JP4518167B2 - Organic electroluminescent device and display medium - Google Patents

Organic electroluminescent device and display medium Download PDF

Info

Publication number
JP4518167B2
JP4518167B2 JP2008068361A JP2008068361A JP4518167B2 JP 4518167 B2 JP4518167 B2 JP 4518167B2 JP 2008068361 A JP2008068361 A JP 2008068361A JP 2008068361 A JP2008068361 A JP 2008068361A JP 4518167 B2 JP4518167 B2 JP 4518167B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
charge transporting
organic electroluminescent
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008068361A
Other languages
Japanese (ja)
Other versions
JP2009224607A (en
Inventor
英一 廣瀬
幸治 堀場
岳 阿形
克洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2008068361A priority Critical patent/JP4518167B2/en
Priority to US12/237,517 priority patent/US20090231240A1/en
Priority to CN2008101841136A priority patent/CN101540372B/en
Publication of JP2009224607A publication Critical patent/JP2009224607A/en
Application granted granted Critical
Publication of JP4518167B2 publication Critical patent/JP4518167B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、有機電界発光素子及びそれを利用した表示媒体に関する。   The present invention relates to an organic electroluminescent device and a display medium using the same.

電界発光素子は、自発光性の全固体素子であり、視認性が高く衝撃にも強いため、広く応用が期待されている。現在は無機蛍光体を用いたものが主流であり広く使用されているが、駆動に200V以上、50Hz乃至1000Hzの交流電圧を必要とする。一方、有機化合物を用いた電界発光素子研究は、最初アントラセン等の単結晶を用いて始まったが、膜厚が1mm程度と厚く、100V以上の駆動電圧が必要であった。そのため蒸着法による薄膜化が試みられている(例えば、非特許文献1参照)。   An electroluminescent element is a self-luminous all-solid-state element, has high visibility and is resistant to impact, and thus is widely expected to be applied. Currently, those using inorganic phosphors are the mainstream and widely used, but driving requires an AC voltage of 200 V or more and 50 Hz to 1000 Hz. On the other hand, research on electroluminescent devices using organic compounds first started with a single crystal such as anthracene, but the film thickness was as thick as about 1 mm and a driving voltage of 100 V or more was required. For this reason, attempts have been made to reduce the thickness by vapor deposition (see, for example, Non-Patent Document 1).

これら素子の発光は、電極の一方から電子が注入され、もう一方の電極から正孔が注入されることにより、素子中の発光材料が高いエネルギー準位に励起され、励起された発光体が基底状態に戻る際の余分なエネルギーを光として放出する現象であるが、実用化に至っていない。   The light emission of these elements is such that electrons are injected from one of the electrodes and holes are injected from the other electrode, so that the light emitting material in the element is excited to a high energy level, and the excited illuminant becomes the base. Although it is a phenomenon in which excess energy for returning to the state is released as light, it has not been put into practical use.

有機電界発光素子としては、近年低分子化合物の代わりに高分子材料を用いる電界発光素子についても研究・開発が進められ、ポリ(p−フェニレンビニレン)等の導電性高分子素子(例えば、特許文献1又は非特許文献2参照)、ポリフォスファゼンの側鎖にトリフェニルアミンを導入した高分子素子(例えば、非特許文献3参照)、正孔輸送性ポリビニルカルバゾール中に電子輸送材料と蛍光色素を混入した素子(例えば、非特許文献4参照)が提案されている。   As organic electroluminescent devices, research and development have recently been conducted on electroluminescent devices using polymer materials instead of low molecular compounds, and conductive polymer devices such as poly (p-phenylene vinylene) (for example, patent documents). 1 or non-patent document 2), a polymer element in which triphenylamine is introduced into the side chain of polyphosphazene (see, for example, non-patent document 3), an electron transport material and a fluorescent dye in a hole transporting polyvinyl carbazole. A mixed element (for example, see Non-Patent Document 4) has been proposed.

また、製造が容易で十分な輝度が得られ、耐久性に優れた有機電界発光素子として、特定のアミン構造から選択された少なくとも1種を部分構造として含む繰り返し単位よりなるホール輸送性ポリエステルを有機化合物層とする技術が開示されている(例えば、特許文献2参照)。   In addition, as an organic electroluminescent device that is easy to produce, has sufficient luminance, and has excellent durability, a hole transporting polyester comprising a repeating unit containing at least one selected from a specific amine structure as a partial structure is organically used. A technique for forming a compound layer is disclosed (for example, see Patent Document 2).

さらに、作製法においては、製造の簡略化、加工性、大面積化、コスト等の観点から塗布方式が望ましく、キャステイング法によっても素子が得られることが報告されている(例えば、非特許文献5及び6参照)。また、高分子材料を溶液に溶かして成膜する方法では、ポリビニルカルバゾールを用いるのが一般的である。
特開平10−92576号公報 特開2002−43066号公報 Thin Solid Films,94,171(1982) Nature,357,477(1992) 第42回高分子討論会予稿集20J21(1993) 第38回応用物理学関係連合講演会予稿集31p−G−12(1991) 第50回応用物理学会学術講演予稿集,29p−ZP−5(1989) 第51回応用物理学会学術講演予稿集,28a−PB−7(1990)
Further, in the manufacturing method, a coating method is desirable from the viewpoint of simplification of manufacturing, workability, large area, cost, and the like, and it has been reported that an element can be obtained by a casting method (for example, Non-Patent Document 5). And 6). In the method of forming a film by dissolving a polymer material in a solution, polyvinyl carbazole is generally used.
Japanese Patent Laid-Open No. 10-92576 JP 2002-43066 A Thin Solid Films, 94, 171 (1982) Nature, 357, 477 (1992) 42nd Polymer Symposium Proceedings 20J21 (1993) Proceedings of the 38th Joint Conference on Applied Physics 31p-G-12 (1991) Proceedings of the 50th Japan Society of Applied Physics, 29p-ZP-5 (1989) Proceedings of the 51st Japan Society of Applied Physics, 28a-PB-7 (1990)

本発明の課題は、ポリビニルカルバゾールを用いた有機電界発光素子と比べ、素子寿命が長い有機電界発光素子及びそれを用いた表示媒体を提供することにある。   An object of the present invention is to provide an organic electroluminescent device having a longer device lifetime than an organic electroluminescent device using polyvinylcarbazole and a display medium using the same.

上記課題は、以下の本発明により達成される。
すなわち、本発明の請求項1に係る発明は、少なくとも一方が透明または半透明である陽極及び陰極よりなる一対の電極と、
該一対の電極間に挾まれ、少なくとも一層が下記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有する一つまたは複数の有機化合物層と、
を有すること有機電界発光素子である。
The above-mentioned subject is achieved by the following present invention.
That is, the invention according to claim 1 of the present invention includes a pair of electrodes composed of an anode and a cathode, at least one of which is transparent or translucent,
One or a plurality of organic compound layers sandwiched between the pair of electrodes, at least one layer containing one or more charge transporting polyesters represented by the following general formula (I-1 ) :
It is an organic electroluminescent element.

前記一般式(I−1)中、Aは下記一般式(II−1)及び(II−2)で示される構造から選択された少なくとも1種を表し、Rは置換もしくは未置換の芳香環数2乃至10の1価の多核芳香族炭化水素基、置換もしくは未置換の芳香環数2乃至10の1価の縮合芳香族炭化水素基、炭素数1乃至6の1価の直鎖状炭化水素基、炭素数2乃至10の1価の分枝鎖状炭化水素基、ヒドロキシル基を表す。Yエチレン基を表し、mは1乃至5の整数を表し、pは10乃至1000の整数を表す In the general formula (I-1 ) , A 1 represents at least one selected from the structures represented by the following general formulas (II-1) and (II-2), and R 1 represents a substituted or unsubstituted fragrance. A monovalent polynuclear aromatic hydrocarbon group having 2 to 10 rings, a substituted or unsubstituted monovalent condensed aromatic hydrocarbon group having 2 to 10 aromatic rings, and a monovalent straight chain having 1 to 6 carbon atoms A hydrocarbon group, a monovalent branched hydrocarbon group having 2 to 10 carbon atoms, and a hydroxyl group are represented. Y 1 represents an ethylene group , m represents an integer of 1 to 5, and p represents an integer of 10 to 1000 .

前記一般式(II−1)及び(II−2)中、Arはフェニル基又は下記式(i)、(ii)、(iii)又は(iv)で示される基を表し、jは1を表し、Tはメチレン基又はエチレン基を表し、Xは下記式(III)で表される基を表す。 In the general formulas (II-1) and (II-2), Ar represents a phenyl group or a group represented by the following formula (i), (ii), (iii) or (iv), and j represents 1 . , T represents a methylene group or an ethylene group , and X represents a group represented by the following formula (III).

請求項2に係る発明は、前記有機化合物層が、発光層と、電子輸送層及び電子注入層の少なくとも一層とを含み、前記発光層、電子輸送層及び電子注入層から選択された少なくとも一層が、前記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有する請求項1に記載の有機電界発光素子である。 In the invention according to claim 2, the organic compound layer includes a light emitting layer and at least one layer of an electron transport layer and an electron injection layer, and at least one layer selected from the light emitting layer, the electron transport layer, and the electron injection layer. The organic electroluminescent device according to claim 1, comprising at least one kind of charge transporting polyester represented by the general formula (I-1 ) .

請求項3に係る発明は、前記有機化合物層が、発光層と、正孔輸送層及び正孔注入層の少なくとも一層とを含み、前記発光層、正孔輸送層及び正孔注入層から選択された少なくとも一層が、前記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有する請求項1に記載の有機電界発光素子である。 In the invention according to claim 3, the organic compound layer includes a light emitting layer and at least one of a hole transport layer and a hole injection layer, and is selected from the light emitting layer, the hole transport layer, and the hole injection layer. 2. The organic electroluminescent device according to claim 1, wherein at least one layer contains at least one kind of charge transporting polyester represented by the general formula (I-1 ) .

請求項4に係る発明は、前記有機化合物層が、発光層と、正孔輸送層及び正孔注入層の少なくとも一層と、電子輸送層及び電子注入層の少なくとも一層とを含み、前記発光層、正孔輸送層、正孔注入層、電子輸送層及び電子注入層から選択された少なくとも一層が、前記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有する請求項1に記載の有機電界発光素子である。 The invention according to claim 4 is characterized in that the organic compound layer includes a light emitting layer, at least one layer of a hole transport layer and a hole injection layer, and at least one layer of an electron transport layer and an electron injection layer, The at least one layer selected from a positive hole transport layer, a positive hole injection layer, an electron transport layer, and an electron injection layer contains 1 or more types of charge transport polyester shown by the said general formula (I-1 ). It is an organic electroluminescent element of description.

請求項5に係る発明は、前記有機化合物層が、電荷輸送機能を持つ発光層のみから構成され、前記電荷輸送機能を持つ発光層が、前記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有する請求項1に記載の有機電界発光素子である。 In the invention according to claim 5, the organic compound layer is composed only of a light emitting layer having a charge transport function, and the light emitting layer having the charge transport function is a charge transport property represented by the general formula (I-1 ) . It is an organic electroluminescent element of Claim 1 containing 1 or more types of polyester.

請求項6に係る発明は、少なくとも一方が透明である一対の電極と、該一対の電極間に挟まれ、且つ1つ以上の層から構成される有機化合物層と、を有し、前記有機化合物層を構成する少なくとも1層が、請求項1に記載の電荷輸送性ポリエステルを1種以上含有し、マトリックス状及びセグメント状の少なくとも一方で配列された有機電界発光素子と、
マトリックス状及びセグメント状の少なくとも一方で配列された前記有機電界発光素子を駆動する駆動手段と、を備える表示媒体である。
The invention according to claim 6 has a pair of electrodes, at least one of which is transparent, and an organic compound layer sandwiched between the pair of electrodes and composed of one or more layers, and the organic compound An organic electroluminescence device in which at least one layer constituting the layer contains one or more kinds of the charge transporting polyester according to claim 1 and arranged in at least one of a matrix shape and a segment shape;
And a driving means for driving the organic electroluminescent elements arranged in at least one of a matrix shape and a segment shape.

本発明の請求項1に係る発明によれば、ポリビニルカルバゾールを用いた有機電界発光素子と比べ、素子寿命が長い有機電界発光素子が得られる。
請求項2に係る発明によれば、本層構成を有していない場合と比較して、発光効率が優れた有機電界発光素子が得られる。
請求項3に係る発明によれば、本層構成を有していない場合と比較して、耐久性が優れた有機電界発光素子が得られる。
請求項4に係る発明によれば、本層構成を有していない場合と比較して、より低電圧で駆動する有機電界発光素子が得られる。
請求項5に係る発明によれば、本層構成を有していない場合と比較して、製造が容易な有機電界発光素子が得られる。
請求項6に係る発明によれば、ポリビニルカルバゾールを用いた有機電界発光素子からなる表示媒体と比べ、寿命の長い高い表示媒体が得られる。
According to the first aspect of the present invention, an organic electroluminescent element having a longer element lifetime than an organic electroluminescent element using polyvinyl carbazole can be obtained.
According to the second aspect of the present invention, an organic electroluminescent element having excellent luminous efficiency can be obtained as compared with the case where the present layer configuration is not provided.
According to the third aspect of the present invention, an organic electroluminescent element having excellent durability can be obtained as compared with the case where the present layer configuration is not provided.
According to the invention which concerns on Claim 4, compared with the case where it does not have this layer structure, the organic electroluminescent element driven by a lower voltage is obtained.
According to the invention which concerns on Claim 5, compared with the case where it does not have this layer structure, the organic electroluminescent element which manufacture is easy is obtained.
According to the invention which concerns on Claim 6, compared with the display medium which consists of an organic electroluminescent element using polyvinyl carbazole, a display medium with a long lifetime is obtained.

以下、本発明を実施形態により詳細に説明する。
<有機電界発光素子>
本実施形態の有機電界発光素子(以下、「有機EL素子」という場合がある)は、少なくとも一方が透明または半透明である陽極及び陰極よりなる一対の電極と、該一対の電極間に挾まれ、少なくとも一層が下記一般式(I−1)または(I−2)で示される電荷輸送性ポリエステルを1種以上含有する一つまたは複数の有機化合物層と、を有することを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
<Organic electroluminescent device>
The organic electroluminescent element of the present embodiment (hereinafter, sometimes referred to as “organic EL element”) is sandwiched between a pair of electrodes each consisting of an anode and a cathode, at least one of which is transparent or translucent, and the pair of electrodes. And at least one layer has one or a plurality of organic compound layers containing one or more charge transporting polyesters represented by the following general formula (I-1) or (I-2).

なお、前記一般式(I−1)及び(I−2)中、Aは下記一般式(II−1)及び(II−2)で示される構造から選択された少なくとも1種を表し、Rは置換もしくは未置換の芳香環数2乃至10の1価の多核芳香族炭化水素基、置換もしくは未置換の芳香環数2乃至10の1価の縮合芳香族炭化水素基、炭素数1乃至6の1価の直鎖状炭化水素基、炭素数2乃至10の1価の分枝鎖状炭化水素基、ヒドロキシル基を表す。Yは2価のアルコール残基を表し、Zは2価のカルボン酸残基を表し、mは1乃至5の整数を表し、好ましくは1、pは5乃至5000の整数を表す。また、B及びB’は、−O−(Y−O)m−H、または−O−(Y−O)m−CO−Z−CO−ORで表される基(ただし、Y、Z、mは上記と同義である。Rは水素原子、アルキル基、置換もしくは未置換のアリール基、または、置換もしくは未置換のアラルキル基を表す)を表す。また、Y(2価のアルコール残基)及び、Z(2価のカルボン酸残基)は、例えば、一般式(VI−1)及び(VI−2)で示される電荷輸送性モノマーを例えば後述の方法で重合して生成される。 In the general formulas (I-1) and (I-2), A 1 represents at least one selected from the structures represented by the following general formulas (II-1) and (II-2), and R 1 is a substituted or unsubstituted monovalent polynuclear aromatic hydrocarbon group having 2 to 10 aromatic rings, a substituted or unsubstituted monovalent condensed aromatic hydrocarbon group having 2 to 10 aromatic rings, and 1 to 6 monovalent linear hydrocarbon groups, monovalent branched hydrocarbon groups having 2 to 10 carbon atoms, and hydroxyl groups. Y 1 represents a divalent alcohol residue, Z 1 represents a divalent carboxylic acid residue, m represents an integer of 1 to 5, preferably 1, and p represents an integer of 5 to 5000. B and B ′ are groups represented by —O— (Y 1 —O) m—H or —O— (Y 1 —O) m—CO—Z 1 —CO—OR 2 (wherein Y 1 , Z 1 and m are as defined above, and R 2 represents a hydrogen atom, an alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group. Y 1 (divalent alcohol residue) and Z 1 (divalent carboxylic acid residue) are, for example, charge transporting monomers represented by general formulas (VI-1) and (VI-2). For example, it is produced by polymerization by a method described later.

前記一般式(II−1)及び(II−2)中、Arは置換もしくは未置換のフェニル基、置換もしくは未置換の芳香環数2乃至10の1価の多核芳香族炭化水素、置換もしくは未置換の芳香環数2乃至10の1価の縮合芳香族炭化水素又は置換もしくは未置換の1価の芳香族複素環を表し、jは0または1を表し、好ましくは1、Tは炭素数1乃至6の2価の直鎖状炭化水素基または炭素数2乃至10の2価の分枝鎖状炭化水素基を表し、Xは下記式(III)で表される基を表す。   In the general formulas (II-1) and (II-2), Ar represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted monovalent polynuclear aromatic hydrocarbon having 2 to 10 aromatic rings, a substituted or unsubstituted Represents a substituted monovalent condensed aromatic hydrocarbon having 2 to 10 substituted aromatic rings or a substituted or unsubstituted monovalent aromatic heterocyclic ring, j represents 0 or 1, preferably 1, T represents 1 carbon atom Represents a divalent linear hydrocarbon group having 6 to 6 carbon atoms or a divalent branched hydrocarbon group having 2 to 10 carbon atoms, and X represents a group represented by the following formula (III).

本実施形態における電荷輸送性ポリエステルは、フェニレン基に連結されたチアゾール環を分子構造中に挿入することによりイオン化ポテンシャルを低くコントロールすることができ、電極からの電荷注入性が改善される。さらにポリエステル構造により基板との密着性が向上し電荷注入性が良く、特に前記チアゾール環を挿入した構造では溶剤や樹脂に対する溶解性及び相溶性に優れている。従って、本実施形態の有機電界発光素子は、有機化合物層の少なくとも一層が前記電荷輸送性ポリエステルを含有してなることで、十分な輝度を有し、発光効率が高く、素子寿命が長い。さらに、前記電荷輸送性ポリエステルを用いることで、大面積化され、有機電界発光素子が容易に製造される。   The charge transporting polyester in this embodiment can control the ionization potential to be low by inserting a thiazole ring linked to a phenylene group into the molecular structure, and the charge injection property from the electrode is improved. Further, the polyester structure improves the adhesion to the substrate and the charge injection property is good. In particular, the structure in which the thiazole ring is inserted has excellent solubility and compatibility with solvents and resins. Therefore, the organic electroluminescent element of this embodiment has sufficient luminance, high luminous efficiency, and long element lifetime because at least one of the organic compound layers contains the charge transporting polyester. Furthermore, by using the charge transporting polyester, the area is increased and an organic electroluminescent device can be easily produced.

また、前記電荷輸送性ポリエステルは後述する構造を選択することで、正孔輸送能、電子輸送能のいずれの機能をも付与することができるため、目的に応じて正孔輸送層、発光層、電子輸送層等のいずれの層にも用いられる。さらに、本実施形態における電荷輸送性ポリエステルは、ガラス転移温度が比較的高く、しかもキャリアの移動度が大きい。
なお本実施形態において、「電荷輸送性ポリエステル」とは、p型あるいはn型をキャリアとして伝導する半導体であるポリエステルを意味する。
Moreover, since the charge transporting polyester can impart both functions of hole transporting ability and electron transporting ability by selecting a structure to be described later, depending on the purpose, a hole transporting layer, a light emitting layer, It is used for any layer such as an electron transport layer. Furthermore, the charge transporting polyester in this embodiment has a relatively high glass transition temperature and a high carrier mobility.
In the present embodiment, “charge transporting polyester” means polyester which is a semiconductor that conducts p-type or n-type as a carrier.

(電荷輸送性ポリエステル)
以下、本実施形態における前記電荷輸送性ポリエステルについて詳述する。まず、該電荷輸送性ポリエステルの特徴である一般式(I−1)及び(I−2)におけるAの構造について説明する。
前記一般式(II−1)及び(II−2)中、Arは置換もしくは未置換のフェニル基、置換もしくは未置換の芳香環数2乃至10の1価の多核芳香族炭化水素、置換もしくは未置換の芳香環数2乃至10の1価の縮合芳香族炭化水素又は置換もしくは未置換の1価の芳香族複素環を表す。尚、一般式(II−1)及び(II−2)中に2つ存在するArは、同一であっても異なっていても構わないが、製造容易性という観点からは同一であることが好ましい。
(Charge transporting polyester)
Hereinafter, the charge transporting polyester in the present embodiment will be described in detail. First, the general formula is a feature of the charge-transporting polyester (I-1) and (I-2) the structure of A 1 in explaining.
In the general formulas (II-1) and (II-2), Ar represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted monovalent polynuclear aromatic hydrocarbon having 2 to 10 aromatic rings, a substituted or unsubstituted It represents a monovalent condensed aromatic hydrocarbon having 2 to 10 substituted aromatic rings or a substituted or unsubstituted monovalent aromatic heterocyclic ring. The two Ar present in general formulas (II-1) and (II-2) may be the same or different, but are preferably the same from the viewpoint of ease of production. .

ここで、一般式(II−1)及び(II−2)中、Arを表す構造として選択される多核芳香族炭化水素及び縮合芳香族炭化水素を構成する芳香環の数は、さらに2乃至5のものが好ましく、また縮合芳香族炭化水素においては2乃至4のものがより好ましい。尚、当該多核芳香族炭化水素及び縮合芳香族炭化水素とは、本実施形態においては、具体的には以下に定義される多環式芳香族のことを意味する。
すなわち、「多核芳香族炭化水素」とは、炭素と水素とから構成される芳香環が2個以上存在し、環同士が炭素−炭素結合によって結合している炭化水素を表す。具体的には、ビフェニル、ターフェニル等が挙げられる。また、「縮合芳香族炭化水素」とは、炭素と水素とから構成される芳香環が2個以上存在し、これらの芳香環同士が1対の隣接して結合する炭素原子を共有している炭化水素化合物を表す。具体的には、ナフタレン、アントラセン、ピレン、フェナントレン、ペリレン、フルオレン等が挙げられる。
Here, in the general formulas (II-1) and (II-2), the number of aromatic rings constituting the polynuclear aromatic hydrocarbon and the condensed aromatic hydrocarbon selected as the structure representing Ar is further 2 to 5 In the condensed aromatic hydrocarbon, those having 2 to 4 are more preferred. In addition, the said polynuclear aromatic hydrocarbon and condensed aromatic hydrocarbon specifically mean the polycyclic aromatic defined below in this embodiment.
That is, the “polynuclear aromatic hydrocarbon” represents a hydrocarbon in which two or more aromatic rings composed of carbon and hydrogen are present, and the rings are bonded by a carbon-carbon bond. Specific examples include biphenyl and terphenyl. The “condensed aromatic hydrocarbon” means that there are two or more aromatic rings composed of carbon and hydrogen, and these aromatic rings share a pair of adjacent bonded carbon atoms. Represents a hydrocarbon compound. Specific examples include naphthalene, anthracene, pyrene, phenanthrene, perylene, and fluorene.

さらに一般式(II−1)及び(II−2)中において、Arを表す構造として選択される「芳香族複素環」とは、炭素と水素以外の元素も含む芳香環を表し、その環骨格を構成する原子数(Nr)が、5及び6の少なくともいずれかであるものが好適に用いられる。また、環骨格を構成する炭素原子以外の原子(異種原子)の種類及び数は特に限定されないが、例えば、硫黄原子、窒素原子、酸素原子等が好ましく用いられ、前記環骨格中には2種類以上の異種原子、及び、2個以上の異種原子の少なくともいずれかが含まれてもよい。特に5員環構造をもつ複素環として、チオフェン、ピロール及びフラン、または、前記化合物の3位及び4位の炭素を窒素で置き換えた複素環が好ましく用いられ、6員環構造を持つ複素環として、ピリジンが好ましく用いられる。   Furthermore, in the general formulas (II-1) and (II-2), the “aromatic heterocycle” selected as the structure representing Ar represents an aromatic ring containing an element other than carbon and hydrogen, and its ring skeleton The number (Nr) of atoms constituting at least one of 5 and 6 is preferably used. Further, the type and number of atoms (heterogeneous atoms) other than carbon atoms constituting the ring skeleton are not particularly limited. For example, a sulfur atom, a nitrogen atom, an oxygen atom and the like are preferably used, and two types are included in the ring skeleton. At least one of the above heteroatoms and two or more heteroatoms may be included. In particular, as a heterocyclic ring having a 5-membered ring structure, thiophene, pyrrole and furan, or a heterocyclic ring in which the 3- and 4-position carbons of the compound are replaced with nitrogen are preferably used. Pyridine is preferably used.

更に、前記芳香族複素環は、芳香環に複素環が置換しているもの、複素環に芳香環が置換しているもの何れも含み、該複素環及び芳香環として上述の複素環及び芳香環が挙げられる。
これらは全てが共役系で構成されたもの、あるいは一部が共役系で構成されたもののいずれでもよいが、電荷輸送性や発光効率の点で、全てが共役系で構成されたものが好ましい。
Furthermore, the aromatic heterocyclic ring includes both those in which the aromatic ring is substituted with a heterocyclic ring, and those in which the heterocyclic ring is substituted with an aromatic ring. Is mentioned.
These may be either all composed of a conjugated system or partly composed of a conjugated system, but those composed entirely of a conjugated system are preferred in terms of charge transportability and light emission efficiency.

一般式(II−1)及び(II−2)中、Arで表されるフェニル基、多核芳香族炭化水素、縮合多環芳香族炭化水素又は芳香族複素環を更に置換する置換基としては、水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、置換アミノ基、またはハロゲン原子等が挙げられる。前記アルキル基としては、炭素数1乃至10のものが好ましく、例えば、メチル基、エチル基、プロピル基、またはイソプロピル基等が挙げられる。前記アルコキシル基としては、炭素数1乃至10のものが好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、またはイソプロポキシ基等が挙げられる。前記アリール基としては、炭素数6乃至20のものが好ましく、例えば、フェニル基、トルイル基等が挙げられる、前記アラルキル基としては、炭素数7乃至20のものが好ましく、例えば、ベンジル基、フェネチル基等が挙げられる。前記置換アミノ基の置換基としては、アルキル基、アリール基、またはアラルキル基等が挙げられ、具体例は前述の通りである。   In the general formulas (II-1) and (II-2), as a substituent further substituting the phenyl group represented by Ar, the polynuclear aromatic hydrocarbon, the condensed polycyclic aromatic hydrocarbon or the aromatic heterocyclic ring, Examples include a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, a substituted amino group, or a halogen atom. The alkyl group preferably has 1 to 10 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and an isopropyl group. The alkoxyl group is preferably one having 1 to 10 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group. The aryl group preferably has 6 to 20 carbon atoms, and examples thereof include a phenyl group and a toluyl group. The aralkyl group preferably has 7 to 20 carbon atoms, such as a benzyl group and phenethyl. Groups and the like. Examples of the substituent of the substituted amino group include an alkyl group, an aryl group, and an aralkyl group, and specific examples are as described above.

一般式(II−1)及び(II−2)中、Tは、炭素数1乃至6の2価の直鎖状炭化水素基または炭素数2乃至10の2価の分枝鎖状炭化水素基を表し、望ましくは炭素数が2乃至6の2価の直鎖状炭化水素基及び炭素数3乃至7の2価の分枝鎖状炭化水素基より選択される。これらの中でもより具体的には、以下に示す2価の炭化水素基が特に好ましい。   In general formulas (II-1) and (II-2), T is a divalent linear hydrocarbon group having 1 to 6 carbon atoms or a divalent branched hydrocarbon group having 2 to 10 carbon atoms. It is preferably selected from a divalent linear hydrocarbon group having 2 to 6 carbon atoms and a divalent branched hydrocarbon group having 3 to 7 carbon atoms. Among these, more specifically, the divalent hydrocarbon groups shown below are particularly preferable.

以上説明した一般式(II−1)及び(II−2)で示される構造から選択された少なくとも1種は、前記一般式(I−1)及び(I−2)で示される電荷輸送性ポリエステルにおけるAである。
なお、一般式(I−1)及び(I−2)で表される電荷輸送性ポリエステル中に存在する複数のAは、同一の構造であっても、異なった構造であってもよい。
At least one selected from the structures represented by the general formulas (II-1) and (II-2) described above is a charge transporting polyester represented by the general formulas (I-1) and (I-2). it is a 1 in.
The plurality of A 1 present in the charge transporting polyesters represented by the general formulas (I-1) and (I-2) may have the same structure or different structures.

一般式(I−1)及び(I−2)(B及びB’も含む)中、Yは2価アルコール残基を、Zは2価カルボン酸残基を表す。Y及びZは、具体的には下記式(IV−1)乃至(IV−6)から選択される基が挙げられる。 In general formulas (I-1) and (I-2) (including B and B ′), Y 1 represents a divalent alcohol residue, and Z 1 represents a divalent carboxylic acid residue. Specific examples of Y 1 and Z 1 include groups selected from the following formulas (IV-1) to (IV-6).

上記式(IV−1)乃至(IV−6)中、R及びRは、それぞれ水素原子、置換もしくは未置換の炭素数1乃至4のアルキル基、置換もしくは未置換の炭素数1乃至4のアルコキシ基、置換もしくは未置換のフェニル基または置換もしくは未置換のアラルキル基、またはハロゲン原子を表し、a乃至cはそれぞれ独立に1乃至10の整数を表し、eは0乃至2の整数を表し、d、fは0または1を表し、Vは下記(V−1)乃至(V−12)で表される基を表す。 In the above formulas (IV-1) to (IV-6), R 3 and R 4 are each a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted carbon atom having 1 to 4 carbon atoms. Represents an alkoxy group, a substituted or unsubstituted phenyl group or a substituted or unsubstituted aralkyl group, or a halogen atom, a to c each independently represents an integer of 1 to 10, and e represents an integer of 0 to 2. , D and f represent 0 or 1, and V represents a group represented by the following (V-1) to (V-12).

上記式(V−1)、(V−10)、(V−11)、(V−12)中、gは1乃至20の整数を、hは0乃至10の整数を表す。   In the above formulas (V-1), (V-10), (V-11), and (V-12), g represents an integer of 1 to 20, and h represents an integer of 0 to 10.

一般式(I−1)及び(I−2)中、mは1乃至5の整数を表し、pは5乃至5,000の整数を表すが、望ましくは10乃至1000の範囲である。
より具体的には、前記電荷輸送性ポリエステルの重量平均分子量Mwは5,000乃至300,000の範囲であることが好ましく、10000乃至150000の範囲であるのが特に好ましい。上記重量平均分子量Mwは以下の方法により測定することができる。すなわち重量平均分子量は、電荷輸送性ポリエステルの1.0質量%THF溶液を調製し、示差屈折率検出器(RI)を用いて、ゲル浸透クロマトグラフィー(GPC)により、標準サンプルとしてスチレンポリマーを用いて測定した。
In the general formulas (I-1) and (I-2), m represents an integer of 1 to 5, and p represents an integer of 5 to 5,000, preferably 10 to 1,000.
More specifically, the weight average molecular weight Mw of the charge transporting polyester is preferably in the range of 5,000 to 300,000, and particularly preferably in the range of 10,000 to 150,000. The weight average molecular weight Mw can be measured by the following method. That is, the weight average molecular weight was prepared by preparing a 1.0 mass% THF solution of a charge transporting polyester, and using a differential refractive index detector (RI) and gel permeation chromatography (GPC), using a styrene polymer as a standard sample. Measured.

また、前記電荷輸送性ポリエステルのガラス転移温度(Tg)は50℃以上300℃以下であることが好ましく、90℃以上250℃以下がより好適である。
なお、上記ガラス転移温度は、示差走査型熱量計によりα−アルミナ(α−Al)をリファレンスとし、サンプルをゴム状になるまで昇温し、液体窒素に浸し急冷した後、再度昇温速度10℃/分の条件で昇温して測定することができる。
The glass transition temperature (Tg) of the charge transporting polyester is preferably 50 ° C. or higher and 300 ° C. or lower, and more preferably 90 ° C. or higher and 250 ° C. or lower.
Note that the glass transition temperature was raised again by using a differential scanning calorimeter with α-alumina (α-Al 2 O 3 ) as a reference, raising the temperature of the sample until it became rubbery, immersing it in liquid nitrogen and quenching it. The temperature can be measured at a temperature rate of 10 ° C./min.

一般式(I−1)及び(I−2)で表される電荷輸送性ポリエステルは、例えば、下記構造式(VI−1)及び(VI−2)で示される電荷輸送性モノマーを、例えば第4版実験化学講座28巻(日本化学会編、丸善、1992)などに記載された公知の方法で重合することにより合成される。   The charge transporting polyesters represented by the general formulas (I-1) and (I-2) are, for example, charge transporting monomers represented by the following structural formulas (VI-1) and (VI-2), It is synthesized by polymerization by a known method described in 4th edition, Experimental Chemistry Course Vol. 28 (Edited by Chemical Society of Japan, Maruzen, 1992).

一般式(VI−1)及び(VI−2)中、Ar、X、T、jは前記一般式(II−1)及び(II−2)におけるAr、X、T、jと同一である。A’は水酸基、ハロゲン原子、または−O−R(Rは、置換または未置換のアルキル基、置換または未置換のアリール基または置換または未置換のアラルキル基を表す)を表す。 In the general formulas (VI-1) and (VI-2), Ar, X, T, and j are the same as Ar, X, T, and j in the general formulas (II-1) and (II-2). A ′ represents a hydroxyl group, a halogen atom, or —O—R 5 (R 5 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group).

ここで、前記一般式(VI−1)で示される構造の具体例を、表1乃至表5示す。なお、以下、下記表において化合物番号を付した電荷輸送性モノマーの各具体例に関し、例えば、5の番号を付した具体例については「モノマー化合物(5)」という。   Here, Tables 1 to 5 show specific examples of the structure represented by the general formula (VI-1). Hereinafter, regarding each specific example of the charge transporting monomer assigned a compound number in the following table, for example, the specific example assigned a number of 5 is referred to as “monomer compound (5)”.

また、以下に前記一般式(VI−2)で示される構造の具体例を、表6乃至表8に示す。   Specific examples of the structure represented by the general formula (VI-2) are shown in Tables 6 to 8 below.

ここでまず、上記一般式(VI−1)及び(VI−2)で示される電荷輸送性モノマーの合成法について説明する。以下に電荷輸送性モノマーの合成法を例示するが、これに限定するものではない。   First, a method for synthesizing the charge transporting monomers represented by the general formulas (VI-1) and (VI-2) will be described. Although the synthesis method of a charge transporting monomer is illustrated below, it is not limited to this.

本実施形態における電荷輸送性モノマーは、例えば銅触媒を用いたカップリング反応によりトリアリールアミン(下記式(VII))とした後に、N−ブロモこはく酸イミド(NBS)、N−クロロこはく酸イミド(NCS)等を用いたハロゲン化反応により、下記式(VIII)で示される化合物とし、次いでニッケル触媒を用いたホモカップリング反応により合成される。
The charge transporting monomer in the present embodiment is, for example, a triarylamine (following formula (VII)) by a coupling reaction using a copper catalyst, then N-bromosuccinimide (NBS), N-chlorosuccinimide A compound represented by the following formula (VIII) is obtained by a halogenation reaction using (NCS) or the like, and then synthesized by a homocoupling reaction using a nickel catalyst.

上記式(VII)中、Arは前記と同一であり、X’は置換もしくは未置換の1価の芳香族基または置換もしくは未置換の1以上の複数のチアゾール環を含む2価の芳香族基を表し、R6は水素原子、アルキル基、置換もしくは未置換のアリール基、置換もしくは未置換のアラルキル基を表し、nは0乃至5の整数を表す。 In the above formula (VII), Ar is the same as defined above, and X ′ is a substituted or unsubstituted monovalent aromatic group or a divalent aromatic group containing one or more substituted or unsubstituted thiazole rings. R 6 represents a hydrogen atom, an alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, and n represents an integer of 0 to 5.

上記式(VIII)中、Ar、X’、Rは前記と同一であり、G’は臭素原子または塩素原子を示し、nは0乃至5の整数を表す。 In the above formula (VIII), Ar, X ′ and R 6 are the same as described above, G ′ represents a bromine atom or a chlorine atom, and n represents an integer of 0 to 5.

前記ホモカップリング反応は、溶剤中、化合物(VIII)にニッケル錯体、トリフェニルホスフィン、亜鉛を組み合わせて行う。さらに、導入するハロゲン原子が塩素原子の場合には、銅触媒を用いたカップリング反応によりトリアリールアミン骨格を形成する前に、あらかじめ、ハロゲン化によりハロゲン原子を導入しておくこともある。   The homocoupling reaction is carried out in a solvent by combining compound (VIII) with nickel complex, triphenylphosphine, and zinc. Furthermore, when the halogen atom to be introduced is a chlorine atom, the halogen atom may be introduced in advance by halogenation before forming the triarylamine skeleton by a coupling reaction using a copper catalyst.

本反応において、用いられるニッケル錯体は、塩化ニッケル、臭化ニッケル、酢酸ニッケル等が挙げられ、式(VIII)で示される化合物1当量に対して、0.001当量乃至3当量、好適には0.1当量乃至2当量で用いられる。また、亜鉛等の還元剤を共存させて反応を行うことが好ましく、式(VIII)で示される化合物1当量に対して、0.001当量乃至3当量、好適には0.1当量乃至2当量で用いられる。
また、トリフェニルホスフィンは式(VIII)で示される化合物1当量に対して0.5当量乃至3当量、好適には0.7当量乃至2当量で用いられる。
Examples of the nickel complex used in this reaction include nickel chloride, nickel bromide, nickel acetate and the like, and 0.001 equivalent to 3 equivalents, preferably 0, relative to 1 equivalent of the compound represented by the formula (VIII). .1 equivalent to 2 equivalents. The reaction is preferably carried out in the presence of a reducing agent such as zinc. 0.001 equivalents to 3 equivalents, preferably 0.1 equivalents to 2 equivalents, relative to 1 equivalent of the compound represented by formula (VIII) Used in
Triphenylphosphine is used in an amount of 0.5 to 3 equivalents, preferably 0.7 to 2 equivalents, relative to 1 equivalent of the compound represented by formula (VIII).

反応に用いられる溶剤は、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、N−メチルピロリドン(NMP)等を好適に用いることができ、式(VIII)で示される化合物1当量に対して、0.1当量乃至10当量、好適には2当量乃至5当量使用される。またこの反応は、窒素、アルゴン等の不活性ガス雰囲気下で、0℃乃至100℃、好適には室温(25℃、以下これに準ずる)乃至50℃の温度範囲で効率よく攪拌しながら行う。   As the solvent used in the reaction, dimethylformamide (DMF), dimethylacetamide (DMA), tetrahydrofuran (THF), dimethoxyethane (DME), N-methylpyrrolidone (NMP) and the like can be preferably used. Is used in an amount of 0.1 to 10 equivalents, preferably 2 to 5 equivalents. In addition, this reaction is performed in an inert gas atmosphere such as nitrogen or argon while stirring efficiently in a temperature range of 0 ° C. to 100 ° C., preferably room temperature (25 ° C., the same applies hereinafter) to 50 ° C.

反応の終了後は、反応溶液を水中に投入後、よく攪拌し、反応生成物が結晶の場合は、吸引ろ過でろ取することにより粗生成物が得られる。反応生成物が油状物であれば、酢酸エチル、トルエン等の適当な溶剤で抽出し、粗生成物を得ることができる。このようにして得られた粗生成物をシリカゲル、アルミナ、活性白土、活性炭等でカラム精製するか、または溶液中にこれらの吸着剤を添加し、不要分を吸着させる等の処理を行い、さらに、反応生成物が結晶の場合にはヘキサン、メタノール、アセトン、エタノール、酢酸エチル、トルエン等の適当な溶剤から、再結晶させて精製する。   After completion of the reaction, the reaction solution is poured into water and stirred well. If the reaction product is a crystal, the crude product is obtained by filtration by suction filtration. If the reaction product is oily, it can be extracted with a suitable solvent such as ethyl acetate or toluene to obtain a crude product. The crude product thus obtained is subjected to column purification with silica gel, alumina, activated clay, activated carbon or the like, or treatment such as adding these adsorbents to the solution to adsorb unnecessary components, When the reaction product is a crystal, it is purified by recrystallization from an appropriate solvent such as hexane, methanol, acetone, ethanol, ethyl acetate, toluene and the like.

以上のようにして得られた一般式(VI−1)及び(VI−2)で示される電荷輸送性モノマーを用い、公知の方法で重合することにより、前記一般式(I−1)及び(I−2)で示される電荷輸送性ポリエステルが合成される。
具体的には、前記電荷輸送性モノマーの末端に任意の分子を導入することを行うことが望ましく、その場合、以下の合成法が挙げられる。
By using the charge transporting monomers represented by the general formulas (VI-1) and (VI-2) obtained as described above and polymerizing by a known method, the above general formulas (I-1) and ( A charge transporting polyester represented by I-2) is synthesized.
Specifically, it is desirable to introduce an arbitrary molecule at the terminal of the charge transporting monomer, and in this case, the following synthesis method can be mentioned.

[1]A’が水酸基の場合
A’が水酸基の場合には、HO−(Y−O)−Hで示される2価アルコール類を当量(質量比)混合し、酸触媒を用いて重合する。なお、上記Y及びmは、前記一般式(I−1)及び(I−2)におけるY及びmと同一である。
上記酸触媒としては、硫酸、トルエンスルホン酸、トリフルオロ酢酸等、通常のエステル化反応に用いるものが使用でき、モノマー1質量部に対して、1/10,000質量部乃至1/10質量部、好適には1/1,000質量部乃至1/50質量部の範囲で用いられる。合成中に生成する水を除去するために、水と共沸可能な溶剤を用いることが好ましく、トルエン、クロロベンゼン、1−クロロナフタレン等が有効であり、モノマー1質量部に対して、1質量部乃至100質量部、好適には2質量部乃至50質量部の範囲で用いられる。反応温度は任意に設定できるが、重合中に生成する水を除去するために、溶剤の沸点で反応させることが好ましい。反応終了後、溶剤を用いなかった場合には、溶解可能な溶剤に溶解させる。溶剤を用いた場合には、反応溶液をそのまま、メタノール、エタノール等のアルコール類や、アセトン等のポリマーが溶解しにくい貧溶剤中に滴下し、ポリマーを析出させ、ポリマーを分離した後、水や有機溶剤で十分洗浄し、乾燥させる。更に、必要であれば適当な有機溶剤に溶解させ、貧溶剤中に滴下し、ポリマーを析出させる再沈殿処理を繰り返してもよい。再沈殿処理の際には、メカニカルスターラー等で、効率よく攪拌しながら行うことが好ましい。再沈殿処理の際にポリマーを溶解させる溶剤は、ポリマー1質量部に対して、1質量部乃至100質量部、好適には2質量部乃至50質量部の範囲で用いられる、また、貧溶剤はポリマー1質量部に対して、1質量部乃至1,000質量部、好適には10質量部乃至500質量部の範囲で用いられる。
[1] When A ′ is a hydroxyl group When A ′ is a hydroxyl group, divalent alcohols represented by HO— (Y 1 —O) m —H are mixed in an equivalent amount (mass ratio), and an acid catalyst is used. Polymerize. The above Y 1 and m are the same as Y 1 and m in the general formula (I-1) and (I-2).
As the acid catalyst, those used for usual esterification reaction such as sulfuric acid, toluenesulfonic acid, trifluoroacetic acid and the like can be used. It is preferably used in the range of 1/1000 parts by mass to 1/50 parts by mass. In order to remove water generated during the synthesis, it is preferable to use a solvent azeotropic with water, and toluene, chlorobenzene, 1-chloronaphthalene and the like are effective, and 1 part by mass with respect to 1 part by mass of the monomer. To 100 parts by weight, preferably 2 to 50 parts by weight. The reaction temperature can be arbitrarily set, but it is preferable to carry out the reaction at the boiling point of the solvent in order to remove water generated during the polymerization. When the solvent is not used after completion of the reaction, it is dissolved in a soluble solvent. When a solvent is used, the reaction solution is dropped as it is into a poor solvent in which a polymer such as methanol or ethanol or a polymer such as acetone is difficult to dissolve, the polymer is precipitated, and after separating the polymer, Wash thoroughly with organic solvent and dry. Further, if necessary, the reprecipitation treatment in which the polymer is precipitated by dissolving in an appropriate organic solvent and dropping in a poor solvent may be repeated. The reprecipitation treatment is preferably carried out with efficient stirring with a mechanical stirrer or the like. The solvent for dissolving the polymer in the reprecipitation treatment is used in the range of 1 to 100 parts by weight, preferably 2 to 50 parts by weight with respect to 1 part by weight of the polymer. It is used in the range of 1 part by weight to 1,000 parts by weight, preferably 10 parts by weight to 500 parts by weight with respect to 1 part by weight of the polymer.

[2]A’がハロゲンの場合
A’がハロゲンの場合には、HO−(Y−O)−Hで示される2価アルコール類を当量(質量比)混合し、ピリジンやトリエチルアミン等の有機塩基性触媒を用いて重合する。なお、上記Y及びmは、前記一般式(I−1)及び(I−2)におけるY及びmと同一である。
上記有機塩基性触媒は、モノマー1質量部に対して、1質量部乃至10質量部、好適には2質量部乃至5質量部の範囲で用いられる。溶剤としては、塩化メチレン、テトラヒドロフラン(THF)、トルエン、クロロベンゼン、1−クロロナフタレン等が有効であり、モノマー1質量部に対して、1質量部乃至100質量部、好適には2質量部乃至50質量部の範囲で用いられる。反応温度は任意に設定できる。重合後、前記[1]の場合に準じて再沈殿処理し、精製される。また、ビスフェノール等の酸性度の高い2価のアルコール類を用いる場合には、界面重合法も用いることができる。すなわち、2価のアルコール類に水を加え、当量(質量比)の塩基を加えて、溶解させた後、激しく攪拌しながら2価のアルコール類と当量のモノマー溶液を加えることによって重合できる。この際、水は2価アルコール類1質量部に対して、1質量部乃至1,000質量部、好適には2質量部乃至500質量部の範囲で用いられる。モノマーを溶解させる溶剤としては、塩化メチレン、ジクロロエタン、トリクロロエタン、トルエン、クロロベンゼン、1−クロロナフタレン等が有効である。反応温度は任意に設定でき、反応を促進するために、アンモニウム塩、スルホニウム塩等の相間移動触媒を用いることが効果的である。相間移動触媒は、モノマー1質量部に対して、0.1質量部乃至10質量部、好適には0.2質量部乃至5質量部の範囲で用いられる。
[2] When A ′ is a halogen When A ′ is a halogen, divalent alcohols represented by HO— (Y 1 —O) m —H are mixed in an equivalent amount (mass ratio), and pyridine, triethylamine, etc. Polymerize using an organic basic catalyst. The above Y 1 and m are the same as Y 1 and m in the general formula (I-1) and (I-2).
The organic basic catalyst is used in an amount of 1 to 10 parts by mass, preferably 2 to 5 parts by mass with respect to 1 part by mass of the monomer. As the solvent, methylene chloride, tetrahydrofuran (THF), toluene, chlorobenzene, 1-chloronaphthalene and the like are effective, and 1 to 100 parts by weight, preferably 2 to 50 parts by weight with respect to 1 part by weight of the monomer. Used in the range of parts by mass. The reaction temperature can be arbitrarily set. After the polymerization, it is purified by reprecipitation according to the case of [1]. In addition, when divalent alcohols with high acidity such as bisphenol are used, an interfacial polymerization method can also be used. That is, polymerization can be carried out by adding water to a dihydric alcohol, adding an equivalent (mass ratio) base and dissolving it, and then adding a monomer solution equivalent to the divalent alcohol with vigorous stirring. At this time, water is used in the range of 1 part by weight to 1,000 parts by weight, preferably 2 parts by weight to 500 parts by weight with respect to 1 part by weight of the dihydric alcohol. As the solvent for dissolving the monomer, methylene chloride, dichloroethane, trichloroethane, toluene, chlorobenzene, 1-chloronaphthalene and the like are effective. The reaction temperature can be arbitrarily set, and in order to promote the reaction, it is effective to use a phase transfer catalyst such as an ammonium salt or a sulfonium salt. The phase transfer catalyst is used in an amount of 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight, based on 1 part by weight of the monomer.

[3]A’が−O−Rの場合
A’が−O−Rの場合には、HO−(Y−O)−Hで示される2価アルコール類を過剰に加え、硫酸、リン酸等の無機酸、チタンアルコキシド、カルシウム及びコバルト等の酢酸塩或いは炭酸塩、亜鉛等の酸化物を触媒に用いて加熱し、エステル交換により合成できる。尚、上記Y及びmは、前記一般式(I−1)及び(I−2)におけるY及びmと同一である。
2価アルコール類はモノマー1質量部に対して、2質量部乃至100質量部、好適には3質量部乃至50質量部の範囲で用いられる。触媒は、モノマー1質量部に対して、1/1,000質量部乃至1質量部、好適には1/100質量部乃至1/2質量部の範囲で用いられる。反応は、反応温度200℃乃至300℃で行い、基−O−Rから基HO−(Y−O)−Hへのエステル交換終了後は基HO−(Y−O)−Hの脱離による重合反応を促進するため、減圧下で反応させることが好ましい。また、基HO−(Y−O)−Hと共沸可能な1−クロロナフタレン等の高沸点溶剤を用いて、減圧下で基HO−(Y−O)−Hを共沸で除きながら反応させることもある。
[3] When A ′ is —O—R 5 When A ′ is —O—R 5, an excess of a dihydric alcohol represented by HO— (Y 1 —O) m —H is added, and sulfuric acid is added. It can be synthesized by transesterification by heating using inorganic acid such as phosphoric acid, titanium alkoxide, acetate such as calcium and cobalt or oxide such as carbonate and zinc as a catalyst. The above Y 1 and m are the same as Y 1 and m in the general formula (I-1) and (I-2).
The dihydric alcohol is used in an amount of 2 to 100 parts by mass, preferably 3 to 50 parts by mass with respect to 1 part by mass of the monomer. The catalyst is used in a range of 1/1000 parts by weight to 1 part by weight, and preferably 1/100 parts by weight to 1/2 part by weight with respect to 1 part by weight of the monomer. The reaction is carried out at a reaction temperature of 200 ° C. to 300 ° C. After completion of the transesterification from the group —O—R 5 to the group HO— (Y 1 —O) m —H, the group HO— (Y 1 —O) m — In order to accelerate the polymerization reaction due to elimination of H, the reaction is preferably performed under reduced pressure. Further, by using a high boiling solvent group HO- (Y 1 -O) m -H and capable azeotropic 1- chloronaphthalene, azeotroped group HO- (Y 1 -O) m -H in vacuo Sometimes it is made to react while removing.

より具体的には、一般式(I−1)及び(I−2)で示される電荷輸送性ポリエステルは、次のようにして合成する。上記[1]乃至[3]のそれぞれの場合において、2価アルコール類を過剰に加えて反応させることによって下記構造式(IX−1)または(IX−2)で示される化合物を生成した後、これをモノマーとして用いて、上記[2]に準じた方法で、2価カルボン酸または2価カルボン酸ハロゲン化物等と反応させればよく、それによってポリマーを得る。   More specifically, the charge transporting polyesters represented by the general formulas (I-1) and (I-2) are synthesized as follows. In each case of the above [1] to [3], a compound represented by the following structural formula (IX-1) or (IX-2) is produced by adding an excess of dihydric alcohol and reacting, Using this as a monomer, the polymer may be obtained by reacting with a divalent carboxylic acid or a divalent carboxylic acid halide by the method according to the above [2].

上記一般式(IX−1)及び(IX−2)中、Ar、X、T、jは前記一般式(II−1)及び(II−2)におけるAr、X、T、jと同一であり、Y、mは前記一般式(I−1)及び(I−2)におけるY、mと同一である。 In the general formulas (IX-1) and (IX-2), Ar, X, T, and j are the same as Ar, X, T, and j in the general formulas (II-1) and (II-2). , Y 1, m is the same as Y 1, m in the general formula (I-1) and (I-2).

なお、前記[1]乃至[3]の合成法のうち、本実施形態における電荷輸送性ポリエステルとしては、[1]の合成法によることが特に好ましい。   Of the synthesis methods [1] to [3], the charge transporting polyester in this embodiment is particularly preferably the synthesis method [1].

ここで、一般式(I−1)及び(I−2)で示される電荷輸送性ポリエステルの具体例を表9及び表10に示すが、本実施形態における電荷輸送性ポリエステルはこれら具体例に限定されるわけではない。尚、下記表において、モノマーの列のAの欄の番号は、前記一般式(II−1)及び(II−2)で示される構造の具体例の構造番号(表1及び表8の電荷輸送性モノマーの番号)に対応している。また、Zの欄が「−」であるものは一般式(I−1)で示される電荷輸送性ポリエステルの具体例を示し、その他は一般式(I−2)で示される電荷輸送性ポリエステルの具体例を示す。
以下、下記表において化合物番号を付した電荷輸送性ポリエステルの各具体例に関し、例えば、15の番号を付した具体例については「例示化合物(15)」という。
Here, specific examples of the charge transporting polyester represented by the general formulas (I-1) and (I-2) are shown in Table 9 and Table 10, but the charge transporting polyester in the present embodiment is limited to these specific examples. It is not done. In the following table, the number of columns A 1 monomer column, the charge of the general formula (II-1) and (II-2) Examples structure number of the structure (Table 1 and Table 8 Corresponding to the number of the transporting monomer). In addition, those in which the column of Z 1 is “−” show specific examples of the charge transporting polyester represented by the general formula (I-1), and the others are the charge transporting polyesters represented by the general formula (I-2). A specific example is shown.
Hereinafter, regarding each specific example of the charge transporting polyester given a compound number in the following table, for example, a specific example given a number of 15 is referred to as “Exemplary Compound (15)”.

次に、本実施形態の有機電界発光素子の構成について詳述する。
本実施形態の有機電界発光素子は、少なくとも一方が透明または半透明である一対の電極と、それら電極間に挾まれた一つまたは複数の有機化合物層より構成され、該有機化合物層の少なくとも一層に上記に説明した電荷輸送性ポリエステルを1種含有してなるものであればその層構成は特に限定されない。
Next, the configuration of the organic electroluminescent element of this embodiment will be described in detail.
The organic electroluminescent element of this embodiment is composed of a pair of electrodes, at least one of which is transparent or translucent, and one or a plurality of organic compound layers sandwiched between the electrodes, and at least one of the organic compound layers The layer structure is not particularly limited as long as it contains one kind of the charge transporting polyester described above.

本実施形態の有機電界発光素子においては、有機化合物層が1つの場合は、有機化合物層は電荷輸送能を持つ発光層を意味し、該発光層が前記電荷輸送性ポリエステルを含有してなる。一方、有機化合物層が複数の場合(即ち、各層が異なる機能を有する機能分離型の場合)は、少なくともいずれか一層が発光層からなり、この発光層は電荷輸送能を持つ発光層であってもよい。この場合、前記発光層あるいは前記電荷輸送能を持つ発光層と、その他の層からなる層構成の具体例としては、下記(1)乃至(3)が挙げられる。   In the organic electroluminescent element of this embodiment, when there is one organic compound layer, the organic compound layer means a light emitting layer having charge transporting ability, and the light emitting layer contains the charge transporting polyester. On the other hand, when there are a plurality of organic compound layers (that is, in the case of a function separation type in which each layer has a different function), at least one of the layers is a light emitting layer, and this light emitting layer is a light emitting layer having a charge transporting ability. Also good. In this case, the following (1) to (3) can be given as specific examples of the layer structure composed of the light emitting layer or the light emitting layer having the charge transporting capability and other layers.

(1)発光層と、電子輸送層及び電子注入層の少なくともいずれかの層と、から構成される層構成。
(2)正孔輸送層及び正孔注入層の少なくともいずれかの層と、発光層と、電子輸送層及び電子注入層の少なくともいずれかの層と、から構成される層構成。
(3)正孔輸送層及び正孔注入層の少なくともいずれかの層と、発光層と、から形成される層構成。
(1) A layer configuration including a light emitting layer and at least one of an electron transport layer and an electron injection layer.
(2) A layer configuration including at least one of a hole transport layer and a hole injection layer, a light emitting layer, and at least one of an electron transport layer and an electron injection layer.
(3) A layer structure formed from at least one of a hole transport layer and a hole injection layer, and a light emitting layer.

これら層構成(1)乃至(3)の発光層及び電荷輸送能を持つ発光層以外の層は、電荷輸送層や電荷注入層としての機能を有する。
なお、層構成(1)乃至(3)のいずれの層構成においても、いずれか一層に前記電荷輸送性ポリエステルが含まれていればよい。
The layers other than the light emitting layers having the layer structures (1) to (3) and the light emitting layer having a charge transporting function have a function as a charge transporting layer or a charge injection layer.
In any of the layer configurations (1) to (3), the charge transporting polyester may be contained in any one layer.

また、本実施形態の有機電界発光素子において、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層は、前記電荷輸送性ポリエステル以外の電荷輸送性化合物(正孔輸送材料、電子輸送材料)を更に含んでもよい。該電荷輸送性化合物の詳細については後述する。   In the organic electroluminescence device of this embodiment, the light-emitting layer, the hole transport layer, the hole injection layer, the electron transport layer, and the electron injection layer are formed of a charge transport compound (hole transport material) other than the charge transport polyester. , An electron transport material). Details of the charge transporting compound will be described later.

以下、図面を参照しつつ、より詳細に説明するが、本実施形態の有機電界発光素子はこれらに限定されるわけではない。
図1乃至図4は、本実施形態の有機電界発光素子の層構成を説明するための模式的断面図であって、図1、図2、図3の場合は、有機化合物層が複数の場合の一例であり、図4の場合は、有機化合物層が1つの場合の例を示す。なお、図1乃至図4において、同一の機能を有するものは同じ符号を付して説明する。
Hereinafter, although it demonstrates in detail, referring drawings, the organic electroluminescent element of this embodiment is not necessarily limited to these.
1 to 4 are schematic cross-sectional views for explaining the layer structure of the organic electroluminescent element of this embodiment. In the case of FIGS. 1, 2, and 3, there are a plurality of organic compound layers. FIG. 4 shows an example in which there is one organic compound layer. In FIG. 1 to FIG. 4, components having the same function are described with the same reference numerals.

図1に示す有機電界発光素子は、透明絶縁体基板1上に、透明電極2、発光層4、電子輸送層及び電子注入層の少なくとも一層5並びに背面電極7が順次積層されたもので、層構成(1)に相当するものである。但し、符号5で示される層が、電子輸送層及び電子注入層から構成される場合には、発光層4の背面電極7側に、電子輸送層、電子注入層、背面電極7がこの順に積層される。   The organic electroluminescent element shown in FIG. 1 is obtained by sequentially laminating a transparent electrode 2, a light emitting layer 4, at least one layer 5 of an electron transport layer and an electron injection layer, and a back electrode 7 on a transparent insulator substrate 1. This corresponds to the configuration (1). However, when the layer denoted by reference numeral 5 is composed of an electron transport layer and an electron injection layer, the electron transport layer, the electron injection layer, and the back electrode 7 are laminated in this order on the back electrode 7 side of the light emitting layer 4. Is done.

図2に示す有機電界発光素子は、透明絶縁体基板1上に、透明電極2、正孔輸送層及び正孔注入層の少なくとも一層3、発光層4、電子輸送層及び電子注入層の少なくとも一層5並びに背面電極7が順次積層されたもので、層構成(2)に相当するものである。但し、符号3で示される層が、正孔輸送層及び正孔注入層から構成される場合には、透明電極2の背面電極7側に、正孔注入層、正孔輸送層、発光層4がこの順に積層される。また、符号5で示される層が、電子輸送層及び電子注入層から構成される場合には、発光層4の背面電極7側に、電子輸送層、電子注入層、背面電極7がこの順に積層される。   The organic electroluminescent device shown in FIG. 2 has, on the transparent insulator substrate 1, at least one layer 3 of a transparent electrode 2, a hole transport layer and a hole injection layer, and at least one layer of a light emitting layer 4, an electron transport layer and an electron injection layer. 5 and the back electrode 7 are sequentially laminated and correspond to the layer structure (2). However, when the layer indicated by reference numeral 3 is composed of a hole transport layer and a hole injection layer, a hole injection layer, a hole transport layer, and a light emitting layer 4 are formed on the back electrode 7 side of the transparent electrode 2. Are stacked in this order. When the layer denoted by reference numeral 5 is composed of an electron transport layer and an electron injection layer, the electron transport layer, the electron injection layer, and the back electrode 7 are laminated in this order on the back electrode 7 side of the light emitting layer 4. Is done.

図3に示す有機電界発光素子は、透明絶縁体基板1上に、透明電極2、正孔輸送層及び正孔注入層の少なくとも一層3、発光層4並びに背面電極7が順次積層されたもので、層構成(3)に相当するものである。但し、符号3で示される層が、正孔輸送層及び正孔注入層から構成される場合には、透明電極2の背面電極7側に、正孔注入層、正孔輸送層、発光層4がこの順に積層される。   The organic electroluminescent device shown in FIG. 3 is formed by sequentially laminating a transparent electrode 2, at least one layer 3 of a hole transport layer and a hole injection layer, a light emitting layer 4 and a back electrode 7 on a transparent insulator substrate 1. This corresponds to the layer configuration (3). However, when the layer indicated by reference numeral 3 is composed of a hole transport layer and a hole injection layer, a hole injection layer, a hole transport layer, and a light emitting layer 4 are formed on the back electrode 7 side of the transparent electrode 2. Are stacked in this order.

図4に示す有機電界発光素子は、透明絶縁体基板1上に、透明電極2、電荷輸送能を持つ発光層6及び背面電極7が順次積層されたものである。
また、トップエミッション構造や陰極・陽極共に透明電極を用いて透過型にする場合、さらには図1乃至図4の層構成を複数段積重ねた構造とすることも可能である。
以下、各々を詳しく説明する。
The organic electroluminescent element shown in FIG. 4 is obtained by sequentially laminating a transparent electrode 2, a light emitting layer 6 having a charge transporting capability, and a back electrode 7 on a transparent insulator substrate 1.
When the top emission structure or the cathode / anode is made to be a transmission type using a transparent electrode, it is also possible to have a structure in which the layer configurations of FIGS.
Each will be described in detail below.

本実施形態における前記電荷輸送性ポリエステルには、含有される有機化合物層の機能によって、正孔輸送能、電子輸送能のいずれの機能をも付与される。
例えば、前記電荷輸送性ポリエステルは、図1に示される有機電界発光素子の層構成の場合、発光層4及び電子輸送層及び電子注入層の少なくとも一層5のいずれに含有されてもよく、発光層4及び電子輸送層及び電子注入層の少なくとも一層5としていずれも作用する。また、図2に示される有機電界発光素子の層構成の場合、正孔輸送層及び正孔注入層の少なくともいずれかの層3、発光層4及び電子輸送層及び電子注入層の少なくとも一層5のいずれに含有されてもよく、正孔輸送層及び正孔注入層の少なくとも一層3、発光層4及び電子輸送層及び電子注入層の少なくとも一層5としていずれも作用する。また、図3に示される有機電界発光素子の層構成の場合、正孔輸送層及び正孔注入層の少なくとも一層3及び発光層4のいずれに含有されてもよく、正孔輸送層及び正孔注入層の少なくとも一層3及び発光層4としていずれも作用する。さらに、図4に示される有機電界発光素子の層構成の場合、電荷輸送能を持つ発光層6に含有され、電荷輸送能を持つ発光層6として作用する。
The charge transporting polyester in the present embodiment is imparted with either a hole transporting function or an electron transporting function depending on the function of the organic compound layer contained therein.
For example, in the case of the organic electroluminescent element shown in FIG. 1, the charge transporting polyester may be contained in any one of the light emitting layer 4, at least one of the electron transporting layer and the electron injecting layer. 4 and at least one layer 5 of the electron transport layer and the electron injection layer. In the case of the layer structure of the organic electroluminescent device shown in FIG. 2, at least one of the hole transport layer and the hole injection layer 3, the light emitting layer 4, the electron transport layer, and at least one layer 5 of the electron injection layer. Any of them may be contained, and each of them acts as at least one layer 3 of the hole transport layer and the hole injection layer, and as at least one layer 5 of the light emitting layer 4, the electron transport layer, and the electron injection layer. Further, in the case of the layer configuration of the organic electroluminescent device shown in FIG. 3, it may be contained in any one of the hole transport layer and the hole injection layer 3 and the light emitting layer 4. Both act as at least one injection layer 3 and a light emitting layer 4. Furthermore, in the case of the layer structure of the organic electroluminescent element shown in FIG. 4, it is contained in the light emitting layer 6 having charge transporting ability and acts as the light emitting layer 6 having charge transporting ability.

図1乃至図4に示される有機電界発光素子の層構成の場合、透明絶縁体基板1は、発光を取り出すため透明なものが好ましく、ガラス、プラスチックフィルム等が用いられるがこれに限られるものではない。なお、上記透明とは、可視領域の光の透過率が10%以上であることを意味し、更に透過率が75%以上であることが好ましい。以下これに準ずる。
また、透明電極2は、透明絶縁体基板に準じて発光を取り出すための透明または半透明であって、且つ正孔の注入を行うため仕事関数の大きなものが好ましく、仕事関数が4eV以上のものが好ましい。なお、前記半透明とは、可視領域の光の透過率が70%以上であることを意味し、更に透過率が80%以上であることが好ましい。以下これに準ずる。
In the case of the layer configuration of the organic electroluminescent element shown in FIGS. 1 to 4, the transparent insulator substrate 1 is preferably transparent in order to extract emitted light, and glass, plastic film, etc. are used, but not limited thereto. Absent. In addition, the said transparent means that the transmittance | permeability of the light of visible region is 10% or more, Furthermore, it is preferable that the transmittance | permeability is 75% or more. The same shall apply hereinafter.
The transparent electrode 2 is transparent or translucent for extracting light emission in accordance with the transparent insulator substrate, and preferably has a high work function for injecting holes, and has a work function of 4 eV or more. Is preferred. The translucency means that the light transmittance in the visible region is 70% or more, and the transmittance is preferably 80% or more. The same shall apply hereinafter.

具体例として、酸化スズインジウム(ITO)、酸化スズ(NESA)、酸化インジウム、酸化亜鉛等の酸化膜、及び蒸着或いはスパッタされた金、白金、パラジウム等が用いられるが、これに限られるものではない。電極のシート抵抗は、低いほどが望ましく、数百Ω/□以下が好ましく、さらには100Ω/□以下がより好ましい。また、透明絶縁体基板に準じて、可視領域の光の透過率が10%以上で、更に透過率が75%以上であることが好ましい。   Specific examples include indium tin oxide (ITO), tin oxide (NESA), indium oxide, zinc oxide and other oxide films, and vapor deposited or sputtered gold, platinum, palladium, etc., but are not limited thereto. Absent. The sheet resistance of the electrode is desirably as low as possible, preferably several hundred Ω / □ or less, and more preferably 100 Ω / □ or less. Further, in accordance with the transparent insulator substrate, it is preferable that the light transmittance in the visible region is 10% or more, and the transmittance is 75% or more.

図1乃至図3に示される有機電界発光素子の層構成の場合、電子輸送層や正孔輸送層等は、目的に応じて機能(電子輸送能、正孔輸送能)が付与された前記電荷輸送性ポリエステル単独で形成されていてもよいが、例えば正孔移動度を調節するため、前記電荷輸送性ポリエステル以外の正孔輸送材料を、層を構成する材料全体に対して0.1質量%乃至50質量%の範囲で混合分散して形成されてもよい。
前記正孔輸送材料としては、テトラフェニレンジアミン誘導体、トリフェニルアミン誘導体、カルバゾール誘導体、スチルベン誘導体、スピロフルオレン誘導体、アリールヒドラゾン誘導体、ポルフィリン系化合物が挙げられるが、これらの中では、電荷輸送性ポリエステルとの相溶性がよいことから、テトラフェニレンジアミン誘導体、スピロフルオレン誘導体、トリフェニルアミン誘導体が好ましい。
In the case of the layer configuration of the organic electroluminescence device shown in FIGS. 1 to 3, the electron transport layer, the hole transport layer, and the like are charged with functions (electron transport ability, hole transport ability) according to the purpose. Although the transporting polyester may be formed alone, for example, in order to adjust the hole mobility, the hole transporting material other than the charge transporting polyester is 0.1% by mass with respect to the entire material constituting the layer. It may be formed by mixing and dispersing in the range of 50 to 50% by mass.
Examples of the hole transport material include a tetraphenylenediamine derivative, a triphenylamine derivative, a carbazole derivative, a stilbene derivative, a spirofluorene derivative, an aryl hydrazone derivative, and a porphyrin compound. Among these, a charge transporting polyester and From the viewpoint of good compatibility, tetraphenylenediamine derivatives, spirofluorene derivatives, and triphenylamine derivatives are preferable.

また、電子移動度を調整する場合は、層を構成する材料全体に対して電子輸送材料を0.1質量%から50質量%の範囲で混合分散して形成されてもよい。
前記電子輸送材料として、オキサジアゾール誘導体、ニトロ置換フルオレノン誘導体、ジフェノキノン誘導体、チオピランジオキシド誘導体、シロール誘導体、キレート型有機金属錯体、多核または縮合芳香環化合物、ペリレン誘導体、トリアゾール誘導体、フルオレニリデンメタン誘導体等が挙げられる。
When adjusting the electron mobility, the electron transport material may be mixed and dispersed in the range of 0.1 mass% to 50 mass% with respect to the entire material constituting the layer.
As the electron transport material, oxadiazole derivatives, nitro-substituted fluorenone derivatives, diphenoquinone derivatives, thiopyran dioxide derivatives, silole derivatives, chelate-type organometallic complexes, polynuclear or condensed aromatic ring compounds, perylene derivatives, triazole derivatives, fluorenylidene Examples include methane derivatives.

また、正孔移動度及び電子移動度の両方の調整が必要な場合は、前記電荷輸送性ポリエステルに前記正孔輸送材料及び電子輸送材料の両方を一緒に混在させてもよい。   In addition, when both the hole mobility and the electron mobility need to be adjusted, both the hole transport material and the electron transport material may be mixed together in the charge transporting polyester.

さらに、成膜性の向上、ピンホール防止等のため、適切な樹脂(ポリマー)、添加剤を加えてもよい。具体的な樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、ポリススチレン樹脂、ポリビニルアセテート樹脂、スチレンブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、ポリ−N−ビニルカルバゾール樹脂、ポリシラン樹脂、ポリチオフェン、ポリピロール等の導電性樹脂等を用いることができる。また、添加剤としては、公知の酸化防止剤、紫外線吸収剤、可塑剤等を用いることができる。   Furthermore, an appropriate resin (polymer) or additive may be added to improve film formability and prevent pinholes. Specific resins include polycarbonate resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, cellulose resin, urethane resin, epoxy resin, polystyrene styrene resin, polyvinyl acetate resin, styrene butadiene copolymer, vinylidene chloride Conductive resins such as acrylonitrile copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, poly-N-vinylcarbazole resin, polysilane resin, polythiophene, polypyrrole, and the like can be used. Moreover, as an additive, a well-known antioxidant, a ultraviolet absorber, a plasticizer, etc. can be used.

また、電荷注入性を向上させる場合は、正孔注入層や電子注入層を用いる場合があるが、正孔注入材料としては、トリフェニルアミン誘導体、フェニレンジアミン誘導体、フタロシアニン誘導体、インダンスレン誘導体、ポリアルキレンジオキシチオフェン誘導体等が用いられる。また、これらには、ルイス酸、スルホン酸等を混合してもよい。電子注入材料としては、Li、Ca、Ba、Sr、Ag、Au等の金属、LiF、MgF等の金属フッ化物、MgO、Al、LiO等の金属酸化物が用いられる。 In addition, in order to improve the charge injection property, a hole injection layer or an electron injection layer may be used. As a hole injection material, a triphenylamine derivative, a phenylenediamine derivative, a phthalocyanine derivative, an indanthrene derivative, Polyalkylene dioxythiophene derivatives and the like are used. These may be mixed with a Lewis acid, a sulfonic acid, or the like. As the electron injecting material, metals such as Li, Ca, Ba, Sr, Ag and Au, metal fluorides such as LiF and MgF, and metal oxides such as MgO, Al 2 O 3 and LiO are used.

また、前記電荷輸送性ポリエステルを発光機能以外で用いる場合は、発光性化合物を発光材料として用いる。発光材料としては、固体状態で高い発光量子効率を示す化合物を用いる。発光材料は、低分子化合物または高分子化合物どちらでもよく、有機低分子である場合の好適な例としては、キレート型有機金属錯体、多核または縮合芳香環化合物、ペリレン誘導体、クマリン誘導体、スチリルアリーレン誘導体、シロール誘導体、オキサゾール誘導体、オキサチアゾール誘導体、オキサジアゾール誘導体等が、高分子の場合、ポリパラフェニレン誘導体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリアセチレン誘導体等が用いられる。好適な具体例として、下記の化合物(X−1)〜(X−17)が用いられるが、これらに限定されたものではない。   Further, when the charge transporting polyester is used for a function other than the light emitting function, a light emitting compound is used as a light emitting material. As the light-emitting material, a compound that exhibits high emission quantum efficiency in a solid state is used. The light emitting material may be either a low molecular weight compound or a high molecular weight compound. Preferred examples of organic low molecular weight compounds include chelate-type organometallic complexes, polynuclear or condensed aromatic ring compounds, perylene derivatives, coumarin derivatives, styrylarylene derivatives. In the case where a silole derivative, an oxazole derivative, an oxathiazole derivative, an oxadiazole derivative or the like is a polymer, a polyparaphenylene derivative, a polyparaphenylene vinylene derivative, a polythiophene derivative, a polyacetylene derivative, or the like is used. As preferred specific examples, the following compounds (X-1) to (X-17) are used, but are not limited thereto.

なお、上記構造式(X−13)乃至(X−17)中、Vは前記Arと同一の2価の有機基、n及びgはそれぞれ独立に1以上の整数を表す。 In the structural formulas (X-13) to (X-17), V represents the same divalent organic group as Ar 1, and n and g each independently represents an integer of 1 or more.

また、有機電界発光素子の耐久性向上あるいは発光効率向上を目的として、上記発光材料または前記電荷輸送性ポリエステル中にゲスト材料として発光材料と異なる色素化合物をドーピングしてもよい。該色素化合物のドーピングの割合としては、対象となる層の0.001質量%乃至40質量%、好適には0.01質量%乃至10質量%である。このドーピングに用いられる色素化合物としては、発光材料との相容性が良く、かつ発光層の良好な薄膜形成を妨げない有機化合物が用いられ、好適にはクマリン誘導体、DCM誘導体、キナクリドン誘導体、ペリミドン誘導体、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、ルブレン誘導体、ポルフィリン誘導体、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスニウム、イリジウム、白金、および金などの金属錯体化合物等が用いられる。
好適な具体例として、下記の化合物(XI−1)乃至(XI−6)が用いられるが、これらに限定されたものではない。
In addition, for the purpose of improving the durability of the organic electroluminescent device or improving the luminous efficiency, the light emitting material or the charge transporting polyester may be doped with a dye compound different from the light emitting material as a guest material. The doping ratio of the dye compound is 0.001% to 40% by weight, preferably 0.01% to 10% by weight of the target layer. As the coloring compound used for this doping, an organic compound that has good compatibility with the light emitting material and does not prevent the formation of a good thin film of the light emitting layer is used, and preferably a coumarin derivative, a DCM derivative, a quinacridone derivative, a perimidone. Derivatives, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, rubrene derivatives, porphyrin derivatives, metal complex compounds such as ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold are used.
As preferred specific examples, the following compounds (XI-1) to (XI-6) are used, but are not limited thereto.

また、発光層4は、前記発光材料単独で形成されていても良いが、電気特性及び発光特性をさらに改善する等の目的で、前記発光材料に前記電荷輸送性ポリエステルを1質量%ないし50質量%の範囲で混合・分散して形成させてもよい。もしくは前記発光材料中に、前記電荷輸送性ポリエステル以外の電荷輸送性材料を1質量%ないし50質量%の範囲で混合・分散して形成させてもよい。また、前記電荷輸送性ポリエステルが発光特性も兼ね備えたものである場合、発光材料として用いてもよく、その場合、電気特性及び発光特性をさらに改善する等の目的で、前記電荷輸送性ポリエステル以外の電荷輸送性材料を1質量%ないし50質量%の範囲で混合分散して形成させてもよい。   The light emitting layer 4 may be formed of the light emitting material alone, but for the purpose of further improving electrical characteristics and light emitting characteristics, the charge transporting polyester is added to the light emitting material in an amount of 1% by mass to 50% by mass. % May be mixed and dispersed in the range of%. Alternatively, a charge transporting material other than the charge transporting polyester may be mixed and dispersed in the light emitting material in the range of 1% by mass to 50% by mass. Further, when the charge transporting polyester also has a light emitting property, it may be used as a light emitting material. In that case, for the purpose of further improving the electrical property and the light emitting property, other than the charge transporting polyester. The charge transport material may be mixed and dispersed in the range of 1% by mass to 50% by mass.

図4に示される有機電界発光素子の層構成の場合、電荷輸送能を持つ発光層6は、目的に応じて機能(正孔輸送能、あるいは電子輸送能)が付与された前記電荷輸送性ポリエステル中に、発光材料(好適には、前記発光材料(X−1)乃至(X−17)から選ばれる少なくとも1種)を50質量%以下で分散させた有機化合物層であるが、有機電界発光素子に注入される正孔と電子のバランスを調節するために前記電荷輸送性ポリエステル以外の電荷輸送材料を10質量%乃至50質量%分散させてもよい。
前記電荷輸送材料としては、電子移動度を調節する場合、電子輸送材料としてオキサジアゾール誘導体、ニトロ置換フルオレノン誘導体、ジフェノキノン誘導体、チオピランジオキシド誘導体、フルオレニデンメタン誘導体等が挙げられる。
In the case of the layer configuration of the organic electroluminescence device shown in FIG. 4, the light-emitting layer 6 having charge transporting capability is the charge transporting polyester provided with a function (hole transporting capability or electron transporting capability) according to the purpose. An organic electroluminescent layer in which a light emitting material (preferably, at least one selected from the light emitting materials (X-1) to (X-17)) is dispersed in an amount of 50% by mass or less. In order to adjust the balance between holes and electrons injected into the device, a charge transport material other than the charge transporting polyester may be dispersed in an amount of 10% by mass to 50% by mass.
Examples of the charge transporting material include an oxadiazole derivative, a nitro-substituted fluorenone derivative, a diphenoquinone derivative, a thiopyrandioxide derivative, and a fluorenidenemethane derivative when the electron mobility is adjusted.

図1乃至図4に示される有機電界発光素子の層構成の場合、背面電極7には、真空蒸着可能で、電子注入を行うため仕事関数の小さな金属、金属酸化物、金属フッ化物等が使用される。金属としてはマグネシウム、アルミニウム、金、銀、インジウム、リチウム、カルシウムおよびこれらの合金が挙げられる。金属酸化物としては、酸化リチウム、酸化マグネシウム、酸化アルミニウム、酸化スズインジウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化インジウム亜鉛等が挙げられる。また、金属フッ化物としては、フッ化リチウム、フッ化マグネシウム、フッ化ストロンチウム、フッ化カルシウム、フッ化アルミニウムが挙げられる。   In the case of the layer structure of the organic electroluminescent element shown in FIGS. 1 to 4, the back electrode 7 is made of a metal, metal oxide, metal fluoride, or the like that can be vacuum-deposited and has a low work function for performing electron injection. Is done. Examples of the metal include magnesium, aluminum, gold, silver, indium, lithium, calcium, and alloys thereof. Examples of the metal oxide include lithium oxide, magnesium oxide, aluminum oxide, indium tin oxide, tin oxide, indium oxide, zinc oxide, and indium zinc oxide. Examples of the metal fluoride include lithium fluoride, magnesium fluoride, strontium fluoride, calcium fluoride, and aluminum fluoride.

また、背面電極7上には、さらに素子の水分や酸素による劣化を防ぐために保護層を設けてもよい。具体的な保護層の材料としては、In、Sn、Pb、Au、Cu、Ag、Alなどの金属、MgO、SiO、TiO等の金属酸化物、ポリエチレン樹脂、ポリウレア樹脂、ポリイミド樹脂等の樹脂が挙げられる。保護層の形成には、真空蒸着法、スパッタリング法、プラズマ重合法、CVD法、コーティング法が適用できる。 Further, a protective layer may be provided on the back electrode 7 in order to prevent the element from being deteriorated by moisture or oxygen. Specific materials for the protective layer include metals such as In, Sn, Pb, Au, Cu, Ag, and Al, metal oxides such as MgO, SiO 2 , and TiO 2 , polyethylene resin, polyurea resin, and polyimide resin. Resin. For forming the protective layer, a vacuum deposition method, a sputtering method, a plasma polymerization method, a CVD method, or a coating method can be applied.

これら図1乃至図4に示される有機電界発光素子は、まず透明電極2の上に各有機電界発光素子の層構成に応じた個々の層を順次形成することにより作製される。なお、正孔輸送層及び正孔注入層の少なくとも一層3、発光層4、電子輸送層及び電子注入層の少なくとも一層5、或いは、電荷輸送能を持つ発光層6は、上記各材料を真空蒸着法、もしくは、適切な有機溶媒に溶解或いは分散し、得られた塗布液を用いて前記透明電極上にスピンコーティング法、キャスト法、ディップ法、インクジェット法等により形成される。   The organic electroluminescent elements shown in FIGS. 1 to 4 are manufactured by sequentially forming individual layers on the transparent electrode 2 in accordance with the layer configuration of each organic electroluminescent element. In addition, at least one layer 3 of the hole transport layer and the hole injection layer, the light emitting layer 4, at least one layer 5 of the electron transport layer and the electron injection layer, or the light emitting layer 6 having a charge transporting capability is formed by vacuum deposition of the above materials. It is formed by a spin coating method, a casting method, a dipping method, an ink jet method or the like on the transparent electrode using the coating solution obtained by dissolving or dispersing in an appropriate organic solvent.

本実施形態における電荷輸送性ポリエステルは、前述のように高い熱安定性及び優れた溶解性を有しているので、上記各層の形成しやすさ、素子としての安定性等を考慮すると、図2、図4に示される構成の有機電界発光素子に用いられることが望ましい。
特に、本実施形態の電荷輸送性ポリエステルを用いた図2に示す構成の有機電界発光素子では、層構成により機能が分担されエネルギー効率が向上する。
Since the charge transporting polyester in this embodiment has high thermal stability and excellent solubility as described above, considering the ease of forming each layer, the stability as an element, and the like, FIG. It is desirable to be used for the organic electroluminescence device having the configuration shown in FIG.
In particular, in the organic electroluminescent element having the configuration shown in FIG. 2 using the charge transporting polyester of the present embodiment, the function is shared by the layer configuration and the energy efficiency is improved.

正孔輸送層及び正孔注入層の少なくとも一層3、発光層4、電子輸送層及び電子注入層の少なくとも一層5、並びに、電荷輸送能を持つ発光層6の膜厚は、各々10μm以下、特に0.001μm以上5μm以下の範囲であることが好ましい。上記各材料(前記非共役系高分子、発光材料等)の分散状態は分子分散状態でも微結晶などの粒子状態でも構わない。塗布液を用いた成膜法の場合、分子分散状態とするために分散溶媒は上記各材料の分散性及び溶解性を考慮して選択する必要がある。粒子状に分散するためには、ボールミル、サンドミル、ペイントシェイカー、アトライター、ホモジナイザー、超音波法等が利用できる。   The film thicknesses of at least one layer 3 of the hole transport layer and the hole injection layer, the light emitting layer 4, at least one layer 5 of the electron transport layer and the electron injection layer, and the light emitting layer 6 having the charge transporting ability are each 10 μm or less. It is preferably in the range of 0.001 μm to 5 μm. The dispersion state of each of the materials (the non-conjugated polymer, the light emitting material, etc.) may be a molecular dispersion state or a particle state such as a microcrystal. In the case of a film forming method using a coating solution, it is necessary to select a dispersion solvent in consideration of the dispersibility and solubility of each material in order to obtain a molecular dispersion state. In order to disperse into particles, a ball mill, a sand mill, a paint shaker, an attritor, a homogenizer, an ultrasonic method, or the like can be used.

そして最後に、図1及び図2に示す有機電界発光素子の場合には、電子輸送層及び電子注入層の少なくともいずれかの層5の上に背面電極7を真空蒸着法、スパッタリング法等により形成することにより、本実施形態の有機電界発光素子が得られる。また、図3に示す有機電界発光素子の場合には、発光層4の上に、図4に示す有機電界発光素子の場合には、電荷輸送能を持つ発光層6の上に背面電極7を真空蒸着法、スパッタリング法等により形成することにより本実施形態の有機電界発光素子が得られる。   And finally, in the case of the organic electroluminescent device shown in FIGS. 1 and 2, the back electrode 7 is formed on at least one of the electron transport layer and the electron injection layer 5 by vacuum deposition, sputtering, or the like. By doing so, the organic electroluminescent element of this embodiment is obtained. In the case of the organic electroluminescent element shown in FIG. 3, the back electrode 7 is provided on the light emitting layer 4 and in the case of the organic electroluminescent element shown in FIG. The organic electroluminescent element of the present embodiment can be obtained by forming by a vacuum deposition method, a sputtering method or the like.

<表示媒体>
本実施形態の表示媒体は、前記本実施形態の有機電界発光素子を、マトリクス状及びセグメント状の少なくともいずれかに配置したことを特徴とする。本実施形態において有機電界発光素子をマトリクス状に配置する場合、電極のみをマトリクス状に配置する態様であってもよいし、電極及び有機化合物層の両方をマトリクス状に配置する態様であってもよい。また、本実施形態において有機電界発光素子をセグメント状に配置する場合、電極のみをセグメント状に配置する態様であってもよいし、電極及び有機化合物層の両方をセグメント状に配置する態様であってもよい。
<Display medium>
The display medium of the present embodiment is characterized in that the organic electroluminescent elements of the present embodiment are arranged in at least one of a matrix shape and a segment shape. In the present embodiment, when organic electroluminescent elements are arranged in a matrix, only the electrodes may be arranged in a matrix, or both the electrodes and the organic compound layer may be arranged in a matrix. Good. Further, in the present embodiment, when the organic electroluminescent elements are arranged in a segment shape, the electrode may be arranged in a segment shape, or both the electrode and the organic compound layer may be arranged in a segment shape. May be.

前記マトリクス状またはセグメント状の有機化合物層は、例えば前述したインクジェット法を用いることにより容易に形成される。
マトリクス状に配置した有機電界発光素子及びセグメント状に配置した有機電界発光素子から構成される表示媒体の駆動装置及び駆動方法としては、従来公知のものを用いる。
The matrix-like or segment-like organic compound layer is easily formed by using, for example, the ink jet method described above.
As a driving device and a driving method of a display medium composed of organic electroluminescent elements arranged in a matrix and organic electroluminescent elements arranged in a segment, conventionally known ones are used.

以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, these examples do not limit the present invention.

<電荷輸送性ポリエステルの合成>
(合成例1)
三口フラスコに、アセトアニリド37.5g、4−ヨードフェニルプロピオン酸メチル96.6g、炭酸カリウム57.5g、硫酸銅5水和物3.5g及びn−トリデカン75mlを入れ、窒素気流下、230℃で20時間加熱攪拌した。この反応後、エチレングリコール300mlおよび水酸化カリウム23.4gを加え、窒素気流下で3.5時間加熱還流した後、室温まで冷却し、これを1Lの蒸留水に注ぎ、塩酸で中和して、結晶を析出させた。次いでこれをろ過し、水洗した後、これにトルエン500mlを加えて加熱還流し、水を共沸により除去した後、メタノール450ml及び濃硫酸3.0mlを加えて、窒素気流下で5時間加熱還流した。反応後、トルエンで抽出し、その有機層を蒸留水で洗浄した。次いで、無水硫酸ナトリウムで乾燥後、溶剤を減圧留去し、ヘキサンから再結晶することにより、下記「中間体化合物1」を57.8g得た。
<Synthesis of charge transporting polyester>
(Synthesis Example 1)
A three-necked flask was charged with 37.5 g of acetanilide, 96.6 g of methyl 4-iodophenylpropionate, 57.5 g of potassium carbonate, 3.5 g of copper sulfate pentahydrate, and 75 ml of n-tridecane at 230 ° C. under a nitrogen stream. The mixture was stirred with heating for 20 hours. After this reaction, 300 ml of ethylene glycol and 23.4 g of potassium hydroxide were added, heated under reflux for 3.5 hours under a nitrogen stream, cooled to room temperature, poured into 1 L of distilled water, neutralized with hydrochloric acid. Crystals were precipitated. Next, after filtering and washing with water, 500 ml of toluene was added thereto and heated to reflux. After removing water by azeotropic distillation, 450 ml of methanol and 3.0 ml of concentrated sulfuric acid were added, and heated under reflux for 5 hours under a nitrogen stream. did. After the reaction, extraction with toluene was performed, and the organic layer was washed with distilled water. Subsequently, after drying with anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and recrystallization from hexane yielded 57.8 g of the following “intermediate compound 1”.

続いて、下記反応スキームにより「中間体化合物2」を合成した。
まず得られた「中間体化合物1」15.0g、2−(4−ブロモベンゾイル)−1,3−チアゾール15.5g、炭酸カリウム12.2g、硫酸銅5水和物0.8g及びo−ジクロロベンゼン30mlを200mlのフラスコに入れ、窒素気流下で10時間加熱還流した。反応終了後、室温まで冷却し、トルエン100mlに溶解させ不要物をろ過し、そのろ液をシリカゲルカラムクロマトグラフィー(トルエン/ヘキサン=1:1)にて精製した。それにより「中間体化合物2」10.5gを得た。
Subsequently, “Intermediate Compound 2” was synthesized according to the following reaction scheme.
First, 15.0 g of the obtained “intermediate compound 1”, 15.5 g of 2- (4-bromobenzoyl) -1,3-thiazole, 12.2 g of potassium carbonate, 0.8 g of copper sulfate pentahydrate and o- 30 ml of dichlorobenzene was placed in a 200 ml flask and heated to reflux for 10 hours under a nitrogen stream. After completion of the reaction, the reaction mixture was cooled to room temperature, dissolved in 100 ml of toluene, and unnecessary substances were filtered. The filtrate was purified by silica gel column chromatography (toluene / hexane = 1: 1). As a result, 10.5 g of “intermediate compound 2” was obtained.

得られた「中間体化合物2」10.0gをジメチルホルムアミド(DMF)25mlに溶解し、N−クロロこはく酸イミド(NCS)3.4gを加え、窒素気流下、室温で4時間攪拌した。反応終了後、反応液を蒸留水に投入し、結晶物を析出させた。得られた結晶を吸引ろ過にてろ取し、蒸留水で洗浄して「中間体化合物2」のクロロ化合物6.4gを得た。
次に、窒素気流下、ナスフラスコに無水塩化ニッケル1.7g、トリフェニルホスフィン14.0g、DMF70mlを入れ加熱攪拌した。反応溶液が50℃になったところで、亜鉛(粉末)0.9gを加え、50℃で1時間加熱攪拌した。その後、前記クロロ化合物6.0gを加え、50℃で0.5時間加熱攪拌した。反応終了後、反応液を室温まで冷却し、500mlの蒸留水に投入して攪拌した。その後、析出した結晶を吸引ろ過にてろ取し、純水で洗浄して結晶を得た。得られた結晶をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1:1)で精製することにより、前記モノマー化合物(5)8.2gを得た。
10.0 g of the obtained “intermediate compound 2” was dissolved in 25 ml of dimethylformamide (DMF), added with 3.4 g of N-chlorosuccinimide (NCS), and stirred at room temperature for 4 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into distilled water to precipitate crystals. The obtained crystals were collected by suction filtration and washed with distilled water to obtain 6.4 g of a chloro compound of “intermediate compound 2”.
Next, under a nitrogen stream, 1.7 g of anhydrous nickel chloride, 14.0 g of triphenylphosphine, and 70 ml of DMF were placed in an eggplant flask and heated and stirred. When the reaction solution reached 50 ° C., 0.9 g of zinc (powder) was added, and the mixture was heated and stirred at 50 ° C. for 1 hour. Thereafter, 6.0 g of the chloro compound was added, and the mixture was heated and stirred at 50 ° C. for 0.5 hour. After completion of the reaction, the reaction solution was cooled to room temperature, poured into 500 ml of distilled water, and stirred. Thereafter, the precipitated crystals were collected by suction filtration and washed with pure water to obtain crystals. The obtained crystals were purified by silica gel column chromatography (hexane / ethyl acetate = 1: 1) to obtain 8.2 g of the monomer compound (5).

上記モノマー化合物(5)1.0g、エチレングリコール3.0g及びテトラブトキシチタン0.04gを100mlの三口ナスフラスコに入れ、窒素気流下、200℃で3時間加熱攪拌した。モノマー化合物(5)が消費されたことを確認した後、0.5mmHgに減圧してエチレングリコールを留去しながら230℃に加熱し、5時間反応を続けた。その後、室温まで冷却し、テトラヒドロフラン200mlに溶解し、不溶物を0.5μmのポリテトラフルオロエチレン(PTFE)フィルターにてろ過し、ろ液をメタノール500mlを撹拌している中に滴下し、ポリマーを析出させた。得られたポリマーをろ過し、メタノールで洗浄した後、乾燥させ、0.8gの例示化合物(3)を得た。   1.0 g of the monomer compound (5), 3.0 g of ethylene glycol and 0.04 g of tetrabutoxytitanium were placed in a 100 ml three-necked eggplant flask, and the mixture was heated and stirred at 200 ° C. for 3 hours in a nitrogen stream. After confirming that the monomer compound (5) was consumed, the pressure was reduced to 0.5 mmHg and the mixture was heated to 230 ° C. while distilling off ethylene glycol, and the reaction was continued for 5 hours. Thereafter, the mixture was cooled to room temperature, dissolved in 200 ml of tetrahydrofuran, the insoluble matter was filtered through a 0.5 μm polytetrafluoroethylene (PTFE) filter, and the filtrate was added dropwise to 500 ml of methanol while stirring, and the polymer was added. Precipitated. The obtained polymer was filtered, washed with methanol, and dried to obtain 0.8 g of exemplary compound (3).

例示化合物(3)の分子量をゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製、HLC−8120GPC)にて測定したところ、重量平均分子量(Mw)は4.7×10(スチレン換算)であり、モノマーの分子量から求めたpは57程度であった。
また、示差走査型熱量計(セイコーインスツルメンツ株式会社製、Tg/DTA6200)で測定したガラス転移温度(Tg)は135℃であった。
When the molecular weight of exemplary compound (3) was measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8120GPC), the weight average molecular weight (Mw) was 4.7 × 10 4 (in terms of styrene). The p determined from the molecular weight of the monomer was about 57.
Moreover, the glass transition temperature (Tg) measured with the differential scanning calorimeter (the Seiko Instruments Inc. make, Tg / DTA6200) was 135 degreeC.

(合成例2)
合成例1の「中間体化合物1」の合成において、アセトアニリド、4−ヨードフェニルプロピオン酸メチルの代わりに、3−メチルアセトアニリドと3−ヨードフェニルプロピオン酸メチルとを用いた以外は、合成例1に準じて中間体化合物を合成し、続いてトリアリール化、クロロ化を行い、さらに得られたクロロ化合物のホモカップリング反応を行って、モノマー化合物(8)を得た。
次いで、モノマー化合物(8)を用いて、合成例1に準じて重合を行って、例示化合物(5)を得た。
(Synthesis Example 2)
In the synthesis of “Intermediate Compound 1” in Synthesis Example 1, Synthesis Example 1 was used except that 3-methylacetanilide and methyl 3-iodophenylpropionate were used instead of acetanilide and methyl 4-iodophenylpropionate. Similarly, an intermediate compound was synthesized, followed by triarylation and chlorination, and further a homocoupling reaction of the obtained chloro compound was performed to obtain a monomer compound (8).
Subsequently, it superposed | polymerized according to the synthesis example 1 using the monomer compound (8), and obtained the exemplary compound (5).

例示化合物(5)の分子量をゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製、HLC−8120GPC)にて測定したところ、重量平均分子量(Mw)は2.1×10(スチレン換算)であり、モノマーの分子量から求めたpは25程度であった。
また、示差走査型熱量計(セイコーインスツルメンツ株式会社製、Tg/DTA6200)で測定したガラス転移温度(Tg)は115℃であった。
When the molecular weight of exemplary compound (5) was measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8120GPC), the weight average molecular weight (Mw) was 2.1 × 10 4 (in terms of styrene). The p determined from the molecular weight of the monomer was about 25.
Moreover, the glass transition temperature (Tg) measured with the differential scanning calorimeter (the Seiko Instruments Inc. make, Tg / DTA6200) was 115 degreeC.

(合成例3)
合成例1の「中間体化合物1」の合成において、アセトアニリドの代わりに、t−ブチルアセトアニリドを用いた以外は、合成例1に準じて中間体化合物を合成し、続いてトリアリール化、クロロ化を行い、さらに得られたクロロ化合物のホモカップリング反応を行って、モノマー化合物(17)を得た。
次いで、モノマー化合物(17)を用いて、合成例1に準じて重合を行って、例示化合物(11)を得た。
(Synthesis Example 3)
In the synthesis of “Intermediate Compound 1” in Synthesis Example 1, an intermediate compound was synthesized according to Synthesis Example 1 except that t-butylacetanilide was used instead of acetanilide, followed by triarylation and chlorination. The monomer compound (17) was obtained by conducting a homocoupling reaction of the obtained chloro compound.
Subsequently, it superposed | polymerized according to the synthesis example 1 using the monomer compound (17), and obtained the exemplary compound (11).

例示化合物(11)の分子量をゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製、HLC−8120GPC)にて測定したところ、重量平均分子量(Mw)は9.4×10(スチレン換算)であり、モノマーの分子量から求めたpは51程度であった。
また、示差走査型熱量計(セイコーインスツルメンツ株式会社製、Tg/DTA6200)で測定したガラス転移温度(Tg)は128℃であった。
When the molecular weight of exemplary compound (11) was measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8120GPC), the weight average molecular weight (Mw) was 9.4 × 10 4 (in terms of styrene). The p determined from the molecular weight of the monomer was about 51.
Moreover, the glass transition temperature (Tg) measured with the differential scanning calorimeter (the Seiko Instruments Inc. make, Tg / DTA6200) was 128 degreeC.

(合成例4)
合成例1の「中間体化合物1」の合成において、アセトアニリド37.5g、4−ヨードフェニルプロピオン酸メチル96.6gの代わりに、4−ブロモトリフェニルアミンと3−(4−アセチルアミノフェニル)プロピオン酸メチルエステルを用いた以外は、合成例1に準じて中間体化合物を合成し、続いてトリアリール化、クロロ化を行い、さらに得られたクロロ化合物のホモカップリング反応を行って、モノマー化合物(21)を得た。
次いで、モノマー化合物(21)を用いて、合成例1に準じて重合を行って、例示化合物(13)を得た。
(Synthesis Example 4)
In the synthesis of “Intermediate Compound 1” in Synthesis Example 1, instead of 37.5 g of acetanilide and 96.6 g of methyl 4-iodophenylpropionate, 4-bromotriphenylamine and 3- (4-acetylaminophenyl) propion An intermediate compound was synthesized according to Synthesis Example 1 except that acid methyl ester was used, followed by triarylation and chlorination, and a homocoupling reaction of the resulting chloro compound was performed to obtain a monomer compound. (21) was obtained.
Subsequently, it superposed | polymerized according to the synthesis example 1 using the monomer compound (21), and obtained the exemplary compound (13).

例示化合物(13)の分子量をゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製、HLC−8120GPC)にて測定したところ、重量平均分子量(Mw)は2.8×10(スチレン換算)であり、モノマーの分子量から求めたpは24程度であった。
また、示差走査型熱量計(セイコーインスツルメンツ株式会社製、Tg/DTA6200)で測定したガラス転移温度(Tg)は158℃であった。
When the molecular weight of exemplary compound (13) was measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8120GPC), the weight average molecular weight (Mw) was 2.8 × 10 4 (in terms of styrene). The p determined from the molecular weight of the monomer was about 24.
Moreover, the glass transition temperature (Tg) measured with the differential scanning calorimeter (the Seiko Instruments Inc. make, Tg / DTA6200) was 158 degreeC.

(合成例5)
合成例1の「中間体化合物1」の合成において、アセトアニリド37.5g、4−ヨードフェニルプロピオン酸メチル96.6gの代わりに、4−ブロモビフェニルと3−(4−アセチルアミノフェニル)プロピオン酸メチルエステルを用いた以外は、合成例1に準じて中間体化合物を合成し、続いてトリアリール化、クロロ化を行い、さらに得られたクロロ化合物のホモカップリング反応を行って、モノマー化合物(24)を得た。
次いで、モノマー化合物(24)を用いて、合成例1に準じて重合を行って、例示化合物(14)を得た。
(Synthesis Example 5)
In the synthesis of “Intermediate Compound 1” in Synthesis Example 1, instead of 37.5 g of acetanilide and 96.6 g of methyl 4-iodophenylpropionate, 4-bromobiphenyl and methyl 3- (4-acetylaminophenyl) propionate An intermediate compound was synthesized according to Synthesis Example 1 except that an ester was used, followed by triarylation and chlorination, and a homocoupling reaction of the obtained chloro compound was performed to obtain a monomer compound (24 )
Subsequently, it superposed | polymerized according to the synthesis example 1 using the monomer compound (24), and obtained the exemplary compound (14).

例示化合物(14)の分子量をゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製、HLC−8120GPC)にて測定したところ、重量平均分子量(Mw)は3.1×10(スチレン換算)であり、モノマーの分子量から求めたpは32程度であった。
また、示差走査型熱量計(セイコーインスツルメンツ株式会社製、Tg/DTA6200)で測定したガラス転移温度(Tg)は152℃であった。
When the molecular weight of exemplary compound (14) was measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8120GPC), the weight average molecular weight (Mw) was 3.1 × 10 4 (in terms of styrene). The p determined from the molecular weight of the monomer was about 32.
Moreover, the glass transition temperature (Tg) measured with the differential scanning calorimeter (the Seiko Instruments Inc. make, Tg / DTA6200) was 152 degreeC.

(合成例6)
合成例1の「中間体化合物1」の合成において、アセトアニリド37.5g、4−ヨードフェニルプロピオン酸メチル96.6gの代わりに、3−メチルアセトアニリドと3−ヨードビフェニルプロピオン酸メチルとを用いた以外は、合成例1に準じて中間体化合物を合成し、続いてトリアリール化、クロロ化を行い、さらに得られたクロロ化合物のホモカップリング反応を行って、モノマー化合物(57)を得た。
次いで、モノマー化合物(57)を用いて、合成例1に準じて重合を行って、例示化合物(31)を得た。
(Synthesis Example 6)
In the synthesis of “Intermediate Compound 1” in Synthesis Example 1, 37.5 g of acetanilide and 96.6 g of methyl 4-iodophenylpropionate were used, except that 3-methylacetanilide and methyl 3-iodobiphenylpropionate were used. Synthesize | combined the intermediate compound according to the synthesis example 1, followed by triarylation and chlorination, and also the homocoupling reaction of the obtained chloro compound was performed, and the monomer compound (57) was obtained.
Subsequently, it superposed | polymerized according to the synthesis example 1 using the monomer compound (57), and obtained the exemplary compound (31).

例示化合物(31)の分子量をゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製、HLC−8120GPC)にて測定したところ、重量平均分子量(Mw)は2.8×10(スチレン換算)であり、モノマーの分子量から求めたpは28程度であった。
また、示差走査型熱量計(セイコーインスツルメンツ株式会社製、Tg/DTA6200)で測定したガラス転移温度(Tg)は153℃であった。
When the molecular weight of exemplary compound (31) was measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8120GPC), the weight average molecular weight (Mw) was 2.8 × 10 4 (in terms of styrene). The p determined from the molecular weight of the monomer was about 28.
Moreover, the glass transition temperature (Tg) measured with the differential scanning calorimeter (the Seiko Instruments Inc. make, Tg / DTA6200) was 153 degreeC.

(合成例7)
合成例1の「中間体化合物1」の合成において、アセトアニリド37.5g、4−ヨードフェニルプロピオン酸メチル96.6gの代わりに、t−ブチルアセトアニリドと3−ヨードビフェニルプロピオン酸メチルとを用いた以外は、合成例1に準じて中間体化合物を合成し、続いてトリアリール化、クロロ化を行い、さらに得られたクロロ化合物のホモカップリング反応を行って、モノマー化合物(65)を得た。
次いで、モノマー化合物(65)を用いて、合成例1に準じて重合を行って、例示化合物(33)を得た。
(Synthesis Example 7)
In the synthesis of “Intermediate Compound 1” in Synthesis Example 1, 37.5 g of acetanilide and 96.6 g of methyl 4-iodophenylpropionate were used in place of t-butylacetanilide and methyl 3-iodobiphenylpropionate. Synthesize | combined the intermediate compound according to the synthesis example 1, followed by triarylation and chlorination, and also the homocoupling reaction of the obtained chloro compound was performed, and the monomer compound (65) was obtained.
Subsequently, it superposed | polymerized according to the synthesis example 1 using the monomer compound (65), and obtained the exemplary compound (33).

例示化合物(33)の分子量をゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製、HLC−8120GPC)にて測定したところ、重量平均分子量(Mw)は2.6×10(スチレン換算)であり、モノマーの分子量から求めたpは24程度であった。
また、示差走査型熱量計(セイコーインスツルメンツ株式会社製、Tg/DTA6200)で測定したガラス転移温度(Tg)は146℃であった。
When the molecular weight of exemplary compound (33) was measured by gel permeation chromatography (GPC, manufactured by Tosoh Corporation, HLC-8120 GPC), the weight average molecular weight (Mw) was 2.6 × 10 4 (in terms of styrene). The p determined from the molecular weight of the monomer was about 24.
Moreover, the glass transition temperature (Tg) measured with the differential scanning calorimeter (the Seiko Instruments Inc. make, Tg / DTA6200) was 146 degreeC.

<電荷輸送性ポリエステルの溶解性>
前記得られた各例示化合物、及び後述する比較例2乃至比較例4で用いた電荷輸送性ポリマーの各種溶媒に対する溶解性を調べた。溶解性は、実施例/比較例で用いたジクロロエタン、クロロベンゼンに加えて、有機EL素子の作製に際して実用上好適なその他の溶媒の結果についても示した。溶解性試験については溶媒100ml中に化合物5gを溶解し、その状況を目視により観察して、以下の基準により判断した。
○:加熱無しで溶解。
○〜△:加熱して溶解。
△:一部のみ溶解。
結果を表11に示す。
<Solubility of charge transporting polyester>
The solubility of each of the obtained exemplary compounds and the charge transporting polymers used in Comparative Examples 2 to 4 described later in various solvents was examined. For the solubility, in addition to dichloroethane and chlorobenzene used in Examples / Comparative Examples, the results of other solvents practically suitable for producing an organic EL device were also shown. For the solubility test, 5 g of the compound was dissolved in 100 ml of the solvent, and the situation was visually observed and judged according to the following criteria.
○: Dissolved without heating.
○ to Δ: dissolved by heating.
Δ: Partially dissolved.
The results are shown in Table 11.

<実施例1>
透明絶縁基板上に形成されたITO(三容真空社製)を短冊状のフォトマスクを用いてフォトリソグラフィによりパターニングし、さらにエッチング処理することにより短冊状のITO電極(幅2mm)を形成した。次に、このITOガラス基板を中性洗剤、超純水、アセトン(電子工業用、関東化学製)及びイソプロパノール(電子工業用、関東化学製)で超音波を各5分間加えて洗浄した後、スピンコーターで乾燥させた。
前記基板に、正孔輸送層として、前記電荷輸送性ポリエステル〔例示化合物(3)〕の5質量%モノクロロベンゼン溶液を調製し、0.1μmのPTFEフィルターで濾過した後、ディップ法により厚さ0.050μmの薄膜を形成した。発光材料として前記例示化合物(X−1)を蒸着して、厚さ0.055μmの発光層を形成した。続いて短冊状の穴が設けられている金属性マスクを用いて、LiFを0.0001μm蒸着し、続いてAlを0.150μm蒸着して、2mm幅、0.15μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。
<Example 1>
ITO (manufactured by Sanyo Vacuum Co., Ltd.) formed on the transparent insulating substrate was patterned by photolithography using a strip-shaped photomask and further etched to form a strip-shaped ITO electrode (width 2 mm). Next, this ITO glass substrate was washed with neutral detergent, ultra pure water, acetone (for electronics industry, manufactured by Kanto Chemical) and isopropanol (for electronics industry, manufactured by Kanto Chemical) for 5 minutes each, It was dried with a spin coater.
A 5% by mass monochlorobenzene solution of the charge transporting polyester [Exemplary Compound (3)] is prepared on the substrate as a hole transporting layer, filtered through a 0.1 μm PTFE filter, and then the thickness is reduced to 0 by the dipping method. A thin film of 0.050 μm was formed. The said exemplary compound (X-1) was vapor-deposited as a luminescent material, and the 0.055 micrometer-thick luminescent layer was formed. Subsequently, using a metal mask provided with a strip-shaped hole, LiF was deposited by 0.0001 μm, followed by Al by 0.150 μm, and a back electrode having a width of 2 mm and a thickness of 0.15 μm was formed as an ITO electrode. And formed so as to intersect. The effective area of the formed organic electroluminescent element was 0.04 cm 2 .

<実施例2>
前記電荷輸送性ポリエステル〔例示化合物(5)〕1質量部、ポリ(N−ビニルカルバゾール)4質量部、及び前記例示化合物(X−1)0.02質量部の10質量%ジクロロエタン溶液を調製し、0.1μmのPTFEフィルターで濾過した。この溶液を用いて、実施例1に準じて短冊状のITO電極をエッチングし、洗浄し、乾燥したガラス基板上に、スピンコーター法により膜厚0.15μmの薄膜を形成した。充分乾燥させた後、短冊状の穴が設けられている金属製マスクを用いて、LiFを0.0001μm蒸着し、続いてAlを0.150μm蒸着して、2mm幅、0.15μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。
<Example 2>
A 10% by mass dichloroethane solution of 1 part by mass of the charge transporting polyester [Exemplary Compound (5)], 4 parts by mass of poly (N-vinylcarbazole), and 0.02 part by mass of the Exemplified Compound (X-1) was prepared. And filtered through a 0.1 μm PTFE filter. Using this solution, a strip-like ITO electrode was etched according to Example 1, washed, and a thin film having a thickness of 0.15 μm was formed on a dried glass substrate by a spin coater method. After sufficiently drying, using a metal mask provided with strip-shaped holes, LiF was deposited by 0.0001 μm, followed by Al by 0.150 μm, and a back surface having a width of 2 mm and a thickness of 0.15 μm. The electrode was formed so as to cross the ITO electrode. The effective area of the formed organic electroluminescent element was 0.04 cm 2 .

<実施例3>
実施例1に準じてエッチング、洗浄し、乾燥したITOガラス基板上に、実施例1に準じて前記電荷輸送性ポリエステル〔例示化合物(11)〕を厚さ0.050μmの正孔輸送層を形成した。次いで、発光層として前記例示化合物(X−1)と前記例示化合物(XI−1)との混合物(質量比:99/1)を厚さ0.065μm、電子輸送層として前記例示化合物(X−9)を厚さ0.030μmで形成した。充分乾燥させた後、短冊状の穴が設けられている金属製マスクを用いて、LiFを0.0001μm蒸着し、続いてAlを0.150μm蒸着して、2mm幅、0.15μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。
<Example 3>
A hole transport layer having a thickness of 0.050 μm is formed from the charge transporting polyester [Exemplary Compound (11)] according to Example 1 on an ITO glass substrate etched, washed and dried according to Example 1. did. Next, a mixture (mass ratio: 99/1) of the exemplary compound (X-1) and the exemplary compound (XI-1) as a light emitting layer is 0.065 μm in thickness, and the exemplary compound (X-) is used as an electron transport layer. 9) was formed with a thickness of 0.030 μm. After sufficiently drying, using a metal mask provided with strip-shaped holes, LiF was deposited by 0.0001 μm, followed by Al by 0.150 μm, and a back surface having a width of 2 mm and a thickness of 0.15 μm. The electrode was formed so as to cross the ITO electrode. The effective area of the formed organic electroluminescent element was 0.04 cm 2 .

<実施例4>
実施例1に準じてエッチング、洗浄したITOガラス基板上に、実施例1に準じて正孔輸送層として、電荷輸送性ポリエステル〔例示化合物(13)〕を厚さ0.050μmでインクジェット法(ピエゾインクジェット方式)により形成した。次いで、発光層として前記例示化合物(XI−5)を5質量%含んだ前記例示化合物(X−16、n=8)を厚さ0.065μmでスピンコーター法により形成した。充分乾燥させた後、Caを厚さ0.08μm、Alを厚さ0.15μmに蒸着して、2mm幅、合計0.23μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。
<Example 4>
On the ITO glass substrate etched and cleaned according to Example 1, a charge transporting polyester [Exemplary Compound (13)] having a thickness of 0.050 μm as a hole transporting layer according to Example 1 was formed by an inkjet method (piezoelectric). Inkjet method). Next, the exemplified compound (X-16, n = 8) containing 5% by mass of the exemplified compound (XI-5) was formed as a light emitting layer with a thickness of 0.065 μm by a spin coater method. After sufficiently drying, a back electrode having a width of 2 mm and a total thickness of 0.23 μm was formed so as to intersect the ITO electrode by vapor-depositing Ca to a thickness of 0.08 μm and Al to a thickness of 0.15 μm. The effective area of the formed organic electroluminescent element was 0.04 cm 2 .

<実施例5>
実施例2で用いた電荷輸送性ポリエステル〔例示化合物(5)〕の代わりに、前記電荷輸送性ポリエステル〔例示化合物(14)〕を用いた以外は、実施例2に準じて有機電界発光素子を作製した。
<Example 5>
An organic electroluminescent element was prepared according to Example 2 except that the charge transporting polyester [Exemplary Compound (14)] was used instead of the charge transporting polyester [Exemplary Compound (5)] used in Example 2. Produced.

<実施例6>
実施例3で用いた電荷輸送性ポリエステル〔例示化合物(11)〕の代わりに、前記電荷輸送性ポリエステル〔例示化合物(31)〕を用いた以外は、実施例3に準じて有機電界発光素子を作製した。
<Example 6>
An organic electroluminescent element was prepared according to Example 3 except that the charge transporting polyester [Exemplary Compound (31)] was used instead of the charge transporting polyester [Exemplary Compound (11)] used in Example 3. Produced.

<実施例7>
電荷輸送性ポリエステル〔例示化合物(33)〕の1.5質量%ジクロロエタン溶液を調製し、0.1μmのPTFEフィルターで濾過した。この溶液を用いて、実施例1に準じてエッチング、洗浄し、乾燥したITOガラス基板に、インクジェット法により膜厚0.05μmの薄膜を形成した。次いで、発光材料として前記例示化合物(XI−5)を5質量%含んだ前記例示化合物(X−16、n=8)をスピンコート法により厚さ0.050μmの発光層を形成した。充分乾燥させた後、Caを厚さ0.08μm、Alを厚さ0.15μmに蒸着して、2mm幅、合計0.23μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。
<Example 7>
A 1.5 mass% dichloroethane solution of the charge transporting polyester [Exemplary Compound (33)] was prepared and filtered through a 0.1 μm PTFE filter. Using this solution, a thin film having a thickness of 0.05 μm was formed on an ITO glass substrate etched, washed and dried according to Example 1 by an inkjet method. Next, a light emitting layer having a thickness of 0.050 μm was formed by spin coating of the exemplary compound (X-16, n = 8) containing 5% by mass of the exemplary compound (XI-5) as a light emitting material. After sufficiently drying, a back electrode having a width of 2 mm and a total thickness of 0.23 μm was formed so as to intersect the ITO electrode by vapor-depositing Ca to a thickness of 0.08 μm and Al to a thickness of 0.15 μm. The effective area of the formed organic electroluminescent element was 0.04 cm 2 .

<実施例8>
実施例1に準じてエッチング、洗浄し、乾燥したITOガラス基板上に、発光層として前記例示化合物(X−16、n=8)を厚さ0.050μmとなるように形成した。電荷輸送性ポリエステル〔例示化合物(11)〕及び前記例示化合物(X−1)0.02質量部の1.0質量%トルエン溶液を調製し、0.1μmのPTFEフィルターで濾過した。この溶液を用いて、前記発光層上にスピンコーター法により厚さ0.020μmの電子輸送層を形成した。充分乾燥させた後、短冊状の穴が設けられている金属製マスクを用いて、LiFを0.0001μm蒸着し、続いてAlを0.150μm蒸着して、2mm幅、0.15μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。
<Example 8>
The exemplified compound (X-16, n = 8) was formed to a thickness of 0.050 μm as a light emitting layer on an ITO glass substrate etched, washed and dried according to Example 1. A 1.0 mass% toluene solution of 0.02 part by mass of the charge transporting polyester [Exemplary Compound (11)] and the Exemplified Compound (X-1) was prepared and filtered through a 0.1 μm PTFE filter. Using this solution, an electron transport layer having a thickness of 0.020 μm was formed on the light emitting layer by a spin coater method. After sufficiently drying, using a metal mask provided with strip-shaped holes, LiF was deposited by 0.0001 μm, followed by Al by 0.150 μm, and a back surface having a width of 2 mm and a thickness of 0.15 μm. The electrode was formed so as to cross the ITO electrode. The effective area of the formed organic electroluminescent element was 0.04 cm 2 .

<比較例1>
実施例1で用いた電荷輸送性ポリエステル〔例示化合物(3)〕の代わりに、下記構造式(XII)で示される化合物を用いた他は、実施例1に準じて有機EL素子を作製した。
<Comparative Example 1>
An organic EL device was produced according to Example 1 except that a compound represented by the following structural formula (XII) was used instead of the charge transporting polyester [Exemplary Compound (3)] used in Example 1.

<比較例2>
電荷輸送性ポリマーとしてポリビニルカルバゾール(PVK)を2質量部、発光材料として前記例示化合物(X−1)を0.1質量部、電子輸送材料として前記化合物(X−9)を1質量部混合し、10質量%ジクロロエタン溶液を調製し、0.1μmのPTFEフィルターで濾過した。この溶液を用いて、2mm幅の短冊型ITO電極をエッチングにより形成したガラス基板上に、ディップ法により塗布して膜厚0.15μmの正孔輸送層を形成した。十分乾燥させた後、短冊状の穴が設けられている金属製マスクを用いて、LiFを0.0001μm蒸着し、続いてAlを0.150μm蒸着して、2mm幅、0.15μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。
<Comparative example 2>
2 parts by weight of polyvinyl carbazole (PVK) as a charge transporting polymer, 0.1 part by weight of the exemplified compound (X-1) as a light emitting material, and 1 part by weight of the compound (X-9) as an electron transporting material are mixed. A 10% by mass dichloroethane solution was prepared and filtered through a 0.1 μm PTFE filter. Using this solution, a hole-transporting layer having a thickness of 0.15 μm was formed on a glass substrate on which a 2 mm wide strip-shaped ITO electrode was formed by etching, by a dipping method. After sufficiently drying, using a metal mask provided with strip-shaped holes, LiF was deposited by 0.0001 μm, followed by Al by 0.150 μm, and a back surface having a width of 2 mm and a thickness of 0.15 μm. The electrode was formed so as to cross the ITO electrode. The effective area of the formed organic electroluminescent element was 0.04 cm 2 .

<比較例3>
電荷輸送性ポリマーとして下記構造式(XIII)を2質量部、発光材料として前記例示化合物(X−1)を0.1質量部、電子輸送材料として前記化合物(X−9)を1質量部混合し、10質量%ジクロロエタン溶液を調製し、0.1μmのPTFEフィルターで濾過した。この溶液を用いて、2mm幅の短冊型ITO電極をエッチングにより形成したガラス基板上に、ディップ法により塗布して膜厚0.15μmの正孔輸送層を形成した。十分乾燥させた後、短冊状の穴が設けられている金属製マスクを用いて、LiFを0.0001μm蒸着し、続いてAlを0.150μm蒸着して、2mm幅、0.15μm厚の背面電極をITO電極と交差するように形成した。形成された有機電界発光素子の有効面積は0.04cmであった。
<Comparative Example 3>
2 parts by mass of the following structural formula (XIII) as a charge transporting polymer, 0.1 part by mass of the exemplified compound (X-1) as a light emitting material, and 1 part by mass of the compound (X-9) as an electron transporting material Then, a 10% by mass dichloroethane solution was prepared and filtered through a 0.1 μm PTFE filter. Using this solution, a hole-transporting layer having a thickness of 0.15 μm was formed on a glass substrate on which a 2 mm wide strip-shaped ITO electrode was formed by etching, by a dipping method. After sufficiently drying, using a metal mask provided with strip-shaped holes, LiF was deposited by 0.0001 μm, followed by Al by 0.150 μm, and a back surface having a width of 2 mm and a thickness of 0.15 μm. The electrode was formed so as to cross the ITO electrode. The effective area of the formed organic electroluminescent element was 0.04 cm 2 .

<比較例4>
実施例1で用いた電荷輸送性ポリエステル〔例示化合物(3)〕の代わりに、下記構造式(XIV)で示される化合物(Tg:145℃、重量平均分子量:5.1×10)を用いた他は実施例1に準じて有機EL素子を作製した。
<Comparative example 4>
Instead of the charge transporting polyester [Exemplary Compound (3)] used in Example 1, a compound represented by the following structural formula (XIV) (Tg: 145 ° C., weight average molecular weight: 5.1 × 10 4 ) was used. Otherwise, an organic EL device was produced according to Example 1.

以上のように作製した有機EL素子を、乾燥窒素中で、ITO電極側をプラス、背面電極をマイナスとして直流電圧を印加して測定を行った
発光特性は、直流駆動方式(DC駆動)で初期輝度を1000cd/m2としたときの駆動電流密度により比較を行った。また、発光寿命の評価は、室温において直流駆動方式(DC駆動)で初期輝度を1000cd/m2とし、比較例1の素子の輝度(初期輝度L:1000cd/m)が輝度L/初期輝度L=0.5となった時点の駆動時間を1.0とした場合の相対時間、及び、素子の輝度が輝度L/初期輝度L=0.5となった時点での電圧上昇分(=電圧/初期駆動電圧)により評価した。結果を表12に示す。
The organic EL device produced as described above was measured by applying a DC voltage in dry nitrogen with the ITO electrode side plus and the back electrode minus. The light emission characteristics were initially measured by the DC drive method (DC drive). Comparison was made based on the drive current density when the luminance was 1000 cd / m 2 . In addition, the evaluation of the light emission lifetime was performed by using a direct current driving method (DC driving) at room temperature, setting the initial luminance to 1000 cd / m 2, and the luminance of the element of Comparative Example 1 (initial luminance L 0 : 1000 cd / m 2 ) as the luminance L / initial. Relative time when the driving time when the luminance L 0 = 0.5 is 1.0, and the voltage increase when the luminance of the element is L / initial luminance L 0 = 0.5 It was evaluated by minutes (= voltage / initial driving voltage). The results are shown in Table 12.

表12の結果より、熱安定性、溶解性に優れる本実施形態における電荷輸送性ポリエステルを用いた実施例1乃至8の有機電界発光素子では、発光寿命が従来の電荷輸送性ポリマーを用いたものよりも良好であることがわかる。   From the results of Table 12, in the organic electroluminescent elements of Examples 1 to 8 using the charge transporting polyester in the present embodiment which is excellent in thermal stability and solubility, the light emission lifetime is that using a conventional charge transporting polymer. It turns out that it is better than.

実施形態の有機電界発光素子の層構成の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the layer structure of the organic electroluminescent element of embodiment. 実施形態の有機電界発光素子の層構成の他の一例を示した概略構成図である。It is the schematic block diagram which showed another example of the layer structure of the organic electroluminescent element of embodiment. 実施形態の有機電界発光素子の層構成の他の一例を示した概略構成図である。It is the schematic block diagram which showed another example of the layer structure of the organic electroluminescent element of embodiment. 実施形態の有機電界発光素子の層構成の他の一例を示した概略構成図である。It is the schematic block diagram which showed another example of the layer structure of the organic electroluminescent element of embodiment.

符号の説明Explanation of symbols

1 透明絶縁体基板
2 透明電極
3 正孔輸送層及び正孔注入層の少なくとも一層
4 発光層
5 電子輸送層及び電子注入層の少なくとも一層
6 電荷輸送能を有する発光層
7 背面電極
DESCRIPTION OF SYMBOLS 1 Transparent insulator substrate 2 Transparent electrode 3 At least one layer of a positive hole transport layer and a positive hole injection layer 4 Light emitting layer 5 At least one layer of an electron transport layer and an electron injection layer 6 The light emitting layer 7 which has charge transport ability 7 Back electrode

Claims (6)

少なくとも一方が透明または半透明である陽極及び陰極よりなる一対の電極と、
該一対の電極間に挾まれ、少なくとも一層が下記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有する一つまたは複数の有機化合物層と、
を有することを特徴とする有機電界発光素子。

(前記一般式(I−1)中、Aは下記一般式(II−1)及び(II−2)で示される構造から選択された少なくとも1種を表し、Rは置換もしくは未置換の芳香環数2乃至10の1価の多核芳香族炭化水素基、置換もしくは未置換の芳香環数2乃至10の1価の縮合芳香族炭化水素基、炭素数1乃至6の1価の直鎖状炭化水素基、炭素数2乃至10の1価の分枝鎖状炭化水素基、ヒドロキシル基を表す。Yエチレン基を表し、mは1乃至5の整数を表し、pは10乃至1000の整数を表す。)


(前記一般式(II−1)及び(II−2)中、Arはフェニル基又は下記式(i)、(ii)、(iii)又は(iv)で示される基を表し、jは1を表し、Tはメチレン基又はエチレン基を表し、Xは下記式(III)で表される基を表す。)




A pair of electrodes consisting of an anode and a cathode, at least one of which is transparent or translucent,
One or a plurality of organic compound layers sandwiched between the pair of electrodes, at least one layer containing one or more charge transporting polyesters represented by the following general formula (I-1 ) :
An organic electroluminescent device comprising:

(In the general formula (I-1) , A 1 represents at least one selected from the structures represented by the following general formulas (II-1) and (II-2), and R 1 is substituted or unsubstituted. Monovalent polynuclear aromatic hydrocarbon group having 2 to 10 aromatic rings, substituted or unsubstituted monovalent condensed aromatic hydrocarbon group having 2 to 10 aromatic rings, and monovalent straight chain having 1 to 6 carbon atoms A hydrocarbon group, a monovalent branched hydrocarbon group having 2 to 10 carbon atoms, and a hydroxyl group, Y 1 represents an ethylene group , m represents an integer of 1 to 5, and p represents 10 to 1000. to the integer table.)


(In the general formulas (II-1) and (II-2), Ar represents a phenyl group or a group represented by the following formula (i), (ii), (iii) or (iv) , j represents 1 ) T represents a methylene group or an ethylene group , and X represents a group represented by the following formula (III).)




前記有機化合物層が、発光層と、電子輸送層及び電子注入層の少なくとも一層とを含み、前記発光層、電子輸送層及び電子注入層から選択された少なくとも一層が、前記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有することを特徴とする請求項1に記載の有機電界発光素子。 The organic compound layer includes a light emitting layer and at least one layer of an electron transport layer and an electron injection layer, and at least one layer selected from the light emitting layer, the electron transport layer, and the electron injection layer has the general formula (I-1). the organic electroluminescence device according to claim 1, characterized in that it contains the charge-transporting polyester at least one kind represented by). 前記有機化合物層が、発光層と、正孔輸送層及び正孔注入層の少なくとも一層とを含み、前記発光層、正孔輸送層及び正孔注入層から選択された少なくとも一層が、前記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有することを特徴とする請求項1に記載の有機電界発光素子。 The organic compound layer includes a light emitting layer and at least one layer of a hole transport layer and a hole injection layer, and at least one layer selected from the light emitting layer, the hole transport layer, and the hole injection layer has the general formula The organic electroluminescent element according to claim 1, comprising at least one type of charge transporting polyester represented by (I-1) . 前記有機化合物層が、発光層と、正孔輸送層及び正孔注入層の少なくとも一層と、電子輸送層及び電子注入層の少なくとも一層とを含み、前記発光層、正孔輸送層、正孔注入層、電子輸送層及び電子注入層から選択された少なくとも一層が、前記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有することを特徴とする請求項1に記載の有機電界発光素子。 The organic compound layer includes a light emitting layer, at least one layer of a hole transport layer and a hole injection layer, and at least one layer of an electron transport layer and an electron injection layer, and the light emitting layer, the hole transport layer, and the hole injection 2. The organic material according to claim 1, wherein at least one layer selected from a layer, an electron transport layer, and an electron injection layer contains one or more charge transporting polyesters represented by the general formula (I-1). Electroluminescent device. 前記有機化合物層が、電荷輸送機能を持つ発光層のみから構成され、前記電荷輸送機能を持つ発光層が、前記一般式(I−1)で示される電荷輸送性ポリエステルを1種以上含有することを特徴とする請求項1に記載の有機電界発光素子。 The organic compound layer is composed only of a light emitting layer having a charge transport function, and the light emitting layer having the charge transport function contains at least one kind of charge transporting polyester represented by the general formula (I-1). The organic electroluminescent element according to claim 1. 少なくとも一方が透明である一対の電極と、該一対の電極間に挟まれ、且つ1つ以上の層から構成される有機化合物層と、を有し、前記有機化合物層を構成する少なくとも1層が、請求項1に記載の電荷輸送性ポリエステルを1種以上含有し、マトリックス状及びセグメント状の少なくとも一方で配列された有機電界発光素子と、
マトリックス状及びセグメント状の少なくとも一方で配列された前記有機電界発光素子を駆動する駆動手段と、を備えることを特徴とする表示媒体。
A pair of electrodes, at least one of which is transparent, and an organic compound layer sandwiched between the pair of electrodes and composed of one or more layers, wherein at least one layer constituting the organic compound layer is An organic electroluminescent device comprising at least one charge transporting polyester according to claim 1 and arranged in at least one of a matrix and a segment;
And a driving means for driving the organic electroluminescent elements arranged in at least one of a matrix shape and a segment shape.
JP2008068361A 2008-03-17 2008-03-17 Organic electroluminescent device and display medium Expired - Fee Related JP4518167B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008068361A JP4518167B2 (en) 2008-03-17 2008-03-17 Organic electroluminescent device and display medium
US12/237,517 US20090231240A1 (en) 2008-03-17 2008-09-25 Organic electroluminescent element and display device
CN2008101841136A CN101540372B (en) 2008-03-17 2008-12-11 Organic electroluminescent element and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068361A JP4518167B2 (en) 2008-03-17 2008-03-17 Organic electroluminescent device and display medium

Publications (2)

Publication Number Publication Date
JP2009224607A JP2009224607A (en) 2009-10-01
JP4518167B2 true JP4518167B2 (en) 2010-08-04

Family

ID=41062470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068361A Expired - Fee Related JP4518167B2 (en) 2008-03-17 2008-03-17 Organic electroluminescent device and display medium

Country Status (3)

Country Link
US (1) US20090231240A1 (en)
JP (1) JP4518167B2 (en)
CN (1) CN101540372B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310050B2 (en) * 2010-09-28 2016-04-12 Koninklijke Philips N.V. Light-emitting arrangement with organic phosphor
US8664645B2 (en) * 2011-01-21 2014-03-04 Fuji Xerox Co., Ltd. Organic electroluminescence element and display medium
JP5741317B2 (en) * 2011-08-18 2015-07-01 富士ゼロックス株式会社 Organic electroluminescent device and display medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042004A (en) * 2003-07-22 2005-02-17 Fuji Xerox Co Ltd Hole transporting polymer and organic electroluminescence element using the same
JP2007335696A (en) * 2006-06-16 2007-12-27 Fuji Xerox Co Ltd Organic electric field light-emitting element, method of manufacturing the same, and image display medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8909011D0 (en) * 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
JP4627822B2 (en) * 1999-06-23 2011-02-09 株式会社半導体エネルギー研究所 Display device
US6893743B2 (en) * 2000-10-04 2005-05-17 Mitsubishi Chemical Corporation Organic electroluminescent device
JP4160355B2 (en) * 2002-09-30 2008-10-01 株式会社東芝 Organic EL device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042004A (en) * 2003-07-22 2005-02-17 Fuji Xerox Co Ltd Hole transporting polymer and organic electroluminescence element using the same
JP2007335696A (en) * 2006-06-16 2007-12-27 Fuji Xerox Co Ltd Organic electric field light-emitting element, method of manufacturing the same, and image display medium

Also Published As

Publication number Publication date
CN101540372A (en) 2009-09-23
JP2009224607A (en) 2009-10-01
CN101540372B (en) 2012-02-01
US20090231240A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4605235B2 (en) Organic electroluminescent device and display medium thereof
JP4882908B2 (en) Organic electroluminescent device and display device
JP4883032B2 (en) Organic electroluminescent device and display medium
JP4269613B2 (en) Organic electroluminescence device
JP5741317B2 (en) Organic electroluminescent device and display medium
JP4518167B2 (en) Organic electroluminescent device and display medium
JP5526521B2 (en) Carbazole compound, carbazolyl group-containing polyester, coating composition, organic electroluminescence device, and display medium
JP2009064882A (en) Organic electric field light-emitting device and display device
JP4946235B2 (en) Organic electroluminescent device, manufacturing method thereof, and image display medium
JP4265184B2 (en) Organic electroluminescence device
JP4649842B2 (en) Organic electroluminescence device
JP2007220904A (en) Organic electroluminescent device, manufacturing method thereof, and image display medium
JP4321012B2 (en) Organic electroluminescence device
JP2007194338A5 (en)
JP5724731B2 (en) Organic electroluminescent device and display medium
JP4935172B2 (en) Organic electroluminescent device, manufacturing method thereof, and image display medium
JP5130770B2 (en) Organic electroluminescent device, manufacturing method thereof, and image display medium
JP2005158561A (en) Organic electroluminescent element
JP2007335696A (en) Organic electric field light-emitting element, method of manufacturing the same, and image display medium
JP5733090B2 (en) Organic electroluminescent device and display medium
JP4122722B2 (en) Organic electroluminescence device
JP5655588B2 (en) Organic electroluminescent device and display medium
JP4258192B2 (en) Organic electroluminescence device
JP2008016504A (en) Organic electric field light emitting element
JP4882629B2 (en) Organic electroluminescent device, manufacturing method thereof, and image display medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees