basis function of the Wavelet transform performed by the Wavelet transform unit in the evoked potential test apparatus is at least one of a Gauss function, a Mexican Hat function, a Meyer function, a Daubechies function, and a Biorgonal function. Evoked potential test system.
JP2005058258A 2005-03-02 2005-03-02 Evoked potential test apparatus and evoked potential test system using the same Active JP4547498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058258A JP4547498B2 (en) 2005-03-02 2005-03-02 Evoked potential test apparatus and evoked potential test system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058258A JP4547498B2 (en) 2005-03-02 2005-03-02 Evoked potential test apparatus and evoked potential test system using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010008475A Division JP4997579B2 (en) 2010-01-18 2010-01-18 Evoked potential test program

Publications (2)

Publication Number Publication Date
JP2006239096A JP2006239096A (en) 2006-09-14
JP4547498B2 true JP4547498B2 (en) 2010-09-22

Family

ID=37046086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058258A Active JP4547498B2 (en) 2005-03-02 2005-03-02 Evoked potential test apparatus and evoked potential test system using the same

Country Status (1)

Country Link
JP (1) JP4547498B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097994B2 (en) * 2008-09-03 2012-12-12 独立行政法人農業・食品産業技術総合研究機構 Brainstem dysfunction detection method, system, and program
KR102262095B1 (en) * 2017-05-29 2021-06-08 부경대학교 산학협력단 Method for diagnosing machine fault based on sound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126148A (en) * 1998-10-28 2000-05-09 Nec Corp Brain wave data processor and recording medium
JP2001231768A (en) * 2000-01-07 2001-08-28 Natus Medical Inc Hearing evaluation device provided with patient connection for evaluation capability
JP2001309898A (en) * 2000-04-28 2001-11-06 Takumi Ikuta Method of neural waveform diagnosis with wavelet function and its equipment
JP2005521542A (en) * 2002-03-29 2005-07-21 エベレスト・バイオメデイカル・インスツルメンツ・カンパニー Fast estimation of weak biological signals using a novel algorithm for generating multiple additional data frames

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128754A (en) * 1988-11-09 1990-05-17 Masami Takami Method and apparatus for detecting v-wave latent time of abr
JP2005503855A (en) * 2001-09-21 2005-02-10 カーディオマグ イメージング、 インコーポレイテッド Nonlinear noise reduction of magnetocardiogram using wavelet transform

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126148A (en) * 1998-10-28 2000-05-09 Nec Corp Brain wave data processor and recording medium
JP2001231768A (en) * 2000-01-07 2001-08-28 Natus Medical Inc Hearing evaluation device provided with patient connection for evaluation capability
JP2001309898A (en) * 2000-04-28 2001-11-06 Takumi Ikuta Method of neural waveform diagnosis with wavelet function and its equipment
JP2005521542A (en) * 2002-03-29 2005-07-21 エベレスト・バイオメデイカル・インスツルメンツ・カンパニー Fast estimation of weak biological signals using a novel algorithm for generating multiple additional data frames

Also Published As

Publication number Publication date
JP2006239096A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP5099453B2 (en) Evoked potential inspection device and evoked potential inspection system
Debbal et al. Time-frequency analysis of the first and the second heartbeat sounds
US6602202B2 (en) System and methods for objective evaluation of hearing using auditory steady-state responses
US6556861B1 (en) Fetal brain monitor
US11116478B2 (en) Diagnosis of pathologies using infrasonic signatures
Taebi et al. Effect of noise on time-frequency analysis of vibrocardiographic signals
US20080200831A1 (en) Method for objective verification of auditory steady-state responses (ASSR) in the time domain
Silva et al. Estimating loudness growth from tone-burst evoked responses
EP3678553A1 (en) Diagnosis of pathologies using infrasonic signatures
Mertes et al. Concurrent measures of contralateral suppression of transient-evoked otoacoustic emissions and of auditory steady-state responses
Moghavvemi et al. A non-invasive PC-based measurement of fetal phonocardiography
VISHWAKARMA et al. An Effective Cascaded Approach for EEG Artifacts Elimination.
JP4547498B2 (en) Evoked potential test apparatus and evoked potential test system using the same
Jedrzejczak et al. Time–frequency analysis of linear and nonlinear otoacoustic emissions and removal of a short-latency stimulus artifact
Ikawa Automated averaging of auditory evoked response waveforms using wavelet analysis
JP4997579B2 (en) Evoked potential test program
Rushaidin et al. Wave V detection using instantaneous energy of auditory brainstem response signal
Kemp Otoacoustic emissions and evoked
Jedrzejczak et al. Otoacoustic emissions evoked by 0.5 kHz tone bursts
Ma et al. Estimation of distortion product otoacoustic emissions
Barroso-Alvarado et al. Wavelet analysis of an electrogastrogram database
Jedrzejczak Decomposition Methods of OAE Signals: Time-Frequency Analysis by the Matching Pursuit Algorithm
Oswald et al. Hybrid measurement of auditory steady-state responses and distortion product otoacoustic emissions using an amplitude-modulated primary tone
Albrecht Köhler et al. Cochlear activity in silent cue-target intervals shows a theta-rhythmic pattern and is correlated to attentional alpha modulations
Nair et al. Hardware implementation of blind signal separation for efficient fetal PCG signal extraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4547498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250