JP4506255B2 - Wafer position teaching method and robot thereof - Google Patents

Wafer position teaching method and robot thereof Download PDF

Info

Publication number
JP4506255B2
JP4506255B2 JP2004122511A JP2004122511A JP4506255B2 JP 4506255 B2 JP4506255 B2 JP 4506255B2 JP 2004122511 A JP2004122511 A JP 2004122511A JP 2004122511 A JP2004122511 A JP 2004122511A JP 4506255 B2 JP4506255 B2 JP 4506255B2
Authority
JP
Japan
Prior art keywords
axis
wafer
teaching jig
robot
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004122511A
Other languages
Japanese (ja)
Other versions
JP2005310858A (en
Inventor
勝 足立
満徳 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004122511A priority Critical patent/JP4506255B2/en
Publication of JP2005310858A publication Critical patent/JP2005310858A/en
Application granted granted Critical
Publication of JP4506255B2 publication Critical patent/JP4506255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、半導体ウェハ搬送用ロボットに半導体ウェハの位置を教示する方法に関し、特に外部教示治具に関するものである。   The present invention relates to a method for teaching a position of a semiconductor wafer to a semiconductor wafer transfer robot, and more particularly to an external teaching jig.

従来、半導体ウェハ搬送用ロボットの教示作業は、一般の産業用ロボットと同様に、作業者が、搬送対象のウェハを目視して、その位置を確認してロボットをウェハに誘導していた。しかしながら、処理装置等の内部にあるウェハを外部から目視することは、困難あるいは不可能な場合がある。そこで、実物のウェハと同一寸法の教示治具をウェハの代わりに処理装置等に載置して、その教示治具の位置をロボットのエンドエフェクタに設けたセンサで検出して、ロボットに位置を教示するいわゆるオートティーチングの方法や装置が提案されている。
本願発明者等は、先に2つの透過光式センサを備えたハンドを使って教示治具のセンシングを行う方法を提案している(例えば、特許文献1参照)。従来のウェハ教示方法において、教示治具をロボットのウェハ把持部のセンサでセンシングするためにウェハ把持部を教示治具近傍へ自動で移動させる動作は、事前に装置図面から算出した教示位置(以後、事前教示位置と呼ぶ)に基づいて行っていた。また、本願発明者等はウェハ把持部を教示治具近傍へ移動させる動作を手動で行う方法も提案している(特願2003−353783)が、自動化率を上げ教示操作の時間を短縮するためにも、ウェハ把持部の移動は自動が望ましい。
国際公開公報 WO03/22534
Conventionally, in the teaching work of a semiconductor wafer transfer robot, an operator visually guides a wafer to be transferred, confirms its position, and guides the robot to the wafer, as in a general industrial robot. However, it may be difficult or impossible to visually observe the wafer inside the processing apparatus or the like from the outside. Therefore, a teaching jig having the same dimensions as the actual wafer is placed on a processing device or the like instead of the wafer, and the position of the teaching jig is detected by a sensor provided on the end effector of the robot, and the position of the teaching jig is determined. A so-called auto-teaching method and apparatus for teaching has been proposed.
The inventors of the present application have previously proposed a method of sensing a teaching jig using a hand equipped with two transmitted light sensors (see, for example, Patent Document 1). In the conventional wafer teaching method, in order to sense the teaching jig with the sensor of the robot's wafer gripping section, the operation of automatically moving the wafer gripping section to the vicinity of the teaching jig is performed in advance from the teaching position calculated from the apparatus drawing (hereinafter referred to as the apparatus position). , Called the pre-taught position). The inventors of the present application have also proposed a method of manually moving the wafer gripping portion to the vicinity of the teaching jig (Japanese Patent Application No. 2003-353783), but in order to increase the automation rate and shorten the teaching operation time. In addition, the movement of the wafer gripping part is preferably automatic.
International Publication WO03 / 22534

ところが、従来の方法では、ロボットに対する処理装置の設置精度がよくないと装置入り口の開口部(以後、間口と呼ぶ)が狭い装置では、ウェハ把持部を教示治具へアプローチさせる際に、ウェハ把持部を装置にぶつけてしまうといった問題があった。
そこで、本発明はこのような問題点に鑑みてなされたものであり、装置前面の外壁に設置した外部教示治具をセンシングし事前に教示位置を修正することにより、ウェハ把持部と装置との干渉させることなく、間口の狭い装置においても半導体ウェハの位置を自動的に精度良く教示できる方法を提供することを目的とする。更には、前記外部教示治具の設置により通常のウェハ搬送時におけるロボットの可動範囲を狭めることのない外部教示治具およびその設置方法を提供することを目的とする。
However, in the conventional method, if the processing apparatus is not accurately installed on the robot and the apparatus has a narrow opening at the entrance (hereinafter referred to as a frontage), the wafer gripping is performed when the wafer gripping part is approached to the teaching jig. There was a problem that the part hits the device.
Therefore, the present invention has been made in view of such problems, and by sensing an external teaching jig installed on the outer wall on the front surface of the apparatus and correcting the teaching position in advance, the wafer holding unit and the apparatus are An object of the present invention is to provide a method capable of automatically and accurately teaching the position of a semiconductor wafer even in an apparatus having a narrow frontage without causing interference. It is another object of the present invention to provide an external teaching jig and its installation method that do not narrow the movable range of the robot during normal wafer transfer by installing the external teaching jig.

上記の課題を解決するために、本発明は、次のようにしたものである。
請求項1に記載の発明は、半導体ウェハを把持するウェハ把持部と、旋回θ軸方向と、前記旋回の中心から半径方向に伸縮するR軸方向と、昇降Z軸方向とに前記ウェハ把持部を動作可能に支持する動作部と、を備えたロボットに、前記半導体ウェハを搬送する載置位置を教示するウェハ位置教示方法において、前記ロボットから見て、前記ウェハ把持部を通過させる間口の先に前記載置位置がある場合のウェハ位置教示方法であって、前記R軸方向に対して直角で水平な光軸を有するセンサを前記ウェハ把持部に設けるステップAと、前記載置位置を事前教示位置Pos1として教示するステップBと、前記センサが検出可能な円弧部を有する載置位置用教示治具を前記載置位置に設置するステップCと、前記センサが検出可能な円弧部を有する外部教示治具を前記載置位置との相対位置が既知である前記間口の前面外壁に設けるステップDと、前記θ軸と前記R軸とを動作させながら前記センサによって前記円弧部を検出し、そのとき記憶した前記動作部の前記θ軸と前記R軸の位置から、前記外部教示治具の位置を求めるステップEと、前記Z軸を動作させながら前記外部教示治具の水平面を検出し、そのとき記憶した前記動作部の前記Z軸の位置から前記外部教示治具の高さを求めるステップFと、前記ステップEと前記ステップFとの結果から、前記載置位置を推定位置Pos2として求めるステップGと、前記事前教示位置Pos1の各軸の位置と前記推定位置Pos2の各軸の位置とをそれぞれ比較するステップHと、を備え、前記ステップHにおいて比較した各軸の位置の差が予め定めた値以内であれば、前記推定位置Pos2を前記事前教示位置Pos1として記憶し、前記ウェハ把持部が前記間口を通過するように動作させ、前記センサによる前記載置位置用教示治具の検出を行い、前記ステップHにおいて比較した各軸の位置の差が予め定めた値を超えていれば、前記ウェハ把持部が前記間口を通過する動作を中止すること、を特徴とするウェハ位置教示方法とするものである。
請求項2に記載の発明は、半導体ウェハを把持するウェハ把持部と、旋回θ軸方向と、前記旋回の中心から半径方向に伸縮するR軸方向と、昇降Z軸方向とに前記ウェハ把持部を動作可能に支持する動作部と、前記ウェハ把持部に設けられ前記R軸方向に対して直角で水平な光軸を有するセンサと、を備え、前記半導体ウェハを搬送する載置位置に設置された載置位置用教示治具を前記センサで検出することによって、前記載置位置を記憶するロボットにおいて、前記ロボットから見て、前記ウェハ把持部を通過させる間口の先に前記載置位置がある場合、前記載置位置を事前教示位置Pos1として記憶し、前記間口の前面外壁に設けられ、前記載置位置との相対位置が既知であって、前記センサが検出可能な円弧部を有する外部教示治具を前記センサで検出し、前記動作部の前記θ軸と前記R軸とを動作させながら前記センサによって前記円弧部を検出し、そのとき記憶した前記θ軸と前記R軸の位置から、前記外部教示治具の位置を求め、前記動作部の前記Z軸を動作させながら前記外部教示治具の水平面を検出し、そのとき記憶した前記Z軸の位置から前記外部教示治具の高さを求め、前記外部教示治具の位置と高さから前記載置位置を推定位置Pos2として求め、前記事前教示位置Pos1の各軸の位置と前記推定位置Pos2の各軸の位置とをそれぞれ比較し、前記比較した各軸の位置の差が予め定めた値以内であれば、前記推定位置Pos2を前記事前教示位置Pos1として記憶し、前記ウェハ把持部が前記間口を通過するように動作させ、前記センサによる前記載置位置用教示治具の検出を行い、前記比較した各軸の位置の差が予め定めた値を超えていれば、前記ウェハ把持部が前記間口を通過する動作を中止すること、を特徴とするロボットとしたものである。
請求項3に記載の発明は、半導体ウェハを把持するウェハ把持部と、旋回θ軸方向と、前記旋回の中心から半径方向に伸縮するR軸方向と、昇降Z軸方向とに前記ウェハ把持部を動作可能に支持する動作部と、前記ウェハ把持部に設けられ前記R軸方向に対して直角で水平な光軸を有するセンサと、を備え、前記半導体ウェハを搬送する載置位置に設置された載置位置用教示治具を前記センサで検出することによって前記載置位置を記憶するロボットにおいて、前記ロボットから見て、前記ウェハ把持部を通過させる間口の先に前記載置位置がある場合、前記間口の前面外壁に設けられ、前記載置位置との相対位置が既知であって、前記センサが検出可能な円弧部を有する外部教示治具を前記センサによって検出し、該検出の際に記憶した前記動作部の前記R軸と前記θ軸と前記Z軸の位置から求めた前記外部教示治具の位置と高さによって前記載置位置の推定位置Pos2を求め、前記推定位置Pos2と、事前に教示された前記載置位置の事前教示位置Pos1と、を比較し、該比較の結果に応じて、前記ウェハ把持部が前記間口を通過して前記載置位置用教示治具を検出するか否かを決定すること、を特徴とするロボットとしたものである。
請求項4に記載の発明は、前記外部教示治具が、前記ロボットの前記動作部の最小旋回姿勢での可動範囲外に設置されたこと、を特徴とする請求項2または3記載のロボットとしたものである。
請求項5に記載の発明は、前記外部教示治具が、前記間口の前面外壁から取り外し可能に構成されたこと、を特徴とする請求項2または3記載のロボットとしたものである。
In order to solve the above problems, the present invention is as follows.
The invention according to claim 1 is the wafer gripping part for gripping the semiconductor wafer, the turning θ-axis direction, the R-axis direction extending or contracting in the radial direction from the center of the turning, and the elevating Z-axis direction. In a wafer position teaching method for teaching a mounting position for conveying the semiconductor wafer to a robot provided with an operation unit that operably supports the tip of a front end that passes through the wafer gripping unit when viewed from the robot The wafer position teaching method in the case where there is a mounting position on the wafer, wherein a sensor having a horizontal optical axis perpendicular to the R-axis direction is provided on the wafer gripping portion, and the mounting position is set in advance. Step B that teaches as teaching position Pos1, Step C that installs a mounting position teaching jig having an arc portion that can be detected by the sensor at the mounting position, and an arc portion that can be detected by the sensor. And detecting the arc portion by the sensor while operating the θ axis and the R axis while step D is provided on the front outer wall of the frontage whose relative position to the placement position is known. The step E of obtaining the position of the external teaching jig from the positions of the θ axis and the R axis of the operation unit stored at that time, and detecting the horizontal plane of the external teaching jig while operating the Z axis Then, from the result of Step F, the height of the external teaching jig is obtained from the Z-axis position of the operation unit stored at that time, and the result of Step E and Step F, the above-mentioned placement position is set as the estimated position Pos2. A step G for obtaining, and a step H for comparing the position of each axis of the pre-teach position Pos1 and the position of each axis of the estimated position Pos2, respectively. If the difference in position is within a predetermined value, the estimated position Pos2 is stored as the prior teaching position Pos1, and the wafer gripper is operated so as to pass through the frontage. The teaching jig is detected, and if the difference between the positions of the axes compared in step H exceeds a predetermined value, the operation of the wafer gripping part passing through the frontage is stopped. The wafer position teaching method is as follows.
According to a second aspect of the present invention, there is provided the wafer gripping portion for gripping the semiconductor wafer, the turning θ-axis direction, the R-axis direction extending or contracting in the radial direction from the center of the turning, and the elevating Z-axis direction. And a sensor having a horizontal optical axis perpendicular to the R-axis direction and provided in the wafer gripping unit, and installed at a mounting position for transporting the semiconductor wafer. In the robot which memorizes the mounting position by detecting the mounting position teaching jig with the sensor, the mounting position is located at the tip of the frontage through which the wafer gripping portion is passed as viewed from the robot. In this case, the external teaching position is stored as the pre-teaching position Pos1 and is provided on the front outer wall of the frontage, and has an arc portion that is known relative to the previous positioning position and that can be detected by the sensor. jig Detected by the sensor, the arc portion is detected by the sensor while operating the θ axis and the R axis of the operating portion, and the external teaching is determined from the stored positions of the θ axis and the R axis. Obtaining the position of the jig, detecting the horizontal surface of the external teaching jig while operating the Z axis of the operating unit, obtaining the height of the external teaching jig from the position of the Z axis stored at that time, From the position and height of the external teaching jig, the previous position is obtained as an estimated position Pos2, the position of each axis of the pre-taught position Pos1 is compared with the position of each axis of the estimated position Pos2, If the difference between the positions of the compared axes is within a predetermined value, the estimated position Pos2 is stored as the pre-teached position Pos1, and the wafer gripper is operated so as to pass through the frontage, and the sensor By the above Detecting a placement position teaching jig, and stopping the operation of the wafer gripping portion passing through the frontage if the difference between the positions of the compared axes exceeds a predetermined value. Robot .
According to a third aspect of the present invention, there is provided a wafer gripping portion for gripping a semiconductor wafer, a turning θ-axis direction, an R-axis direction extending or contracting in a radial direction from the center of the turning, and an elevating Z-axis direction. And a sensor having a horizontal optical axis perpendicular to the R-axis direction and provided in the wafer gripping unit, and installed at a mounting position for transporting the semiconductor wafer. In the robot which memorize | stores the said mounting position by detecting the mounting position teaching jig with the said sensor, seeing from the said robot, there exists the said mounting position in front of the frontage which passes the said wafer holding part The external teaching jig provided on the outer front wall of the frontage, whose relative position to the mounting position is known, and having an arc portion that can be detected by the sensor is detected by the sensor, and at the time of the detection Before remembering Based on the position and height of the external teaching jig obtained from the positions of the R axis, the θ axis, and the Z axis of the operation unit, the estimated position Pos2 of the above-described placement position is obtained, and the estimated position Pos2 is taught in advance. Whether or not the wafer gripper detects the preceding position teaching jig by passing through the frontage according to the result of the comparison. It is a robot characterized by determining .
According to a fourth aspect of the present invention, in the robot according to the second or third aspect, the external teaching jig is installed outside a movable range in the minimum turning posture of the operation unit of the robot. It is a thing.
The invention according to claim 5 is the robot according to claim 2 or 3 , wherein the external teaching jig is configured to be removable from the front outer wall of the frontage .

発明によれば、装置前面外壁に設けた外部教示治具をセンシングすることにより教示治具の位置を推定し、コントローラが保持している装置図面から算出した事前教示位置を前記推定位置で置き換え、ロボットはこの修正された事前教示位置を基にして教示治具へアプローチすることによりウェハ把持部を装置と干渉することなく教示治具へ導くことができる。一旦、ウェハ把持部が教示治具へアプローチすることができれば、特許文献1のウェハ教示方法を実行でき、間口の狭い装置においてもその半導体ウェハの位置を自動的に教示することができるという効果がある。
また、発明によれば、外部教示治具はロボットの最小旋回姿勢での可動範囲外にあるので、通常の搬送動作において、ロボットの姿勢を最小旋回姿勢に保っている限り、外部教示治具との干渉を意識することなくロボットを自由に移動させることができるという効果がある。
また、発明によれば、通常の搬送動作時には、外部教示治具を取り外しておくことにより、ロボットは従来の可動範囲を自由に移動させることができるという効果がある。
According to the present invention, the position of the teaching jig is estimated by sensing an external teaching jig provided on the outer front wall of the apparatus, and the pre-taught position calculated from the apparatus drawing held by the controller is replaced with the estimated position. The robot can guide the wafer gripper to the teaching jig without interfering with the apparatus by approaching the teaching jig based on the corrected prior teaching position. Once the wafer gripper can approach the teaching jig, the wafer teaching method of Patent Document 1 can be executed, and the position of the semiconductor wafer can be automatically taught even in a device having a narrow frontage. is there.
Further, according to the present invention, since the external teaching jig is out of the movable range in the minimum turning posture of the robot, as long as the robot posture is kept at the minimum turning posture in the normal transfer operation, the external teaching jig is used. There is an effect that the robot can be moved freely without being conscious of the interference.
Further, according to the present invention, the robot can move freely within the conventional movable range by removing the external teaching jig during a normal transport operation.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

図1は本発明の実施例を示すロボットの平面図、図4はその側面図である。
図において、1は半導体ウェハ搬送用の水平多関節型のロボットであり、Wはロボット1の搬送対象の半導体ウェハである。ロボット1は、昇降自在な円柱状の支柱部2のロボット旋回中心軸7回りに水平面内で旋回する第1アーム3と、第1アーム3の先端に水平面内で旋回自在に取り付けられた第2アーム4と、第2アーム4の先端に水平面内で旋回自在に取り付けられたウェハ把持部5を備えている。ウェハ把持部5は半導体ウェハWを載置しるY字形のハンドであって、Y字形の先端に1組の透過式センサ6を備えている。なお、21は走行軸ユニット、22は走行軸ロボット架台である。ロボット1は走行軸ロボット架台22に固定されている。
ロボット1はつぎのように4自由度を有している。すなわち、図2の平面図に示すように、第1アーム3、第2アーム4およびウェハ把持部5の相対的な角度を保ったまま、第1アーム3を支柱部2の中心軸7回りに旋回させるθ軸動作(旋回)と、図3の平面図に示すように、第1アーム3、第2アーム4およびウェハ把持部5を一定の速度比を保って旋回させることにより、ウェハ把持部5を支柱部2の半径方向に伸縮させるR軸動作(伸縮) と、図4のように、支柱部2を昇降させるZ軸動作(昇降)と、図1のように、走行軸ユニット21の直線動作によりロボット1自身が走行運動するT軸動作(走行)である。
ここで、θ軸は反時計回りをプラス方向とし(図2参照)、R軸は、ウェハ把持部5を支柱部2から遠ざける方向、つまりアームを伸ばす方向をプラスとし(図3参照)、Z軸は、支柱部2を上昇させる方向をプラス(図4参照)、T軸は、ロボットを図面上方へ走行させる方向をプラス(図1参照)とする。
FIG. 1 is a plan view of a robot showing an embodiment of the present invention, and FIG. 4 is a side view thereof.
In the figure, 1 is a horizontal articulated robot for transporting a semiconductor wafer, and W is a semiconductor wafer to be transported by the robot 1. The robot 1 includes a first arm 3 that swivels in a horizontal plane around a robot swivel center axis 7 of a column-shaped support column 2 that can be moved up and down, and a second arm that is pivotally attached to the tip of the first arm 3 in a horizontal plane. An arm 4 and a wafer gripper 5 attached to the tip of the second arm 4 so as to be rotatable in a horizontal plane are provided. The wafer gripping part 5 is a Y-shaped hand on which the semiconductor wafer W is placed, and includes a pair of transmission sensors 6 at the Y-shaped tip. Reference numeral 21 denotes a travel axis unit, and 22 denotes a travel axis robot base. The robot 1 is fixed to a traveling axis robot mount 22.
The robot 1 has four degrees of freedom as follows. That is, as shown in the plan view of FIG. 2, the first arm 3 is moved around the central axis 7 of the support column 2 while maintaining the relative angles of the first arm 3, the second arm 4 and the wafer gripping portion 5. As shown in the plan view of FIG. 3, the θ-axis operation (turning) is turned, and the wafer holding unit is rotated by turning the first arm 3, the second arm 4 and the wafer holding unit 5 while maintaining a constant speed ratio. R-axis operation (extension / contraction) for extending / contracting 5 in the radial direction of the column 2, Z-axis operation (elevating / lowering) for raising / lowering the column 2 as shown in FIG. 4, and the traveling axis unit 21 as shown in FIG. This is a T-axis operation (travel) in which the robot 1 itself travels by a linear motion.
Here, the θ-axis is a counterclockwise plus direction (see FIG. 2), and the R-axis is a plus direction in which the wafer gripping part 5 is moved away from the column part 2, that is, the direction in which the arm is extended (see FIG. 3). The axis indicates that the direction in which the column part 2 is raised is positive (see FIG. 4), and the T axis indicates the direction in which the robot travels upward in the drawing (see FIG. 1).

図5はウェハ把持部5の詳細を示す斜視図である。図において、8はY字形のウェハ把持部5の一方の端に取り付けられた発光部であり、9は他方の端に発光部8に対向するように取り付けられた受光部である。発光部8と受光部9で透過式センサ6を構成している。10は発光部8から受光部9に向かう光軸であり、透過式センサ6は光軸10を遮る物体を検出することができる。   FIG. 5 is a perspective view showing details of the wafer gripping portion 5. In the figure, 8 is a light emitting part attached to one end of a Y-shaped wafer gripping part 5, and 9 is a light receiving part attached to the other end so as to face the light emitting part 8. The light emitting unit 8 and the light receiving unit 9 constitute a transmissive sensor 6. Reference numeral 10 denotes an optical axis from the light emitting unit 8 toward the light receiving unit 9, and the transmission sensor 6 can detect an object that blocks the optical axis 10.

図6は本発明のウェハ搬送装置の全体配置を示す平面図である。図において、14と15は処理装置、11と12と13は収納容器、16は教示治具、17は外部教示治具、18は最小旋回姿勢によるロボット1の可動範囲である。外部教示治具17は処理装置の前面外壁19に、その円周の中心が処理装置14内部の教示治具16の中心の正面に位置するよう取り付ける。また外部教示治具17はロボット1の最小旋回姿勢による可動範囲18を外して設置する。こうすることによって、外部教示治具17を設置したままでも、ロボット1は最小旋回姿勢で外部教示治具17と干渉することなく従来どおり走行軸による移動を行うことができる。更に外部教示治具17を取り外し可能な構造としておけば、従来どおりのロボット1の可動範囲を確保できることはいうまでもない。また、本実施例では、収納容器の前面外壁には外部教示治具17を設置していない。これは収納容器の間口は十分に広いからである。   FIG. 6 is a plan view showing the overall arrangement of the wafer conveyance device of the present invention. In the figure, 14 and 15 are processing devices, 11 and 12 and 13 are storage containers, 16 is a teaching jig, 17 is an external teaching jig, and 18 is a movable range of the robot 1 with a minimum turning posture. The external teaching jig 17 is attached to the front outer wall 19 of the processing apparatus so that the center of the circumference is located in front of the center of the teaching jig 16 inside the processing apparatus 14. In addition, the external teaching jig 17 is installed outside the movable range 18 according to the minimum turning posture of the robot 1. In this way, even with the external teaching jig 17 installed, the robot 1 can move on the traveling axis as usual without interfering with the external teaching jig 17 in the minimum turning posture. Furthermore, if the external teaching jig 17 is configured to be removable, it goes without saying that the movable range of the robot 1 can be secured as in the conventional case. In this embodiment, the external teaching jig 17 is not installed on the front outer wall of the storage container. This is because the opening of the storage container is sufficiently wide.

図7は処理装置14に外部教示治具17を取り付けた装置の側面図、及び立面図である。図において、16は教示治具、17は外部教示治具、25はウェハ搬送面、19は処理装置の前面外壁、20は処理装置14の間口、Zofstは、ウェハ搬送面25と外部教示治具17の上面との距離を示し、Rofstは、図面上の教示位置の中心から外部教示治具17の中心までの距離を示す。外部教示治具17は、図のように処理装置の間口20の下部に設置する。これは通常のウェハ搬送時にロボット1のウェハ把持部5と外部教示治具17が干渉しないようロボットの経路から外した結果である。ZofstやRofstは外部教示治具17の取り付け位置を設計した時点で既知であるので、事前にコントローラへセットされる値である。こうして外部教示治具17の教示治具16に対する相対位置は決まるので、外部教示治具17の位置が求まれば、教示治具16の位置を推定することも可能である。   FIG. 7 is a side view and an elevation view of the apparatus in which the external teaching jig 17 is attached to the processing apparatus 14. In the figure, 16 is a teaching jig, 17 is an external teaching jig, 25 is a wafer transfer surface, 19 is a front outer wall of the processing apparatus, 20 is a front end of the processing apparatus 14, and Zofst is a wafer transfer surface 25 and an external teaching jig. 17 indicates the distance from the upper surface of 17 and Rofst indicates the distance from the center of the teaching position on the drawing to the center of the external teaching jig 17. The external teaching jig 17 is installed in the lower part of the front opening 20 of the processing apparatus as shown in the figure. This is a result of removing from the robot path so that the wafer gripping portion 5 of the robot 1 and the external teaching jig 17 do not interfere during normal wafer transfer. Since Zofst and Rofst are known when the mounting position of the external teaching jig 17 is designed, they are values set in advance in the controller. Since the relative position of the external teaching jig 17 with respect to the teaching jig 16 is determined in this way, if the position of the external teaching jig 17 is obtained, the position of the teaching jig 16 can be estimated.

図8は外部教示治具の2つの例を示す図で、(a)はタイプAの場合、(b)はタイプBの場合を示す。タイプAの場合、外部教示治具は円柱の形状をしており、その直径は30mm程度、高さは60mm程度である。壁面には固定用ピンを使って固定し、そのピンを抜くことによって外部教示治具の取り外しが可能である。タイプBの場合は、アーチの形状をしており、その円弧部の直径は実ウェハ300mmよりも小さければ任意の値でよい。図8(a)、(b)に示すように外部教示治具は、ロボット1のウェハ把持部5の透過式センサ6でセンシングすることができる円周部を備えているものであれば、特にその大きさや形状を制限するものではない。本実施例の説明は図8(a)に示すタイプAの外部教示治具を用いた場合について説明している。   8A and 8B are diagrams showing two examples of the external teaching jig. FIG. 8A shows the case of type A, and FIG. 8B shows the case of type B. In the case of Type A, the external teaching jig has a cylindrical shape, and the diameter is about 30 mm and the height is about 60 mm. The external teaching jig can be removed by fixing the wall surface with a fixing pin and removing the pin. In the case of Type B, it has an arch shape, and the arc portion may have any value as long as the diameter of the arc portion is smaller than 300 mm. As shown in FIGS. 8A and 8B, if the external teaching jig has a circumferential portion that can be sensed by the transmission sensor 6 of the wafer gripping portion 5 of the robot 1, The size and shape are not limited. In the description of the present embodiment, a case where a type A external teaching jig shown in FIG.

図9は本発明の外部教示治具のセンシング方法を説明する図で、(a)は透過式センサ6を用いて外部教示治具17の円周部を検出した時の位置関係を示した平面図、(b)はその側面図である。実際のセンシング動作は、ロボット1のウェハ把持部5を引いた状態から、低速でR軸を伸ばし透過式センサ6が外部教示治具17を検出した時のR軸とth軸の値を記憶し、ウェハ把持部5を一旦引き、ウェハ把持部5の角度を変えて前記センシングを繰り返す。これにより、特許文献1に記載の教示治具の位置を求める方法と同じ原理で、外部教示治具17の位置を求めることができる。図9(b)は透過式センサ6が外部教示治具17を検出した状態から、ロボット1のZ軸を低速で上昇させ透過式センサ6が外部教示治具17を検出しなくなった位置を示したものである。これにより外部教示治具17の上端のZ軸の位置が求まる。   FIG. 9 is a diagram for explaining the sensing method of the external teaching jig according to the present invention. FIG. 9A is a plan view showing the positional relationship when the circumferential portion of the external teaching jig 17 is detected using the transmission sensor 6. FIG. 2B is a side view thereof. The actual sensing operation stores the values of the R axis and th axis when the transmission sensor 6 detects the external teaching jig 17 by extending the R axis at a low speed from the state in which the wafer gripping part 5 of the robot 1 is pulled. Then, the wafer gripper 5 is pulled once, and the sensing is repeated by changing the angle of the wafer gripper 5. Accordingly, the position of the external teaching jig 17 can be obtained on the same principle as the method for obtaining the position of the teaching jig described in Patent Document 1. FIG. 9 (b) shows the position where the Z-axis of the robot 1 is raised at a low speed from the state in which the transmission sensor 6 detects the external teaching jig 17, and the transmission sensor 6 no longer detects the external teaching jig 17. It is a thing. As a result, the Z-axis position at the upper end of the external teaching jig 17 is obtained.

図10は本発明による外部教示治具17の位置検出方法を示すフローチャートである。以下、この位置検出方法をステップを追って説明する。
(ステップ1)外部教示治具17を処理装置の前面外壁19に設置する。
(ステップ2)装置図面などの情報から外部教示治具17の取り付け位置は既知なので、外部教示治具17のセンシング開始位置へ自動でウェハ把持部5を移動させることができる。
ステップ3をスキップしてステップ4へ遷移する。
(ステップ3)ロボットのR軸を透過式センサ6が外部教示治具17を検出しない位置まで後退させる。
(ステップ4)θ軸を動作させて、ウェハ把持部5の向きを変え、次にR軸を動作させて、ウェハ把持部5を前進させて、外部教示治具17にゆっくり接近させ、透過式センサ6が外部教示治具17を最初に検出した(つまり光軸10が外部教示治具17の円周に接する)時のθ軸とR軸の座標を記録する。
(ステップ5)ステップ3とステップ4をN回繰り返したら、ステップ6へ遷移する。そうでなければステップ3へ戻る。Nは3以上の任意の値である。
(ステップ6)ステップ3とステップ4をN回繰り返して、ウェハ把持部5を異なる方向から外部教示治具17に接近させて、光軸10が外部教示治具17の円周に接する時のθ軸とR軸の座標を複数求めた。これらの値から最小2乗法を解くことにより、外部教示治具17の中心の位置(θ、Rs)を求めて記録する。この解法は特許文献1にて詳細に述べている。
(ステップ7)θ軸を動作させ、ウェハ把持部5が処理装置14へ対して直角となるよう移動させる。更にR軸を10mm程度前進させ、Z軸を動作させても透過式センサ6が外部教示治具17を確実に検出する状態にする。
(ステップ8)Z軸を動作させ、ウェハ把持部5をゆっくり上昇させながら、透過式センサ6が外部教示治具17の上面を検出しなくなる(つまり光軸10が外部教示治具17の上面を超えた)時のZ軸の値をZsとして記録する。
(ステップ9)ステップ6とステップ8とで記録した値と事前にコントローラにセットしておいたRofstやZofstを使って処理装置14内部のウェハ教示位置を求める。この値の求め方は、次節で詳述する。推定したウェハ教示位置は、コントローラが事前に保持している事前教示位置とは別で記憶する。事前にコントローラへセットしている教示位置をPos1(θ1、R1、Z1、T1)、本センシングで求めた推定教示位置24をPos2(θ2、R2、Z2、T2)とする。
(ステップ10)Pos1とPos2を各軸ごとに比較し、各軸ごとに設けたしきい値Thold(θt、Rt、Zt、Tt)を1軸でも超えているものがあれば、自動教示を中止としステップ11へ遷移する。これは、図面上の処理装置14の設置位置と実際に設置された位置が大きくずれていることを示しており、自動教示を行う以前に装置の設置状態を確認することが必要だからである。
(ステップ11)ステップ9で求めたPos1をコントローラの事前教示位置として上書きし、従来の自動教示動作を行う(特願2003−353783に詳述)。従来の自動教示が正常終了すると、処理装置14の教示位置が正しく求まる。
(ステップ12)ロボット1のアームを最小旋回姿勢に畳んで、自動教示終了とする。
FIG. 10 is a flowchart showing a method for detecting the position of the external teaching jig 17 according to the present invention. Hereinafter, this position detection method will be described step by step.
(Step 1) The external teaching jig 17 is installed on the front outer wall 19 of the processing apparatus.
(Step 2) Since the attachment position of the external teaching jig 17 is known from information such as the apparatus drawing, the wafer gripping part 5 can be automatically moved to the sensing start position of the external teaching jig 17.
Skip step 3 and go to step 4.
(Step 3) Retract the R axis of the robot to a position where the transmission sensor 6 does not detect the external teaching jig 17.
(Step 4) Operate the θ-axis to change the orientation of the wafer gripping part 5 and then move the R-axis to advance the wafer gripping part 5 so that it approaches the external teaching jig 17 slowly. The coordinates of the θ axis and the R axis when the sensor 6 first detects the external teaching jig 17 (that is, the optical axis 10 contacts the circumference of the external teaching jig 17) are recorded.
(Step 5) When Step 3 and Step 4 are repeated N times, the process proceeds to Step 6. Otherwise, return to Step 3. N is an arbitrary value of 3 or more.
(Step 6) Steps 3 and 4 are repeated N times so that the wafer gripping portion 5 approaches the external teaching jig 17 from different directions, and θ when the optical axis 10 contacts the circumference of the external teaching jig 17 A plurality of coordinates of the axis and the R axis were obtained. By solving the least square method from these values, the center position (θ S , Rs) of the external teaching jig 17 is obtained and recorded. This solution is described in detail in US Pat.
(Step 7) The θ axis is operated to move the wafer gripping part 5 so as to be perpendicular to the processing apparatus 14. Furthermore, even if the R-axis is advanced about 10 mm and the Z-axis is operated, the transmission type sensor 6 is in a state of reliably detecting the external teaching jig 17.
(Step 8) Operate the Z axis and slowly raise the wafer gripping part 5 while the transmission sensor 6 does not detect the upper surface of the external teaching jig 17 (that is, the optical axis 10 moves the upper surface of the external teaching jig 17). Z) is recorded as Zs.
(Step 9) Using the values recorded in Step 6 and Step 8 and Rofst and Zofst set in the controller in advance, the wafer teaching position inside the processing apparatus 14 is obtained. The method for obtaining this value will be described in detail in the next section. The estimated wafer teaching position is stored separately from the previous teaching position held in advance by the controller. The teaching position set in advance in the controller is Pos1 (θ 1 , R 1 , Z 1 , T 1 ), and the estimated teaching position 24 obtained by this sensing is Pos2 (θ 2 , R 2 , Z 2 , T 2 ). And
(Step 10) If Pos1 and Pos2 are compared for each axis, and there is one that exceeds the threshold value Thold (θ t , R t , Z t , T t ) provided for each axis, The automatic teaching is stopped and the process proceeds to step 11. This indicates that the installation position of the processing apparatus 14 on the drawing and the actual installation position are greatly deviated, and it is necessary to check the installation state of the apparatus before performing automatic teaching.
(Step 11) Pos1 obtained in Step 9 is overwritten as the prior teaching position of the controller, and a conventional automatic teaching operation is performed (details are described in Japanese Patent Application No. 2003-353783). When the conventional automatic teaching is normally completed, the teaching position of the processing device 14 is correctly obtained.
(Step 12) The arm of the robot 1 is folded to the minimum turning posture and the automatic teaching is finished.

図11は本発明のウェハ位置推定方法を説明する図である。本図に従ってステップ9で述べた外部教示治具17の推定位置から処理装置内部の教示治具16の位置を推定する方法を説明する。図において、Rsはステップ6で求めたロボット旋回中心7から外部教示治具17の中心までの距離である。θSはステップ6で求めたロボット旋回中心7から外部教示治具17の中心までのトラック軸に対する角度である。T1は外部教示治具17をセンシングした際のロボット旋回中心7のトラック軸の値である。これらの値からウェハ位置Pos2(θ2、R2、Z2、T2)は、式(1)〜(4)により求めることができる。 FIG. 11 is a diagram for explaining the wafer position estimation method of the present invention. A method for estimating the position of the teaching jig 16 in the processing apparatus from the estimated position of the external teaching jig 17 described in step 9 will be described with reference to FIG. In the figure, Rs is the distance from the robot turning center 7 obtained in step 6 to the center of the external teaching jig 17. θ S is an angle with respect to the track axis from the robot turning center 7 obtained in step 6 to the center of the external teaching jig 17. T 1 is the value of the track axis of the robot turning center 7 when the external teaching jig 17 is sensed. From these values, the wafer position Pos2 (θ 2 , R 2 , Z 2 , T 2 ) can be obtained by the equations (1) to (4).

Figure 0004506255
Figure 0004506255

このように、Pos2で事前教示位置が補正されるので、従来のウェハ教示方法において、ウェハ把持部5が処理装置14内に設置された教示治具16へアプローチする際の経路も補正され、ウェハ把持部5が処理装置の間口20を通過する際にウェハ把持部5を装置に干渉することを回避できる。   As described above, since the prior teaching position is corrected by Pos2, in the conventional wafer teaching method, the path when the wafer gripper 5 approaches the teaching jig 16 installed in the processing apparatus 14 is also corrected, and the wafer is corrected. It is possible to avoid the wafer gripping part 5 from interfering with the apparatus when the gripping part 5 passes through the front opening 20 of the processing apparatus.

本発明は、半導体ウェハ搬送用ロボットに半導体ウェハの位置を教示する方法として有用である。   The present invention is useful as a method for teaching a position of a semiconductor wafer to a semiconductor wafer transfer robot.

本発明のロボットの走行運動を示す平面図The top view which shows the running motion of the robot of this invention 本発明のロボットの旋回動作を示す平面図Plan view showing the turning motion of the robot of the present invention 本発明のロボットの伸縮動作を示す平面図The top view which shows the expansion-contraction operation | movement of the robot of this invention 本発明のロボットの昇降動作を示す側面図The side view which shows the raising / lowering operation | movement of the robot of this invention 図1における透過式センサを示す斜視図The perspective view which shows the transmission type sensor in FIG. 本発明のウェハ搬送装置の全体配置を示す平面図The top view which shows the whole arrangement | positioning of the wafer conveyance apparatus of this invention 本発明の外部教示治具の取付状態を示す説明図Explanatory drawing which shows the attachment state of the external teaching jig of this invention 本発明の外部教示治具の形状を示す斜視図The perspective view which shows the shape of the external teaching jig of this invention 本発明の外部教示治具の位置検出方法を示す平面図The top view which shows the position detection method of the external teaching jig of this invention 本発明の動作を示すフローチャート図The flowchart figure which shows operation | movement of this invention. 本発明の教示位置推定方法を示す説明図Explanatory drawing which shows the teaching position estimation method of this invention

符号の説明Explanation of symbols

1 ロボット
2 支柱部
3 第1アーム
4 第2アーム
5 ウェハ把持部
6 透過式センサ
7 ロボット旋回中心
8 発光部
9 受光部
10 光軸
11、12、13 収納容器
14、15 処理装置
16 教示治具
17、23 外部教示治具
18 最小旋回姿勢による可動範囲
19 処理装置の前面外壁
20 処理装置の間口
21 走行軸ユニット
22 可動架台
24 推定教示位置
25 ウェハ搬送面
26 固定ピン
DESCRIPTION OF SYMBOLS 1 Robot 2 Support | pillar part 3 1st arm 4 2nd arm 5 Wafer holding part 6 Transmission type sensor 7 Robot rotation center 8 Light emitting part 9 Light receiving part 10 Optical axes 11, 12, 13 Storage containers 14, 15 Processing apparatus 16 Teaching jig 17, 23 External teaching jig 18 Movable range 19 with minimum turning posture Front outer wall 20 of processing apparatus Frontage 21 of processing apparatus Traveling axis unit 22 Movable mount 24 Estimated teaching position 25 Wafer transfer surface 26 Fixed pin

Claims (5)

半導体ウェハを把持するウェハ把持部と、旋回θ軸方向と、前記旋回の中心から半径方向に伸縮するR軸方向と、昇降Z軸方向とに前記ウェハ把持部を動作可能に支持する動作部と、を備えたロボットに、前記半導体ウェハを搬送する載置位置を教示するウェハ位置教示方法において、
前記ロボットから見て、前記ウェハ把持部を通過させる間口の先に前記載置位置がある場合のウェハ位置教示方法であって、
前記R軸方向に対して直角で水平な光軸を有するセンサを前記ウェハ把持部に設けるステップAと、
前記載置位置を事前教示位置Pos1として教示するステップBと、
前記センサが検出可能な円弧部を有する載置位置用教示治具を前記載置位置に設置するステップCと、
前記センサが検出可能な円弧部を有する外部教示治具を前記載置位置との相対位置が既知である前記間口の前面外壁に設けるステップDと、
前記θ軸と前記R軸とを動作させながら前記センサによって前記円弧部を検出し、そのとき記憶した前記動作部の前記θ軸と前記R軸の位置から、前記外部教示治具の位置を求めるステップEと、
前記Z軸を動作させながら前記外部教示治具の水平面を検出し、そのとき記憶した前記動作部の前記Z軸の位置から前記外部教示治具の高さを求めるステップFと、
前記ステップEと前記ステップFとの結果から、前記載置位置を推定位置Pos2として求めるステップGと、
前記事前教示位置Pos1の各軸の位置と前記推定位置Pos2の各軸の位置とをそれぞれ比較するステップHと、を備え、
前記ステップHにおいて比較した各軸の位置の差が予め定めた値以内であれば、前記推定位置Pos2を前記事前教示位置Pos1として記憶し、前記ウェハ把持部が前記間口を通過するように動作させ、前記センサによる前記載置位置用教示治具の検出を行い、
前記ステップHにおいて比較した各軸の位置の差が予め定めた値を超えていれば、前記ウェハ把持部が前記間口を通過する動作を中止すること、を特徴とするウェハ位置教示方法。
A wafer gripping part for gripping the semiconductor wafer, a turning θ-axis direction, an R-axis direction extending or contracting in the radial direction from the center of the turning, and an operating part for supporting the wafer gripping part in an up-and-down Z-axis direction. In a wafer position teaching method for teaching a mounting position for conveying the semiconductor wafer to a robot equipped with
A wafer position teaching method when the placement position is at the tip of a frontage that allows the wafer gripping portion to pass through as seen from the robot,
Providing the wafer grip with a sensor having a horizontal optical axis perpendicular to the R-axis direction;
Step B for teaching the above-described placement position as the pre-teaching position Pos1,
Installing a mounting position teaching jig having a circular arc part detectable by the sensor at the mounting position;
A step D of providing an external teaching jig having an arc portion that can be detected by the sensor on the front outer wall of the frontage, whose relative position to the placement position is known;
The circular arc portion is detected by the sensor while operating the θ axis and the R axis, and the position of the external teaching jig is obtained from the position of the θ axis and the R axis of the operating portion stored at that time. Step E,
Detecting the horizontal plane of the external teaching jig while operating the Z-axis, and obtaining the height of the external teaching jig from the Z-axis position of the operating unit stored at that time;
From the results of the step E and the step F, a step G for obtaining the above-mentioned placement position as the estimated position Pos2;
Comparing the position of each axis of the pre-teach position Pos1 with the position of each axis of the estimated position Pos2, respectively.
If the difference between the positions of the axes compared in step H is within a predetermined value, the estimated position Pos2 is stored as the pre-taught position Pos1, and the wafer gripper operates so as to pass through the frontage. And detecting the placement position teaching jig by the sensor,
A wafer position teaching method , wherein if the difference between the positions of the axes compared in step H exceeds a predetermined value, the operation of the wafer gripping part passing through the frontage is stopped .
半導体ウェハを把持するウェハ把持部と、A wafer gripping part for gripping a semiconductor wafer;
旋回θ軸方向と、前記旋回の中心から半径方向に伸縮するR軸方向と、昇降Z軸方向とに前記ウェハ把持部を動作可能に支持する動作部と、An operation unit that operably supports the wafer gripping unit in a turning θ-axis direction, an R-axis direction that expands and contracts in a radial direction from the center of the turning, and an elevating Z-axis direction;
前記ウェハ把持部に設けられ前記R軸方向に対して直角で水平な光軸を有するセンサと、を備え、A sensor provided on the wafer gripping portion and having a horizontal optical axis perpendicular to the R-axis direction,
前記半導体ウェハを搬送する載置位置に設置された載置位置用教示治具を前記センサで検出することによって、前記載置位置を記憶するロボットにおいて、In the robot for storing the mounting position described above by detecting the mounting position teaching jig installed at the mounting position for transporting the semiconductor wafer by the sensor,
前記ロボットから見て、前記ウェハ把持部を通過させる間口の先に前記載置位置がある場合、When viewed from the robot, if there is a placement position described above at the tip of the front through which the wafer gripping portion passes,
前記載置位置を事前教示位置Pos1として記憶し、Store the previously described position as the pre-taught position Pos1,
前記間口の前面外壁に設けられ、前記載置位置との相対位置が既知であって、前記センサが検出可能な円弧部を有する外部教示治具を前記センサで検出し、An external teaching jig provided on the front outer wall of the frontage, whose relative position to the above-described mounting position is known, and having an arc portion that can be detected by the sensor is detected by the sensor,
前記動作部の前記θ軸と前記R軸とを動作させながら前記センサによって前記円弧部を検出し、そのとき記憶した前記θ軸と前記R軸の位置から、前記外部教示治具の位置を求め、The circular arc portion is detected by the sensor while operating the θ axis and the R axis of the operating portion, and the position of the external teaching jig is obtained from the stored positions of the θ axis and the R axis. ,
前記動作部の前記Z軸を動作させながら前記外部教示治具の水平面を検出し、そのとき記憶した前記Z軸の位置から前記外部教示治具の高さを求め、Detecting the horizontal surface of the external teaching jig while operating the Z axis of the operating unit, obtaining the height of the external teaching jig from the Z-axis position stored at that time,
前記外部教示治具の位置と高さから前記載置位置を推定位置Pos2として求め、From the position and height of the external teaching jig, the previous position is obtained as an estimated position Pos2,
前記事前教示位置Pos1の各軸の位置と前記推定位置Pos2の各軸の位置とをそれぞれ比較し、The position of each axis of the pre-teach position Pos1 is compared with the position of each axis of the estimated position Pos2, respectively.
前記比較した各軸の位置の差が予め定めた値以内であれば、前記推定位置Pos2を前記事前教示位置Pos1として記憶し、前記ウェハ把持部が前記間口を通過するように動作させ、前記センサによる前記載置位置用教示治具の検出を行い、If the difference between the positions of the compared axes is within a predetermined value, the estimated position Pos2 is stored as the prior teaching position Pos1, and the wafer gripper is operated so as to pass through the frontage, Detect the above-mentioned placement position teaching jig with a sensor,
前記比較した各軸の位置の差が予め定めた値を超えていれば、前記ウェハ把持部が前記間口を通過する動作を中止すること、を特徴とするロボット。The robot according to claim 1, wherein if the difference between the positions of the compared axes exceeds a predetermined value, the operation of the wafer gripping part passing through the frontage is stopped.
半導体ウェハを把持するウェハ把持部と、A wafer gripping part for gripping a semiconductor wafer;
旋回θ軸方向と、前記旋回の中心から半径方向に伸縮するR軸方向と、昇降Z軸方向とに前記ウェハ把持部を動作可能に支持する動作部と、An operation unit that operably supports the wafer gripping unit in a turning θ-axis direction, an R-axis direction that expands and contracts in a radial direction from the center of the turning, and an elevating Z-axis direction;
前記ウェハ把持部に設けられ前記R軸方向に対して直角で水平な光軸を有するセンサと、を備え、A sensor provided on the wafer gripping portion and having a horizontal optical axis perpendicular to the R-axis direction,
前記半導体ウェハを搬送する載置位置に設置された載置位置用教示治具を前記センサで検出することによって前記載置位置を記憶するロボットにおいて、In the robot for storing the mounting position by detecting the mounting position teaching jig installed at the mounting position for transporting the semiconductor wafer by the sensor,
前記ロボットから見て、前記ウェハ把持部を通過させる間口の先に前記載置位置がある場合、When viewed from the robot, if there is a placement position described above at the tip of the front through which the wafer gripping portion passes,
前記間口の前面外壁に設けられ、前記載置位置との相対位置が既知であって、前記センサが検出可能な円弧部を有する外部教示治具を前記センサによって検出し、An external teaching jig provided on the front outer wall of the frontage, whose relative position to the above-mentioned placement position is known, and having an arc portion that can be detected by the sensor is detected by the sensor,
該検出の際に記憶した前記動作部の前記R軸と前記θ軸と前記Z軸の位置から求めた前記外部教示治具の位置と高さによって前記載置位置の推定位置Pos2を求め、前記推定位置Pos2と、事前に教示された前記載置位置の事前教示位置Pos1と、を比較し、該比較の結果に応じて、前記ウェハ把持部が前記間口を通過して前記載置位置用教示治具を検出するか否かを決定すること、を特徴とするロボット。The estimated position Pos2 of the above-mentioned installation position is obtained from the position and height of the external teaching jig obtained from the positions of the R-axis, the θ-axis, and the Z-axis of the operation unit stored at the time of the detection The estimated position Pos2 is compared with the pre-taught position pre-taught position Pos1 taught in advance, and according to the result of the comparison, the wafer gripper passes through the frontage and teaches the previous position. A robot characterized by determining whether or not to detect a jig.
前記外部教示治具が、前記ロボットの前記動作部の最小旋回姿勢での可動範囲外に設置されたこと、を特徴とする請求項2または3記載のロボット。The robot according to claim 2 or 3, wherein the external teaching jig is installed outside a movable range in a minimum turning posture of the operation unit of the robot. 前記外部教示治具が、前記間口の前面外壁から取り外し可能に構成されたこと、を特徴とする請求項2または3記載のロボット。4. The robot according to claim 2, wherein the external teaching jig is configured to be removable from a front outer wall of the frontage.
JP2004122511A 2004-04-19 2004-04-19 Wafer position teaching method and robot thereof Expired - Fee Related JP4506255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122511A JP4506255B2 (en) 2004-04-19 2004-04-19 Wafer position teaching method and robot thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122511A JP4506255B2 (en) 2004-04-19 2004-04-19 Wafer position teaching method and robot thereof

Publications (2)

Publication Number Publication Date
JP2005310858A JP2005310858A (en) 2005-11-04
JP4506255B2 true JP4506255B2 (en) 2010-07-21

Family

ID=35439303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122511A Expired - Fee Related JP4506255B2 (en) 2004-04-19 2004-04-19 Wafer position teaching method and robot thereof

Country Status (1)

Country Link
JP (1) JP4506255B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8112177B2 (en) 2005-07-15 2012-02-07 Kabushiki Kaisha Yaskawa Denki Wafer position teaching method and teaching tool
JP4663493B2 (en) * 2005-11-21 2011-04-06 ルネサスエレクトロニクス株式会社 Teaching device and teaching method
JP5003890B2 (en) * 2007-09-06 2012-08-15 株式会社安川電機 Substrate transport robot, substrate transport apparatus including the same, and semiconductor manufacturing apparatus
JP5450401B2 (en) * 2008-05-27 2014-03-26 ローツェ株式会社 Conveying device, position teaching method, and sensor jig
JP5504641B2 (en) * 2009-02-13 2014-05-28 株式会社安川電機 Substrate transport robot, substrate transport apparatus including the same, and semiconductor manufacturing apparatus
DE102012006521A1 (en) 2012-03-30 2013-10-02 Innolas Semiconductor GmbH Wafer wafer handling unit and method for picking up a wafer wafer
JP6303556B2 (en) * 2014-02-05 2018-04-04 東京エレクトロン株式会社 Substrate transport mechanism position detection method, storage medium, and substrate transport mechanism position detection device
US9796086B2 (en) * 2015-05-01 2017-10-24 Kawasaki Jukogyo Kabushiki Kaisha Method of teaching robot and robot
JP6966913B2 (en) 2017-09-29 2021-11-17 川崎重工業株式会社 How to search for the rotation axis of the board transfer device and the board mounting part
JP6924112B2 (en) 2017-09-29 2021-08-25 川崎重工業株式会社 A method for obtaining the positional relationship between the board transfer device and the board transfer robot and the board mounting portion.
JP7002307B2 (en) * 2017-11-30 2022-01-20 株式会社荏原製作所 Board transfer system, board processing device, hand position adjustment method
WO2020163657A1 (en) 2019-02-08 2020-08-13 Yaskawa America, Inc. Through-beam auto teaching
JP7409800B2 (en) * 2019-08-09 2024-01-09 川崎重工業株式会社 Robot control device, robot, and robot control method
US11370114B2 (en) * 2019-12-09 2022-06-28 Applied Materials, Inc. Autoteach enclosure system
US11554498B2 (en) * 2020-10-09 2023-01-17 Kawasaki Jukogyo Kabushiki Kaisha Wafer jig, robot system, communication method, and robot teaching method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156774A (en) * 1996-12-02 1998-06-16 Kokusai Electric Co Ltd Method for teaching substrate-mounted machine
JP2000232145A (en) * 1999-02-09 2000-08-22 Dainippon Screen Mfg Co Ltd Operation inspection system and jig used therefor
JP2001117064A (en) * 1999-10-19 2001-04-27 Tokyo Electron Ltd Alignment mechanism and alignment method for transporting device as well as substrate treating device
JP2001158507A (en) * 1999-09-21 2001-06-12 Shinko Electric Co Ltd Method and device for teaching robot for stoker, and storage medium
JP2002068410A (en) * 2000-08-31 2002-03-08 Matsushita Electric Ind Co Ltd Automatic teaching method and device for automated storage and retrieval warehouse robot
JP2002299404A (en) * 2001-03-29 2002-10-11 Hitachi Kokusai Electric Inc Substrate processor
WO2003022534A1 (en) * 2001-09-07 2003-03-20 Kabushiki Kaisha Yaskawa Denki Wafer position teaching method and teaching jig
JP2005123261A (en) * 2003-10-14 2005-05-12 Yaskawa Electric Corp Teaching jig

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156774A (en) * 1996-12-02 1998-06-16 Kokusai Electric Co Ltd Method for teaching substrate-mounted machine
JP2000232145A (en) * 1999-02-09 2000-08-22 Dainippon Screen Mfg Co Ltd Operation inspection system and jig used therefor
JP2001158507A (en) * 1999-09-21 2001-06-12 Shinko Electric Co Ltd Method and device for teaching robot for stoker, and storage medium
JP2001117064A (en) * 1999-10-19 2001-04-27 Tokyo Electron Ltd Alignment mechanism and alignment method for transporting device as well as substrate treating device
JP2002068410A (en) * 2000-08-31 2002-03-08 Matsushita Electric Ind Co Ltd Automatic teaching method and device for automated storage and retrieval warehouse robot
JP2002299404A (en) * 2001-03-29 2002-10-11 Hitachi Kokusai Electric Inc Substrate processor
WO2003022534A1 (en) * 2001-09-07 2003-03-20 Kabushiki Kaisha Yaskawa Denki Wafer position teaching method and teaching jig
JP2005123261A (en) * 2003-10-14 2005-05-12 Yaskawa Electric Corp Teaching jig

Also Published As

Publication number Publication date
JP2005310858A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4930853B2 (en) Wafer transfer device
JP4506255B2 (en) Wafer position teaching method and robot thereof
US7205742B2 (en) Calibration method
US7706919B2 (en) Wafer position teaching method and teaching jig
JP5532110B2 (en) Substrate transfer robot and substrate transfer method
JP4438736B2 (en) Transport device
TWI414471B (en) Transporting system, and teaching method in the transporting system
JP2010162635A (en) Method for correcting position and attitude of self-advancing robot
CN109789971B (en) Conveying device and conveying method
JP2016143787A (en) Substrate transfer robot and substrate transfer method
JP2016107378A (en) Industrial robot and teaching method of industrial robot
JP4501102B2 (en) Teaching jig, robot taught using the same and teaching method of the robot
JP2008114348A (en) Teaching device and calibration method, and handling system using these
KR20180059255A (en) Gripper of transfer apparatus for semiconductor wafer
JP2009220248A (en) Robot installation method and robot production system
US10471602B2 (en) Magazine transfer unit gripper
JP5190694B2 (en) Learning device in article storage facility
JP5278749B2 (en) Article conveying device
TW201912348A (en) Robot diagnosis method
KR20220044674A (en) Industrial robot
KR20190005555A (en) A cable robot for carrying cylindrical object
JP5094435B2 (en) Automatic teaching system
JP4285204B2 (en) Wafer position teaching method and wafer transfer robot
JP7303686B2 (en) Work position detection method for robots
JP2010264865A (en) Metal plate positioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees