JP4543415B2 - Core structure of smooth armature winding AC servo motor and smooth armature winding AC servo motor using this core structure - Google Patents

Core structure of smooth armature winding AC servo motor and smooth armature winding AC servo motor using this core structure Download PDF

Info

Publication number
JP4543415B2
JP4543415B2 JP17228499A JP17228499A JP4543415B2 JP 4543415 B2 JP4543415 B2 JP 4543415B2 JP 17228499 A JP17228499 A JP 17228499A JP 17228499 A JP17228499 A JP 17228499A JP 4543415 B2 JP4543415 B2 JP 4543415B2
Authority
JP
Japan
Prior art keywords
servo motor
silicon steel
stator
core
stator core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17228499A
Other languages
Japanese (ja)
Other versions
JP2001008388A (en
JP2001008388A5 (en
Inventor
竜一郎 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP17228499A priority Critical patent/JP4543415B2/en
Publication of JP2001008388A publication Critical patent/JP2001008388A/en
Publication of JP2001008388A5 publication Critical patent/JP2001008388A5/en
Application granted granted Critical
Publication of JP4543415B2 publication Critical patent/JP4543415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スロットなしの円環状固定子コアに回転磁界形成用のコイルを装着してなる平滑電機子巻線形ACサーボモータのコア構造およびこのコア構造を用いた平滑電機子巻線形ACサーボモータに関する。
【0002】
【従来の技術】
従来から、固定子スロットによる界磁磁束の変調を抑制することができ、トルクリップルの小さい特性を有するものとして、平滑電機子巻線形ACサーボモータが一般的に良く知られている。このような平滑電機子巻線形ACサーボモータは、モータ用固定子コアとして、電磁鋼板を環状に成形して多数枚積層してなる、スロットを有しない円筒状積層コアの内周面または外周面に、コア形状に合うよう湾曲させた複数個のコイルを絶縁層を介してコアに固着し、樹脂によりモールド成形して構成されている。または、複数個のコイルを円筒状積層コアに合わせて円筒形状に組み立て、外周を樹脂によりモールド成形した後、絶縁層を介して円筒状積層コアに勘合固着して構成されている。
【0003】
【発明が解決しようとする課題】
ところが、従来技術によると、次のような問題点があった。
(1)円筒形状の電磁鋼板を多数枚積層する固定子では固定子コアの歩留まりが非常に悪い。
(2)固定子コア材料の歩留りを向上させるために、長尺状の電磁鋼板をヘリカル巻により積層する方法があるが、この方法では、電磁鋼板に歪み応力が加わるため、電磁鋼板の磁気特性が低下してしまう。
(3)電磁鋼板の磁気特性を回復するには、コア積層形成後に歪み取り焼鈍が必要になる上、固定子コアの曲げ成形の都合により固定子コア外径と固定子厚さの比に制約が発生し、モータとしての形状自由度が制約されてしまうという問題がある。そこで、固定子コアを巻き鉄心として構成する方法が考えられるが、製造が容易である反面、コア内部の渦電流損が増加するため、モータの効率が低下してしまう。
(4)図4は、従来のフレームと固定子コアの挿入工程を示す説明図である。例えば、図4に示すようにリング状のケイ素鋼板11を積層してなる円筒状の固定子コア12を外皮となるフレーム10に挿入し固定する際に、通常、焼ばめまたは接着によって固定子コア12をフレーム10に周り止めしているため、フレーム10と固定子コア12の間に真円度等の誤差があると、位置決め固定がうまくいかないという問題が生じたり、もしくはフレーム10に固定子コア12を挿入した際に、固定子コア12の全周において肉厚が不均一となって、磁気特性が変化し、コギングが発生する原因となっていた。そこで、本発明は、固定子コア材料の歩留まりが良く、製作・組立が容易で、しかも、損失が小さく磁気特性に優れた平滑電機子巻線形ACサーボモータのコア構造およびこのコア構造を用いた平滑電機子巻線形ACサーボモータを提供することを目的とする。
【0004】
【課題を解決するための手段】
上記問題を解決するため、請求項1記載の本発明は、略円筒状のフレームと、前記フレームに嵌合固定され、且つ、円筒状の固定子コアの内周面または外周面に回転磁界形成用のn個(nは自然数で、且つ、mの倍数とする)の電機子コイルを装着してなるm相(mは自然数)の固定子と、前記固定子と磁気的空隙を介して設けられると共に、交互に極性が異なるP個(Pは2以上の自然数とする偶数)の磁極を有する永久磁石を備えた回転子と、を備え、前記固定子コアを構成する板材は、板材の長手方向に向かって形成した複数個のV字状の切れ込み部と、前記切れ込み部の先端に形成され、且つ、前記フレームに位置決め固定するための突起部を設けてなるケイ素鋼板で構成されており、前記固定子コアは、前記ケイ素鋼板に形成された切れ込み部を折り曲げることによりヘリカル状に巻回、積層して成る環状体を構成する平滑電機子巻線形ACサーボモータにおいて、前記フレームには、前記ケイ素鋼板を積層してなる固定子コアの突起部に嵌合するように凹部が複数設けてあり、前記積層して環状体を構成するケイ素鋼板の一周当たりの切れ込み部の個数をa個(但し、aは相数mの倍数ではない)とし、前記切れ込み部の個数aと前記磁極数Pとが互いに素数の関係を有するものであり、前記切れ込み部の個数aと磁極数Pの最小公倍数Xが、X>10×Pなる関係を有することを特徴としている
請求項2記載の本発明は、請求項1記載の平滑電機子巻線形ACサーボモータのコア構造において、前記切れ込み部を、前記ケイ素鋼板の長手方向に向かって不等間隔で設けたものである。
また、請求項3記載の本発明は、請求項1または2に記載のコア構造の固定子を備えた平滑電機子巻線形ACサーボモータを構成したものである。
上記手段により、折り曲げによるコアの歪みはV字状の切れ込み部の先端に集中するため、円筒形状に成形しても磁気特性の低下はきわめて少なくできる。また、電磁鋼板の歩留まりも向上する。折り曲げにより円筒形状に成形されたコアには切れ込み部によってa個の切れ目が存在し、切れ目によって発生する磁界変調によってコギングが発生するが、切れ込み部の個数aを磁極数Pと互いに素数の関係とすることで、コギングの基本次数が高くなり、コギングトルクの振幅を小さく抑えられる。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図に基づいて説明する。図1は本発明の実施例を示す平滑電機子巻線形ACサーボモータであって、(a)はその正断面図、(b)は固定子コアを構成するケイ素鋼板の部分拡大図である。なお、本実施例では磁極数を8、電機子コイル数を6としたインナーロータ形の平滑電機子巻線形ACサーボモータの例を用いて説明する。図において、1は略円筒状のフレーム、2はフレーム1の内側に嵌合された固定子、3は円筒形で、後述するケイ素鋼板を積層してなる固定子コア、4は電機子コイルであって、固定子コア3の内周面に図示しない絶縁層を介して等間隔に配設されると共に. 電機子コイル4同士は図示しない樹脂によりモールド成形されている。5は回転子、6はシャフト、7はケイ素鋼板を積層した回転子コアで、シャフト6の外周に嵌合されている。8は回転子コア7の表面に交互に異極となるように等間隔に接着固定された永久磁石で、電機子コイル4と磁気的空隙を介して設けられている。次に、固定子コア3を構成するケイ素鋼板に施された形状の特徴について、図1(b)を用いて説明する。図において、9は帯状からなるケイ素鋼板、9Aはケイ素鋼板9の長手方向に沿って、等間隔に設けられたV字状の切れ込み部、9Bは切れ込み部9Aの合わせ面、9Cは複数の切れ込み部9Aによって分割されたケイ素鋼板9Aを連結し、且つ、フレーム1に挿入固定する際の位置決め用として設けた突起部である。このようなケイ素鋼板9において、固定子コア3の磁気突極数となる、いわゆる積層して環状体を構成するケイ素鋼板9の一周当たりの切れ込み部9Aの個数をa個、磁極数をP個とした場合、切れ込み部9Aの個数と磁極数が互いに素数の関係となることを特徴とするものである。一般に、インナーロータ形モータのコギングトルクが、固定子コアの磁気突極性によって、回転子と固定子コアの位置関係により界磁磁束が変化することで発生するため、コギングトルクの次数は磁極数と固定子コアの磁気突極数の最小公倍数となり、次数が高いほどコギングトルクの振幅は小さくなる傾向にある。このように、本実施例では固定子コアの磁気突極数となる切れ込み部9Aの個数(a=11個)と磁極数(P=8個)とを、互いに素数の関係となるようにして、最小公倍数を高く設定することで、コギングトルクの次数を高め、コギングトルクの振幅を低減できる。次に、このような平滑電機子巻線ACサーボモータの製造、組立工程を説明する。図2は帯状のケイ素鋼板の折り曲げ工程を示した概略図である。図3はフレームと固定子コアの挿入工程を示す説明図である。まず、無限長の帯状からなるケイ素鋼板9において、切れ込み部9Aおよび突起部9Cを形成する。すなわち、図1(b)に示すように、帯状のケイ素鋼板9を、折り曲げ成形後のコア外径がDo、コア内径がDiとなるように切断する。この時、全周を11等分した2π/11ラジアンの角度を有する円弧になるように、切れ込み部9Aを切断すると共に、切れ込み部9Aの先端部に突起部9Cを形成する。次に、図2に示すように、所定の形状に成形されたケイ素鋼板9の切れ込み部9Aを折り曲げながらヘリカル状に巻回し、所定の積厚になるように積層し、接着等により円筒状に成形する。その後、この時、切れ込み部9Aで折り曲げられたケイ素鋼板9は、切れ込み部9Aの先端部にある突起部9Cで連結されている。そして、図3に示すように、この突起部9Cを利用して、フレーム1に設けた凹部1Aに突起部9Cを位置決めしながら、固定子コア3をフレーム1に対して回り止め固定する。したがって、円筒状の固定子コアの内周面または外周面に回転磁界形成用の電機子コイルを装着してなる固定子と、P個の磁極を有する永久磁石を備えた回転子よりなる平滑電機子巻線形ACサーボモータにおいて、回転子コアは、ケイ素鋼板に複数個のV字状の切れ込み部を設け、切れ込み部で折り曲げることにより円筒状に積層して形成すると共に、切れ込み部の個数aと磁極数Pが互いに素数の関係となるようにしたので、コア材料の歩留まりが良く、製作、組立が容易で、コギングトルクの小さい平滑電機子巻線形ACサーボモータを実現できる。なお、V字状の切れ込み個数をa個とした場合、aと磁極数Pの最小公倍数Xが、X>10×P なる関係を満足するようにすると尚良い、本実施例ではX=88>10×8=10Pとなっており。これにより、コギングトルクの次数を高め、コギングトルクの振幅を低減することができる。また、本実施例では、V字状の切れ込み部をケイ素板等に等間隔で設けたものを例示したが、切れ込み部を不等間隔で設けるようにしても構わない。また、本実施例では、平滑電機子巻線形ACサーボモータのコア構造を、永久磁石を回転子コアの表面に配置した表面磁石形モータの例を用いて説明したが、永久磁石を回転子コアの内部に装着した構造の内部磁石形モータに適用しても構わない。
【0006】
【発明の効果】
以上述べたように、本発明によれば、円筒状の固定子コアの内周面または外周面に回転磁界形成用のn個のコイルを装着してなるm相の固定子と、P個の磁極数を有する永久磁石を備えた回転子よりなる平滑電機子巻線形ACサーボモータにおいて、固定子コアは、帯状に形成したケイ素鋼板に複数個のV字状の切れ込み部を設け、切れ込み部で折り曲げることにより円筒状に積層形成すると共に、切れ込み部の個数(a個)と磁極数(p)が互いに素数の関係となるようにしたので、コア材料の歩留まりが良く、製作、組立が容易で、コギングトルクの小さい平滑電機子巻線形ACサーボモータを実現できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施例を示す平滑電機子巻線形ACサーボモータであって、(a)はその正断面図、(b)は固定子コアを構成するケイ素鋼板の部分拡大図である。
【図2】帯状のケイ素鋼板を折り曲げる工程を示した概略図である。
【図3】本実施例によるフレームと固定子コアの挿入工程を示す説明図である。
【図4】従来のフレームと固定子コアの挿入工程を示す説明図である。
【符号の説明】
1:フレーム
1A:凹部
2:固定子
3:固定子コア
4:電機子コイル
5:回転子
6:シャフト
7:回転子コア
8:永久磁石
9:ケイ素鋼板
9A:切れ込み部
9B:合わせ面
9C:突起部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a core structure of a smooth armature wound AC servo motor obtained by mounting a coil for forming a rotating magnetic field on a slotless annular stator core, and a smooth armature wound AC servo motor using this core structure. About.
[0002]
[Prior art]
Conventionally, a smooth armature winding type AC servo motor is generally well known as one that can suppress the modulation of the field magnetic flux by the stator slot and has a characteristic of small torque ripple. Such a smooth armature wound AC servo motor is a stator core for a motor, and is formed by laminating a large number of electromagnetic steel plates in a ring shape, and the inner or outer peripheral surface of a cylindrical laminated core having no slots. In addition, a plurality of coils curved to fit the core shape are fixed to the core via an insulating layer and molded by resin. Alternatively, a plurality of coils are assembled to a cylindrical laminated core and assembled into a cylindrical shape, and the outer periphery is molded with resin, and then fitted and fixed to the cylindrical laminated core via an insulating layer.
[0003]
[Problems to be solved by the invention]
However, the conventional technique has the following problems.
(1) In a stator in which a large number of cylindrical electromagnetic steel sheets are laminated, the yield of the stator core is very poor.
(2) In order to improve the yield of the stator core material, there is a method of laminating long electromagnetic steel sheets by helical winding. However, in this method, strain stress is applied to the electromagnetic steel sheets, so the magnetic properties of the electromagnetic steel sheets Will fall.
(3) In order to restore the magnetic properties of the magnetic steel sheet, strain relief annealing is required after the core lamination, and the ratio of the stator core outer diameter to the stator thickness is restricted due to the bending of the stator core. Occurs, and the degree of freedom of shape as a motor is restricted. Therefore, a method of configuring the stator core as a wound iron core is conceivable. However, although it is easy to manufacture, the eddy current loss inside the core increases, so that the efficiency of the motor decreases.
(4) FIG. 4 is an explanatory view showing a conventional frame and stator core insertion process. For example, as shown in FIG. 4, when a cylindrical stator core 12 formed by laminating ring-shaped silicon steel plates 11 is inserted into and fixed to the outer frame 10, the stator is usually fitted by shrink fitting or adhesion. Since the core 12 is fixed to the frame 10, if there is an error such as roundness between the frame 10 and the stator core 12, there is a problem that positioning and fixing cannot be performed properly, or the stator core is attached to the frame 10. When 12 is inserted, the thickness of the entire circumference of the stator core 12 becomes uneven, the magnetic characteristics change, and cogging occurs. Therefore, the present invention uses a core structure of a smooth armature winding AC servo motor that has a good yield of the stator core material, is easy to manufacture and assemble, and has low loss and excellent magnetic characteristics, and this core structure is used. An object of the present invention is to provide a smooth armature winding AC servo motor.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, the present invention according to claim 1 is characterized in that a substantially cylindrical frame and a rotating magnetic field formed on the inner peripheral surface or outer peripheral surface of the cylindrical stator core are fitted and fixed to the frame. An n-phase (m is a natural number) stator that is provided with n armature coils (n is a natural number and a multiple of m), and the stator and a magnetic gap are provided. And a rotor having a permanent magnet having P magnetic poles (P is an even number that is a natural number of 2 or more) having different polarities, and the plate material constituting the stator core is the longitudinal length of the plate material. A plurality of V-shaped cut portions formed toward the direction, and formed of silicon steel plates formed at the tips of the cut portions and provided with protrusions for positioning and fixing to the frame; The stator core is formed on the silicon steel plate. In a smooth armature winding AC servo motor that forms an annular body that is helically wound and laminated by bending a notch, the frame has a stator core protrusion formed by laminating the silicon steel plates. A plurality of recesses are provided so as to be fitted to each other, and the number of cut portions per circumference of the silicon steel plate constituting the annular body by stacking is a (where a is not a multiple of the phase number m) , all SANYO that the number a of the cut portion and the number of magnetic poles P has a prime number of relations, the least common multiple X of the number a and the number of magnetic poles P of the slit portion is, X> 10 × to have P relationship: It is characterized by .
According to a second aspect of the present invention, in the core structure of the smooth armature wound AC servo motor according to the first aspect, the cut portions are provided at unequal intervals in the longitudinal direction of the silicon steel plate. .
According to a third aspect of the present invention, there is provided a smooth armature winding type AC servo motor including the core structure stator according to the first or second aspect.
By the above means, the distortion of the core due to the bending is concentrated at the tip of the V-shaped cut-out portion, so that the magnetic property can be extremely reduced even if it is formed into a cylindrical shape. Moreover, the yield of electromagnetic steel sheets is also improved. The core formed into a cylindrical shape by bending has a number of cuts due to the cuts, and cogging occurs due to magnetic field modulation generated by the cuts, but the number of cuts a is a prime number relative to the number of magnetic poles P. By doing so, the basic order of cogging becomes high and the amplitude of cogging torque can be kept small.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a smooth armature winding AC servomotor showing an embodiment of the present invention, in which (a) is a front sectional view thereof and (b) is a partially enlarged view of a silicon steel plate constituting a stator core. In this embodiment, an explanation will be given using an example of an inner rotor type smooth armature winding AC servo motor having 8 magnetic poles and 6 armature coils. In the figure, 1 is a substantially cylindrical frame, 2 is a stator fitted inside the frame 1, 3 is a cylindrical core, and a stator core formed by laminating silicon steel plates to be described later, 4 is an armature coil. In addition, the stator core 3 is disposed on the inner peripheral surface of the stator core 3 at equal intervals through an insulating layer (not shown). The armature coils 4 are molded with a resin (not shown). Reference numeral 5 denotes a rotor, 6 denotes a shaft, and 7 denotes a rotor core in which silicon steel plates are laminated. Reference numeral 8 denotes a permanent magnet that is bonded and fixed at equal intervals on the surface of the rotor core 7 so as to have different polarities alternately, and is provided via the armature coil 4 and a magnetic gap. Next, the feature of the shape given to the silicon steel plate which comprises the stator core 3 is demonstrated using FIG.1 (b). In the figure, 9 is a silicon steel plate having a strip shape, 9A is a V-shaped cut portion provided at equal intervals along the longitudinal direction of the silicon steel plate 9, 9B is a mating surface of the cut portions 9A, and 9C is a plurality of cuts. This is a projection provided for positioning when connecting and fixing the silicon steel plate 9A divided by the portion 9A to the frame 1. In such a silicon steel plate 9, the number of the cut portions 9 </ b> A per circumference of the silicon steel plate 9 constituting the annular body by stacking so as to be the number of magnetic salient poles of the stator core 3 is a, and the number of magnetic poles is P. In this case, the number of notches 9A and the number of magnetic poles have a prime number relationship with each other. In general, the cogging torque of the inner rotor type motor is generated by the field magnetic flux changing due to the positional relationship between the rotor and the stator core due to the magnetic saliency of the stator core. It becomes the least common multiple of the number of magnetic salient poles of the stator core, and the higher the order, the smaller the amplitude of the cogging torque tends to be. Thus, in the present embodiment, the number of notches 9A (a = 11) and the number of magnetic poles (P = 8), which are the number of magnetic salient poles of the stator core, are in a prime relationship with each other. By setting the least common multiple higher, the order of the cogging torque can be increased and the amplitude of the cogging torque can be reduced. Next, manufacturing and assembling processes of such a smooth armature winding AC servomotor will be described. FIG. 2 is a schematic view showing a bending process of a band-shaped silicon steel plate. FIG. 3 is an explanatory view showing an insertion process of the frame and the stator core. First, in the silicon steel plate 9 having an infinitely long band shape, a cut portion 9A and a protruding portion 9C are formed. That is, as shown in FIG. 1B, the band-shaped silicon steel sheet 9 is cut so that the core outer diameter after bending is Do and the core inner diameter is Di. At this time, the cut portion 9A is cut so that a circular arc having an angle of 2π / 11 radians obtained by dividing the entire circumference into 11 equal parts, and a protrusion 9C is formed at the tip of the cut portion 9A. Next, as shown in FIG. 2, the slit 9A of the silicon steel sheet 9 formed into a predetermined shape is wound in a helical shape while being bent, laminated to have a predetermined thickness, and cylindrical by bonding or the like. Mold. Thereafter, at this time, the silicon steel plate 9 bent at the notch 9A is connected by a protrusion 9C at the tip of the notch 9A. Then, as shown in FIG. 3, the stator core 3 is fixed to the frame 1 while the projection 9 </ b> C is positioned in the recess 1 </ b> A provided in the frame 1 using the projection 9 </ b> C. Accordingly, a smoothing electric machine comprising a stator having an armature coil for forming a rotating magnetic field on the inner or outer peripheral surface of a cylindrical stator core, and a rotor having a permanent magnet having P magnetic poles. In the slave winding AC servo motor, the rotor core is formed by forming a plurality of V-shaped notches on a silicon steel plate and bending them at the notches to form a cylindrical shape, and the number of notches a Since the number P of magnetic poles is in a prime relationship with each other, a smooth armature wound AC servo motor with good core material yield, easy manufacture and assembly, and low cogging torque can be realized. If the number of V-shaped cuts is a, the least common multiple X of a and the number of magnetic poles P preferably satisfies the relationship X> 10 × P. In this embodiment, X = 88>. 10 × 8 = 10P. Thereby, the order of cogging torque can be increased and the amplitude of cogging torque can be reduced. In this embodiment, the V-shaped cut portions are provided on the silicon plate or the like at equal intervals. However, the cut portions may be provided at unequal intervals. Further, in this embodiment, the core structure of the smooth armature winding AC servo motor has been described using the example of the surface magnet type motor in which the permanent magnet is disposed on the surface of the rotor core. You may apply to the internal magnet type motor of the structure with which it mounted | wore inside.
[0006]
【The invention's effect】
As described above, according to the present invention, an m-phase stator obtained by mounting n coils for forming a rotating magnetic field on the inner peripheral surface or outer peripheral surface of a cylindrical stator core, and P pieces In a smooth armature wound AC servo motor comprising a rotor having a permanent magnet having the number of magnetic poles, the stator core is provided with a plurality of V-shaped cut portions in a silicon steel plate formed in a strip shape. Bending is formed into a cylindrical shape, and the number of cuts (a) and the number of magnetic poles (p) are in a prime relationship with each other, so the yield of the core material is good, and manufacturing and assembly are easy. There is an effect that a smooth armature winding type AC servo motor with a small cogging torque can be realized.
[Brief description of the drawings]
FIG. 1 is a smooth armature wound AC servomotor showing an embodiment of the present invention, in which (a) is a front sectional view thereof, and (b) is a partially enlarged view of a silicon steel plate constituting a stator core. .
FIG. 2 is a schematic view showing a process of bending a band-shaped silicon steel plate.
FIG. 3 is an explanatory diagram showing an insertion process of a frame and a stator core according to the present embodiment.
FIG. 4 is an explanatory view showing a conventional frame and stator core insertion step.
[Explanation of symbols]
1: Frame 1A: Recess 2: Stator 3: Stator core 4: Armature coil 5: Rotor 6: Shaft 7: Rotor core 8: Permanent magnet 9: Silicon steel plate 9A: Cut 9B: Mating surface 9C: protrusion

Claims (3)

略円筒状のフレームと、
前記フレームに嵌合固定され、且つ、円筒状の固定子コアの内周面または外周面に回転磁界形成用のn個(nは自然数で、且つ、mの倍数とする)の電機子コイルを装着してなるm相(mは自然数)の固定子と、
前記固定子と磁気的空隙を介して設けられると共に、交互に極性が異なるP個(Pは2以上の自然数とする偶数)の磁極を有する永久磁石を備えた回転子と、を備え、
前記固定子コアを構成する板材は、板材の長手方向に向かって形成した複数個のV字状の切れ込み部と、前記切れ込み部の先端に形成され、且つ、前記フレームに位置決め固定するための突起部を設けてなるケイ素鋼板で構成されており、
前記固定子コアは、前記ケイ素鋼板に形成された切れ込み部を折り曲げることによりヘリカル状に巻回、積層して成る環状体を構成する平滑電機子巻線形ACサーボモータにおいて、
前記フレームには、前記ケイ素鋼板を積層してなる固定子コアの突起部に嵌合するように凹部が複数設けてあり、
前記積層して環状体を構成するケイ素鋼板の一周当たりの切れ込み部の個数をa個(但し、aは相数mの倍数ではない)とし、前記切れ込み部の個数aと前記磁極数Pとが互いに素数の関係を有するものであり、
前記切れ込み部の個数aと磁極数Pの最小公倍数Xが、X>10×Pなる関係を有することを特徴とする平滑電機子巻線形ACサーボモータのコア構造
A substantially cylindrical frame;
N armature coils (n is a natural number and a multiple of m) for forming a rotating magnetic field are fitted and fixed to the frame and are formed on the inner or outer peripheral surface of a cylindrical stator core. A m-phase stator (m is a natural number)
A rotor provided with permanent magnets having P poles (P is an even number that is a natural number equal to or greater than 2) magnetic poles alternately provided with a magnetic gap and the stator.
The plate material constituting the stator core includes a plurality of V-shaped cut portions formed in the longitudinal direction of the plate material, and protrusions formed at the tips of the cut portions for positioning and fixing to the frame. It is composed of a silicon steel plate with a part,
In the smooth armature coiled AC servo motor, the stator core is formed in an annular body formed by winding and laminating helically by bending a notch formed in the silicon steel plate,
The frame is provided with a plurality of recesses so as to fit into the protrusions of the stator core formed by laminating the silicon steel plates,
The number of notches per round of the silicon steel plates constituting the annular body by laminating is a (where a is not a multiple of the number of phases m), and the number of notches a and the number of magnetic poles P are all SANYO with a prime number of relationships,
The core structure of a smooth armature wound AC servo motor, wherein the number a of the notches and the least common multiple X of the number P of magnetic poles have a relationship of X> 10 × P
前記切れ込み部を、前記ケイ素鋼板の長手方向に向かって不等間隔で設けたことを特徴とする請求項1に記載の平滑電機子巻線形ACサーボモータのコア構造。2. The core structure of a smooth armature wound AC servo motor according to claim 1, wherein the cut portions are provided at unequal intervals in the longitudinal direction of the silicon steel plate. 請求項1または2に記載のコア構造の固定子を備えたことを特徴とする平滑電機子巻線形ACサーボモータ。A smooth armature winding type AC servo motor comprising the stator having the core structure according to claim 1.
JP17228499A 1999-06-18 1999-06-18 Core structure of smooth armature winding AC servo motor and smooth armature winding AC servo motor using this core structure Expired - Fee Related JP4543415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17228499A JP4543415B2 (en) 1999-06-18 1999-06-18 Core structure of smooth armature winding AC servo motor and smooth armature winding AC servo motor using this core structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17228499A JP4543415B2 (en) 1999-06-18 1999-06-18 Core structure of smooth armature winding AC servo motor and smooth armature winding AC servo motor using this core structure

Publications (3)

Publication Number Publication Date
JP2001008388A JP2001008388A (en) 2001-01-12
JP2001008388A5 JP2001008388A5 (en) 2006-06-29
JP4543415B2 true JP4543415B2 (en) 2010-09-15

Family

ID=15939082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17228499A Expired - Fee Related JP4543415B2 (en) 1999-06-18 1999-06-18 Core structure of smooth armature winding AC servo motor and smooth armature winding AC servo motor using this core structure

Country Status (1)

Country Link
JP (1) JP4543415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978186A (en) * 2016-06-27 2016-09-28 上海电机学院 Permanent magnet servo motor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315241C (en) * 2003-04-25 2007-05-09 日本电产株式会社 Motor
JP5231790B2 (en) * 2007-11-20 2013-07-10 日本電産テクノモータ株式会社 Motor rotor and motor
CN106208437B (en) * 2016-08-12 2018-07-13 温岭市九洲电机制造有限公司 A kind of wheel hub electric motor of electric vehicle stator and the motor containing this kind of stator
CN110504765A (en) * 2019-08-07 2019-11-26 珠海凯邦电机制造有限公司 A kind of stator punching, stator core, stator, motor and air-conditioning device
JP6830996B1 (en) * 2019-12-26 2021-02-17 山洋電気株式会社 Frame structure of synchronous motor and manufacturing method of frame and armature
US20230307967A1 (en) 2020-08-31 2023-09-28 Fanuc Corporation Stator and electric motor
CN112886742B (en) * 2021-01-20 2022-11-15 浙江达可尔汽车电子科技有限公司 Oil-cooled motor rotor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110468A (en) * 1985-11-08 1987-05-21 Hitachi Ltd Permanent magnet field type brushless motor
JPS63283455A (en) * 1987-05-13 1988-11-21 Yaskawa Electric Mfg Co Ltd Cylindrical armature winding
JPS63316648A (en) * 1987-06-19 1988-12-23 Sanyo Electric Co Ltd Rotary electric machine and winding method of armature winding thereof
JPH05161325A (en) * 1991-12-05 1993-06-25 Fanuc Ltd Synchronous motor with a reduced cogging torque
JPH0670524A (en) * 1992-08-07 1994-03-11 Toshiba Corp Brushless motor
JPH0767272A (en) * 1993-08-26 1995-03-10 Toyota Motor Corp Stator structure for synchronous machine, manufacture thereof and its tooth piece
JPH1169670A (en) * 1997-08-12 1999-03-09 Shibaura Eng Works Co Ltd Stator core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110468A (en) * 1985-11-08 1987-05-21 Hitachi Ltd Permanent magnet field type brushless motor
JPS63283455A (en) * 1987-05-13 1988-11-21 Yaskawa Electric Mfg Co Ltd Cylindrical armature winding
JPS63316648A (en) * 1987-06-19 1988-12-23 Sanyo Electric Co Ltd Rotary electric machine and winding method of armature winding thereof
JPH05161325A (en) * 1991-12-05 1993-06-25 Fanuc Ltd Synchronous motor with a reduced cogging torque
JPH0670524A (en) * 1992-08-07 1994-03-11 Toshiba Corp Brushless motor
JPH0767272A (en) * 1993-08-26 1995-03-10 Toyota Motor Corp Stator structure for synchronous machine, manufacture thereof and its tooth piece
JPH1169670A (en) * 1997-08-12 1999-03-09 Shibaura Eng Works Co Ltd Stator core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978186A (en) * 2016-06-27 2016-09-28 上海电机学院 Permanent magnet servo motor

Also Published As

Publication number Publication date
JP2001008388A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
JP3586186B2 (en) Rotating machine stator
EP0823771B1 (en) Motor
EP1638185A2 (en) Stator of motor and method of manufacturing the same
JP3137510B2 (en) Stator for synchronous machine, method of manufacturing the same, teeth piece and yoke piece
JP2012023861A (en) Armature core and motor
JP2011151884A (en) Rotating electrical machine and manufacturing method of stator thereof
JP3928297B2 (en) Electric motor and manufacturing method thereof
JPH07255158A (en) Permanent magnet type synchronous rotating electric machine
JP4543415B2 (en) Core structure of smooth armature winding AC servo motor and smooth armature winding AC servo motor using this core structure
JPWO2018037529A1 (en) Rotating electric machine
WO2007123057A1 (en) Motor
JPH10304608A (en) Motor
WO2005114817A1 (en) Multiple winding coil shapes for increased slot fill
JP4568639B2 (en) Stator
WO2020255614A1 (en) Coil, and stator, rotor, and motor equipped with same, and manufacturing method for coil
KR101247683B1 (en) Amorphous Stator, Electric Motor Using the Same, and Producing Method thereof
JP2001008388A5 (en) Smooth armature winding type AC servo motor core structure and smooth armature winding type AC servo motor using this core structure
JP2000245124A (en) Smooth core armature wound motor
JP2013143805A (en) Rotor of rotary electric machine, and rotary electric machine with the same
JP6350612B2 (en) Rotating electric machine
JP2002315251A (en) Stator of motor and method of manufacturing the same
JP2002374642A (en) Brushless motor
JP4771278B2 (en) Permanent magnet type motor and method for manufacturing the same
WO2022107713A1 (en) Motor and stator manufacturing method
JPS61135356A (en) Miniature motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees