JP4532671B2 - Hydrogen gas detector - Google Patents

Hydrogen gas detector Download PDF

Info

Publication number
JP4532671B2
JP4532671B2 JP2000152831A JP2000152831A JP4532671B2 JP 4532671 B2 JP4532671 B2 JP 4532671B2 JP 2000152831 A JP2000152831 A JP 2000152831A JP 2000152831 A JP2000152831 A JP 2000152831A JP 4532671 B2 JP4532671 B2 JP 4532671B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
sensitive layer
gas
oxide
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000152831A
Other languages
Japanese (ja)
Other versions
JP2001050923A (en
Inventor
章 勝木
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2000152831A priority Critical patent/JP4532671B2/en
Publication of JP2001050923A publication Critical patent/JP2001050923A/en
Application granted granted Critical
Publication of JP4532671B2 publication Critical patent/JP4532671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素ガス検知素子に関し、特に、貴金属線を覆って、酸化インジウム半導体を主成分とする半導体から形成される感応層を設けてある半導体式のガス検知素子に関する。このような水素ガス検知素子は主に、還元剤やキャリアガス、燃料等として水素ガスを使用する化学工場、半導体製造工場、電気自動車用水素燃料電池、エンジンシステム等におけるガス漏洩等を監視する目的で使用される。
【0002】
【従来の技術】
従来、この種の水素ガス検知素子としては、貴金属線を覆って、酸化スズ半導体を主成分とする半導体から形成される感応層を設けてあるガス検知素子が知られており、前記感応層にランタン系金属酸化物の少なくとも一種以上を添加して低濃度における水素ガス選択性を向上させた水素ガス検知素子の開発が試みられている。
【0003】
【発明が解決しようとする課題】
上述した従来の水素ガス検知素子は、100ppm以下の低濃度の水素ガスを高感度に検知することが見出されており、水素ガス漏洩の初期的な検知に効果を発揮するものとして期待されている。というのも、水素ガスは、分子半径が小さく極めて小さなピンホール等からも漏洩し易いという性質があり、また、水素ガスの爆発下限界が4%(Vol)と低い上に爆発ガス濃度領域が広いため、ガス爆発の早期警戒が必要となるからである。
しかしながら、このような水素ガス検知素子は、一旦高濃度の水素ガスに晒されてしまうと、感度が劣化してしまうという欠点があった。具体的には、上述の水素ガス検知素子は100ppm以下の水素ガス濃度においては、高い感度で選択性良く働く優れたセンサであるが、500ppm以上の水素ガスに暴露されると感度が低下して劣化してしまうという実験結果が得られている。
【0004】
従って、本発明の目的は、上記欠点に鑑み、湿度安定性が高く、高濃度の水素に暴露されても感度の劣化しにくい水素ガス検知素子を得ることにある。
【0005】
【課題を解決するための手段】
この目的を達成するための本発明の水素ガス検知素子の特徴構成は、
貴金属線を覆って、酸化インジウムを主成分とする半導体から形成される感応層を設けてあるガス検知素子であって、前記感応層に、酸化セリウム1〜2mol%添加してあるとともに、水素選択透過性のシリカ薄膜、あるいは、化学蒸着処理によるシリカ薄膜を形成してある点にある。
また、前記感応層が、酸化インジウムの焼結体であり、前記シリカ薄膜が、ヘキサメチルジシロキサンガス中で、前記貴金属線に電流を流し、350℃〜550℃で25分〜25時間の条件下で化学蒸着処理により形成された物であることが望ましい
【0006】
〔作用効果〕
酸化スズ半導体等を主材とする感応層にシリカ薄膜を蒸着させる技術が知られており(特開昭56−168542号公報参照)、そのような薄膜を緻密に形成することにより、前記感応層が水素ガス以外のガスと接触するのを制限し、水素ガス選択性を高める技術が実用化されている(特公昭61−31422号公報参照)。しかしながら、特定の組成の感応層に関しては、緻密な薄膜を形成する技術は知られているものの、緻密な薄膜を形成するためには、薄膜を形成すべき基材の性質等が、その薄膜の性質に大きく影響する場合があり、その感応層の種類により種々検討を要し、水素ガスだけを選択的に透過するようなシリカ薄膜を得ることは困難であり、得られたシリカ薄膜の性質についても予測しがたい。
【0007】
しかしながら、今般本発明者らは、前記シリカ薄膜の機能に着目し、水素ガスの曝露に対して耐久性を発揮すると思われる、たとえば、Ce(セリウム)、Pr(プラセオジム)、Tb(テルビウム)等のランタニド金属の酸化物を所定量添加してある酸化インジウムを主成分とする感応層を有するガス検知素子を用いて、鋭意検討した。その結果、酸化インジウム半導体を主材とする水素選択性を有する感応層に、酸化セリウムを1〜2mol%添加し、更に感応層にシリカ薄膜を形成すると、そのガス検知素子が、先述の水素ガス選択性を発揮するという新知見を得た。
【0008】
つまり、このような水素ガス検知素子は、前記感応層の水素ガス選択性の高さをさらに向上させつつも、さらに、高濃度水素ガスに対する耐久性も向上した高性能な検知素子となるのである。
ここで、前記シリカ薄膜としては、水素ガスを選択的に透過するものとして形成してあると、水素ガス検知の際の選択性を高くすることができて有効であるとともに、化学蒸着処理によって形成すると、さらに、高濃度ガスによって劣化するのを有効に予防できる。
さらに、前記シリカ薄膜が、ヘキサメチルジシロキサンガス中で、前記貴金属線に電流を流し、350℃〜550℃の条件下で25分〜25時間の条件下で化学蒸着処理により形成された物であれば、いずれの特性も同時に高くできるため、極めて安定性に優れたガス検知素子を提供することができるようになった。
【0009】
尚、上述の作用が得られるのは、以下のような理由によると考えられる。
前記感応層にシリカの薄膜を形成すると、図32(模式図)に示すように、酸化インジウムの焼結表面の性状に対応してシリカの結晶が通常多孔質である前記感応層の孔を閉塞するように成長し、あるいは、前記感応層の外表面に極めて細かな多孔質構造を有する薄膜を形成し、分子篩の機能を持った緻密な層を形成する。分子サイズの大きなエタノール等のガスは、シリカの緻密な層を通過できず、主に水素ガスのみが、そのシリカの薄膜を透過して感応層に達する。感応層に達した水素ガスは、酸化インジウムと接触し、その表面吸着酸素と反応して水分子と自由電子とを生成する。この際生じた自由電子が、水素検知出力として測定される訳であるが、生じた水分子は、前記感応層を透過して外部に放出されることになるため、前記シリカ薄膜の感応層側では、吸着酸素不足になる。すると、前記シリカ薄膜の感応層側では、酸素ガスのシリカ薄膜透過速度が水素ガスの場合よりも遅いことから遅れがちになって、ガス状酸素濃度も低下するため、水素分子と吸着酸素との反応にガス状酸素が悪影響を与えにくくなり、微量の水素ガスであっても確実に自由電子を発生させることになって、確実なガス検知が行えるようになるのである。
また、インジウムの酸化数は、3価のもののみが安定なものとして知られており、還元された状態では安定に存在しにくいと考えられるため、水素ガスによる還元作用を受けたとしてもすぐに元の酸化数に戻りやすいため、安定な挙動を示すものと考えられる。更に、酸化インジウムの格子酸素は、イオン性が大きいことが知られており、表面吸着酸素が熱的にも安定であり、酸化活性も低いことから水素の強い還元力に対して有利と考えられる。
【0010】
その結果、水素ガスに対して高い感度を有しながらも、1000ppm以上の高濃度水素ガスに対する暴露に対しても劣化が少なく、かつ、湿度依存性が小さくまた、硫黄酸化物等によっても被毒しにくい水素ガス検知素子を提供できた。これにより、広い濃度範囲で、信頼性高くガス検知できるようになった。
【0011】
さらに、このようにして得られた、ガス検知素子は、広いガス濃度領域にわたって、水素ガス濃度増加に対する出力増加率が高く維持される(水素ガス濃度−出力のグラフにおける直線性が高い)ことがわかり、広い濃度領域において正確なガス濃度を知るのに役立てられる。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
市販の水酸化インジウム(In(OH)3 )の微粉体を電気炉を用いて焼成することにより酸化インジウムの粉体が得られる。この酸化インジウムをさらに粉砕し、微粉体とし、1.3−ブタンジオール等の分散媒を用いてペースト状にし、貴金属線1を覆って球状に塗布し、乾燥後前記貴金属線1に電流を流通させ、空気中で焼結し、感応層2のみからなる熱線型半導体式ガス検知素子を得た。この熱線型半導体式ガス検知素子に、ランタニド金属から選ばれる少なくとも一種以上の金属の塩の溶液を含浸させ、乾燥・焼成して前記感応層2に、各種金属を酸化物の形態で担持させる。
こうして出来た熱線型半導体式ガス検知素子を、例えば、ヘキサメチルジシロキサン(HMDS)の飽和蒸気圧(35℃で約9Vol%)の環境において加熱する。加熱は、貴金属線1に電流を流通させ、ジュール熱を発生させることにより感応層2全体がヘキサメチルジシロキサンの分解温度以上になるように調整する。すると、雰囲気のヘキサメチルジシロキサンが熱分解して感応層2表面に緻密なシリカ薄膜3を形成し、水素ガス検知素子として用いられるようになる(図1参照)。
【0014】
この水素ガス検知素子を図2に示すブリッジ回路に組み込み、ガス検知装置として用いた。このときセンサ出力(出力)は、以下の数式によって得られる。
【0015】
V=−E{rs/(rs+r0)−r1/(r1+r2)}
ここで、各変数は以下のとおりである。
V :センサ出力
E :ブリッジ電圧
rs :熱線型半導体式ガス検知素子Rsの抵抗
r0 :固定抵抗R0の抵抗
r1 :固定抵抗R1の抵抗
r2 :固定抵抗R2の抵抗
【0016】
また、感度は、検知ガス共存空気中の出力と、清浄空気中出力との差として求めた。尚、相対感度として感度を表記する場合、ある特定条件下の感度出力を1とした比をもって他の条件下における感度を示したものを指すこととしている。
【0017】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
〔実施例1〕 市販の水酸化インジウム(In(OH) 3)((株)高純度化学研究所社製、純度99.99重量%)の微粉体を電気炉を用いて600℃で4時間焼成することにより酸化インジウムの粉体が得られる。この酸化インジウムをさらに粉砕し、微粉体とし、1.3−ブタンジオール(分散媒)を用いてペースト状にし、貴金属線としての白金線コイル(線径20μm)を覆って直径0.50mmの球状に塗布し、乾燥後前記白金線コイルに電流を流通させ、600℃で1時間空気中で焼結し、熱線型半導体式ガス検知素子を得た。
この熱線型半導体式ガス検知素子に、硝酸セリウムの水溶液を含浸させ、乾燥・焼成して前記酸化インジウムに対して種々の濃度で酸化セリウム(Ce2 3 )を添加させる。
更に、この熱線型半導体式ガス検知素子に、下記の条件で、シリカ薄膜を蒸着した。
【0018】
HMDS蒸着処理
処理温度 :550℃
処理時間 :25分
HMDS蒸気圧:9Vol%(35℃)
感度測定電圧 :1.9V(5.6Ω)(480℃)
【0019】
このようにして酸化セリウムの添加量が種々に異なるガス検知素子を作成し、その感度特性を調べたところ、図3の様になった。
【0020】
つまり、酸化セリウムが添加してある場合には、2000ppm以上の高濃度の水素ガスに対しても相対感度の増加率が高く、高い直線性が現れるので、高精度に濃度決定が出来ることがわかる。また、この場合、セリウムは4mol%程度まで添加しても、なおも直線性が改善されることがわかった。
【0021】
〔実施例2〕
同様にして硝酸セリウムに代え、硝酸プラセオジム、塩化テルビウムを用い、前記感応層に酸化プラセオジム、酸化テルビウムを添加し、同様に相対感度の水素ガス濃度依存性の直線性について調べたところ、記載順に図4,5のようになった。図より添加物の添加により、グラフの直線性が改善されていることが読みとれる。また、前記ランタニド金属が、ネオジム、サマリウム、ユーロピウム、ガドリニウム、ジスプロシウム、ホルミウム、エルビウム、イッテルビウム、ルテチウムの場合を、それぞれの金属の塩化物を用いて同様に調べたところ、図6〜14のようになり、酸化ネオジム(Nd2 3 )、酸化サマリウム(Sm2 3 )、酸化ユーロピウム(Eu2 3 )、酸化ガドリニウム(Gd2 3 )、酸化ジスプロシウム(Dy2 3 )、酸化ホルミウム(Ho2 3 )、酸化エルビウム(Er2 3 )、酸化イッテルビウム(Yb2 3 )、酸化ルテチウム(Lu2 3 )について同様の傾向がみられることがわかる。
【0022】
〔比較例1〕
同様にして硝酸セリウムに代え、硝酸ランタンを用い、前記感応層に酸化ランタン(La2 3 )を添加し、同様に相対感度の水素ガス濃度依存性の直線性について調べたところ、図15のようになった。図より添加物の添加によっても、ランタノイド金属のうちランタンでは直線性の改善効果がほとんどないことがわかり、直線性の改善効果はランタニド金属に特有のものであることがわかる。
【0023】
〔実施例3〕
実施例1,2で得た各ガス検知素子について、水素、メタノール、エタノール感度の添加物量依存性を調べたところ、表1のようになった。
【0024】
【表1】

Figure 0004532671
【0025】
表より、高い水素感度が得られていることがわかる。尚、水素自動車等メタノールを水素に転換して用いる燃料供給システムでは、水素のメタノールに対する選択性は、2000ppmメタノール感度が、100ppm感度よりも低いことが望まれるので、0.04〜10mol%程度の添加量が特に好ましいことが読みとれる。
また、先と同様の理由から、プラセオジムの添加量は、0.04〜2mol%、テルビウムの添加量は、0.04〜0.4mol%が特に好ましいことがわかる。
【0026】
〔実施例4〕
実施例1で得た酸化セリウム添加量が0.04,0.2,1,4mol%の各ガス検知素子について、高濃度水素の暴露に対する耐久性を調べたところ、記載順に図16〜19のようになった。尚、水素ガスの曝露条件は、1%の水素ガスに10分間であり、ガス感度の回復度合いは、前記暴露試験後30分間通常環境下の通電状態を維持した後のガス感度によって調べた。複数回行う場合は水素ガスの暴露から、30分間の通電までの操作を同様に複数回行った。
【0027】
その結果、いずれの添加量においても高濃度の水素を暴露しても、感度の変化はほとんどみられず、信頼性の高いガス検知が行えることがわかった。
【0028】
〔実施例5〕
酸化セリウムに代え、酸化プラセオジム、酸化テルビウム、酸化ネオジム、酸化サマリウム、酸化ユーロピウム、酸化ガドリニウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化イッテルビウム、酸化ルテチウムを用い、実施例4と同様に高濃度水素の暴露に対するガス検知素子の耐久性を調べたところ、図20〜30の様になった。尚、図20〜30において添加物の添加量は2mol%とした。
その結果、他のランタニド金属についてもセリウム同様の効果を発揮していることがわかり、ランタニド金属については同様の効果が期待できることがわかる。
【0029】
〔比較例2〕
同様にして酸化インジウム半導体を主成分とする感応層に前記添加物を加えることなく形成した熱線型半導体式ガス検知素子を作成し、このガス検知素子についても高濃度の水素ガスに暴露させたときのガス感度の変化を調べた。また、暴露後のガス感度の回復についても調べた。その結果、図31の様になった。
【0030】
つまり、高濃度の水素ガスに曝露された後には、水素感度が大きく低下していることがわかる。従って、このような高濃度水素の暴露に対する高い耐久性は、ランタニド金属酸化物の添加によるものであることがわかる。
【0031】
〔別実施形態〕
以下に別実施形態を説明する。
先の実施の形態では、ペーストを作成するための酸化インジウムを得るのに市販の水酸化インジウムを焼成したが、塩化インジウム等のインジウム塩水溶液からアンモニア等による加水分解を経て、水酸化インジウムの沈殿物を得るとともに、水洗、乾燥、焼成により、酸化インジウムを得るようにしても良い。
また、先の実施の形態では、シリカ薄膜を形成するのにHMDSを用いたが、ハロシラン(SiXx 4-x )、アルキルシラン(Rx SiH4-x )、アルキルハロシラン(Rx SiX4-x )、シリルアルコキシド(RO)x Si(OH)4-x (ただしXはハロゲン、Rはアルキル基であり、xは1〜4の整数であり、X、Rともに複数種混在してもかまわない。)等、他のケイ素化合物を用いることも出来る。この様な場合、HMDSとは条件は異なるとは思われるが、前述の条件と類似の条件下で緻密なシリカ薄膜が得られると予想されるからである。
尚、本発明において貴金属線は白金線コイルに限らず白金とパラジウムの合金、他の貴金属類を採用してもかまわない。
【図面の簡単な説明】
【図1】水素ガス検知素子の一部断面斜視図
【図2】ガス検知装置の回路説明図
【図3】種々の酸化セリウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図4】種々の酸化プラセオジム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図5】種々の酸化テルビウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図6】種々の酸化ネオジム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図7】種々の酸化サマリウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図8】種々の酸化ユーロピウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図9】種々の酸化ガドリニウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図10】種々の酸化ジスプロシウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図11】種々の酸化ホルミウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図12】種々の酸化エルビウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図13】種々の酸化イッテルビウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図14】種々の酸化ルテチウム添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図15】種々の酸化ランタン添加量の感応層を有するガス検知素子の感度の水素ガス濃度依存性を示すグラフ
【図16】酸化セリウム添加量0.04mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図17】酸化セリウム添加量0.2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図18】酸化セリウム添加量1mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図19】酸化セリウム添加量4mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図20】酸化プラセオジム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図21】酸化テルビウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図22】酸化ネオジム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図23】酸化サマリウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図24】酸化ユーロピウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図25】酸化ガドリニウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図26】酸化ジスプロシウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図27】酸化ホルミウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図28】酸化エルビウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図29】酸化イッテルビウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図30】酸化ルテチウム添加量2mol%の感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図31】酸化セリウム無添加感応層を有するガス検知素子の感度の高濃度水素ガス暴露耐久性を示すグラフ
【図32】シリカ薄膜によるガス選択性の向上を説明する模式図
【符号の説明】
1 貴金属線
2 感応層
3 シリカ薄膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen gas detection element, and more particularly to a semiconductor type gas detection element that covers a noble metal wire and is provided with a sensitive layer formed of a semiconductor composed mainly of an indium oxide semiconductor. Such hydrogen gas detection elements are mainly used for monitoring gas leaks in chemical factories, semiconductor manufacturing factories, hydrogen fuel cells for electric vehicles, engine systems, etc. that use hydrogen gas as a reducing agent, carrier gas, fuel, etc. Used in.
[0002]
[Prior art]
Conventionally, as this type of hydrogen gas detection element, a gas detection element is known in which a noble metal wire is covered and a sensitive layer formed of a semiconductor mainly composed of a tin oxide semiconductor is provided. Attempts have been made to develop a hydrogen gas detection element in which at least one lanthanum metal oxide is added to improve the hydrogen gas selectivity at a low concentration.
[0003]
[Problems to be solved by the invention]
The above-described conventional hydrogen gas detecting element has been found to detect hydrogen gas having a low concentration of 100 ppm or less with high sensitivity, and is expected to be effective for initial detection of hydrogen gas leakage. Yes. This is because hydrogen gas has the property that it has a small molecular radius and is likely to leak from extremely small pinholes, etc. Also, the lower explosion limit of hydrogen gas is as low as 4% (Vol), and the explosive gas concentration region is Because it is wide, early warning of gas explosion is necessary.
However, such a hydrogen gas detecting element has a drawback that the sensitivity is deteriorated once exposed to a high concentration of hydrogen gas. Specifically, the hydrogen gas detection element described above is an excellent sensor that works with high sensitivity and selectivity at a hydrogen gas concentration of 100 ppm or less, but the sensitivity decreases when exposed to hydrogen gas of 500 ppm or more. The experimental result that it deteriorates is obtained.
[0004]
Accordingly, an object of the present invention is to obtain a hydrogen gas detection element that has high humidity stability and hardly deteriorates in sensitivity even when exposed to high concentration of hydrogen in view of the above-mentioned drawbacks.
[0005]
[Means for Solving the Problems]
In order to achieve this object, the characteristic configuration of the hydrogen gas detection element of the present invention is:
A gas sensing element that covers a noble metal wire and is provided with a sensitive layer formed of a semiconductor mainly composed of indium oxide, wherein cerium oxide is added to the sensitive layer in an amount of 1 to 2 mol% , hydrogen permselective silica thin film, or lies in that is formed with a silica thin film by chemical vapor deposition.
Further, the sensitive layer is a sintered body of indium oxide, and the silica thin film is supplied with a current through the noble metal wire in a hexamethyldisiloxane gas, and the conditions are 350 ° C. to 550 ° C. for 25 minutes to 25 hours. It is desirable that the material is formed by chemical vapor deposition processing below .
[0006]
[Function and effect]
A technique for depositing a silica thin film on a sensitive layer mainly composed of a tin oxide semiconductor or the like is known (see Japanese Patent Application Laid-Open No. 56-168542), and the sensitive layer is formed by densely forming such a thin film. Has been put to practical use in order to limit the contact of the gas with a gas other than hydrogen gas and improve the hydrogen gas selectivity (see Japanese Patent Publication No. 61-31422). However, with respect to a sensitive layer having a specific composition, although a technique for forming a dense thin film is known, in order to form a dense thin film, the properties of the substrate on which the thin film is to be formed depend on the properties of the thin film. Depending on the type of sensitive layer, various studies are required, and it is difficult to obtain a silica thin film that selectively transmits only hydrogen gas. It is hard to predict.
[0007]
However, the present inventors have recently focused on the function of the silica thin film and are expected to exhibit durability against exposure to hydrogen gas, such as Ce (cerium), Pr (praseodymium), Tb (terbium), and the like. A gas detection element having a sensitive layer mainly composed of indium oxide to which a predetermined amount of a lanthanide metal oxide was added was studied earnestly. As a result, when 1 to 2 mol% of cerium oxide is added to a sensitive layer having hydrogen selectivity based on an indium oxide semiconductor and further a silica thin film is formed on the sensitive layer, the gas sensing element becomes the hydrogen gas described above. New knowledge that it exhibits selectivity was obtained.
[0008]
That is, such a hydrogen gas detection element is a high-performance detection element that further improves the high selectivity of the sensitive layer for hydrogen gas and further improves durability against high-concentration hydrogen gas. .
Here, if the silica thin film is formed so as to selectively permeate hydrogen gas, it is effective to increase the selectivity at the time of hydrogen gas detection and is formed by chemical vapor deposition. Then, further, it is possible to effectively prevent the deterioration due to the high concentration gas.
Further, the silica thin film is formed by chemical vapor deposition under conditions of 25 minutes to 25 hours under conditions of 350 ° C. to 550 ° C. in which current is passed through the noble metal wire in hexamethyldisiloxane gas. If there is, any of the characteristics can be improved at the same time, so that it is possible to provide a gas detection element with extremely excellent stability.
[0009]
In addition, it is thought that it is based on the following reasons that the above-mentioned operation is obtained.
When a thin film of silica is formed on the sensitive layer, as shown in FIG. 32 (schematic diagram), the pores of the sensitive layer, in which the silica crystals are usually porous, are blocked according to the properties of the sintered surface of indium oxide. Or a thin film having an extremely fine porous structure is formed on the outer surface of the sensitive layer to form a dense layer having a molecular sieve function. A gas such as ethanol having a large molecular size cannot pass through a dense layer of silica, and only hydrogen gas passes through the silica thin film and reaches the sensitive layer. The hydrogen gas that has reached the sensitive layer comes into contact with indium oxide and reacts with oxygen adsorbed on the surface to generate water molecules and free electrons. The free electrons generated at this time are measured as the hydrogen detection output. Since the generated water molecules pass through the sensitive layer and are released to the outside, the sensitive layer side of the silica thin film Then, the adsorbed oxygen becomes insufficient. Then, on the sensitive layer side of the silica thin film, since the gas permeation rate of oxygen gas is slower than that of hydrogen gas, it tends to be delayed, and the gaseous oxygen concentration also decreases. Gaseous oxygen is less likely to adversely affect the reaction, and even with a very small amount of hydrogen gas, free electrons are reliably generated, so that reliable gas detection can be performed.
In addition, the oxidation number of indium is known to be stable only when it is trivalent, and it is considered that it is difficult to exist stably in the reduced state. Since it is easy to return to the original oxidation number, it is considered that it exhibits a stable behavior. Furthermore, it is known that the lattice oxygen of indium oxide is highly ionic, and the surface adsorbed oxygen is thermally stable and has low oxidation activity, which is considered advantageous for the strong reducing power of hydrogen. .
[0010]
As a result, while having high sensitivity to hydrogen gas, there is little deterioration when exposed to high-concentration hydrogen gas of 1000 ppm or more, and it is less dependent on humidity, and is also poisoned by sulfur oxides. It was possible to provide a hydrogen gas detection element that is difficult to perform. As a result, gas can be detected with high reliability in a wide concentration range.
[0011]
Furthermore, the gas detection element obtained in this way has a high output increase rate with respect to an increase in hydrogen gas concentration over a wide gas concentration region (high linearity in the hydrogen gas concentration-output graph). It is useful to know the exact gas concentration in a wide concentration range.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
An indium oxide powder is obtained by firing a commercially available fine powder of indium hydroxide (In (OH) 3 ) using an electric furnace. This indium oxide is further pulverized into a fine powder, made into a paste using a dispersion medium such as 1.3-butanediol, coated in a spherical shape covering the noble metal wire 1, and after passing, a current is passed through the noble metal wire 1. And sintered in air to obtain a hot-wire semiconductor gas sensing element consisting of only the sensitive layer 2. The hot-wire semiconductor gas detection element is impregnated with a solution of at least one metal salt selected from lanthanide metals, dried and fired, and various metals are supported in the form of oxides on the sensitive layer 2.
The hot-wire semiconductor gas detection element thus produced is heated, for example, in an environment of hexamethyldisiloxane (HMDS) saturated vapor pressure (about 9 Vol% at 35 ° C.). The heating is adjusted so that the entire sensitive layer 2 becomes equal to or higher than the decomposition temperature of hexamethyldisiloxane by passing a current through the noble metal wire 1 and generating Joule heat. Then, the hexamethyldisiloxane in the atmosphere is thermally decomposed to form a dense silica thin film 3 on the surface of the sensitive layer 2 and used as a hydrogen gas detection element (see FIG. 1).
[0014]
This hydrogen gas detection element was incorporated in the bridge circuit shown in FIG. 2 and used as a gas detection device. At this time, the sensor output (output) is obtained by the following mathematical formula.
[0015]
V = −E {rs / (rs + r0) −r1 / (r1 + r2)}
Here, each variable is as follows.
V: sensor output E: bridge voltage rs: resistance r0 of hot-wire semiconductor gas sensing element Rs: resistance r1 of fixed resistance R0: resistance r2 of fixed resistance R1: resistance of fixed resistance R2
The sensitivity was obtained as the difference between the output in the air in the presence of the detection gas and the output in clean air. In addition, when expressing sensitivity as relative sensitivity, the sensitivity under other conditions is indicated with a ratio where the sensitivity output under certain specific conditions is 1.
[0017]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
Example 1 A fine powder of commercially available indium hydroxide (In (OH) 3 ) (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99% by weight) was heated at 600 ° C. for 4 hours using an electric furnace. By firing, a powder of indium oxide is obtained. This indium oxide is further pulverized into fine powder, made into a paste using 1.3-butanediol (dispersion medium), covered with a platinum wire coil (wire diameter: 20 μm) as a noble metal wire, and a spherical shape with a diameter of 0.50 mm. After applying and drying, an electric current was passed through the platinum wire coil and sintered in the air at 600 ° C. for 1 hour to obtain a hot wire type semiconductor gas detection element.
The hot wire semiconductor gas sensing element is impregnated with an aqueous solution of cerium nitrate, dried and fired, and cerium oxide (Ce 2 O 3 ) is added to the indium oxide at various concentrations.
Further, a silica thin film was vapor-deposited on the hot wire semiconductor gas detection element under the following conditions.
[0018]
HMDS deposition treatment temperature: 550 ° C
Processing time: 25 minutes HMDS vapor pressure: 9 Vol% (35 ° C)
Sensitivity measurement voltage: 1.9V (5.6Ω) (480 ° C)
[0019]
Thus, when the gas detection element from which the addition amount of cerium oxide was variously different was created and the sensitivity characteristic was investigated, it became like FIG.
[0020]
That is, when cerium oxide is added, the rate of increase in relative sensitivity is high even for hydrogen gas with a high concentration of 2000 ppm or more, and high linearity appears, so that the concentration can be determined with high accuracy. . Further, in this case, it was found that even when cerium was added up to about 4 mol%, the linearity was still improved.
[0021]
[Example 2]
Similarly, instead of cerium nitrate, praseodymium nitrate and terbium chloride were used, praseodymium oxide and terbium oxide were added to the sensitive layer, and the linearity of hydrogen gas concentration dependence of relative sensitivity was similarly examined. It became like 4,5. From the figure, it can be seen that the linearity of the graph is improved by the addition of the additive. Further, when the lanthanide metal was neodymium, samarium, europium, gadolinium, dysprosium, holmium, erbium, ytterbium, and lutetium, it was similarly examined using the chlorides of the respective metals as shown in FIGS. Neodymium oxide (Nd 2 O 3 ), samarium oxide (Sm 2 O 3 ), europium oxide (Eu 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), dysprosium oxide (Dy 2 O 3 ), holmium oxide ( It can be seen that the same tendency is observed for Ho 2 O 3 ), erbium oxide (Er 2 O 3 ), ytterbium oxide (Yb 2 O 3 ), and lutetium oxide (Lu 2 O 3 ).
[0022]
[Comparative Example 1]
Similarly, lanthanum nitrate was used in place of cerium nitrate, lanthanum oxide (La 2 O 3 ) was added to the sensitive layer, and the linearity of the relative sensitivity of the relative sensitivity of the hydrogen gas concentration was similarly examined. It became so. It can be seen from the figure that even with the addition of additives, lanthanum among lanthanoid metals has almost no linearity improving effect, and the linearity improving effect is peculiar to lanthanide metals.
[0023]
Example 3
For each of the gas detection elements obtained in Examples 1 and 2, the dependency of hydrogen, methanol, and ethanol sensitivity on the amount of additive was examined.
[0024]
[Table 1]
Figure 0004532671
[0025]
From the table, it can be seen that high hydrogen sensitivity is obtained. In addition, in a fuel supply system that uses methanol by converting methanol to hydrogen, such as hydrogen automobiles, it is desirable that the selectivity of hydrogen to methanol is 2000 ppm methanol sensitivity lower than 100 ppm sensitivity. It can be seen that the amount added is particularly preferred.
From the same reason as above, it can be seen that the amount of praseodymium is particularly preferably 0.04 to 2 mol%, and the amount of terbium is particularly preferably 0.04 to 0.4 mol%.
[0026]
Example 4
For each gas detection element having the cerium oxide addition amount of 0.04, 0.2, 1, 4 mol% obtained in Example 1, the durability against exposure to high-concentration hydrogen was examined. It became so. The exposure condition of hydrogen gas was 10% in 1% hydrogen gas, and the degree of recovery of gas sensitivity was examined by gas sensitivity after maintaining the current-carrying state in a normal environment for 30 minutes after the exposure test. In the case of performing multiple times, the operations from exposure to hydrogen gas to energization for 30 minutes were similarly performed multiple times.
[0027]
As a result, it was found that even if high concentration of hydrogen was exposed at any addition amount, there was almost no change in sensitivity, and highly reliable gas detection could be performed.
[0028]
Example 5
Instead of cerium oxide, praseodymium oxide, terbium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, dysprosium oxide, holmium oxide, erbium oxide, ytterbium oxide, lutetium oxide, and high concentration hydrogen as in Example 4. When the durability of the gas detection element with respect to exposure was examined, the results were as shown in FIGS. In addition, in FIGS. 20-30, the addition amount of the additive was 2 mol%.
As a result, it can be seen that other lanthanide metals exhibit the same effect as cerium, and that lanthanide metals can be expected to have the same effect.
[0029]
[Comparative Example 2]
Similarly, a hot-wire type semiconductor gas sensing element formed without adding the additive to the sensitive layer mainly composed of an indium oxide semiconductor was created, and this gas sensing element was also exposed to a high concentration of hydrogen gas. Changes in gas sensitivity were investigated. The recovery of gas sensitivity after exposure was also examined. As a result, it became like FIG.
[0030]
That is, it can be seen that the hydrogen sensitivity is greatly reduced after exposure to high concentration hydrogen gas. Therefore, it can be seen that such high durability against exposure to high-concentration hydrogen is due to the addition of the lanthanide metal oxide.
[0031]
[Another embodiment]
Another embodiment will be described below.
In the previous embodiment, commercially available indium hydroxide was baked to obtain indium oxide for making a paste. However, precipitation of indium hydroxide was performed by hydrolysis from an aqueous solution of indium salt such as indium chloride with ammonia. While obtaining a thing, you may make it obtain indium oxide by washing with water, drying, and baking.
In the previous embodiment, HMDS was used to form the silica thin film. However, halosilane (SiX x H 4-x ), alkyl silane (R x SiH 4-x ), alkyl halosilane (R x SiX). 4-x ), silyl alkoxide (RO) x Si (OH) 4-x (where X is a halogen, R is an alkyl group, x is an integer of 1 to 4, and both X and R are mixed) Other silicon compounds can also be used. In such a case, the condition is different from that of HMDS, but a dense silica thin film is expected to be obtained under conditions similar to those described above.
In the present invention, the noble metal wire is not limited to the platinum wire coil, and an alloy of platinum and palladium or other noble metals may be adopted.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional perspective view of a hydrogen gas detection element. FIG. 2 is a circuit diagram of a gas detection apparatus. FIG. 3 is a dependence of the sensitivity of a gas detection element having a sensitive layer with various addition amounts of cerium oxide on the hydrogen gas concentration. FIG. 4 is a graph showing the dependence of the sensitivity of a gas detection element having a sensitive layer with various addition amounts of praseodymium oxide on the hydrogen gas concentration. FIG. 5 is a gas detection having a sensitive layer with various addition amounts of terbium oxide. FIG. 6 is a graph showing the dependence of the sensitivity of the gas on the hydrogen gas concentration. FIG. 6 is a graph showing the dependence of the sensitivity of the gas sensing element having a sensitivity layer with various addition amounts of neodymium oxide on the hydrogen gas concentration. FIG. 8 is a graph showing the dependence of the sensitivity of a gas sensing element having a sensitive layer on the hydrogen gas concentration. FIG. 8 shows the dependence of the sensitivity of a gas sensing element having a sensitive layer with various addition amounts of europium oxide on the hydrogen gas concentration. FIG. 9 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas sensing element having a sensitive layer with various addition amounts of gadolinium oxide. FIG. 10 is a sensitivity of the gas sensing element having a sensitive layer with various addition amounts of dysprosium oxide. FIG. 11 is a graph showing the dependence of the sensitivity of a gas sensing element having a sensitive layer with various addition amounts of holmium oxide on the hydrogen gas concentration. FIG. 12 is a sensitivity of various addition amounts of erbium oxide. FIG. 13 is a graph showing the dependence of the sensitivity of a gas sensing element having a layer on the hydrogen gas concentration. FIG. 13 is a graph showing the dependence of the sensitivity of a gas sensing element having a sensitive layer on various amounts of ytterbium oxide added on the hydrogen gas concentration. FIG. 15 is a graph showing the hydrogen gas concentration dependence of the sensitivity of a gas sensing element having a sensitive layer with various lutetium oxide addition amounts. FIG. 15 shows the sensitivity of various lanthanum oxide addition amounts. FIG. 16 is a graph showing the sensitivity of a gas sensing element having a sensitive layer with an addition amount of cerium oxide of 0.04 mol% and the durability of exposure to high concentration hydrogen gas. FIG. 17 is a graph showing a high-sensitivity hydrogen gas exposure durability of the sensitivity of a gas sensing element having a sensitive layer with a cerium oxide addition amount of 0.2 mol%. FIG. 18 is a gas sensing element having a sensitive layer with a cerium oxide addition amount of 1 mol%. A graph showing the durability of a high-concentration hydrogen gas exposure with high sensitivity. FIG. 19 is a graph showing the durability of a gas detection element having a sensitive layer with a cerium oxide addition amount of 4 mol%. FIG. FIG. 21 is a graph showing the durability of a gas detection element having a sensitive layer with an addition amount of 2 mol% in terms of the sensitivity to high-concentration hydrogen gas exposure. FIG. 22 is a graph showing the durability of a gas sensing element having a sensitive layer exposed to high concentration hydrogen gas. FIG. 22 shows the sensitivity of a gas sensing element having a sensitive layer having an addition amount of neodymium oxide of 2 mol% being exposed to high concentration hydrogen gas. FIG. 23 is a graph showing the sensitivity of a gas detection element having a sensitive layer with a samarium oxide addition amount of 2 mol% and the durability of exposure to high concentration hydrogen gas. FIG. 24 is a gas detection element having a sensitive layer with a europium oxide addition amount of 2 mol%. The graph showing the high-density hydrogen gas exposure durability with high sensitivity of hydrogen [FIG. 25] The graph showing the high-density hydrogen gas exposure durability of the gas sensing element having the sensitive layer with the addition amount of gadolinium oxide of 2 mol% [FIG. 26] Dysprosium oxide FIG. 27 is a graph showing the durability of high-sensitivity hydrogen gas exposure durability of the gas sensing element having a sensitive layer with an addition amount of 2 mol%. FIG. 28 is a graph showing the durability of high-sensitivity hydrogen gas exposure durability of a gas sensing element having an ol% sensitive layer. FIG. 28 shows the sensitivity of a gas sensing element having a sensitive layer having an erbium oxide addition amount of 2 mol%. FIG. 29 is a graph showing the durability of a gas detection element having a sensitive layer with a ytterbium oxide addition amount of 2 mol% in terms of sensitivity to high-concentration hydrogen gas exposure. FIG. 30 has a sensitive layer with a lutetium oxide addition amount of 2 mol%. Graph showing the sensitivity of the gas detection element exposed to high-concentration hydrogen gas [FIG. 31] Graph showing the sensitivity of the gas detection element having a cerium oxide-free sensitive layer and exposure to high concentration hydrogen gas [FIG. 32] Silica thin film Schematic diagram explaining the improvement of gas selectivity by gas [Explanation of symbols]
1 Precious metal wire 2 Sensitive layer 3 Silica thin film

Claims (3)

貴金属線を覆って、酸化インジウムを主成分とする半導体から形成される感応層を設けてあるガス検知素子であって、
前記感応層に、酸化セリウム1〜2mol%添加してあるとともに、水素選択透過性のシリカ薄膜を形成してある水素ガス検知素子。
A gas detection element that covers a noble metal wire and has a sensitive layer formed of a semiconductor mainly composed of indium oxide,
Wherein the sensitive layer, together with some by the addition of cerium oxide 1 to 2 mol%, the hydrogen gas detecting element is formed with hydrogen selective permeable silica thin film.
貴金属線を覆って、酸化インジウムを主成分とする半導体から形成される感応層を設けてあるガス検知素子であって、
前記感応層に、酸化セリウム1〜2mol%添加してあるとともに、シリカ薄膜を化学蒸着処理によって形成してある水素ガス検知素子。
A gas detection element that covers a noble metal wire and has a sensitive layer formed of a semiconductor mainly composed of indium oxide,
Wherein the sensitive layer, together with some by the addition of cerium oxide 1 to 2 mol%, the hydrogen gas detecting element is formed by silica thin film by chemical vapor deposition.
前記感応層は、酸化インジウムの焼結体であり、
前記シリカ薄膜が、ヘキサメチルジシロキサンガス中で、前記貴金属線に電流を流し、350℃〜550℃で25分〜25時間の条件下で化学蒸着処理により形成された物である請求項1又は2に記載の水素ガス検知素子。
The sensitive layer is a sintered body of indium oxide,
The silica thin film is formed by chemical vapor deposition under conditions of flowing a current through the noble metal wire in a hexamethyldisiloxane gas at 350 ° C to 550 ° C for 25 minutes to 25 hours. 2. The hydrogen gas detection element according to 2.
JP2000152831A 1999-06-01 2000-05-24 Hydrogen gas detector Expired - Lifetime JP4532671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152831A JP4532671B2 (en) 1999-06-01 2000-05-24 Hydrogen gas detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15370899 1999-06-01
JP11-153708 1999-06-01
JP2000152831A JP4532671B2 (en) 1999-06-01 2000-05-24 Hydrogen gas detector

Publications (2)

Publication Number Publication Date
JP2001050923A JP2001050923A (en) 2001-02-23
JP4532671B2 true JP4532671B2 (en) 2010-08-25

Family

ID=26482249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152831A Expired - Lifetime JP4532671B2 (en) 1999-06-01 2000-05-24 Hydrogen gas detector

Country Status (1)

Country Link
JP (1) JP4532671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116405A1 (en) * 2018-08-07 2021-04-22 New Cosmos Electric Co., Ltd. Mems type semiconductor gas detection element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3901594B2 (en) * 2002-06-26 2007-04-04 新コスモス電機株式会社 Semiconductor hydrogen gas detector
EP1693483B1 (en) 2002-08-02 2009-10-07 Idemitsu Kosan Co., Ltd. Sputtering target, sintered article, conductive film fabricated by utilizing the same, organic el device, and substrate for use therein
KR101440648B1 (en) * 2006-10-12 2014-09-22 넥스테크 머티리얼스, 엘티디. Hydrogen sensitive composite material, tubular sensor for detecting hydrogen and other gases
JP5148551B2 (en) * 2009-04-21 2013-02-20 大阪瓦斯株式会社 Gas detection device, combustion equipment equipped with this gas detection device, and gas alarm
JP6761764B2 (en) 2016-03-18 2020-09-30 パナソニックセミコンダクターソリューションズ株式会社 Hydrogen sensor and fuel cell vehicle, and hydrogen detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679949A (en) * 1979-12-04 1981-06-30 Matsushita Electric Works Ltd Combustible gas detecting element
JPS6131422B2 (en) * 1982-12-28 1986-07-19 New Cosmos Electric Co
JPS61223643A (en) * 1985-03-29 1986-10-04 Nohmi Bosai Kogyo Co Ltd Gaseous hydrogen detecting element and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679949A (en) * 1979-12-04 1981-06-30 Matsushita Electric Works Ltd Combustible gas detecting element
JPS6131422B2 (en) * 1982-12-28 1986-07-19 New Cosmos Electric Co
JPS61223643A (en) * 1985-03-29 1986-10-04 Nohmi Bosai Kogyo Co Ltd Gaseous hydrogen detecting element and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210116405A1 (en) * 2018-08-07 2021-04-22 New Cosmos Electric Co., Ltd. Mems type semiconductor gas detection element
US11977043B2 (en) * 2018-08-07 2024-05-07 New Cosmos Electric Co., Ltd. MEMS type semiconductor gas detection element

Also Published As

Publication number Publication date
JP2001050923A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
Srivastava et al. Study on ZnO-doped tin oxide thick film gas sensors
JPH05203605A (en) Chemical sensor for carbon monoxide detection
Qu et al. Highly sensitive and selective toluene sensor based on Ce-doped coral-like SnO2
US20230273139A1 (en) Gas detection complex and method for producing same, gas sensor comprising gas detection complex and method for manufacturing same
Azad et al. Behavior of a New ZrO2‐MoO3 Sensor for Carbon Monoxide Detection
JP4532671B2 (en) Hydrogen gas detector
JP4743375B2 (en) Flammable gas concentration measurement method
EP3751264A2 (en) Carbon dioxide gas sensor
JP2011069705A (en) Ammonia sensor element and manufacturing method of proton conductive solid electrolyte
JP3929199B2 (en) HYDROGEN GAS DETECTION ELEMENT AND MANUFACTURING METHOD THEREOF
JP2008241430A (en) Semiconductor type gas sensing element
JP5275099B2 (en) Hydrogen detection element and hydrogen detection sensor
JP3929355B2 (en) Semiconductor hydrogen gas detector
JPH10115597A (en) Gas sensor
JPH11287781A (en) Hydrogen gas detection element and its manufacture
JP3901594B2 (en) Semiconductor hydrogen gas detector
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JPH11287778A (en) Hydrogen gas detection element and its manufacture
JP7438030B2 (en) Gas-sensitive material, method for producing gas-sensitive material, and gas concentration measuring device
JP6758060B2 (en) Hydrogen gas sensor
Srivastava et al. Effect of SiO^ sub 2^ Overlayer on WO^ sub 3^ Sensitivity to Ammonia
JP3669807B2 (en) Carbon monoxide detection sensor
JP2918392B2 (en) Nitrogen oxide detection sensor
JP2966646B2 (en) Nitrogen oxide detection sensor
JP2000009688A (en) Carbon monoxide sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Ref document number: 4532671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term