JP4541243B2 - Boron diffusion coating solution - Google Patents

Boron diffusion coating solution Download PDF

Info

Publication number
JP4541243B2
JP4541243B2 JP2005213030A JP2005213030A JP4541243B2 JP 4541243 B2 JP4541243 B2 JP 4541243B2 JP 2005213030 A JP2005213030 A JP 2005213030A JP 2005213030 A JP2005213030 A JP 2005213030A JP 4541243 B2 JP4541243 B2 JP 4541243B2
Authority
JP
Japan
Prior art keywords
water
boron
coating solution
weight
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005213030A
Other languages
Japanese (ja)
Other versions
JP2007035719A (en
Inventor
弘章 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Sanken Electric Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Sanken Electric Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2005213030A priority Critical patent/JP4541243B2/en
Publication of JP2007035719A publication Critical patent/JP2007035719A/en
Application granted granted Critical
Publication of JP4541243B2 publication Critical patent/JP4541243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、新規なホウ素拡散用塗布液、さらに詳しくはシリコン半導体の表面にホウ素を拡散するための新規なホウ素拡散用塗布液に関する。   The present invention relates to a novel boron diffusion coating solution, and more particularly to a novel boron diffusion coating solution for diffusing boron on the surface of a silicon semiconductor.

トランジスタ、ダイオード、IC等の製造には、ホウ素が拡散したP型領域を有するシリコン半導体デバイスが使用されている。前記シリコン半導体デバイスにホウ素を拡散させる方法としては、熱分解法、対抗NB法、ドーパントホスト法、塗布法等があるが、なかでも、高価な装置を必要とせずに均一にホウ素を拡散でき、さらに、量産性に優れていることから、塗布法が好適である。特に塗布法の中でも、ホウ素を含有する塗布液をスピンコーターを用いて塗布する方法が採用されている。近時、製造コスト削減のために従来の3インチ以下のウェーハから4インチ以上の大型ウェーハへと移行しつつある。この場合、3インチ以下のウェーハではスピンコート法による塗布は好適であるが、4インチ以上の大型ウェハーに適用した場合には、膜厚が不均一となるという欠点が生じる。そこで、新たな塗布方法としてスクリーン印刷法が検討されている。   For the manufacture of transistors, diodes, ICs and the like, silicon semiconductor devices having a P-type region in which boron is diffused are used. As a method of diffusing boron in the silicon semiconductor device, there are a pyrolysis method, a counter NB method, a dopant host method, a coating method, etc., among others, boron can be uniformly diffused without requiring an expensive apparatus, Furthermore, since it is excellent in mass productivity, the coating method is suitable. In particular, among coating methods, a method of applying a boron-containing coating solution using a spin coater is employed. Recently, in order to reduce the manufacturing cost, a conventional wafer having a size of 3 inches or less is shifting to a large wafer having a size of 4 inches or more. In this case, application by spin coating is suitable for a wafer of 3 inches or less, but when applied to a large wafer of 4 inches or more, there is a disadvantage that the film thickness becomes non-uniform. Therefore, a screen printing method has been studied as a new coating method.

拡散用塗布液としては、基本的にホウ素化合物などのドーパント発生源、水溶性高分子および水を含有する拡散用塗布液が知られている(たとえば、特許文献1〜2参照)。ところが、この従来の拡散用塗布液をそのままスクリーン印刷法に適用しても、粘度が著しく低いため印刷面が安定せず、かつ速乾性が高く連続印刷が不可能であり、均一な拡散膜を形成させることが困難であるという問題を有している。   As a diffusion coating solution, a diffusion coating solution containing basically a dopant source such as a boron compound, a water-soluble polymer, and water is known (for example, see Patent Documents 1 and 2). However, even when this conventional coating liquid for diffusion is applied as it is to the screen printing method, the viscosity is extremely low, the printing surface is not stable, and quick drying is high and continuous printing is impossible. There is a problem that it is difficult to form.

特開平5−347265号公報JP-A-5-347265 特開2002−75893号公報JP 2002-75893 A

本発明は、スクリーン印刷により4インチ以上の大型ウェーハを製造した場合においても半導体デバイスの抵抗値のばらつきがなく、ホウ素を高濃度に拡散させることができるホウ素拡散用塗布液を提供することを目的とする。   An object of the present invention is to provide a coating solution for boron diffusion which can diffuse boron at a high concentration without variation in resistance value of a semiconductor device even when a large wafer of 4 inches or more is manufactured by screen printing. And

本発明者は、上記実情に鑑み、検討した結果、塗布液の粘度を特定範囲に調節することにより、本発明の目的が達成されることを見出し、本発明を完成した。   The present inventor has found that the object of the present invention can be achieved by adjusting the viscosity of the coating liquid to a specific range as a result of examination in view of the above circumstances, and has completed the present invention.

すなわち、本発明の要旨は、(A)ホウ素化合物、(B)水溶性高分子化合物、(C)水を含み、20℃での粘度が500〜100000mPa・sであることを特徴とするホウ素拡散用塗布液に存する。   That is, the gist of the present invention includes (A) a boron compound, (B) a water-soluble polymer compound, and (C) water, and has a viscosity at 20 ° C. of 500 to 100,000 mPa · s. Exists in the coating solution.

(A)ホウ素化合物、(B)水溶性高分子化合物、(C)水を配合し、20℃での粘度を500〜100000mPa・sとすることによって、4インチ以上の大型ウェーハに半導体デバイスの抵抗値のばらつきなく高濃度にホウ素を拡散固着可能なホウ素拡散用塗布液を提供することができる。   (A) Boron compound, (B) Water-soluble polymer compound, (C) Water is blended and the viscosity at 20 ° C. is set to 500 to 100,000 mPa · s. A coating solution for boron diffusion capable of diffusing and fixing boron at a high concentration without variation in value can be provided.

本発明のホウ素拡散用塗布液は、(A)ホウ素化合物、(B)水溶性高分子化合物、(C)水を含み、20℃での粘度が500〜100000mPa・sである。   The boron diffusion coating solution of the present invention contains (A) a boron compound, (B) a water-soluble polymer compound, and (C) water, and has a viscosity at 20 ° C. of 500 to 100,000 mPa · s.

本発明における塗布液の粘度は主に用いる水溶性高分子化合物の選択とその濃度、及びその他配合成分の種類と配合量によって調節することができる。なお、従来公知の同種の拡散用塗布液(例えば、上記特許文献1〜2)の粘度は50〜60cp(50〜60mPa・s)と低いものばかりであった。   The viscosity of the coating solution in the present invention can be adjusted mainly by the selection and concentration of the water-soluble polymer compound to be used and the type and blending amount of other blending components. In addition, the viscosity of the conventionally known coating liquid for diffusion (for example, Patent Documents 1 and 2 above) was as low as 50 to 60 cp (50 to 60 mPa · s).

ホウ素化合物(A)は、ホウ素の供給濃度を満たし、良好な安定性を有する液を作製できるものをいい、そのようなホウ素化合物(A)としては、具体的に、ホウ酸(H3BO3)、無水ホウ酸(B23)、四ホウ酸アンモニウム(水和物)、アルキルホウ酸エステルおよび塩化ホウ素からなる群から選ばれる少なくとも1種であることが好ましい。なかでも、少ない使用量で高濃度にホウ素を供給できるという点から、ホウ酸(H3BO3)、無水ホウ酸(B23)がより好ましい。 The boron compound (A) refers to a material that can satisfy a supply concentration of boron and can produce a liquid having good stability. As such a boron compound (A), specifically, boric acid (H 3 BO 3 ), Anhydrous boric acid (B 2 O 3 ), ammonium tetraborate (hydrate), alkyl borate ester and boron chloride. Of these, boric acid (H 3 BO 3 ) and boric anhydride (B 2 O 3 ) are more preferable because boron can be supplied at a high concentration with a small amount of use.

ホウ素拡散用塗布液中のホウ素化合物(A)の含有量は、塗布液中0.3〜10重量%が好ましく、0.5〜5重量%がより好ましい。ホウ素化合物(A)の含有量が0.3重量%未満では、ホウ素供給量が少なくなり、期待する半導体デバイスの抵抗値が得られない傾向がある。また、ホウ素化合物(A)の含有量が10重量%をこえると、ホウ素化合物の析出が起るなどの塗布液の安定性が損なわれる傾向がある。   The content of the boron compound (A) in the boron diffusion coating solution is preferably 0.3 to 10% by weight, more preferably 0.5 to 5% by weight in the coating solution. When the content of the boron compound (A) is less than 0.3% by weight, the amount of boron supply decreases, and the expected resistance value of the semiconductor device tends not to be obtained. Moreover, when content of a boron compound (A) exceeds 10 weight%, there exists a tendency for stability of coating liquid, such as precipitation of a boron compound, to be impaired.

水溶性高分子化合物(B)としては、ポリビニルアルコール、ポリビニルイミダゾール、ポリビニルピロリドン、ポリビニルカプロラクタムなどのビニル系高分子化合物、ポリエチレンオキシドやポリプロピレンオキシド、ポリエチレンオキシド−ポリプロピレンオキシドの交互またはブロック共重合体などのポリアルキレンオキシド化合物、ポリヒドロキシメチルアクリレート、ポリヒドロキシエチルアクリレート、ポリヒドロキシプロピルアクリレートまたはこれらに相当するメタクリレートなどのポリヒドロキシアルキルアクリレートまたはメタクリレート類、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロースなどのセルロース系高分子化合物などを挙げることができる。水溶性高分子化合物(B)は1種または2種以上を混合して用いる事ができる。なかでもポリビニルアルコールが効果上望ましく、最も代表的である。   Examples of the water-soluble polymer compound (B) include vinyl polymer compounds such as polyvinyl alcohol, polyvinyl imidazole, polyvinyl pyrrolidone, and polyvinyl caprolactam, polyethylene oxide, polypropylene oxide, and alternating or block copolymers of polyethylene oxide-polypropylene oxide. Cellulose polymers such as polyalkylene oxide compounds, polyhydroxymethyl acrylate, polyhydroxyethyl acrylate, polyhydroxypropyl acrylate, or polyhydroxyalkyl acrylates or methacrylates such as methacrylates, methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, etc. A compound etc. can be mentioned. The water-soluble polymer compound (B) can be used alone or in combination of two or more. Of these, polyvinyl alcohol is desirable from the viewpoint of effectiveness and is the most typical.

ポリビニルアルコールを用いる場合、その重合度及びケン化度の選択が重要である。これら物性の選択と使用量によって、塗布液の粘度を微調整することができる。ポリビニルアルコールの平均重合度は、200〜8000が好ましく、300〜3000がより好ましく、300〜2600がさらに好ましい。平均重合度が200未満では、ホウ素拡散用塗布液の粘度が低くなるため塗膜が薄くなり、よってホウ素の供給量が不足する傾向がある。また、ポリビニルアルコールの平均重合度が8000より大きくなると、逆に粘度が高くなり過ぎて塗布時に気泡が発生したり、レベリング不足に伴う半導体デバイスの抵抗値のバラツキの原因となり好ましくない傾向がある。   When using polyvinyl alcohol, the selection of the degree of polymerization and the degree of saponification is important. The viscosity of the coating solution can be finely adjusted by selecting these physical properties and using them. 200-8000 are preferable, as for the average degree of polymerization of polyvinyl alcohol, 300-3000 are more preferable, and 300-2600 are more preferable. When the average degree of polymerization is less than 200, the viscosity of the coating solution for boron diffusion becomes low, so that the coating film becomes thin, and therefore the supply amount of boron tends to be insufficient. On the other hand, when the average degree of polymerization of polyvinyl alcohol is larger than 8000, the viscosity becomes too high and bubbles tend to be generated at the time of coating, or the resistance value of the semiconductor device varies due to insufficient leveling, which tends to be undesirable.

また、上記何れもホウ素化合物の供給量に制約が多く、目標とする半導体デバイスの抵抗値に合わせることが困難となる。   In addition, in any of the above, there are many restrictions on the supply amount of the boron compound, and it becomes difficult to match the target resistance value of the semiconductor device.

なお、ここでいう平均重合度とはJIS K6726にもとづいて、ポリビニルアルコールを完全にケン化した後、その水溶液粘度をオストワルド粘度計を用いて測定し、水との相対粘度から算出した値である。   The average degree of polymerization referred to here is a value calculated from the relative viscosity with water by measuring the viscosity of the aqueous solution using an Ostwald viscometer after completely saponifying polyvinyl alcohol based on JIS K6726. .

ポリビニルアルコールのケン化度は、50モル%以上が好ましく、60〜100モル%がより好ましい。ケン化度が50モル%未満では、ポリビニルアルコールの溶解性が低下し、均一な塗布液ができ難く不適である。   The saponification degree of polyvinyl alcohol is preferably 50 mol% or more, and more preferably 60 to 100 mol%. When the saponification degree is less than 50 mol%, the solubility of polyvinyl alcohol is lowered, and it is difficult to form a uniform coating solution, which is inappropriate.

ポリビニルアルコールとは、主として酢酸ビニルの重合体をアルカリまたは酸によりケン化することにより得られるポリマーであり、特に限定されるわけではない。また側鎖にカルボン酸基、4級アンモニウム基、アセト酢酸エステル基等の官能基を有していても良い。   Polyvinyl alcohol is a polymer obtained mainly by saponifying a polymer of vinyl acetate with an alkali or an acid, and is not particularly limited. Moreover, you may have functional groups, such as a carboxylic acid group, a quaternary ammonium group, and an acetoacetate group, in the side chain.

さらには、ポリビニルアルコールとしては、酢酸ビニルと共重合性を有する単量体と酢酸ビニルとの共重合体のケン化物等を用いることもできる。   Furthermore, as the polyvinyl alcohol, a saponified product of a copolymer of vinyl acetate and a monomer having vinyl acetate and vinyl acetate can be used.

かかる単量体としては、例えば、エチレン、プロピレン、イソブチレン、α−オクテン、α−ドデセン、α−オクタデセン等のオレフィン類、ビニレンカーボネート類、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩あるいはモノまたはジアルキルエステル等、アクリロニトリル、メタアクリロニトリル等のニトリル類、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩、アルキルビニルエーテル類、N−アクリルアミドメチルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロリド、ジメチルアリルビニルケトン、N−ビニルピロリドン、塩化ビニル、塩化ビニリデン、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテルなどのポリオキシアルキレン(メタ)アリルエーテル、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等のポリオキシアルキレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリルアミド、ポリオキシプロピレン(メタ)アクリルアミド等のポリオキシアルキレン(メタ)アクリルアミド、ポリオキシエチレン(1−(メタ)アクリルアミド−1,1−ジメチルプロピル)エステル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテル、ポリオキシエチレンアリルアミン、ポリオキシプロピレンアリルアミン、ポリオキシエチレンビニルアミン、ポリオキシプロピレンビニルアミン等が挙げられる。   Examples of such monomers include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, α-octadecene, vinylene carbonates, acrylic acid, methacrylic acid, crotonic acid, maleic acid, and maleic anhydride. , Unsaturated acids such as itaconic acid or salts thereof, mono- or dialkyl esters, nitriles such as acrylonitrile and methacrylonitrile, amides such as acrylamide and methacrylamide, ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, etc. Olefin sulfonic acid or its salt, alkyl vinyl ethers, N-acrylamidomethyltrimethylammonium chloride, allyltrimethylammonium chloride, dimethyldiallylammonium chloride, dimethylali Polyoxyalkylene (meth) allyl ethers such as vinyl ketone, N-vinylpyrrolidone, vinyl chloride, vinylidene chloride, polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether, polyoxyethylene (meth) acrylate, poly Polyoxyalkylene (meth) acrylates such as oxypropylene (meth) acrylate, polyoxyethylene (meth) acrylamide, polyoxyalkylene (meth) acrylamides such as polyoxypropylene (meth) acrylamide, polyoxyethylene (1- (meth) (Acrylamide-1,1-dimethylpropyl) ester, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether, polyoxyethylene allylamine, polyoxypropylene amine Triethanolamine, polyoxyethylene vinyl amine, polyoxypropylene vinyl amine.

さらに、ポリビニルアルコールとジケテンを反応させる方法、ポリビニルアルコールとアセト酢酸エステルを反応させエステル交換する方法、酢酸ビニルとアセト酢酸ビニルを共重合させる方法等により生成されるアセトアセチル化ポリビニルアルコールを挙げることができるが、製造工程が簡略で、品質の良いアセトアセチル化ポリビニルアルコールを得るには、ポリビニルアルコール(粉末)とジケテンを反応させる方法で製造するのが好ましい。ポリビニルアルコールとジケテンを反応させる方法としては、ポリビニルアルコールとガス状または液状のジケテンを直接反応させても良いし、有機酸をポリビニルアルコールに予め吸着吸蔵せしめた後、不活性ガス雰囲気下でガス状または液状のジケテンを噴霧、反応させるか、またはポリビニルアルコールに有機酸と液状ジケテンの混合物を噴霧、反応させる等の方法が用いられる。   Furthermore, mention may be made of a method of reacting polyvinyl alcohol and diketene, a method of reacting polyvinyl alcohol and acetoacetate and transesterifying, a method of copolymerizing vinyl acetate and vinyl acetoacetate, and the like. However, in order to obtain acetoacetylated polyvinyl alcohol having a simple manufacturing process and good quality, it is preferable to manufacture by a method of reacting polyvinyl alcohol (powder) and diketene. As a method of reacting polyvinyl alcohol and diketene, polyvinyl alcohol and gaseous or liquid diketene may be reacted directly, or after an organic acid is adsorbed and occluded in advance in polyvinyl alcohol, it is gaseous in an inert gas atmosphere. Alternatively, a method of spraying and reacting liquid diketene, or spraying and reacting a mixture of an organic acid and liquid diketene with polyvinyl alcohol is used.

上記の反応を実施する際の反応装置としては、加温可能で撹拌機の付いた装置であれば十分である。例えば、ニーダー、ヘンシェルミキサー、リボンブレンダー、その他各種ブレンダー、撹拌乾燥装置を用いることができる。   As a reaction apparatus for carrying out the above reaction, an apparatus that can be heated and has a stirrer is sufficient. For example, a kneader, a Henschel mixer, a ribbon blender, other various blenders, and a stirring and drying apparatus can be used.

ホウ素拡散用塗布液中の水溶性高分子化合物(B)の含有量は、塗布液中、5〜25重量%が好ましく、7〜20重量%がより好ましい。水溶性高分子化合物(B)の含有量が5重量%未満では、塗布液の粘度が低くなり、よってホウ素の供給量不足になる傾向がある。また、水溶性高分子化合物(B)の含有量が25重量%をこえると、塗布液の粘度が高すぎ、レベリング不足に伴う半導体デバイスの抵抗値にばらつきが発生する傾向がある。   The content of the water-soluble polymer compound (B) in the coating solution for boron diffusion is preferably 5 to 25% by weight and more preferably 7 to 20% by weight in the coating solution. When the content of the water-soluble polymer compound (B) is less than 5% by weight, the viscosity of the coating solution tends to be low, and thus the supply amount of boron tends to be insufficient. On the other hand, when the content of the water-soluble polymer compound (B) exceeds 25% by weight, the viscosity of the coating solution tends to be too high, and the resistance value of the semiconductor device tends to vary due to insufficient leveling.

水(C)としては、超純水、イオン交換水、蒸留水が用いられ、特に超純水が好ましい。なかでも、水中のアルカリ金属や重金属元素などの不純物元素及び異物は少ないほど好ましい。   As the water (C), ultrapure water, ion exchange water, or distilled water is used, and ultrapure water is particularly preferable. Among these, the smaller the amount of impurity elements such as alkali metals and heavy metal elements and foreign matters in water, the better.

ホウ素拡散用塗布液中の水(C)の含有量は、塗布液中、25〜85重量%が好ましく、35〜65重量%がより好ましい。水(D)の含有量が25重量%未満では、粘度が高くなり過ぎて塗布時に気泡が発生したり、レベリング不足に伴う半導体デバイスの抵抗値のバラツキの原因となり好ましくない傾向がある。また、水(D)の含有量が85重量%をこえると、逆に粘度が低くなり過ぎて塗膜が薄膜になりホウ素供給量が不足し好ましくない傾向がある。   The content of water (C) in the boron diffusion coating solution is preferably 25 to 85% by weight and more preferably 35 to 65% by weight in the coating solution. If the content of water (D) is less than 25% by weight, the viscosity becomes too high and bubbles are generated during coating, or the resistance value of the semiconductor device varies due to insufficient leveling, which tends to be undesirable. On the other hand, when the content of water (D) exceeds 85% by weight, the viscosity tends to be too low and the coating film becomes a thin film, and the boron supply amount tends to be insufficient, which tends to be undesirable.

本発明のホウ素拡散用塗布剤には、さらに、水混和性有機溶剤(D)を含有することが好ましい。   The boron diffusion coating agent of the present invention preferably further contains a water-miscible organic solvent (D).

水混和性有機溶剤(D)は、100℃以上の沸点を有し、水との親和性に優れるものをいう。水混和性有機溶剤(D)の沸点は、100℃以上が好ましく、120℃以上がより好ましく、170℃以上がさらに好ましい。水混和性有機溶剤の沸点が100℃未満では、乾燥が早すぎ充分なレベリングが期待できない傾向がある。また、水混和性有機溶剤の沸点は、270℃以下が好ましく、230℃以下がより好ましい。水混和性有機溶剤の沸点が270℃をこえると、塗膜の乾燥速度が低下するため、生産性が低下したり、乾燥過程における塗膜表面強度の低下によって厚みムラが生じる傾向があるため好ましくない。   The water-miscible organic solvent (D) has a boiling point of 100 ° C. or higher and is excellent in affinity with water. The boiling point of the water-miscible organic solvent (D) is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and further preferably 170 ° C. or higher. When the boiling point of the water-miscible organic solvent is less than 100 ° C., drying tends to be too fast and sufficient leveling cannot be expected. Further, the boiling point of the water-miscible organic solvent is preferably 270 ° C. or less, and more preferably 230 ° C. or less. When the boiling point of the water-miscible organic solvent exceeds 270 ° C., the drying speed of the coating film is decreased, so that the productivity is decreased or the thickness unevenness tends to occur due to the decrease in the coating film surface strength in the drying process. Absent.

水混和性有機溶剤(D)としては、エチレングリコール誘導体、ジエチレングリコール誘導体、プロピレングリコール誘導体などが挙げられる。   Examples of the water-miscible organic solvent (D) include ethylene glycol derivatives, diethylene glycol derivatives, propylene glycol derivatives and the like.

ジエチレングリコール誘導体としては、具体的に、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−ブチルエーテルなどが挙げられる。   Specific examples of the diethylene glycol derivative include diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, and the like.

エチレングリコール誘導体としては、具体的に、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−ブチルエーテルなどが挙げられる。   Specific examples of the ethylene glycol derivative include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol mono-n-butyl ether.

プロピレングリコール誘導体としては、具体的に、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−nブチルエーテルなどが挙げられる。   Specific examples of the propylene glycol derivative include propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-nbutyl ether and the like.

その他の多価アルコール化合物およびその誘導体としては、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、グリセリンおよびそれらの誘導体が挙げられる。   Other polyhydric alcohol compounds and derivatives thereof include 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin and the like And derivatives thereof.

水混和性有機溶剤(D)のなかでも、ホウ素化合物の溶解性が高く、且つ蒸気圧が低いことによりレベリングの時間が得られやすいという点から、ジエチレングリコール誘導体が好ましく、なかでも、ホウ素化合物の溶解度と水溶性が高いという点から、ジエチレングリコールモノメチルエーテルが好ましい。   Of the water-miscible organic solvents (D), diethylene glycol derivatives are preferred because the solubility of the boron compound is high and the leveling time is easily obtained due to the low vapor pressure. Among these, the solubility of the boron compound is preferred. Diethylene glycol monomethyl ether is preferred because of its high water solubility.

ホウ素拡散用塗布液中の水混和性有機溶剤(D)の含有量は、塗布液中、4〜65重量%が好ましく、10〜40重量%がより好ましい。水混和性有機溶剤(D)の含有量が4重量%未満では、ホウ素化合物の溶解安定性や塗膜の乾燥遅延に対し充分な添加効果が得られない傾向がある。また、水混和性有機溶剤(D)の含有量が65重量%をこえると、ポリビニルアルコールなどのアルコール性水酸基含有高分子化合物の溶解性が不安定となり液安定性を損なう可能性がある。   The content of the water-miscible organic solvent (D) in the boron diffusion coating solution is preferably 4 to 65% by weight and more preferably 10 to 40% by weight in the coating solution. When the content of the water-miscible organic solvent (D) is less than 4% by weight, there is a tendency that a sufficient addition effect cannot be obtained with respect to the dissolution stability of the boron compound and the drying delay of the coating film. On the other hand, when the content of the water-miscible organic solvent (D) exceeds 65% by weight, the solubility of the alcoholic hydroxyl group-containing polymer compound such as polyvinyl alcohol becomes unstable, and the liquid stability may be impaired.

ホウ素拡散用塗布液中の水混和性有機溶剤(D)の含有量は、水(C)100重量部に対して300重量部以下であることが好ましく、250重量部以下がより好ましく、200重量部以下がさらに好ましく、150重量部以下が特に好ましい。水混和性有機溶剤(D)の含有量が水(C)100重量部に対して300重量部を超えると、水溶性高分子化合物(B)の溶解性が低下し、塗布液中から析出する場合があるため好ましくない。   The content of the water-miscible organic solvent (D) in the boron diffusion coating solution is preferably 300 parts by weight or less, more preferably 250 parts by weight or less, and 200 parts by weight with respect to 100 parts by weight of water (C). Part or less is more preferable, and 150 parts by weight or less is particularly preferable. When the content of the water-miscible organic solvent (D) exceeds 300 parts by weight with respect to 100 parts by weight of water (C), the solubility of the water-soluble polymer compound (B) decreases and precipitates from the coating solution. Since there are cases, it is not preferable.

本発明のホウ素拡散用塗布剤には、さらに、界面活性剤(E)を含有することが好ましい。界面活性剤としては、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤などがあげられるが、半導体デバイスへのアルカリ金属や重金属等の不純物の持ち込みが少ないことからノニオン系界面活性剤が好ましい。更にはノニオン系界面活性剤としてシリコン系界面活性剤、フッ素系界面活性剤、炭化水素系界面活性剤が例示されるが、拡散等の過熱時に速やかに焼成されることより、炭化水素系界面活性剤が好ましい。   The boron diffusion coating agent of the present invention preferably further contains a surfactant (E). Examples of surfactants include nonionic surfactants, cationic surfactants, and anionic surfactants, but nonionic surfactants are less active because impurities such as alkali metals and heavy metals are not introduced into semiconductor devices. Agents are preferred. In addition, examples of nonionic surfactants include silicon surfactants, fluorine surfactants, and hydrocarbon surfactants. However, hydrocarbon surfactants are more quickly activated by firing during overheating such as diffusion. Agents are preferred.

炭化水素系界面活性剤としては、エチレンオキサイド−プロピレンオキサイドのブロック共重合体、アセチレングリコール化合物等が例示されるが、半導体デバイスの抵抗値のバラツキをより低減することから、アセチレングリコール化合物がより好ましい。   Examples of the hydrocarbon-based surfactant include block copolymers of ethylene oxide-propylene oxide, acetylene glycol compounds, and the like. However, acetylene glycol compounds are more preferable because variations in resistance values of semiconductor devices are further reduced. .

アセチレングリコール化合物としては、下記一般式(1)で示されるものが好ましい。   As the acetylene glycol compound, those represented by the following general formula (1) are preferable.

Figure 0004541243
Figure 0004541243

一般式(1)中、R2およびR3はそれぞれ炭素数1〜3のアルキル基を示し、R1、R4はそれぞれ炭素数1〜20のアルキル基またはアリル基を示し、さらに、mおよびnはそれぞれ0〜30を満たす。 In General Formula (1), R 2 and R 3 each represent an alkyl group having 1 to 3 carbon atoms, R 1 and R 4 each represent an alkyl group or an allyl group having 1 to 20 carbon atoms, and m and n satisfies 0-30, respectively.

一般式(1)で表されるアセチレングリコール化合物中のエチレンオキサイド単位の付加モル数は、0≦m+n≦30[モル]が好ましい。エチレンオキサイドの付加モル総数が30モルをこえた場合、水への溶解性がアップし、さらには起泡性がアップするため、消泡効果が低下する傾向がある。   The number of moles of ethylene oxide units added in the acetylene glycol compound represented by the general formula (1) is preferably 0 ≦ m + n ≦ 30 [mol]. When the total number of added moles of ethylene oxide exceeds 30 moles, the solubility in water is increased and the foaming properties are increased, so that the defoaming effect tends to be lowered.

一般式(1)で表されるアセチレングリコール化合物としては、2,5,8,11−テトラメチル−6−ドデシン−5,8−ジオール、5,8−ジメチル−6−ドデシン−5,8−ジオール、2,4,7,9−テトラメチル−5−デシン−4,7−ジオール、4,7−ジメチル−5−デシン−4,7−ジオール、2,3,6,7−テトラメチル−4−オクチン−3,6−ジオール、3,6−ジメチル−4−オクチン−3,6−ジオール、2,5−ジメチル−3−ヘキシン−2,5−ジオール等が挙げられる。   Examples of the acetylene glycol compound represented by the general formula (1) include 2,5,8,11-tetramethyl-6-dodecin-5,8-diol, 5,8-dimethyl-6-dodecin-5,8- Diol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 4,7-dimethyl-5-decyne-4,7-diol, 2,3,6,7-tetramethyl- Examples include 4-octyne-3,6-diol, 3,6-dimethyl-4-octyne-3,6-diol, and 2,5-dimethyl-3-hexyne-2,5-diol.

また、一般式(1)のアセチレングリコール化合物のエトキシル化体としては、例えば2,5,8,11−テトラメチル−6−ドデシン−5,8−ジオールのエトキシル化体(エチレンオキサイド付加モル総数:6)、2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体(エチレンオキサイド付加モル総数:10)、2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体(エテレンオキサイド付加モル総数:4)、3,6−ジメチル−4−オクチル−3,6−ジオールのエトキシル化体(エチレンオキサイド付加モル総数:4)等のアセチレングリコールのエチレンオキサイド誘導体を挙げることができ、特に好ましくは2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体(エチレンオキサイド付加モル総数:1.3、一般式(1)においてR1およびR4がiso−ブチル基、R2およびR3がメチル基、m+n=1.3)、2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体(エチレンオキサイド付加モル総数:3.5、一般式(1)においてR1およびR4がiso−ブチル基、R2およびR3がメチル基、m+n=3.5)が挙げられる。 Moreover, as an ethoxylated form of the acetylene glycol compound of the general formula (1), for example, an ethoxylated form of 2,5,8,11-tetramethyl-6-dodecyne-5,8-diol (total number of moles of ethylene oxide added: 6), 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate (total number of moles of ethylene oxide added: 10), 2,4,7,9-tetramethyl-5- Ethoxylated form of decyne-4,7-diol (total number of moles of added ethylene oxide: 4), ethoxylated form of 3,6-dimethyl-4-octyl-3,6-diol (total number of moles of added ethylene oxide: 4) An ethylene oxide derivative of acetylene glycol such as 2,4,7,9-tetramethyl-5-decyne-4,7-dio is particularly preferable. Polyoxy Le (moles of ethylene oxide added Total: 1.3, the general formula (1) in which R 1 and R 4 are iso- butyl group, R 2 and R 3 is a methyl group, m + n = 1.3), 2 , 4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate (total number of moles of ethylene oxide added: 3.5, in formula (1), R 1 and R 4 are iso-butyl groups , R 2 and R 3 are methyl groups, m + n = 3.5).

界面活性剤(E)は、その1種を単独でまたは2種以上を混合して使用することができる。   Surfactant (E) can be used alone or in combination of two or more.

ホウ素拡散用塗布液中の界面活性剤(E)の含有量は、塗布液中0.1〜10重量%が好ましく、0.5〜5重量%がより好ましい。界面活性剤(E)の含有量が0.1重量%未満では、期待される消泡効果に乏しい傾向がある。また、界面活性剤(E)の含有量が10重量%をこえると、層分離等のホウ素拡散用塗布液の安定性が不安定になる傾向がある。   The content of the surfactant (E) in the coating solution for boron diffusion is preferably 0.1 to 10% by weight, and more preferably 0.5 to 5% by weight in the coating solution. When the content of the surfactant (E) is less than 0.1% by weight, the antifoaming effect expected tends to be poor. Further, when the content of the surfactant (E) exceeds 10% by weight, the stability of the coating solution for boron diffusion such as layer separation tends to become unstable.

本発明では更に必要に応じ、塗布液の基本物性を損なわない範囲で種々の添加剤を配合することができ、例えばウェーハへの拡散濃度調整を目的としてN型領域を形成しうる化合物などを配合することができる。かかるN型領域を形成しうる化合物としては、無水リン酸、リン酸、リン酸ニ水素アンモニウム、リン酸水素二アンモニウムなどのリン化合物を挙げることができるが、これらに限定されるものではない。   In the present invention, if necessary, various additives can be blended as long as the basic physical properties of the coating liquid are not impaired. For example, a compound capable of forming an N-type region is blended for the purpose of adjusting the diffusion concentration to the wafer. can do. Examples of compounds that can form such an N-type region include, but are not limited to, phosphorus compounds such as phosphoric anhydride, phosphoric acid, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate.

本発明のホウ素拡散用塗布液は、ホウ素化合物(A)、水溶性高分子化合物(B)、および水(C)、さらに、好適に沸点が100℃以上の水混和性有機溶剤(D)、界面活性剤(E)を混合することにより作製される。その場合、水溶性化合物(B)と水(C)を含有する水溶液を作製した後、これにホウ素化合物(A)を混合し、さらに水混和性有機溶剤(D)、界面活性剤(E)を添加して混合する方法や、予めホウ素化合物(A)と水混和性有機溶剤(D)を混合して溶液を作製し、これと水溶性化合物(B)の水溶液とを混合する方法などが挙げられるが、これらに限定されるものではない。   The boron diffusion coating solution of the present invention comprises a boron compound (A), a water-soluble polymer compound (B), and water (C), preferably a water-miscible organic solvent (D) having a boiling point of 100 ° C. or higher, It is prepared by mixing the surfactant (E). In that case, after preparing the aqueous solution containing water-soluble compound (B) and water (C), boron compound (A) is mixed with this, and also water miscible organic solvent (D) and surfactant (E). And a method of mixing a boron compound (A) and a water-miscible organic solvent (D) in advance to prepare a solution, and mixing this with an aqueous solution of the water-soluble compound (B). Although it is mentioned, it is not limited to these.

20℃における本発明のホウ素拡散用塗布液の粘度は、500〜100000mPa・s、好ましくは600〜50000mPa・s、より好ましくは700〜30000mPa・s、さらに好ましくは1000〜10000mPa・sである。ホウ素拡散用塗布液の粘度が500mPa・s未満では、流動性が高すぎ塗膜形成時に均一な塗膜が得られない、または厚膜を形成することができないことによりホウ素供給量が不足し、高濃度のホウ素拡散が困難となる。また、ホウ素拡散用塗布液の粘度が100000mPa・sをこえると、塗膜形成時破泡がおこり難くなる、またはレベリングが不充分となることにより、半導体デバイスの抵抗値にばらつきが生じ好ましく無い。なお、20℃におけるホウ素拡散用塗布液の粘度は、ブルックフィールド社製、B型粘度計にて測定することにより得られる。   The viscosity of the coating solution for boron diffusion of the present invention at 20 ° C. is 500 to 100,000 mPa · s, preferably 600 to 50000 mPa · s, more preferably 700 to 30000 mPa · s, and still more preferably 1000 to 10,000 mPa · s. If the viscosity of the coating solution for boron diffusion is less than 500 mPa · s, the fluidity is too high and a uniform coating film cannot be obtained at the time of coating film formation, or a thick film cannot be formed. Diffusing high concentration boron becomes difficult. On the other hand, when the viscosity of the boron diffusion coating solution exceeds 100,000 mPa · s, it is difficult to cause bubbles during formation of the coating film, or the leveling is insufficient, which causes variations in the resistance values of the semiconductor devices. In addition, the viscosity of the coating liquid for boron diffusion at 20 ° C. can be obtained by measuring with a Brookfield viscometer manufactured by Brookfield.

シリコン半導体のP型拡散層は、本発明のホウ素拡散用塗布液をウェーハ上に塗布し、乾燥する工程(以下、工程1)、および工程1で残った塗膜中の有機成分の90%以上を除去することを目的とした焼成工程(以下、工程2)、その後ホウ素をウェーハにドーッピングすることを目的とした拡散工程(以下、工程3)を経て形成される。   The P-type diffusion layer of silicon semiconductor is a step of applying the boron diffusion coating solution of the present invention on a wafer and drying it (hereinafter referred to as step 1), and 90% or more of the organic components in the coating film remaining in step 1 It is formed through a baking step (hereinafter referred to as step 2) for the purpose of removing hydrogen, and then a diffusion step (hereinafter referred to as step 3) for the purpose of doping boron onto the wafer.

工程1におけるホウ素拡散用塗布液の塗布法としては、スクリーン印刷法、グラビア印刷法、凸版印刷法、平版印刷法、スピンコータ−法、コンマコーター法、ダイへッドコーター法、ダイリップコーター法およびグラビア印刷法のいずれを適用してもよいが、本発明の塗布液はスクリーン印刷に適用するのが好ましい。その結果、4インチ以上、とくに4〜6インチ以上のウェーハを対象とし、各種膜厚の塗膜を均一に印刷することができる。   As the coating method of the boron diffusion coating solution in Step 1, screen printing method, gravure printing method, relief printing method, planographic printing method, spin coater method, comma coater method, die head coater method, die lip coater method and gravure printing method Any of these may be applied, but the coating liquid of the present invention is preferably applied to screen printing. As a result, coatings with various film thicknesses can be uniformly printed on wafers of 4 inches or more, particularly 4 to 6 inches or more.

工程1における乾燥法としては、20〜300℃の温度条件下にて、1〜60分間乾燥させることが好ましい。   As a drying method in the step 1, it is preferable to dry at a temperature of 20 to 300 ° C. for 1 to 60 minutes.

工程2における焼成工程は、(300〜1000℃)に最高温度を有する温度プロファイルの連続焼成にて焼成工程を実施することが好ましい。   The firing step in step 2 is preferably performed by continuous firing of a temperature profile having a maximum temperature (300 to 1000 ° C.).

工程3の拡散工程は工程2後のウェーハを枚葉、または複数枚を重ね合わせた状態にて電気炉等において高温(800〜1400℃)で所望の時間維持することによりホウ素をウェーハの所望の面に拡散させることをいう。   In the diffusion step of Step 3, the wafer after Step 2 is maintained at a high temperature (800 to 1400 ° C.) for a desired time in an electric furnace or the like with a single wafer or a plurality of stacked wafers. It means spreading on the surface.

なお、必要に応じて工程1と工程2を連続して実施してもよく、更には工程2にて所望とする抵抗値が得られる場合、工程3を省略しても良い。   It should be noted that step 1 and step 2 may be performed continuously as necessary, and step 3 may be omitted when a desired resistance value is obtained in step 2.

得られたシリコン半導体デバイスのP型拡散面の表面抵抗率は、0.1〜10000Ω/□とすることができる。   The surface resistivity of the P-type diffusion surface of the obtained silicon semiconductor device can be 0.1 to 10000Ω / □.

以下に、本発明の実施例について述べる。本発明の範囲は、実施例によりなんら制限を受けるものではない。   Examples of the present invention will be described below. The scope of the present invention is not limited by the examples.

実施例1〜4および比較例1、2
<ホウ素拡散用塗布液の作製>
実施例1
超純水320gにPVA(平均重合度:500、ケン化度:88モル%)85gを溶解させ、溶液Aを作製した。
Examples 1 to 4 and Comparative Examples 1 and 2
<Preparation of boron diffusion coating solution>
Example 1
85 g of PVA (average polymerization degree: 500, saponification degree: 88 mol%) was dissolved in 320 g of ultrapure water to prepare a solution A.

また、ジエチレングリコールモノメチルエーテル(沸点:192℃)205gにホウ酸15gを溶解させ、溶液Bを作製した。   Further, 15 g of boric acid was dissolved in 205 g of diethylene glycol monomethyl ether (boiling point: 192 ° C.) to prepare a solution B.

そして、溶液AおよびBを混合し、さらに2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体(一般式(1)中、m+n≒1.3)10gを添加して、実施例1のホウ素拡散用塗布液(不透明、白色の液体)を作製した。   Then, the solutions A and B were mixed, and further 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate (in the general formula (1), m + n≈1.3) 10 g Was added to prepare a boron diffusion coating solution (opaque, white liquid) of Example 1.

作製したホウ素拡散用塗布液中のホウ酸の含有量は2.4重量%、PVAの含有量は13.4重量%、ジエチレングリコールモノメチルエーテルの含有量は32.3重量%、水の含有量は50.3重量%、および2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体の含有量は1.6重量%であった。   The content of boric acid in the prepared coating solution for boron diffusion is 2.4% by weight, the content of PVA is 13.4% by weight, the content of diethylene glycol monomethyl ether is 32.3% by weight, and the content of water is The content of ethoxylated product of 50.3% by weight and 2,4,7,9-tetramethyl-5-decyne-4,7-diol was 1.6% by weight.

実施例2
実施例1において、PVAの平均重合度を800、ケン化度を71モル%とし、使用量を70gとした以外は実施例1と同様にしてホウ素拡散用塗布液を作製した。
Example 2
In Example 1, a coating solution for boron diffusion was prepared in the same manner as in Example 1 except that the average degree of polymerization of PVA was 800, the saponification degree was 71 mol%, and the amount used was 70 g.

作製したホウ素拡散用塗布液中のホウ酸の含有量は2.4重量%、PVAの含有量は11.3重量%、ジエチレングリコールモノメチルエーテルの含有量は33.1重量%、水の含有量は51.6重量%、および2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体の含有量は1.6重量%であった。   In the prepared boron diffusion coating solution, the content of boric acid is 2.4% by weight, the content of PVA is 11.3% by weight, the content of diethylene glycol monomethyl ether is 33.1% by weight, and the content of water is The content of ethoxylated product of 51.6% by weight and 2,4,7,9-tetramethyl-5-decyne-4,7-diol was 1.6% by weight.

実施例3
実施例1において、PVAの平均重合度を1400、ケン化度を78モル%とし、使用量を50gとした以外は実施例1と同様にしてホウ素拡散用塗布液を作製した。
Example 3
In Example 1, a coating solution for boron diffusion was prepared in the same manner as in Example 1 except that the average polymerization degree of PVA was 1400, the saponification degree was 78 mol%, and the amount used was 50 g.

作製したホウ素拡散用塗布液中のホウ酸の含有量は2.5重量%、PVAの含有量は8.3重量%、ジエチレングリコールモノメチルエーテルの含有量は34.2重量%、水の含有量は53.3重量%、および2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体の含有量は1.7重量%であった。   The content of boric acid in the prepared boron diffusion coating solution is 2.5% by weight, the content of PVA is 8.3% by weight, the content of diethylene glycol monomethyl ether is 34.2% by weight, and the content of water is The content of the ethoxylated product of 53.3% by weight and 2,4,7,9-tetramethyl-5-decyne-4,7-diol was 1.7% by weight.

実施例4
実施例1において、PVAの平均重合度を500、ケン化度を71モル%とし、使用量を70gとし、ホウ酸を30gとした以外は実施例1と同様にしてホウ素拡散用塗布液を作製した。
Example 4
In Example 1, a coating solution for boron diffusion was prepared in the same manner as in Example 1 except that the average degree of polymerization of PVA was 500, the saponification degree was 71 mol%, the amount used was 70 g, and boric acid was 30 g. did.

作製したホウ素拡散用塗布液中のホウ酸の含有量は4.7重量%、PVAの含有量は11.0重量%、ジエチレングリコールモノメチルエーテルの含有量は32.3重量%、水の含有量は50.4重量%、および2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体の含有量は1.6重量%であった。   The boric acid content in the prepared boron diffusion coating solution is 4.7% by weight, the PVA content is 11.0% by weight, the diethylene glycol monomethyl ether content is 32.3% by weight, and the water content is The content of ethoxylated product of 50.4% by weight and 2,4,7,9-tetramethyl-5-decyne-4,7-diol was 1.6% by weight.

比較例1
超純水320gにPVA(平均重合度:100、ケン化度:88モル%)85gを溶解させ、溶液Cを作製した。
Comparative Example 1
85 g of PVA (average polymerization degree: 100, saponification degree: 88 mol%) was dissolved in 320 g of ultrapure water to prepare a solution C.

また、ジエチレングリコールモノメチルエーテル(沸点:192℃)205gにホウ酸15gを溶解させ、溶液Dを作製した。   Further, 15 g of boric acid was dissolved in 205 g of diethylene glycol monomethyl ether (boiling point: 192 ° C.) to prepare a solution D.

そして、溶液CおよびDを混合し、さらに2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体(一般式(1)中、m+n≒1.3)10gを添加して、比較例1のホウ素拡散用塗布液(不透明、白色の液体)を作製した。   Then, the solutions C and D are mixed, and further 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate (in the general formula (1), m + n≈1.3) 10 g Was added to prepare a boron diffusion coating solution (opaque, white liquid) of Comparative Example 1.

作製したホウ素拡散用塗布液中のホウ酸の含有量は2.4重量%、PVAの含有量は13.4重量%、ジエチレングリコールモノメチルエーテルの含有量は32.3重量%、水の含有量は50.3重量%、および2,4,7,9−テトラメチル−5−デシン−4,7−ジオールのエトキシル化体の含有量は1.6重量%であった。   The content of boric acid in the prepared coating solution for boron diffusion is 2.4% by weight, the content of PVA is 13.4% by weight, the content of diethylene glycol monomethyl ether is 32.3% by weight, and the content of water is The content of ethoxylated product of 50.3% by weight and 2,4,7,9-tetramethyl-5-decyne-4,7-diol was 1.6% by weight.

比較例2
超純水73.7gにPVA(重量平均分子量:300、ケン化度:88モル%)9.3gを溶解させ、溶液Eを作製した。
Comparative Example 2
9.3 g of PVA (weight average molecular weight: 300, degree of saponification: 88 mol%) was dissolved in 73.7 g of ultrapure water to prepare solution E.

また、プロピレングリコールモノメチルエーテル(沸点:120℃)113.4gに無水ホウ酸1.8gを溶解させ、溶液Fを作製した。   Further, 1.8 g of boric anhydride was dissolved in 113.4 g of propylene glycol monomethyl ether (boiling point: 120 ° C.) to prepare a solution F.

そして、溶液EおよびFを混合し、最後に、シリコーン系界面活性剤(東レ・シリコーン社製のSH30PA)0.01gを添加して、比較例2のホウ素拡散用塗布液を作製した。   Then, solutions E and F were mixed, and finally 0.01 g of a silicone surfactant (SH30PA manufactured by Toray Silicone Co., Ltd.) was added to prepare a boron diffusion coating solution of Comparative Example 2.

比較例2の拡散用塗布液中の無水ホウ酸の含有量は0.9重量%、PVAの含有量は4.7重量%、プロピレングリコールモノメチルエーテルの含有量は57.2重量、水の含有量は37.2重量%、およびシリコーン系界面活性剤の含有量は0.005重量%であった。   The boric anhydride content in the diffusion coating solution of Comparative Example 2 is 0.9% by weight, the PVA content is 4.7% by weight, the propylene glycol monomethyl ether content is 57.2%, and water is contained. The amount was 37.2% by weight, and the content of the silicone surfactant was 0.005% by weight.

<ホウ素拡散用塗布液の粘度>
ブルックフィールド社製のB型粘度計、ローター:No.5を用い、50rpmの回転速度で23℃の条件下にて、ホウ素拡散用塗布液の粘度を測定した。表1に実施例1〜5 および比較例1、2のホウ素拡散用塗布液の粘度を示す。
<シリコン半導体ウェーハへの塗布、拡散>
13インチサイズのガラス上に仮止めした10〜20Ω・cmの比抵抗値を有するP型シリコンウェーハ(厚み:200μm、大きさ:4インチ)上にスクリーン印刷機およびポリエステル製#380メッシュを使用して実施例1〜5のホウ素拡散用塗布液を用い、塗膜厚さが1.0〜1.5μmになるようにスクリーン印刷を行った。
<Viscosity of boron diffusion coating solution>
Brookfield B-type viscometer, rotor: No. 5, the viscosity of the boron diffusion coating solution was measured under the condition of 23 ° C. at a rotation speed of 50 rpm. Table 1 shows the viscosities of the boron diffusion coating liquids of Examples 1 to 5 and Comparative Examples 1 and 2.
<Coating and diffusion on silicon semiconductor wafer>
A screen printer and a polyester # 380 mesh were used on a P-type silicon wafer (thickness: 200 μm, size: 4 inches) having a specific resistance of 10 to 20 Ω · cm temporarily fixed on a 13-inch glass. Using the boron diffusion coating liquids of Examples 1 to 5, screen printing was performed so that the coating thickness was 1.0 to 1.5 μm.

次いで、ウェーハを100℃設定の乾燥機中で30分間乾燥した後、最高温度が580℃で380〜400℃にて脱灰工程を経る温度プロファイルとなる連続焼成炉にて焼成した。その後、電気炉に入れ、室温から1200℃まで昇温させ、1200℃で6時間維持した後、室温まで温度を下げてホウ素を拡散した。   Next, the wafer was dried in a dryer set at 100 ° C. for 30 minutes and then baked in a continuous baking furnace having a maximum temperature of 580 ° C. and a temperature profile through a deashing process at 380 to 400 ° C. Then, after putting into an electric furnace and raising the temperature from room temperature to 1200 ° C. and maintaining at 1200 ° C. for 6 hours, the temperature was lowered to room temperature to diffuse boron.

上記の作製法により、実施例1〜4のホウ素拡散用塗布液から、シリコン半導体ウェーハ上に均一な拡散膜を形成することができた。抵抗測定器(ナプソン社製、本体:RT−8A、測定器:RG−7A)を用い、該拡散膜の面内20ポイントで、表面抵抗率を測定したところ、そのバラツキは小さいものであった。表面抵抗値の最大値、最小値およびその差を表1に示す。   By the above production method, a uniform diffusion film could be formed on the silicon semiconductor wafer from the boron diffusion coating solutions of Examples 1 to 4. When the surface resistivity was measured at 20 points within the surface of the diffusion film using a resistance measuring instrument (manufactured by Napson, main body: RT-8A, measuring instrument: RG-7A), the variation was small. . Table 1 shows the maximum value, the minimum value, and the difference between the surface resistance values.

一方、上記の作製法により、比較例1、2のホウ素拡散用塗布液から、拡散膜の作製を試みたが、均一な拡散膜を形成することができなかった。   On the other hand, although an attempt was made to produce a diffusion film from the boron diffusion coating liquids of Comparative Examples 1 and 2 by the above production method, a uniform diffusion film could not be formed.

Figure 0004541243
Figure 0004541243

Claims (5)

(A)ホウ素化合物、(B)水溶性高分子化合物、(C)水、および(E)界面活性剤を含み、20℃での粘度が500〜100000mPa・sであり、
前記界面活性剤(E)が下記一般式(1)で示されるアセチレングリコール化合物であるホウ素拡散用塗布液。
Figure 0004541243
(一般式(1)中、R 2 およびR 3 はそれぞれ炭素数1〜3のアルキル基を示し、R 1 、R 4 はそれぞれ炭素数1〜20のアルキル基またはアリル基を示し、さらに、mおよびnはそれぞれ0〜30を満たす)
(A) a boron compound, (B) a water-soluble polymer compound include (C) water, and (E) a surfactant, Ri viscosity 500~100000mPa · s der at 20 ° C.,
Wherein the surfactant (E) acetylene glycol compound der Ru boron diffusion coating solution of the following general formula (1).
Figure 0004541243
(In the general formula (1), R 2 and R 3 each represent an alkyl group having 1 to 3 carbon atoms, R 1 and R 4 each represent an alkyl group or an allyl group having 1 to 20 carbon atoms, and m And n each satisfy 0-30)
ホウ素化合物(A)が、ホウ酸、無水ホウ酸、四ホウ酸アンモニウム水和物、アルキルホウ酸エステルおよび塩化ホウ素からなる群から選ばれる少なくとも1種であることを特徴とする請求項1記載のホウ素拡散用塗布液。 The boron compound (A) is at least one selected from the group consisting of boric acid, anhydrous boric acid, ammonium tetraborate hydrate, alkyl borate ester, and boron chloride. Coating liquid for diffusion. 水溶性高分子化合物(B)が、ポリビニルアルコールであることを特徴とする請求項1または2記載のホウ素拡散用塗布液。 The coating solution for boron diffusion according to claim 1 or 2, wherein the water-soluble polymer compound (B) is polyvinyl alcohol. さらに、沸点が100℃以上の水混和性有機溶剤(D)を含有することを特徴とする請求項1、2、または3記載のホウ素拡散用塗布液。 Furthermore, the coating liquid for boron diffusion of Claim 1, 2, or 3 containing the water miscible organic solvent (D) whose boiling point is 100 degreeC or more. 水混和性有機溶剤(D)が、ジエチレングリコール誘導体であることを特徴とする請求項4記載のホウ素拡散用塗布液。 5. The boron diffusion coating solution according to claim 4, wherein the water-miscible organic solvent (D) is a diethylene glycol derivative.
JP2005213030A 2005-07-22 2005-07-22 Boron diffusion coating solution Expired - Fee Related JP4541243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213030A JP4541243B2 (en) 2005-07-22 2005-07-22 Boron diffusion coating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213030A JP4541243B2 (en) 2005-07-22 2005-07-22 Boron diffusion coating solution

Publications (2)

Publication Number Publication Date
JP2007035719A JP2007035719A (en) 2007-02-08
JP4541243B2 true JP4541243B2 (en) 2010-09-08

Family

ID=37794647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213030A Expired - Fee Related JP4541243B2 (en) 2005-07-22 2005-07-22 Boron diffusion coating solution

Country Status (1)

Country Link
JP (1) JP4541243B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631711B1 (en) 2008-03-21 2016-06-17 신에쓰 가가꾸 고교 가부시끼가이샤 Phosphorus paste for diffusion and method for preparing solar cell by using the same
JP2010056465A (en) * 2008-08-29 2010-03-11 Shin-Etsu Chemical Co Ltd Boron paste for diffusion, and method of manufacturing solar cell using the same
JP5748388B2 (en) * 2008-09-01 2015-07-15 日本酢ビ・ポバール株式会社 Boron diffusion coating solution
JP5679545B2 (en) * 2010-05-17 2015-03-04 東京応化工業株式会社 Diffusion agent composition, impurity diffusion layer forming method, and solar cell
JP2012138569A (en) * 2010-11-29 2012-07-19 Nippon Synthetic Chem Ind Co Ltd:The Coating liquid for impurity diffusion
EP2648211A4 (en) 2010-11-29 2014-07-30 Nippon Synthetic Chem Ind Coating liquid for impurity diffusion
JP2012138568A (en) * 2010-12-08 2012-07-19 Nippon Synthetic Chem Ind Co Ltd:The Coating liquid for impurity diffusion
CN102148145B (en) * 2011-03-09 2013-01-02 绍兴旭昌科技企业有限公司 Preparation method and detection source-compensating method for boron diffused source film
JP5731885B2 (en) * 2011-04-18 2015-06-10 日本酢ビ・ポバール株式会社 Boron diffusion coating solution
KR20140011354A (en) * 2011-05-20 2014-01-28 닛폰고세이가가쿠고교 가부시키가이샤 Coating liquid for diffusing impurity
JP5935256B2 (en) * 2011-07-22 2016-06-15 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
WO2013015284A1 (en) * 2011-07-25 2013-01-31 日立化成工業株式会社 Semiconductor substrate, manufacturing method therefor, solar-cell element, and solar cell
JP6178543B2 (en) * 2012-01-25 2017-08-09 直江津電子工業株式会社 P-type diffusion layer coating solution
JP6100471B2 (en) * 2012-03-29 2017-03-22 東京応化工業株式会社 Method for diffusing impurity diffusion component and method for manufacturing solar cell
JP6009245B2 (en) * 2012-07-02 2016-10-19 直江津電子工業株式会社 P-type diffusion layer coating solution
JP2014030011A (en) * 2012-07-04 2014-02-13 Nippon Synthetic Chem Ind Co Ltd:The Coating liquid for dopant diffusion, method for applying the same, method for manufacturing semiconductor using the same, and semiconductor
JP2014045065A (en) * 2012-08-27 2014-03-13 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773931A (en) * 1980-10-28 1982-05-08 Tokyo Denshi Kagaku Kabushiki Boron-diffusing source for semiconductor element and diffusing method thereby
JPH09181010A (en) * 1995-12-26 1997-07-11 Tokyo Ohka Kogyo Co Ltd Coating liquid for boron diffusion
JP2002075893A (en) * 2000-09-01 2002-03-15 Sanken Electric Co Ltd Liquid impurity source material, and semiconductor device
JP2002539615A (en) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dopant paste for forming p, p + and n, n + regions in a semiconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773931A (en) * 1980-10-28 1982-05-08 Tokyo Denshi Kagaku Kabushiki Boron-diffusing source for semiconductor element and diffusing method thereby
JPH09181010A (en) * 1995-12-26 1997-07-11 Tokyo Ohka Kogyo Co Ltd Coating liquid for boron diffusion
JP2002539615A (en) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dopant paste for forming p, p + and n, n + regions in a semiconductor
JP2002075893A (en) * 2000-09-01 2002-03-15 Sanken Electric Co Ltd Liquid impurity source material, and semiconductor device

Also Published As

Publication number Publication date
JP2007035719A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4541243B2 (en) Boron diffusion coating solution
JP4541328B2 (en) Phosphorus diffusion coating solution
TWI494390B (en) Coating solution for impurity diffusion
CN1243131A (en) Polymer dispersion
JP2018528277A (en) N, N-dialkylglucamine for stabilizing polymer dispersions
JP2010062334A (en) Coating liquid for diffusing phosphor
CN1107087C (en) Aqueous emulsion composition
JP2014030011A (en) Coating liquid for dopant diffusion, method for applying the same, method for manufacturing semiconductor using the same, and semiconductor
JP2013008953A (en) Coating liquid for diffusing impurity
JP5897269B2 (en) Phosphorus diffusion coating solution
JP6009245B2 (en) P-type diffusion layer coating solution
JP2012227287A (en) Coating liquid for boron diffusion
JP2003104778A (en) Aqueous solution type binder for ceramic molding
JP6178543B2 (en) P-type diffusion layer coating solution
JP2016134558A (en) Coating liquid for dopant diffusion, and method of manufacturing semiconductor prepared therefrom
KR101794563B1 (en) Water Swelling Thickner Composition, Method for Manufacturing There and Tile Adhesive Comprising Said Thickner Composition and Acrylic Emulsion
WO2013022076A1 (en) Manufacturing method for solar cell, and solar cell obtained from same
JP3842136B2 (en) Resin composition and use thereof
JP2013070048A (en) Method for manufacturing solar cell, and solar cell obtained by the same
JP2012201738A (en) Defoaming agent composition-containing thermoplastic resin aqueous dispersion, and coated article using the same
JP2004290839A (en) Dispersing agent composition
JPWO2008149817A1 (en) Phosphor paste composition
KR101546214B1 (en) Fabricating method of emulsion polymer flocculant using new surfactant
JP2016115744A (en) Coating liquid for dopant diffusion, and method of producing semiconductor using the same
JP2021161167A (en) Emulsion particle, coating agent, dried product, and method of producing emulsion particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees