JP4543152B2 - Transparent titanium-coated biocompatible material - Google Patents

Transparent titanium-coated biocompatible material Download PDF

Info

Publication number
JP4543152B2
JP4543152B2 JP2005230178A JP2005230178A JP4543152B2 JP 4543152 B2 JP4543152 B2 JP 4543152B2 JP 2005230178 A JP2005230178 A JP 2005230178A JP 2005230178 A JP2005230178 A JP 2005230178A JP 4543152 B2 JP4543152 B2 JP 4543152B2
Authority
JP
Japan
Prior art keywords
titanium
biocompatible
core material
molded article
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005230178A
Other languages
Japanese (ja)
Other versions
JP2006081896A (en
Inventor
章 渡津
啓 寺岡
寛史 城戸
正朗 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005230178A priority Critical patent/JP4543152B2/en
Publication of JP2006081896A publication Critical patent/JP2006081896A/en
Application granted granted Critical
Publication of JP4543152B2 publication Critical patent/JP4543152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Dental Prosthetics (AREA)

Description

本発明は、透明チタン被覆生体適合化材料に関するものであり、更に詳しくは、プラスチック又はセラミックスからなるコア材の表面に所定の膜厚のチタン被膜を形成して生体適合性を付与し、かつ表面の透明性を制御した骨代替用の生体適合化材料に関するものである。   The present invention relates to a transparent titanium-coated biocompatible material, and more specifically, imparts biocompatibility by forming a titanium film having a predetermined film thickness on the surface of a core material made of plastic or ceramics. The present invention relates to a biocompatible material for bone replacement with controlled transparency.

本発明は、骨代替材料及びインプラント等の生体適合性材料及びその製品の技術分野において、一般に、従来の骨代替製品は、難加工材料からなるため、特に、医療現場での二次加工が困難であったことを踏まえて開発されたものであって、プラスチックからなるコア材料に透明なチタン被膜を被覆して、生体適合性及び表面の透明性を選択的に制御することが可能で、しかも、医療現場での二次加工と個人に合わせた材料設計(テーラーメイド)を行うことが可能な新しいタイプの骨代替材料及びその製品としての生体適合化材料及びインプラントを提供するものである。   In the technical field of bone substitute materials and biocompatible materials such as implants and their products, the present invention generally includes conventional bone substitute products made of difficult-to-process materials. It was developed based on the fact that it was possible to selectively control biocompatibility and surface transparency by coating a transparent titanium film on a plastic core material. The present invention provides a new type of bone substitute material capable of performing secondary processing in a medical field and material design tailored to the individual (tailor-made), and a biocompatible material and implant as its product.

本発明は、例えば、チタン又はチタン合金の薄膜を被覆し、コア材の色彩、模様及び/又はデザイン等を表面に反映させることが可能な生体適合材料、及び、少なくとも可視光に対して、透明性を持たせることが可能であるチタン又はチタン合金被覆生体適合化材料を提供するものとして有用である。 The present invention is, for example, by coating a thin film of titanium or titanium alloy, biocompatible material capable of reflecting color of the core material, the pattern and / or design or the like on the surface, and, for at least visible light, transparent It is useful for providing a biocompatible material coated with titanium or a titanium alloy that can be imparted with properties.

更に、本発明は、上記生体適合化を選択的に行うことや、透明性を所定のレベルに制御することを可能にしたり、複数の生体組織に接するインプラントのテーラーメイドや、術後のフォローアップ計測の幅を広げることを可能にするなど、従来材にない幅広い選択性を有する生体適合化材料を提供するものとして高い技術的意義を有する。   Furthermore, the present invention makes it possible to selectively perform the biocompatibility, control the transparency to a predetermined level, tailor-made an implant that contacts a plurality of living tissues, and post-operative follow-up measurement. The present invention has a high technical significance as providing a biocompatible material having a wide range of selectivity not found in conventional materials.

高齢化社会を迎え、骨代替材料、及びインプラント等の生体適合化材料の必要性が高まっている。また、骨代替材料は、高齢者に限らず、事故などにより、骨欠損を生じた子供や成人にも必要とされている。そのため、骨代替材料に求められる性能も多様化しており、個人に合わせた材料設計(テーラーメイド) を行うことが望ましい。医療現場の一部、例えば、歯科では、歯科技工士や歯科医師による歯冠などのテーラーメードが行われているが、この種の材料に自由に色や模様をつけたり、堅さなどを自在に制御したりすることは容易でない。   With the aging of society, the need for bone replacement materials and biocompatible materials such as implants is increasing. In addition, bone substitute materials are required not only for elderly people but also for children and adults who have bone defects due to accidents. Therefore, the performance required for bone substitute materials is diversified, and it is desirable to design materials tailored to the individual. In some medical settings, for example, dentistry, dental technicians and dentists make tailors such as crowns, but this material can be freely colored and patterned, and its hardness can be freely controlled. It is not easy to do.

これらの、これまでにない技術を確立することが、テーラーメイドを容易にし、普及することにつながる。骨代替材料として、主に利用されているのは、セラミックスとチタンである。セラミックスは、強度に優れるが、もろい性質を持つため、大きい荷重のかかるステム部分等に用いるのは困難である。チタンにおいては、セラミックスほど硬くないが、靱性にとむため、ステム部分に使用されている。   Establishing these unprecedented technologies will facilitate and popularize tailor-made. Ceramics and titanium are mainly used as bone substitute materials. Ceramics are excellent in strength, but have brittle properties, so it is difficult to use them in stem portions and the like where a large load is applied. Titanium is not as hard as ceramics, but it is used for the stem portion because of its toughness.

しかし、チタンは、生体骨より強度が高く、過度な負荷がかかった際に、生体骨に負担がかかることになる。生体骨の強度は、人によって異なり、高齢者においては、骨の強度が低下してしまう場合があり、二次骨折も懸念される。これらの個人差によって、材料の設計を行うことが望ましいが、チタンの強度を人に合わせて変化させることは困難である。また、セラミックス、チタン共に、一般的に、難加工材料であり、特に、医療現場での形状の自由度が低い。   However, titanium is stronger than living bones, and when an excessive load is applied, the living bones are burdened. The strength of living bones varies from person to person. In elderly people, bone strength may be reduced, and secondary fractures are also a concern. Although it is desirable to design the material due to these individual differences, it is difficult to change the strength of titanium according to the person. Moreover, both ceramics and titanium are generally difficult-to-process materials, and in particular, the degree of freedom in shape at the medical site is low.

また、セラミックスとチタンを複合化したインプラントもあり、例えば、リン酸カルシウム系セラミックス層被覆Ti又はTi合金製インプラント及びその製造法(特許文献1参照)、が提案されている。この方法は、歯科、整形外科の分野で使用されるインプラントを、Ti又はTi合金製インプラント本体の表面に被覆したリン酸カルシウム系セラミックス被覆層の一部を本体の表面に埋め込むようにして、耐剥離性を高めるものである。   There is also an implant in which ceramics and titanium are combined. For example, an implant made of calcium phosphate ceramic layer-covered Ti or Ti alloy and a method for manufacturing the same (see Patent Document 1) have been proposed. In this method, an implant used in the field of dentistry and orthopedics is made by embedding a part of a calcium phosphate ceramic coating layer in which the surface of an implant body made of Ti or Ti alloy is embedded in the surface of the body, and is resistant to peeling. It is what raises.

その製造方法は、次の通りである。人工股関節の製造に際しては、まず、湿式合成したリン酸カルシウム粉末を高温度で仮焼後、湿式ボールミルで粉砕し、バインダーを添加してスラリー中に分散、それをスプレードライしてなる粉末を造粒後、焼成することにより、丸みのあるリン酸三カルシウム粗粉末を得る。   The manufacturing method is as follows. In the production of an artificial hip joint, first, the wet-synthesized calcium phosphate powder is calcined at a high temperature, then pulverized with a wet ball mill, added with a binder, dispersed in a slurry, and then granulated into a powder that is spray-dried. By baking, a round tricalcium phosphate coarse powder is obtained.

次に、この粗粉末を加熱し、人工関節と同一形状の蝋型の表面に振りかけた後、蝋型の表面に付着した粗粉末を押し付けて、粗粉末が一部突出露出した複合蝋型を作製する。そして、この複合蝋型を用いて製造鋳造鋳型を作った後、これにTi合金を鋳込んで、リン酸三カルシウム粗粉末が埋め込まれたTi合金製人工股関節を得る。   Next, this coarse powder is heated and sprinkled on the surface of the wax mold having the same shape as the artificial joint, and then the coarse powder adhered to the surface of the wax mold is pressed to form a composite wax mold in which the coarse powder is partially exposed. Make it. Then, after making a production casting mold using this composite wax mold, a Ti alloy is cast into this, and a Ti alloy artificial hip joint embedded with tricalcium phosphate coarse powder is obtained.

更に、村松力らの報告(非特許文献1)、K. De Groot らの報告(非特許文献2)及びB.C.Wanらの報告(非特許文献3)等にあるように、チタンの周りにプラズマスプレー法を用いて、数10から数100ミクロン程度のセラミックスを被覆することで、チタンとセラミックスを複合化する手法が提案されている。   Further, Tsutomu Muramatsu et al. (Non-Patent Document 1), K. De Groot et al. C. As described in a report by Wan et al. (Non-patent Document 3), a technique of combining titanium and ceramics by coating a ceramic of about several tens to several hundreds of microns using a plasma spray method around titanium. Has been proposed.

なお、プラズマスプレー法とは、アークプラズマ等の中に被覆原料粉末を導入し、プラズマの噴出先にコア材、例えば、チタンを置くことにより、コア材表面に原料粉末による被覆層を作製するものであり、ハイドロキシアパタイト被覆層をチタンの周りに被覆したものを得る。このような複合体の場合、選択的に必要な生体適合表面を得ることが可能である。   The plasma spray method is a method in which a coating raw material powder is introduced into an arc plasma or the like, and a core material, for example, titanium, is placed at the plasma ejection destination to form a coating layer of the raw material powder on the surface of the core material. Thus, a hydroxyapatite coating layer coated around titanium is obtained. In the case of such a complex, it is possible to selectively obtain the necessary biocompatible surface.

しかし、これらの事例を含め、この種のインプラントは、一般に、インプラントの強度をチタンが担うことになるため、生体骨よりも強度が高くなり、かつX線を用いた検査の際に、チタンと重なる部分が不鮮明になりやすく、観察が難しい、という問題を有する。また、紫外線や赤外線及び可視光等を用いた各種観察及び計測においても、同様である。更に、特性を変化させずに、複合体の形状を変形させることは困難である。   However, including these cases, this type of implant generally has a higher strength than that of living bone because titanium is responsible for the strength of the implant, and in the examination using X-rays, There is a problem that the overlapping portion tends to be unclear and difficult to observe. The same applies to various observations and measurements using ultraviolet rays, infrared rays, visible light, and the like. Furthermore, it is difficult to change the shape of the composite without changing the characteristics.

一方、プラスチックは、体内で経時変化しやすいが、軽量で色々な強度特性を持つ幅広い材料が開発されており、繊維等と複合化しているプラスチックまで含めると、性質は多様である。また、プラスチックは、熱を加えての変形や機械的な切削性能も良いため、将来、経時変化が抑えられれば、テーラーメイドの材料として有望である。しかしながら、骨代替材料等としてのプラスチックの生体適合性は低い。   On the other hand, plastics are easy to change over time in the body, but a wide range of materials with various strength characteristics have been developed that are lightweight and have various properties including plastics that are compounded with fibers. In addition, plastics are promising as tailor-made materials if they can be deformed with heat and have good mechanical cutting performance, so long as changes with time are suppressed. However, the biocompatibility of plastic as a bone substitute material or the like is low.

また、インプラントに対する要望が多様化しており、例えば、口腔内に入れるものは、軟組織を通して、透けて見える場合などは、美観も重要な要素となる。この場合、例えば、チタンなどは、黒っぽく見えるため、より明るい色や透明などの、目立たない状態のものであることが望ましい。   In addition, the demand for implants has been diversified. For example, aesthetics are also an important factor when something that is put into the oral cavity can be seen through soft tissue. In this case, for example, titanium or the like looks blackish, so it is desirable that the material is inconspicuous, such as a brighter color or transparency.

更に、医療技術の発達やインプラント等の研究の進歩に伴い、医療器具や医療計測具を用いた医療関連の実験などにおいて、より精密な操作や計測が必要となっている。そのため、医療器具や医療計測具及びインプラント等と、生体組織や体液などとの界面が、より観察及び計測し易い状況であることが望ましい。   Furthermore, with the development of medical technology and advances in research on implants and the like, more precise operation and measurement are required in medical-related experiments using medical instruments and medical measuring instruments. Therefore, it is desirable that the interface between the medical instrument, the medical measurement instrument, the implant, and the like, and the biological tissue, body fluid, and the like be in a state where it is easier to observe and measure.

しかし、チタンインプラントなどの界面を観察及び計測する場合、骨よりも硬いチタンと柔らかい生体組織を含んだ界面を研磨等で加工するのも容易でないため、光学的な観察も困難であり、X線や各種電磁波等を利用した計測においても、チタンと重なる部分が不鮮明になりやすく、観察が難しい。   However, when observing and measuring an interface such as a titanium implant, it is not easy to process the interface containing titanium harder than bone and soft biological tissue by polishing or the like. Even in measurement using electromagnetic waves or various electromagnetic waves, the portion overlapping with titanium tends to be unclear and difficult to observe.

更に、これらの手法においては、観察及び計測角度の自由度が低い。また、細胞培養試験や疑似体液によるリン酸カルシウム析出試験等においても、チタンの陰になる部分は、見ることが出来ないといった、観察及び計測角度の自由度が低い、という問題がある。   Furthermore, these methods have a low degree of freedom in observation and measurement angles. In addition, in cell culture tests and calcium phosphate precipitation tests using simulated body fluids, there is a problem that the degree of freedom in observation and measurement angles is low, such that the shaded portion of titanium cannot be seen.

また、体液を循環させる医療器具をはじめ、生体内又は生体及び体液に接する医療用具、測定端子及び実験用具等についても、生体適合性を付与又は制御しながら観察及び計測し易い状況を確保することは困難であるが、これらの要素は、計測や観察を容易にする上で極めて重要である。   In addition, medical devices that circulate body fluids, medical devices that come into contact with living bodies or living bodies and body fluids, measurement terminals, and experimental devices should be easily observed and measured while imparting or controlling biocompatibility. However, these elements are extremely important for facilitating measurement and observation.

特許第2956318号明細書Japanese Patent No. 2956318 松本医学、8巻、8〜14(1982)Matsumoto Medical, Volume 8, 8-14 (1982) JOURNAL OF BIOMEDICALMATERIALS RESEARCH, 21, 1375 (1987)JOURNAL OF BIOMEDICALMATERIALS RESEARCH, 21, 1375 (1987) JOURNAL OF BIOMEDICALMATERIALS RESEARCH, 27, 1315-1327 (1993)JOURNAL OF BIOMEDICALMATERIALS RESEARCH, 27, 1315-1327 (1993)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を確実に解消することができる、チタンを利用した新しい生体材料及び医用材料とその新しい利用形態及びその製品を開発することを目標として鋭意研究を積み重ねた結果、形状物性等を設計・選択した適宜のコア材に、生体適合性を示すチタン薄膜を、透明性を制御してコーティングすることにより所期の目的を達成し得ることを見いだし、本発明を完成させるに至った。   Under such circumstances, the present inventors, in view of the above prior art, can surely solve the problems in the above prior art, new biomaterials and medical materials using titanium, and new uses thereof. As a result of intensive research with the goal of developing the form and its products, coating the appropriate core material with design and selection of shape properties, etc., with a titanium thin film showing biocompatibility with controlled transparency As a result, it was found that the intended purpose can be achieved, and the present invention has been completed.

すなわち、本発明は、様々な色やデザインを有し、軽量で成形し易く、必要な観察及び計測手段に対して透明性を確保することを可能とし、観察及び測定を様々な角度から行うことが出来る、材料の全面或いは一部に選択的に生体適合性表面を有する生体材料及び医用材料を実現することを目的とするものである。また、本発明は、プラスチックやセラミックスなどにおいても多彩な生体適合性を付加することが出来、個々の患者や使用用途にあわせた材料設計を行うことが出来る新しい生体適合化材料を提供することを目的とするものである。   That is, the present invention has various colors and designs, is lightweight and easy to mold, can ensure transparency with respect to necessary observation and measurement means, and performs observation and measurement from various angles. It is an object to realize a biomaterial and a medical material having a biocompatible surface selectively on the entire surface or a part of the material. In addition, the present invention provides a new biocompatible material that can add various biocompatibility to plastics and ceramics, and can design a material suitable for each patient and intended use. It is the purpose.

上記課題を解決する本発明は、以下の技術的手段から構成される。
(1)コア材の表面の一部又は全部に所定の膜厚のチタン被膜を形成して生体適合性を付与した骨代替用の生体適合化成形体であって、1)上記コア材がプラスチック又はセラミックスからなり、2)上記チタン被膜が、純チタン、又はチタン合金からなり、3)該チタン被膜が、少なくとも可視光に対して透明、又は半透明を示し、)チタン被膜の表面が、細胞・生体適合性作用を有し、
チタン被膜が透明又は半透明性を示し、コア材の所定の色彩、模様及び/又はデザインを表面に反映させることができることを特徴とする生体適合化成形体。
)成形体の上の一部に、セラミックス、有機物又は金属被膜を有する、前記(1)に記載の生体適合化成形体。
)セラミックス、有機物又は金属被膜、或いは、それらの混合層、組成傾斜層又は構造傾斜層が、コア材の一部又は全面を覆い、更にその上の一部又は全部に形成されたチタン被膜が生体適合性作用を有する、前記(1)に記載の生体適合化成形体。
)成形体の形態が、歯冠、歯科補綴物又は人工歯根であって、軟組織又は生体骨に接する部分又は周辺が生体適合性作用を有する、前記(1)から()のいずれかに記載の生体適合化成形体。
)チタン被膜が、透明性を示し、コア材料の色彩、模様及び/又はデザインを表面に反映する、前記(1)から()のいずれかに記載の生体適合化成形体。
)チタン被膜表面層の少なくとも一部が、Nb、Ta、W、Zr、Au、Ag、Pt、Si、Pd、Y、Hf、Ir、Mo、Fe、又はMg基金属の生体適合性金属膜で構成される、前記(1)から()のいずれかに記載の生体適合化成形体。
)前記(1)から()のいずれかに記載の生体適合化成形体よりなることを特徴とするインプラント。
The present invention for solving the above-described problems comprises the following technical means.
(1) A biocompatible molded article for bone replacement in which a titanium film having a predetermined film thickness is formed on part or all of the surface of a core material to impart biocompatibility, and 1) the core material is plastic or made of ceramic, 2) the titanium coating is made of pure titanium or a titanium alloy, 3) the titanium coating is transparent for at least visible light, or showed a translucent, 4) the surface of the titanium film, the cell・ Has biocompatibility,
A biocompatible molded article, wherein the titanium coating exhibits transparency or translucency, and allows a predetermined color, pattern and / or design of the core material to be reflected on the surface.
( 2 ) The biocompatible molded article according to (1), wherein a ceramic, an organic substance, or a metal coating is provided on a part of the molded article.
( 3 ) Ceramic coating, organic substance or metal coating, or a mixed layer, composition gradient layer or structural gradient layer covering a part or the whole of the core material, and further forming a titanium coating on a part or all of the core material The biocompatible molded article according to (1), wherein has a biocompatible action.
( 4 ) Any of the above (1) to ( 3 ), wherein the shape of the molded body is a crown, a dental prosthesis, or an artificial tooth root, and a portion that touches soft tissue or a living bone or a surrounding has a biocompatible action. The biocompatible molded product according to 1.
( 5 ) The biocompatible molded article according to any one of (1) to ( 4 ), wherein the titanium coating exhibits transparency and reflects the color, pattern and / or design of the core material on the surface.
( 6 ) A biocompatible metal in which at least a part of the titanium coating surface layer is Nb, Ta, W, Zr, Au, Ag, Pt, Si, Pd, Y, Hf, Ir, Mo, Fe, or Mg-based metal The biocompatible molded article according to any one of (1) to ( 5 ), comprising a film.
( 7 ) An implant comprising the biocompatible molded article according to any one of (1) to ( 6 ).

次に、本発明について更に詳細に説明する。
本発明は、コア材の表面に所定の膜厚のチタン被膜を形成して生体適合性を付与し、かつ表面の透明性を制御した生体適合化成形体であって、表面層がチタン被膜であること、チタン被膜が、少なくとも可視光に対して透明、又は半透明を示すこと、コア材が、プラスチック又はセラミックスからなること、チタン被膜の表面が、細胞・生体適合性作用を有すること、を特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a biocompatible molded article in which a titanium film having a predetermined thickness is formed on the surface of a core material to impart biocompatibility, and the surface transparency is controlled, and the surface layer is a titanium film. it, characterized titanium coating is transparent for at least visible light, or to exhibit a translucent, core material, be made of plastic or ceramic, the surface of the titanium film, to have a cell-biocompatible action, the It is what.

本発明では、上記チタン被膜は、純チタン、又はチタン合金から構成される。また、上記チタン被膜表面層の少なくとも一部は、Nb、Ta、W、Zr、Au、Ag、Pt、Si、Pd、Y、Hf、Ir、Mo、Fe、又はMg基金属等のチタン以外の生体適合性金属膜で構成することも可能である。 In the present invention, the titanium coating, pure titanium, or that consists of a titanium alloy. Further, at least a part of the surface layer of the titanium film is made of Nb, Ta, W, Zr, Au, Ag, Pt, Si, Pd, Y, Hf, Ir, Mo, Fe, or an Mg-based metal other than titanium. A biocompatible metal film can also be used.

上記コア材としては、所定の色彩、模様及び/又はデザインを表面に有するものを使用することが可能であるが、それらの具体的な構成は、使用目的に応じて任意に設計することができる。また、成形性などを考慮して、金属のインプラントなどでは難しいとされる、例えば、金属、セラミック、又はダイヤモンド製カッター等やミクロトーム、及び/又は研磨剤などで加工しやすいように設計することができる。   As the core material, those having a predetermined color, pattern and / or design on the surface can be used, but their specific configuration can be arbitrarily designed according to the purpose of use. . In addition, in consideration of formability, etc., it can be designed to be easy to process with metal, ceramic, or diamond cutters, microtomes, and / or abrasives, which are considered difficult with metal implants. it can.

本発明の生体適合化材料としては、好適には、例えば、人工骨、人工関節、人工歯根、人工歯冠、歯科用補綴物、義歯、義歯床、対軟組織インプラント等が例示される。例えば、人工関節の場合、X線CT等の形状測定法にて移植部位の形状を決定し、ラピットプロトタイプ等の手法を用いてコア材を移植し易い形状に加工した後、必要部位にチタン又はチタン合金を成膜速度5nm/minから100nm/minで1nmからコア材の厚みの50%以下に被覆する。ただし、被膜の一部あるいは全部を1nm以下の厚みにすることも性能に影響がなければ可能である。   The biocompatible material of the present invention is preferably exemplified by artificial bone, artificial joint, artificial tooth root, artificial dental crown, dental prosthesis, denture, denture base, soft tissue implant and the like. For example, in the case of an artificial joint, the shape of the transplant site is determined by a shape measurement method such as X-ray CT, and after processing the core material into a shape that can be easily transplanted using a technique such as a rapid prototype, titanium or The titanium alloy is coated from 1 nm to 50% or less of the thickness of the core material at a film formation rate of 5 nm / min to 100 nm / min. However, it is possible to make part or all of the coating thickness less than 1 nm as long as the performance is not affected.

本発明においては、チタン被膜を形成するための成膜方法としては、スパッタリング、蒸着、化学蒸着法及び物理蒸着法などの気相蒸着等が用いられる。成膜速度を5〜100nm/minに限定する理由は、必要以上に急な成膜により膜質を下げないためである。ただし、これらの成膜方法や成膜速度は、膜質や成形体の質を下げない限り、上述の範囲に制限されるものではない。   In the present invention, vapor deposition such as sputtering, vapor deposition, chemical vapor deposition, and physical vapor deposition is used as a film forming method for forming the titanium film. The reason for limiting the film formation rate to 5 to 100 nm / min is that the film quality is not lowered by film formation that is more rapid than necessary. However, these film forming methods and film forming speeds are not limited to the above ranges unless the film quality and the quality of the molded body are lowered.

また、人工歯根の場合、シリンダー(円柱等)やネジ式形状にコア材を加工した後、必要部位にチタン又はチタン合金を表面に成膜速度5nm/minから100nm/minで10nmから200μm被覆する。ここで、チタン合金の構成成分としては、例えば、Ti、Nb、Ta、W、Zr、P、Au、Ca、Ag、Pt、Al、V、Si、B、N、C、Pd、Y、Hf、Ir、Mo、Fe、Mg、Na、K等が例示されるが、これらに限定されるものではない。   In the case of an artificial tooth root, after processing the core material into a cylinder (cylinder or the like) or a screw-type shape, titanium or a titanium alloy is coated on the surface of the necessary portion at a film formation rate of 5 nm / min to 100 nm / min at 10 nm to 200 μm. . Here, as a component of the titanium alloy, for example, Ti, Nb, Ta, W, Zr, P, Au, Ca, Ag, Pt, Al, V, Si, B, N, C, Pd, Y, Hf , Ir, Mo, Fe, Mg, Na, K and the like are exemplified, but not limited thereto.

本発明では、必要であれば、あらかじめ色やデザイン等のあるコア材を使用するか、コア材を加工した後に、着色や描画等を施す。また、必要であれば、移植直前に医療現場にて形状の調整のための加工を行う。なお、必要な生体適合性を確保した状態で、必要な計測及び観察が可能な被覆状態にし、使用することが望ましい。ただし、コア材の分解温度以下でチタン又はチタン合金と複合化することが望ましい。   In the present invention, if necessary, a core material having a color, a design, or the like is used in advance, or after coloring the core material, coloring or drawing is performed. If necessary, processing for shape adjustment is performed at the medical site immediately before transplantation. In addition, it is desirable to use it in a covered state where necessary measurement and observation can be performed while ensuring necessary biocompatibility. However, it is desirable to form a composite with titanium or a titanium alloy below the decomposition temperature of the core material.

更に、必要であれば、コア材とチタン又はチタン合金との密着性を高めるために、コア材表面ではコア材の組成や構造に近づけ、徐々にチタンの割合を増やしていき成形体表面ではチタン又はチタン合金とする手法のような界面の組成及び構造の傾斜化を行うことが望ましい。   Furthermore, if necessary, in order to increase the adhesion between the core material and titanium or titanium alloy, the core material surface approaches the composition and structure of the core material, and the proportion of titanium is gradually increased. Alternatively, it is desirable to perform the gradient of the interface composition and structure, such as a technique using a titanium alloy.

また、表面の生体適合性や界面の制御、及び透明性や反射性能の制御等で必要であれば、チタンとコア材の間にセラミックス、有機物又は金属層を設けることや、チタン層の上にセラミックス、有機物又は金属層を設けることが望ましい。その理由は、界面や表面での反射等が大きい場合や、剥離を起こすなどして成形体の安定性を欠く場合、反射防止膜や界面での剥離を防止するバッファ層として適切なセラミックス、有機物又は金属膜を設けることが効果的であるからである。   In addition, if necessary for surface biocompatibility, interface control, transparency and reflection performance control, a ceramic, organic or metal layer is provided between titanium and the core material, or on the titanium layer. It is desirable to provide a ceramic, organic or metal layer. The reason is that if the reflection at the interface or surface is large, or if the molded product lacks stability due to peeling, etc., it is suitable for ceramics and organic substances suitable as antireflection film and buffer layer to prevent peeling at the interface. Alternatively, it is effective to provide a metal film.

また、その理由は、インプラント等で埋入場所の組織にあったセラミックス等が存在する場合、必要に応じて、表面にそのセラミックスを配置すること等も効果的であるからであり、他には、濡れ性の制御などにも効果的であるからである。   In addition, the reason is that, if there are ceramics etc. that existed in the tissue of the implantation place with implants etc., it is also effective to arrange the ceramics on the surface as necessary, etc. This is because it is also effective in controlling wettability.

その場合、セラミックス、有機物及び金属としては、好適には、例えば、Nb、Ta、W、Zr、P、Au、Ca、Ag、Pt、Al、V、Si、B、N、C、Pd、Y、Hf、Ir、Mo、Fe、Mg、Na、K、Co、Crの一種或いは二種以上の酸化物、混合物、積層物や、ポリ乳酸、ポリビニルアルコール、テフロン(登録商標)、シリコーン、ポーセレン、ポリメチルメタクリレート、ポリカーボネート、リエチレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリ塩化ビニール、ポリウレタン、コラーゲン、ナイロン等が例示される。   In that case, as ceramics, organic matter and metal, for example, Nb, Ta, W, Zr, P, Au, Ca, Ag, Pt, Al, V, Si, B, N, C, Pd, Y are preferable. , Hf, Ir, Mo, Fe, Mg, Na, K, Co, Cr, one or more oxides, mixtures, laminates, polylactic acid, polyvinyl alcohol, Teflon (registered trademark), silicone, porcelain, Examples include polymethyl methacrylate, polycarbonate, reethylene, polyethylene terephthalate, polytetrafluoroethylene, polyvinyl chloride, polyurethane, collagen, and nylon.

本発明では、コア材の一部又は全面にチタン被膜を形成して生体適合性を付与し、更にその上の一部又は全部に、例えば、例えば、Nb、Ta、W、Zr、P、Au、Ca、Ag、Pt、Al、V、Si、B、N、C、Pd、Y、Hf、Ir、Mo、Fe、Mg、Na、K、Co、Crの一種或いは二種以上の酸化物、混合物、積層物や、ポリ乳酸、ポリビニルアルコール、テフロン(登録商標)、シリコーン、ポーセレン、ポリメチルメタクリレート、ポリカーボネート、リエチレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリ塩化ビニール、ポリウレタン、コラーゲン、ナイロン等のセラミックスや有機物等の被膜を形成することが出来る。   In the present invention, a titanium coating is formed on a part or the entire surface of the core material to impart biocompatibility, and further, for example, Nb, Ta, W, Zr, P, Au, etc. , Ca, Ag, Pt, Al, V, Si, B, N, C, Pd, Y, Hf, Ir, Mo, Fe, Mg, Na, K, Co, Cr, one or more oxides, Mixtures, laminates, and ceramics such as polylactic acid, polyvinyl alcohol, Teflon (registered trademark), silicone, porcelain, polymethyl methacrylate, polycarbonate, reethylene, polyethylene terephthalate, polytetrafluoroethylene, polyvinyl chloride, polyurethane, collagen, nylon And a film of organic matter can be formed.

それにより、生体適合性、反射性、剥離防止などの制御ができるという利点が得られる。また、本発明では、コア材の一部又は全面にセラミックスや有機物等の被膜を形成し、更にその上の一部又は全面にチタン被膜を形成して生体適合性を付与することが出来る。   Thereby, the advantage that biocompatibility, reflectivity, peeling prevention, etc. can be controlled is obtained. Further, in the present invention, biocompatibility can be imparted by forming a coating of ceramics or organic matter on a part or the entire surface of the core material and further forming a titanium coating on a part or the entire surface of the core material.

この場合、上記セラミックスや有機物等の被膜としては、好適には、例えば、Nb、Ta、W、Zr、P、Au、Ca、Ag、Pt、Al、V、Si、B、N、C、Pd、Y、Hf、Ir、Mo、Fe、Mg、Na、K、Co、Crの一種或いは二種以上の酸化物、混合物、積層物や、ポリ乳酸、ポリビニルアルコール、テフロン(登録商標)、シリコーン、ポーセレン、ポリメチルメタクリレート、ポリカーボネート、リエチレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリ塩化ビニール、ポリウレタン、コラーゲン、ナイロン等が例示される。   In this case, as the ceramic or organic film, for example, Nb, Ta, W, Zr, P, Au, Ca, Ag, Pt, Al, V, Si, B, N, C, Pd are preferable. Y, Hf, Ir, Mo, Fe, Mg, Na, K, Co, Cr, one or more oxides, mixtures, laminates, polylactic acid, polyvinyl alcohol, Teflon (registered trademark), silicone, Examples include porcelain, polymethyl methacrylate, polycarbonate, reethylene, polyethylene terephthalate, polytetrafluoroethylene, polyvinyl chloride, polyurethane, collagen, and nylon.

また、上記セラミックスや有機物等の被覆の形成方法としては、例えば、スパッタリング、蒸着、化学蒸着法及び物理蒸着法などの気相蒸着、メッキ等が例示されるが、これらに制限されるものではない。なお、本発明では、被膜の密着性や透明性を阻害しない範囲で、被膜の一部を他の金属や有機物で代用することも可能である。   Examples of the method for forming the coating of ceramics or organic matter include, but are not limited to, vapor deposition such as sputtering, vapor deposition, chemical vapor deposition, and physical vapor deposition, and plating. . In the present invention, it is also possible to substitute a part of the film with another metal or organic substance as long as the adhesion and transparency of the film are not impaired.

それらの具体例として、Nb、Ta、W、Zr、P、Au、Ca、Ag、Pt、Al、V、Si、B、N、C、Pd、Y、Hf、Ir、Mo、Fe、Mg、Na、K、Co、Crの一種或いは二種以上の酸化物、混合物、積層物や、ポリ乳酸、ポリビニルアルコール、テフロン(登録商標)、シリコーン、ポーセレン、ポリメチルメタクリレート、ポリカーボネート、リエチレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリ塩化ビニール、ポリウレタン、コラーゲン、ナイロン等が例示される。   Specific examples thereof include Nb, Ta, W, Zr, P, Au, Ca, Ag, Pt, Al, V, Si, B, N, C, Pd, Y, Hf, Ir, Mo, Fe, Mg, Na, K, Co, Cr, one or more oxides, mixtures, laminates, polylactic acid, polyvinyl alcohol, Teflon (registered trademark), silicone, porcelain, polymethyl methacrylate, polycarbonate, reethylene, polyethylene terephthalate, Examples include polytetrafluoroethylene, polyvinyl chloride, polyurethane, collagen, nylon and the like.

図1に、本発明の生体適合化材料の製造方法及び適応例の概略を示す。本発明では、例えば、形状、機械的特性、色、デザイン等を設計・選択した適宜のコア材に、生体適合性を示すチタン薄膜を、必要に応じて、透明にコーティングすることにより、所定の形状等を有する、生体適合性及び表面の透明性を制御した生体適合化成形体を作製することが出来る。   FIG. 1 shows an outline of a method for producing the biocompatible material of the present invention and an application example. In the present invention, for example, a titanium thin film exhibiting biocompatibility is coated on an appropriate core material that has been designed and selected in terms of shape, mechanical properties, color, design, etc. A biocompatible molded article having a shape and the like, with controlled biocompatibility and surface transparency, can be produced.

ここで、表面の透明性を制御するとは、単純にはチタン被覆層の厚さを制御することであり、表面形成層全体の厚さや構造、物性等を制御して、少なくとも可視光に対する透過性を制御することを意味する。本発明では、生体適合化材料全体を、必要に応じて、透明、半透明又は不透明にすることが出来る。尚、本発明において、少なくとも可視光に対する透過性とは、可視光の他に、後記する実施例に計測した例が示されているように、必要により、適宜、X線に対しても透過性を制御できることを意味する。 Here, to control the transparency of the surface is simply is to control the thickness of the titanium coating layer, the thickness and structure of the whole surface layer, by controlling the physical properties, against at least visible light transmittance It means controlling sex. In the present invention, the entire biocompatible material can be made transparent, translucent or opaque as required. In the present invention, at least the transparency to visible light means that, in addition to visible light, as shown in the examples measured in the examples described later, if necessary, the transparency to X-rays is used as appropriate. Can be controlled.

例えば、可視光で透明にした場合、生体適合化材料が目立たなくなる効果や、裏側や材料内部から光学的な観察が容易になる効果が得られる。その場合、当然、金属被膜の上に様々な表面修飾技術を施し、その効果等を裏側や材料内部から観察することも可能である。また、例えば、X線に対して透明の場合、生体適合化材料の陰になる部分でも観察が可能となる。また、X線CTの場合でも、生体適合化材料のX線吸収率が低いため、周りの物質の計測を妨げることがない。また、生体適合化材料の一部を透明にし、上述の効果を選択的に与えることも可能である。   For example, when transparent with visible light, an effect of making the biocompatible material inconspicuous and an effect of facilitating optical observation from the back side or inside the material can be obtained. In that case, naturally, it is also possible to perform various surface modification techniques on the metal coating and observe the effects and the like from the back side or inside the material. In addition, for example, when transparent to X-rays, it is possible to observe even a portion that is behind the biocompatible material. Even in the case of X-ray CT, the biocompatible material has a low X-ray absorption rate, so that measurement of surrounding substances is not hindered. It is also possible to make a part of the biocompatible material transparent and selectively give the above-mentioned effects.

本発明では、生体適合化材料の一部を必要に応じて半透明、不透明にすることが出来る。例えば、可視光で半透明、不透明にした場合、生体適合化材料の表面状態を肉眼で確認することが出来る。また、例えば、X線に対して半透明、不透明にした場合、透過性の良いコア材を使用していても生体適合化材料の表面を特定しやすくなる。また、X線CTの場合でも、生体適合化材料の形状を測定することが出来る。また、生体適合化材料全体を半透明、不透明にし、上述の効果を与えることも出来る。   In the present invention, a part of the biocompatible material can be made translucent and opaque as necessary. For example, when it is made translucent and opaque with visible light, the surface state of the biocompatible material can be confirmed with the naked eye. In addition, for example, when translucent and opaque with respect to X-rays, the surface of the biocompatible material can be easily specified even when a core material with good permeability is used. Even in the case of X-ray CT, the shape of the biocompatible material can be measured. In addition, the entire biocompatible material can be made translucent and opaque to give the above-mentioned effects.

本発明では、コア材が、生体適合性の低いプラスチックやセラミックスにおいても、生体適合化材料とすることが出来る。そのため、生体適合化材料全体の機械的特性も多彩に設計することが出来、例えば、プラスチックや樹脂などの比較的柔らかい材料をコア材に使用した場合、切削容易であったり、例えば、200℃程度で熱変形容易なものなどを提供することが出来る。更に、例えば、実験的に動物の骨に埋め込んだ後、薄片標本を作製し易い等の利点もある。   In the present invention, the core material can be a biocompatible material even in plastics and ceramics having low biocompatibility. Therefore, the mechanical properties of the entire biocompatible material can be designed in various ways. For example, when a relatively soft material such as plastic or resin is used for the core material, it is easy to cut, for example, about 200 ° C. Can provide a material that can be easily thermally deformed. Further, for example, there is an advantage that it is easy to produce a slice specimen after being experimentally embedded in the bone of an animal.

本発明では、多彩な色やデザインを有する生体適合化材料を提供することが出来る。上記の様にして、成形体コアの材料の色彩、模様又はデザインを表面に反映する状態にすることでそれを実現出来る。例えば、患者の生体組織の色に合わせた状態とすることで、生体適合化材料を目立たなくすることが出来る。また、例えば、患者の要望に応じたデザインや色とすることで、ファッション性を持たせることも適宜可能である。これらの手法を生体適合材料に適応することにより、個々の患者や使用用途にあわせた生体適合化材料を供給することが出来、生体適合化材料の幅広い用途への応用及びテーラーメイドが可能となる。   In the present invention, biocompatible materials having various colors and designs can be provided. As described above, this can be realized by reflecting the color, pattern or design of the material of the molded body core on the surface. For example, the biocompatible material can be made inconspicuous by adjusting the color to the color of the patient's biological tissue. Further, for example, it is possible to provide fashionability by appropriately setting the design and color according to the patient's request. By applying these techniques to biocompatible materials, it is possible to supply biocompatible materials tailored to individual patients and intended uses, and biocompatible materials can be applied to a wide range of uses and tailor-made.

本発明により、(1)プラスチック又はセラミックスのコア材の表面にチタン被膜を形成して生体適合性を付与し、かつ表面の透明性を制御した骨代替用の生体適合化材料を提供することができる、(2)コア材の一部或いは全面の必要な部位に生体適合性を与え、様々な色やデザインを有する生体適合化材料を作製することが出来、必要な計測手段に対して透明性を確保することが可能な材料を提供することが出来る、(3)片面のみ金属光沢とすることや被覆層をパターン化するなど単一のインプラント等の中においても選択的に複合することが出来る、(4)このことにより、プラスチックやセラミックスなどにおいても多彩な生体適合性を付加することが出来、多様な要望に応えることが出来る上、透明性も確保することが出来、当該材料及び周辺の経過観察等の各種観察も容易になる、(5)更に、医療現場や手術現場での加工も容易な材料、例えば、歯科技工士や歯科医師の手持ちの器具で加工可能なものなども提供出来、それにより、個々の患者や使用用途にあわせた生体適合化材料を供給することが出来ると共に、その幅広い用途及びテーラーメイドを可能とすることが出来る、という格別の効果が奏される。   According to the present invention, (1) to provide a biocompatible material for bone replacement in which a titanium coating is formed on the surface of a plastic or ceramic core material to impart biocompatibility and the surface transparency is controlled. (2) Biocompatibility can be produced by giving biocompatibility to a necessary part of the core material or a part of the entire surface, and it is possible to produce biocompatible materials having various colors and designs. It is possible to provide a material that can secure the material. (3) It can be selectively combined even in a single implant, such as a metallic luster only on one side or patterning the coating layer. (4) This makes it possible to add various biocompatibility to plastics and ceramics, meet various demands, and ensure transparency. Various observations such as observation of the material and surroundings are also facilitated. (5) Furthermore, materials that can be easily processed at medical sites and surgical sites, for example, those that can be processed with instruments held by dental technicians or dentists It is possible to provide a biocompatible material tailored to individual patients and intended use, and it is possible to provide a wide range of uses and tailor-made, so that a special effect is achieved. .

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(1)透明、半透明及び金属光沢のチタン被覆生体適合化材料の作製
直径1mmから3mm、長さ3mmから20mmの透明プラスチック棒及びガラス棒をコア材として使用し、その表面の一部又は全面に、成膜速度50nm/minで約1nmから1μmのチタン薄膜を形成し、生体適合化成形体を作製した。その具体的方法は、次の通りである。スパッタアップのスパッタ装置の基板ホルダーにコア材を固定し、真空度0.01から1Paにて50Wから1KWのDCプラズマを発生させ、チタンターゲット(JIS2種或いは99.9%以上、株式会社高純度化学研究所製)にてプレスパッタを5min以上行った後、50n
/minで1s以上成膜することにより、生体適合化成形体とした。
(1) Production of transparent, translucent and metallic luster titanium-coated biocompatible material Using a transparent plastic rod and glass rod with a diameter of 1 mm to 3 mm and a length of 3 mm to 20 mm as a core material, part or all of its surface Then, a titanium thin film having a thickness of about 1 nm to 1 μm was formed at a film forming rate of 50 nm / min to produce a biocompatible molded body. The specific method is as follows. A core material is fixed to a substrate holder of a sputtering apparatus for sputtering up, DC plasma of 50 W to 1 KW is generated at a vacuum degree of 0.01 to 1 Pa, and a titanium target (JIS type 2 or more, 99.9% or higher, high purity Co., Ltd.) After performing pre-sputtering for 5 min or more at Chemical Research Laboratory), 50 nm
A biocompatible molded body was formed by forming a film for 1 s or more at / min.

電子顕微鏡にて観察した表面の例を、図2、図3に示す。これらの図に示されるように、チタン被膜は、均一に成膜されていた。外観写真の例を、図4に示す。肉眼、つまり可視光では、チタン膜厚1μの成形体は透明性が低く、膜厚が減少するに伴い透明性が高くなり、チタンの膜厚が30nmでは少々色はあるもののほぼ透明の外観になっていた。 Examples of the surface observed with an electron microscope are shown in FIGS. As shown in these figures, the titanium film was uniformly formed. An example of the appearance photograph is shown in FIG. Naked eye, i.e. in the visible light, compact of titanium film thickness 1 [mu] m has low transparency, the film thickness transparency becomes high due to the reduced appearance of substantially transparent although the film thickness of the titanium little color in 30nm is It was.

図4中の右試料は、透明性が低く、右試料は、透明性が高い状態を呈している例である。透明性が低い成形体は、肉眼で被覆状態がはっきりと確認出来るが、X線CTなどの観察においては、透明で、計測が容易な状態であった。アクリルコアの成形体は、300℃までの温度で柔らかくなり、変形が容易で、室温においても、切削するなどの加工が可能であった。この試料を、マウス及び犬の生体骨に埋入したものは、数日から数ヶ月までの期間内に骨と接着し、高い生体適合性を示した。なお、これらの標本は金属製カッターやミクロトーム、及び、研磨剤などで容易に加工できた。   The right sample in FIG. 4 is an example in which the transparency is low, and the right sample is in a state of high transparency. The molded product with low transparency can be clearly confirmed with the naked eye, but in observation with X-ray CT, it was transparent and easy to measure. The molded body of the acrylic core became soft at temperatures up to 300 ° C., easily deformed, and could be processed such as cutting at room temperature. When this sample was embedded in a living bone of a mouse or dog, it adhered to the bone within a period of several days to several months and showed high biocompatibility. These specimens could be easily processed with a metal cutter, a microtome, and an abrasive.

10mm角のプラスチック板、ガラス板及び酸化アルミニウム板をコア材として使用し、その表面の一部に、実施例1と同様にして、成膜速度5nm/minから100nm/minで約1nmから200μmのチタン薄膜を形成し、生体適合化成形体を作製した。肉眼、つまり可視光では、チタン膜厚1μ以上の成形体は透明性が低く、膜厚が減少するに伴い透明性が高くなり、チタンの膜厚が30nmでは少々色はあるもののほぼ透明の外観になっていた。透明性が低い成形体は、肉眼で被覆状態がはっきりと確認出来るが、X線CTなどの観察においては、透明で、計測が容易な状態であった。 A 10 mm square plastic plate, a glass plate and an aluminum oxide plate are used as core materials, and a part of the surface thereof has a film formation rate of 5 nm / min to 100 nm / min and a thickness of about 1 nm to 200 μm in the same manner as in Example 1. A titanium thin film was formed to produce a biocompatible molded body. Naked eye, i.e. in the visible light, the titanium film thickness 1 [mu] m or more shaped bodies has low transparency, the film thickness transparency becomes high due to the decrease, the titanium film thickness is substantially transparent although there is little in the 30nm color It was an appearance. The molded product with low transparency can be clearly confirmed with the naked eye, but in observation with X-ray CT, it was transparent and easy to measure.

直径1mmから3mm、長さ3mmから20mmの円柱形状、ねじ形状の色付プラスチック棒及び金属棒をコア材として使用し、その表面の一部或いは全面に、実施例1と同様にして、成膜速度50nm/minで約1nmから1μmのチタン薄膜を成形し、生体適合化成形体を作製した。チタン被膜は、均一に成膜されており、すべての材料で、コア材の形状を表面に反映していた。   A cylindrical plastic or screw-shaped colored plastic rod and metal rod having a diameter of 1 mm to 3 mm and a length of 3 mm to 20 mm are used as a core material, and a film is formed on a part or the entire surface in the same manner as in Example 1. A titanium thin film having a thickness of about 1 nm to 1 μm was molded at a speed of 50 nm / min to produce a biocompatible molded body. The titanium coating was uniformly formed, and the shape of the core material was reflected on the surface for all materials.

肉眼、つまり可視光では、チタン膜厚1μ以上の成形体は透明性が低く、膜厚が減少するに伴い透明性が高くなり、チタンの膜厚が30nmでは少々色はあるもののほぼ透明の外観になっており、コア材の色やデザインが表面に反映されていた。透明性が低い成形体は、肉眼で被覆状態がはっきりと確認出来るが、X線CTなどの観察においては、透明で、計測が容易な状態であった。プラスチックコアの成形体は、300℃までの温度で柔らかくなり、変形が容易で、室温においても、切削するなどの加工が可能であった。 Naked eye, i.e. in the visible light, the titanium film thickness 1 [mu] m or more shaped bodies has low transparency, the film thickness transparency becomes high due to the decrease, the titanium film thickness is substantially transparent although there is little in the 30nm color It was an appearance, and the color and design of the core material were reflected on the surface. The molded product with low transparency can be clearly confirmed with the naked eye, but in observation with X-ray CT, it was transparent and easy to measure. The molded body of the plastic core became soft at temperatures up to 300 ° C., easily deformed, and could be processed such as cutting at room temperature.

直径約50mmから60mmのプラスチックシャーレをコア材として使用し、その表面に、成膜速度5nm/minから100nm/minで、実施例1と同様にして、約1nmから200μmのチタン薄膜を形成し、生体適合化成形体を作製した。肉眼、つまり可視光では、チタン膜厚1μ以上の成形体は透明性が低く、膜厚が減少するに伴い透明性が高くなり、チタンの膜厚が30nmでは少々色はあるもののほぼ透明の外観になっていた。透明性が低い成形体は、肉眼で被覆状態がはっきりと確認出来るが、X線CTなどの観察においては、透明で、計測が容易な状態であった。これら成形体の表面は、処理しない表面に比べて、曇りにくくなっていた。また、肉眼で透明な試料で細胞培養を行うと、下面から観察することが可能であった。 A plastic petri dish having a diameter of about 50 mm to 60 mm is used as a core material, and a titanium thin film of about 1 nm to 200 μm is formed on the surface at a film forming speed of 5 nm / min to 100 nm / min in the same manner as in Example 1. A biocompatible molded body was produced. Naked eye, i.e. in the visible light, the titanium film thickness 1 [mu] m or more shaped bodies has low transparency, the film thickness transparency becomes high due to the decrease, the titanium film thickness is substantially transparent although there is little in the 30nm color It was an appearance. The molded product with low transparency can be clearly confirmed with the naked eye, but in observation with X-ray CT, it was transparent and easy to measure. The surfaces of these molded bodies were less fogged than the untreated surfaces. Moreover, when cell culture was performed with a sample transparent to the naked eye, it was possible to observe from the lower surface.

実施例1と同様の方法により生体適合化した、φ1.6×5mmのアクリルピンを、ラット大腿骨に埋入した。4週間後、アクリルピンを大腿骨ごと回収した。アクリルピン埋入部位、及び近傍に感染、病変を示唆する所見はなく、アクリルピンは大腿骨にしっかり固定されていた。アクリルピン及び周辺組織のマイクロX線CT断層画像、及び断層画像の3Dコンピュータモデルをそれぞれ、図5、6に示す。断層画像に生体適合化処理によるTi皮膜の影響は認められなかった。 An acrylic pin of φ1.6 × 5 mm , which was biocompatible by the same method as in Example 1, was implanted in the rat femur. After 4 weeks, the acrylic pin was collected with the femur. There were no findings suggesting infection or lesion at or near the site where the acrylic pin was implanted, and the acrylic pin was firmly fixed to the femur. A micro X-ray CT tomographic image of an acrylic pin and surrounding tissue and a 3D computer model of the tomographic image are shown in FIGS. 5 and 6, respectively. The tomographic image was not affected by the Ti coating due to the biocompatibility treatment.

また、3Dコンピュータモデルには、アクリルピンの輪郭がはっきりと再現されていた。つまり、生体適合化処理を施したアクリルピンは、一般的なチタン製インプラント同様に骨と結合し、埋入状態をX線CTにより非破壊的に観察することができた。CT撮像技術の制約として、骨とX線吸収特性が著しく異なる金属、例えば、チタン合金製インプラント、を骨と同時に撮像した場合、正しい画像を得ることが困難である。   In addition, the outline of the acrylic pin was clearly reproduced in the 3D computer model. That is, the acrylic pin subjected to the biocompatibility treatment was bonded to the bone like a general titanium implant, and the embedded state could be observed non-destructively by X-ray CT. As a limitation of CT imaging technology, it is difficult to obtain a correct image when a metal, such as a titanium alloy implant, having a significantly different X-ray absorption characteristic from that of bone is imaged simultaneously with the bone.

50mm角のアルミナ板及び26×76mmのガラス板に成膜速度5nm/minから100nm/minで約1μのチタン薄膜を作製した。その試料の写真を図7に示す。薄膜は剥離した部分もなく、安定に固定されていた。成膜時にアルミナ板はダメージを受けることもなく、変質は見られなかった。また、膜表面は下地表面形状を模倣した状態となっていた。 To prepare a titanium film of about 1 [mu] m from the deposition rate of 5 nm / min at 100 nm / min on the glass plate of the alumina plate and 26 × 76 mm in 50mm square. A photograph of the sample is shown in FIG. The thin film was fixed stably without any peeled part. During the film formation, the alumina plate was not damaged and no alteration was observed. The film surface was in a state imitating the shape of the underlying surface.

φ1.6×7mmのアクリルピン、及び、26×76mmのガラス板に成膜速度5n/minから100n/minで約1nmから100nmのNb、Ta等の薄膜を作製した。その試料例の写真を図8に示す。薄膜は剥離した部分もなく、安定に固定されていた。成膜時にガラス板はダメージを受けることもなく、変質は見られなかった。また、膜表面は下地表面形状を模倣した状態となっていた。 Acrylic pins 1.6 dia. × 7 mm, and, 26 × 76 mm glass plates from the film formation rate 5n m / min to about 1nm in 100n m / min 100 nm of Nb, to produce a thin film of Ta or the like. A photograph of the sample is shown in FIG. The thin film was fixed stably without any peeled part. During the film formation, the glass plate was not damaged and no alteration was observed. The film surface was in a state imitating the shape of the underlying surface.

以上詳述したように、本発明は、透明チタン被覆生体適合化材料に係るものであり、本発明により、コア材の一部或いは全面の必要な部位に生体適合性を与え、様々な色やデザインを有する生体適合化材料を作製することが出来、必要な計測手段に対して透明性を確保することが可能な材料を提供することが出来る。また、片面のみ金属光沢とすることや被覆層をパターン化するなど単一のインプラント等の中においても選択的に複合することが出来る。   As described above in detail, the present invention relates to a transparent titanium-coated biocompatible material, and according to the present invention, biocompatibility is imparted to a necessary part of the core material or a part of the entire core material, and various colors, The biocompatible material which has a design can be produced, and the material which can ensure transparency with respect to a required measurement means can be provided. Further, it can be selectively combined in a single implant or the like such that only one surface has a metallic luster or a coating layer is patterned.

このことにより、プラスチックやセラミックスなどにおいても多彩な生体適合性を付加することが出来、多様な要望に応えることが出来る上、透明性も確保することが出来、当該材料及び周辺の経過観察等の各種観察も容易になる。更に、医療現場や手術現場での加工も容易な材料、例えば、歯科技工士や歯科医師の手持ちの器具で加工可能なものなど、も提供出来る。本発明は、個々の患者や使用用途に合わせた生体適合化材料を供給することを可能にすると共に、その幅広い用途及びテーラーメイドを可能にするものとして当技術分野における新技術及び新産業の創出に資するものである。   This makes it possible to add various biocompatibility to plastics and ceramics, to meet various demands, and to ensure transparency. Various observations are also facilitated. Furthermore, materials that can be easily processed at medical sites and surgical sites, for example, materials that can be processed with instruments held by dental technicians and dentists can be provided. The present invention makes it possible to supply biocompatible materials tailored to individual patients and applications, and to create new technologies and new industries in the art as enabling a wide range of applications and tailor-made. It contributes.

本発明の生体適合化材料の製造方法及び適応例の概略を示す概念図である。It is a conceptual diagram which shows the outline of the manufacturing method of the biocompatible material of this invention, and an application example. 本発明の生体適合化成形体材料の概観写真である。It is an outline photograph of the biocompatible molded object material of this invention. 本発明の生体適合化成形体材料の表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the biocompatible molded object material of this invention. 本発明の生体適合化成形体材料の外観写真(左:30nm膜厚試料、右:1μ膜厚試料)である。Exterior biocompatible of molding material of the present invention (Left: 30 nm film thickness sample, right: 1 [mu] m film thickness sample) is. 本発明に係る製造方法(実施例5)による材料のX線CTによる断面像である。It is a cross-sectional image by X-ray CT of the material by the manufacturing method (Example 5) which concerns on this invention. 本発明に係る製造方法(実施例5)による材料のX線CT像である。It is a X-ray CT image of material by the manufacturing method (Example 5) which concerns on this invention. 本発明に係る製造方法(実施例6)による材料の外観写真(左:ガラス板、右:アルミナ板)である。It is the external appearance photograph (left: glass plate, right: alumina plate) of the material by the manufacturing method (Example 6) which concerns on this invention. 本発明に係る製造方法(実施例7)による材料の外観写真(左上:ガラス板Ta被覆、右上:アクリルピンTa被覆、左上:ガラス板Nb被覆、右上:アクリルピンNb被覆)である。It is an appearance photograph (upper left: glass plate Ta coating, upper right: acrylic pin Ta coating, upper left: glass plate Nb coating, upper right: acrylic pin Nb coating) of the material by the manufacturing method (Example 7) based on this invention.

Claims (7)

コア材の表面の一部又は全部に所定の膜厚のチタン被膜を形成して生体適合性を付与した骨代替用の生体適合化成形体であって、(1)上記コア材がプラスチック又はセラミックスからなり、(2)上記チタン被膜が、純チタン、又はチタン合金からなり、)該チタン被膜が、少なくとも可視光に対して透明、又は半透明を示し、()チタン被膜の表面が、細胞・生体適合性作用を有し、
チタン被膜が透明又は半透明性を示し、コア材の所定の色彩、模様及び/又はデザインを表面に反映させることができることを特徴とする生体適合化成形体。
A biocompatible molded article for bone replacement in which a titanium film having a predetermined thickness is formed on a part or all of the surface of a core material to impart biocompatibility, and (1) the core material is made of plastic or ceramics. becomes, (2) the titanium coating is made of pure titanium or a titanium alloy, (3) the titanium film, transparent for at least visible light, or shows a semi-transparent, the surface of (4) titanium film, Has cell / biocompatibility action,
A biocompatible molded article, wherein the titanium coating exhibits transparency or translucency, and allows a predetermined color, pattern and / or design of the core material to be reflected on the surface.
成形体の上の一部に、セラミックス、有機物又は金属被膜を有する、請求項1に記載の生体適合化成形体。   The biocompatible molded article according to claim 1, wherein a ceramic, organic matter, or metal coating is provided on a part of the molded article. セラミックス、有機物又は金属被膜、或いは、それらの混合層、組成傾斜層又は構造傾斜層が、コア材の一部又は全面を覆い、更にその上の一部又は全部に形成されたチタン被膜が生体適合性作用を有する、請求項1に記載の生体適合化成形体。   Ceramics, organic matter or metal coating, or mixed layer, composition gradient layer or structure gradient layer covers part or the whole of the core material, and titanium coating formed on part or all of the core material is biocompatible. The biocompatible molded article according to claim 1, which has a sexual effect. 成形体の形態が、歯冠、歯科補綴物又は人工歯根であって、軟組織又は生体骨に接する部分又は周辺が生体適合性作用を有する、請求項1からのいずれかに記載の生体適合化成形体。 The biocompatible composition according to any one of claims 1 to 3 , wherein the shape of the molded body is a crown, a dental prosthesis, or an artificial root, and a soft tissue or a portion in contact with a living bone or a surrounding has a biocompatible action. Form. チタン被膜が、透明性を示し、コア材料の色彩、模様及び/又はデザインを表面に反映する、請求項1からのいずれかに記載の生体適合化成形体。 The biocompatible molded article according to any one of claims 1 to 4 , wherein the titanium coating exhibits transparency and reflects the color, pattern and / or design of the core material on the surface. チタン被膜表面層の少なくとも一部が、Nb、Ta、W、Zr、Au、Ag、Pt、Si、Pd、Y、Hf、Ir、Mo、Fe、又はMg基金属の生体適合性金属膜で構成される、請求項1からのいずれかに記載の生体適合化成形体。 At least a part of the titanium coating surface layer is composed of a biocompatible metal film of Nb, Ta, W, Zr, Au, Ag, Pt, Si, Pd, Y, Hf, Ir, Mo, Fe, or Mg-based metal The biocompatible molded article according to any one of claims 1 to 5 . 請求項1からのいずれかに記載の生体適合化成形体よりなることを特徴とするインプラント。 An implant comprising the biocompatible molded article according to any one of claims 1 to 6 .
JP2005230178A 2004-08-20 2005-08-08 Transparent titanium-coated biocompatible material Active JP4543152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005230178A JP4543152B2 (en) 2004-08-20 2005-08-08 Transparent titanium-coated biocompatible material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004240692 2004-08-20
JP2005230178A JP4543152B2 (en) 2004-08-20 2005-08-08 Transparent titanium-coated biocompatible material

Publications (2)

Publication Number Publication Date
JP2006081896A JP2006081896A (en) 2006-03-30
JP4543152B2 true JP4543152B2 (en) 2010-09-15

Family

ID=36160842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005230178A Active JP4543152B2 (en) 2004-08-20 2005-08-08 Transparent titanium-coated biocompatible material

Country Status (1)

Country Link
JP (1) JP4543152B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007043149A1 (en) * 2005-10-05 2009-04-16 株式会社ホムズ技研 Implant for osteosynthesis and method for producing the same
KR100814355B1 (en) 2007-02-27 2008-03-18 (주)메디사이텍 Pretreating method of titanate implant and the titanate implant thereby
WO2010015414A1 (en) * 2008-08-07 2010-02-11 Deru Gmbh Method for producing a ceramic component
US10765523B2 (en) * 2015-08-03 2020-09-08 Zanini Auto Grup, S.A. Prosthesis component and method for the production thereof
CN114247893B (en) * 2022-02-24 2022-05-17 西南医科大学附属医院 Application of metal powder in field of medical materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269357A (en) * 2000-03-27 2001-10-02 Kyocera Corp Living body implant material, and method of manufacturing for the same
JP2001523528A (en) * 1997-11-11 2001-11-27 ノベル バイオケアー アーベー (パブル) Implant element
JP2003528702A (en) * 2000-03-31 2003-09-30 オプトバイオニックス コーポレイション Retinal transplantation and insertion device using multi-phase micro photoelectric detector with variable voltage and current capability
WO2005030283A1 (en) * 2003-10-02 2005-04-07 Tikomed Ab Bioartificial implant and its use and method of reducing the risk for formation of connective tissue after implantation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243132B4 (en) * 2002-09-17 2006-09-14 Biocer Entwicklungs Gmbh Anti-infective, biocompatible titanium oxide coatings for implants and methods of making them
EP2161008B1 (en) * 2003-05-27 2014-12-24 Simplify Medical, Inc. Method for assembling a prosthetic disc for intervertebral insertion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523528A (en) * 1997-11-11 2001-11-27 ノベル バイオケアー アーベー (パブル) Implant element
JP2001269357A (en) * 2000-03-27 2001-10-02 Kyocera Corp Living body implant material, and method of manufacturing for the same
JP2003528702A (en) * 2000-03-31 2003-09-30 オプトバイオニックス コーポレイション Retinal transplantation and insertion device using multi-phase micro photoelectric detector with variable voltage and current capability
WO2005030283A1 (en) * 2003-10-02 2005-04-07 Tikomed Ab Bioartificial implant and its use and method of reducing the risk for formation of connective tissue after implantation

Also Published As

Publication number Publication date
JP2006081896A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
Grech et al. Zirconia in dental prosthetics: A literature review
Prakasam et al. Fabrication, properties and applications of dense hydroxyapatite: a review
Osman et al. A critical review of dental implant materials with an emphasis on titanium versus zirconia
Schierano et al. An alumina toughened zirconia composite for dental implant application: in vivo animal results
Brunot-Gohin et al. Biocompatibility study of lithium disilicate and zirconium oxide ceramics for esthetic dental abutments
Zhang Biological and biomedical coatings handbook: applications
Brunot-Gohin et al. Soft tissue adhesion of polished versus glazed lithium disilicate ceramic for dental applications
JP4543152B2 (en) Transparent titanium-coated biocompatible material
Sirin et al. Ti implants with nanostructured and HA-coated surfaces for improved osseointegration
Zhang et al. Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies
Ke et al. Enhancing the bioactivity of yttria-stabilized tetragonal zirconia ceramics via grain-boundary activation
Owoeye et al. Microstructure, phase and physical evaluation of non-bioactive wollastonite glass–Ceramic prepared from waste glass by sintering method
Martin et al. Evaluation of the Bioactivity of Surface Modified Polyetheretherketone (PEEK) as an Implant Material: An: In Vitro: Study
Sazesh et al. Fabrication and characterization of nHA/titanium dental implant
Vrbova et al. Titanium and other metal hypersensitivity diagnosed by MELISA® test: follow-up study
Seesala et al. A novel functional gradient hydroxyapatite coating for zirconia-based implants
Sekar et al. Zirconia as a bioceramic material
CN116616928A (en) Bionic implant with stress self-buffering effect and preparation method thereof
Yang et al. Structure design and manufacturing of layered bioceramic scaffolds for load-bearing bone reconstruction
Balakrishnan et al. Inert ceramics
Vlasov et al. Ceramics and medicine
Senan et al. Functional biomimetic dental restoration
Swain et al. Bioceramic coating for tissue engineering applications
Karunanithi et al. Evolution and Progress of Biologically Compatible Materials in Dental Field: A Descriptive Review
Madeira et al. Functionally graded nanostructured biomaterials (FGNB)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091109

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250