JP4504843B2 - Judgment method of swollen non-disintegration region of crab noodles - Google Patents

Judgment method of swollen non-disintegration region of crab noodles Download PDF

Info

Publication number
JP4504843B2
JP4504843B2 JP2005062383A JP2005062383A JP4504843B2 JP 4504843 B2 JP4504843 B2 JP 4504843B2 JP 2005062383 A JP2005062383 A JP 2005062383A JP 2005062383 A JP2005062383 A JP 2005062383A JP 4504843 B2 JP4504843 B2 JP 4504843B2
Authority
JP
Japan
Prior art keywords
noodles
load
curve
region
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005062383A
Other languages
Japanese (ja)
Other versions
JP2006242892A (en
Inventor
充 吉田
明美 堀金
竜郎 前田
謙太朗 入江
博文 本井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
National Agriculture and Food Research Organization
Original Assignee
Nisshin Seifun Group Inc
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc, National Agriculture and Food Research Organization filed Critical Nisshin Seifun Group Inc
Priority to JP2005062383A priority Critical patent/JP4504843B2/en
Publication of JP2006242892A publication Critical patent/JP2006242892A/en
Application granted granted Critical
Publication of JP4504843B2 publication Critical patent/JP4504843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、茹麺の膨潤非崩壊領域を安価かつ簡便に判定する茹麺の膨潤非崩壊領域の判定方法に関するものである。   The present invention relates to a method for determining a swollen non-disintegrating region of crab noodles at a low cost and in a simple manner.

うどんやパスタなどに代表される茹麺は、小麦粉またはデュラムセモリナを主体とした生麺または乾麺を高温の水、例えば沸騰水中で数分〜数十分加熱することによって得られる。加熱時に麺を構成する澱粉−蛋白複合体は、水を吸収して膨張し(以下、「膨潤」と称する)、加熱を続けるにつれて更に膨潤が進み、やがて膨潤が極限に達すると、澱粉−蛋白複合体の粒の崩壊が起こる。この膨潤から崩壊まで至る一連の現象は「糊化」とも呼ばれる。麺への吸水は、水に触れている部分、すなわち麺の外側から行われるため、糊化は、外縁部からなされ、やがて中心部まで拡散していく。   Boiled noodles typified by udon and pasta are obtained by heating raw noodles or dry noodles mainly composed of wheat flour or durum semolina for several minutes to several tens of minutes in high-temperature water, for example, boiling water. The starch-protein complex that constitutes the noodles when heated absorbs water and expands (hereinafter referred to as “swelling”). As the heating continues, the swelling further proceeds. Collapse of the composite grain occurs. This series of phenomena from swelling to disintegration is also called “gelatinization”. Water absorption into the noodles is performed from the part in contact with water, that is, from the outside of the noodles, so that gelatinization is performed from the outer edge part and eventually diffuses to the center part.

したがって、茹で時間が短いと、図14に示すように、茹麺12の外側には、澱粉−蛋白複合体の粒が十分に膨潤して崩壊にまで至っている領域(以下、「膨潤崩壊領域」と称する)12aが存在する一方、茹麺の中心部には、澱粉−蛋白複合体の粒が膨潤してはいるものの崩壊までには至っていない領域(以下、「膨潤非崩壊領域」と称する)12bが存在するという状態になる。
なお、図14において、D1は、茹麺12の中心部の膨潤非崩壊領域12bの半径、D2は、茹麺12の半径、PDは、茹麺12の直径(PD=2×D2)を表し、値Mは、(D1+D2)を表す。
Therefore, when boiled for a short time, as shown in FIG. 14, a region in which the starch-protein complex particles are sufficiently swollen and collapsed is formed on the outside of the noodle 12 (hereinafter referred to as “swelling disintegration region”). 12a), while the starch noodles are swollen but not collapsed in the center of the noodles (hereinafter referred to as "swollen non-disintegrated region"). 12b exists.
In FIG. 14, D1 represents the radius of the swollen non-disintegrating region 12b at the center of the bowl noodle 12, D2 represents the radius of the bowl noodle 12, and PD represents the diameter of the bowl noodle 12 (PD = 2 × D2). The value M represents (D1 + D2).

ここで、うどんやパスタなどの茹麺のこしの強さや歯ごたえの良さなどの食感は、茹麺の中央に針ほどの芯として残っている膨潤非崩壊領域の大きさ(サイズ)によって支配される。しかも、うどんやパスタなどの茹麺の種類によって、好まれる茹麺のこしの強さや歯ごたえの良さなどの食感は異なるので、茹麺に要求される適切な膨潤非崩壊領域の大きさも茹麺の種類によって異なる。
このため、茹麺の膨潤非崩壊領域を高い精度で判定できれば、言い換えれば、膨潤非崩壊領域と膨潤崩壊領域の境界を高い精度で特定することができれば、茹麺製造における過不足がない茹で時間についての知見を得ることができる。すなわち、茹麺製造において、茹麺の種類に応じて、適度なこしの強さや歯ごたえ良さなどの食感を与える膨潤非崩壊領域を茹麺に残すことができる茹で時間を得ることができる。
Here, the texture of the noodles such as udon and pasta is controlled by the size (size) of the swollen non-disintegrating region that remains as a needle-like core in the center of the noodles. . In addition, the preferred texture of the noodles, such as the strength and texture of the noodles, varies depending on the type of noodles such as udon and pasta. It depends on the type.
For this reason, if the swollen non-disintegrating region of the crab noodles can be determined with high accuracy, in other words, if the boundary between the swollen non-disintegrating region and the swollen disintegration region can be identified with high accuracy, the boiling time without excessive or shortage in the production of crab noodles To gain knowledge about That is, in the production of strawberry noodles, depending on the type of strawberry noodles, it is possible to obtain the time required to leave a swollen non-disintegrating region in the strawberry noodles that gives an appropriate texture such as moderate strength and texture.

しかし、茹麺の膨潤非崩壊領域を判定するための測定は迅速になされなければならず、従来は、非常に困難であった。
そこで、MRI(核磁気共鳴イメージング装置)を用いて、茹麺内部の水分勾配の変化の解析を行うことにより、膨潤非崩壊領域と膨潤崩壊領域の境界を特定して、茹麺内部の膨潤非崩壊領域判定する方法が提案されている(非特許文献1参照)。
However, the measurement for determining the swollen non-disintegrating region of the noodles must be made quickly and has been very difficult in the past.
Therefore, by using MRI (nuclear magnetic resonance imaging apparatus) to analyze the change in the moisture gradient inside the noodles, the boundary between the swollen non-collapse region and the swollen disintegration region is specified, A method for determining a collapse region has been proposed (see Non-Patent Document 1).

この非特許文献1に提案された方法を用いると、それまで非常に困難だった茹麺の膨潤非崩壊領域の判定を迅速に行うことが可能になった。
しかしながら、その一方で、MRIは非常に高価であり、かつ操作も複雑なことから、MRIを使用して茹麺の膨潤非崩壊領域を判定するのは、実用に適さないという問題点があった。
Journal of Food Engineering 49 pp1-6 (2001)
When the method proposed in Non-Patent Document 1 is used, it has become possible to quickly determine the swollen non-disintegrating region of the noodles, which has been very difficult until now.
However, on the other hand, since MRI is very expensive and complicated in operation, there is a problem that it is not suitable for practical use to determine the swollen / collapsed region of crab noodles using MRI. .
Journal of Food Engineering 49 pp1-6 (2001)

本発明の課題は、上記従来技術の問題点を解消し、高価なMRIを用いることなく、安価かつ簡便な破断試験を適用することにより、茹麺の膨潤非崩壊領域について、MRIを用いた場合とほとんど同じ高い精度の判定結果を安価かつ簡便に得ることができる茹麺の膨潤非崩壊領域の判定方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art and apply an inexpensive and simple break test without using an expensive MRI, so that the MRI is used for the swollen non-disintegrating region of crab noodles. It is an object of the present invention to provide a method for determining a swollen non-disintegrating region of crab noodles, which can obtain a determination result with almost the same high accuracy as that of a cheap and simple method.

本発明者等は、かかる問題点を解決し、上記課題を達成するために、種々研究を重ねた結果、茹麺を破断試験に供して、茹麺の荷重−変位曲線を求め、得られた荷重−変位曲線を解析することにより、MRIを利用するより安価かつ手軽な手法で、MRIを利用する場合と比べてほとんど変わらない高い精度で膨潤非崩壊領域の判定結果が得られることを見出し、本発明を完成するに至ったものである。   In order to solve the above problems and achieve the above-mentioned problems, the present inventors have conducted various researches. As a result, the noodles were subjected to a breaking test, and the load-displacement curve of the noodles was obtained and obtained. By analyzing the load-displacement curve, it has been found that the determination result of the swollen non-collapse region can be obtained with high accuracy that is almost the same as when using MRI by a cheaper and easier method than using MRI. The present invention has been completed.

すなわち、本発明は、破断試験機で茹麺の圧縮試験を行い、測定された前記破断試験機のプランジャ先端部の茹麺外縁からの侵入距離を変位とし、該変位に対応して測定された前記茹麺から前記プランジャへの荷重をプロットして前記茹麺の荷重−変位曲線を求め、得られた荷重−変位曲線を二次微分し、得られた二次微分曲線の最小点に最も近接する極大点を含む部分を二次関数で近似し、得られた二次関数曲線の極大値を与える点から前記茹麺の膨潤非崩壊領域を求めることを特徴とする茹麺の膨潤非崩壊領域の判定方法を提供するものである。
ここで、前記茹麺の荷重−変位曲線は、前記圧縮試験を行い、前記破断試験機のプランジャ先端部の茹麺外縁からの侵入距離を変位として測定すると共に、前記茹麺から前記プランジャにかかる荷重を測定し、前記変位とそれに対応する前記荷重をプロットして求められることが好ましい。
That is, in the present invention , the noodle compression test was performed with a break tester, and the measured penetration distance from the outer edge of the noodle noodle at the plunger tip of the break tester was measured corresponding to the displacement. The load from the crab noodle to the plunger is plotted to obtain a load-displacement curve of the crab noodle, the obtained load-displacement curve is secondarily differentiated, and is closest to the minimum point of the obtained second derivative curve The swollen non-disintegrating region of the crab noodle is obtained by approximating a portion including the maximal point with a quadratic function and determining the swollen non-disintegrating region of the crab noodle from the point giving the maximum value of the obtained quadratic function curve The determination method is provided.
Here, the load-displacement curve of the crab noodle performs the compression test, measures the intrusion distance from the crab noodle outer edge of the plunger tip of the breaker as a displacement, and is applied from the crab noodle to the plunger. It is preferable that a load is measured and obtained by plotting the displacement and the corresponding load.

本発明によれば、茹麺の膨潤非崩壊領域について、MRIを利用するより安価かつ簡便に、MRIを用いた場合とほとんど同じ高精度の判定結果を得ることが可能となるという効果を奏する。なお、本発明法は、小麦粉などを主体とするうどんやパスタなどのみならず、茹麺のこしの強さや歯ごたえの良さなどの食感が要求される茹麺であれば、中華麺や
日本そばなどの種々の麺に適用可能である。
According to the present invention, it is possible to obtain the same highly accurate determination result as in the case of using MRI for the swollen non-disintegrating region of crab noodles at a lower cost and more easily than using MRI. The method of the present invention is not limited to udon and pasta mainly composed of wheat flour, but Chinese noodles, Japanese soba, etc. It is applicable to various noodles.

本発明に係る茹麺の膨潤非崩壊領域の判定方法を図面に示す好適実施形態に基づいて、以下に詳細に説明する。   The method for determining the swollen non-disintegrating region of crab noodles according to the present invention will be described in detail below based on preferred embodiments shown in the drawings.

本発明の茹麺の膨潤非崩壊領域の判定方法による膨潤非崩壊領域の判定は、茹麺を破断試験に供し、具体的には、破断試験機で茹麺の圧縮試験を行い、破断試験機のプランジャ先端部の茹麺外縁からの侵入距離(以下、変位と称する)を横軸に、茹麺からプランジャへの荷重(以下、荷重と称する)を縦軸に、変位とそれに対応する荷重をプロットして得られた非線形曲線(以下、荷重−変位曲線と称する)のデータをもとにするものである。   The determination of the swollen non-disintegration region by the method for determining the swollen non-disintegration region of the present invention is performed by subjecting the crab noodle to a break test, specifically, performing a compression test of the crab noodle with a break test machine, The intrusion distance (hereinafter referred to as “displacement”) from the outer edge of the noodles of the plunger of the plunger is plotted on the horizontal axis, the load from the noodles to the plunger (hereinafter referred to as “load”) on the vertical axis, and the displacement and the corresponding load. This is based on data of a non-linear curve (hereinafter referred to as a load-displacement curve) obtained by plotting.

図1は、本発明の茹麺の膨潤非崩壊領域の判定方法を実施する破断試験を行うための破断試験系を含む茹麺の膨潤非崩壊領域の判定システムの一実施形態を示す模式図である。
同図に示す茹麺の膨潤非崩壊領域の判定システム(以下、単に、判定システムともいう)10は、茹麺12の圧縮破断試験を行う破断試験機14と、破断試験機14で得られた結果を用いて茹麺の膨潤非崩壊領域を算出し判定する演算処理系16とを有する。
FIG. 1 is a schematic diagram showing an embodiment of a determination system for a swollen non-collapsed region of crab noodles including a breakage test system for performing a breakage test for carrying out the method for determining a swollen non-collapsed region of the present invention. is there.
The determination system (hereinafter also simply referred to as a determination system) 10 for the swollen non-collapse region of the crab noodles shown in the figure was obtained with a break tester 14 that performs a compression break test of the crab noodle 12 and a break tester 14. And an arithmetic processing system 16 that calculates and determines the swollen non-disintegration region of the noodles using the result.

破断試験機14は、図1において、その一構成例が簡略化されて斜視図で示され、サンプルである茹麺12を載置する水平な試料台18と、試料台18の載置面に対して垂直に配置され、その先端部20aが下方に向かうにつれて先が細く(例えば、先端部20aの幅1mm)なっており、試料台18に載置された茹麺12を圧縮破断するための圧縮用治具である、上下方向に移動可能なプランジャ20と、プランジャ20の上側に取り付けられ、プランジャ20の下降により先端部20aが茹麺12に侵入する際にプランジャ20にかかる荷重を測定する荷重計22と、プランジャ20を上下動させるための駆動系24とを有する。   In FIG. 1, the fracture tester 14 is shown in a perspective view, with one configuration example simplified, and a horizontal sample stage 18 on which the sample noodles 12 are placed, and a placement surface of the sample stage 18. The tip 20a is arranged perpendicularly to the tip 20a and is tapered toward the bottom (for example, the width of the tip 20a is 1 mm) for compressing and breaking the crab noodles 12 placed on the sample stage 18. A plunger 20 that is a compression jig, which is movable in the vertical direction, is attached to the upper side of the plunger 20 and measures the load applied to the plunger 20 when the tip 20a enters the noodles 12 when the plunger 20 descends. A load meter 22 and a drive system 24 for moving the plunger 20 up and down are included.

図示例においては、プランジャ20の先端部20aは、先端に向かうにつれて細くなる刃(切刃)を用いているが、本発明は特に制限的ではなく、試料台18に載置された茹麺12を圧縮破断するための刃(切刃)として機能するものであれば、どのようなものでも良く、従来公知の破断試験機のプランジャの先端部の刃であれば、いずれも適用可能である。例えば、先端部20aとして、プランジャに固定された両端部に取り付けられた金属線などの線材を用いても良いし、線材の代わりに、板材などを用いても良い。   In the illustrated example, the tip 20a of the plunger 20 uses a blade (cutting blade) that becomes thinner toward the tip, but the present invention is not particularly limited, and the crab noodle 12 placed on the sample stage 18 is not limited. Any blade can be used as long as it functions as a blade (cutting blade) for compressing and breaking the blade, and any blade can be applied as long as it is a blade at the tip of the plunger of a conventionally known fracture tester. For example, as the tip 20a, a wire such as a metal wire attached to both ends fixed to the plunger may be used, or a plate or the like may be used instead of the wire.

なお、破断試験機14は、図示しないが、プランジャ20の変位(基準位置からの移動量)や、荷重計22で測定された荷重を表示する表示部を備えていても良い。
本発明に用いられる破断試験機14としては、図示例の破断試験機に限定されず、茹麺12の圧縮破断試験を行うことができるものであればどのようなものでも良く、例えば、レオメータとも呼ばれるものや、静的試験機など、公知の破断試験機を用いることができる。
Although not shown, the fracture tester 14 may include a display unit that displays the displacement of the plunger 20 (the amount of movement from the reference position) and the load measured by the load meter 22.
The rupture tester 14 used in the present invention is not limited to the rupture tester in the illustrated example, and any rupture tester can be used as long as it can perform the compression rupture test of the noodles 12, for example, a rheometer. A known breaking tester such as what is called or a static tester can be used.

演算処理系16は、図1において、その一構成例がブロック図で示され、破断試験機14において、プランジャ20の先端部20aが茹麺12に当接してから茹麺12を破断して試料台18に当接するまでの間に測定されたプランジャ20の変位(基準位置からの移動量)および荷重計22で測定された荷重から、茹麺の荷重−変位曲線を求める曲線作成手段26と、曲線作成手段26で得られた荷重−変位曲線を二次微分する二次微分手段28と、二次微分手段28で得られた二次微分曲線の最小点に最も近接する極大点を含む部分を二次関数で近似する関数近似手段30と、関数近似手段30で得られた二次関数曲線の極大値を与える点から茹麺の膨潤非崩壊領域を求める領域判定手段32とを有する。   1 is a block diagram showing an example of the configuration of the arithmetic processing system 16. In the fracture testing machine 14, after the tip 20 a of the plunger 20 abuts the bowl noodle 12, the bowl noodle 12 is broken and the sample A curve creating means 26 for obtaining a load-displacement curve of crab noodles from the displacement of the plunger 20 (amount of movement from the reference position) measured until contacting the table 18 and the load measured by the load meter 22; A secondary differential means 28 for secondarily differentiating the load-displacement curve obtained by the curve creating means 26, and a portion including a local maximum point closest to the minimum point of the secondary differential curve obtained by the secondary differential means 28. Function approximating means 30 for approximating with a quadratic function, and area determining means 32 for obtaining a swollen non-collapse area of crab noodles from the point of giving the maximum value of the quadratic function curve obtained by the function approximating means 30.

なお、本発明においては、演算処理系16をパーソナルコンピュータ(PC)等の演算処理装置で構成し、曲線作成手段26、二次微分手段28、関数近似手段30および領域判定手段32の各手段をソフトウエアで構成することができる。例えば、曲線作成手段26を公知のプロッタソフトウエアで構成しても良いし、二次微分手段28を公知の二次微分ソフトウエアで構成しても良いし、関数近似手段30なども公知の関数近似ソフトウエアで構成しても良い。また、演算処理系16の一部、例えば、曲線作成手段26などを破断試験機14に備えられたプロッタソフトウエアで構成しても良い。このように、本発明においては、曲線作成手段26、二次微分手段28、関数近似手段30および領域判定手段32の各手段をソフトウエアで構成するのが好ましいが、演算処理系16およびその曲線作成手段26、二次微分手段28、関数近似手段30および領域判定手段32の各手段を、ハードウエアで構成しても良い。
本発明の茹麺の膨潤非崩壊領域の判定方法を実施する判定システムは、基本的に以上のように構成される。
In the present invention, the arithmetic processing system 16 is constituted by an arithmetic processing device such as a personal computer (PC), and each means of the curve creating means 26, the secondary differentiating means 28, the function approximating means 30 and the area determining means 32 is provided. It can be configured by software. For example, the curve creation means 26 may be constituted by a known plotter software, the secondary differentiation means 28 may be constituted by a known secondary differentiation software, and the function approximation means 30 and the like are also known functions. You may comprise with approximate software. Further, a part of the arithmetic processing system 16, for example, the curve creating means 26 may be configured by plotter software provided in the fracture testing machine 14. Thus, in the present invention, it is preferable that each of the curve creation means 26, the secondary differentiation means 28, the function approximation means 30 and the area determination means 32 is configured by software, but the arithmetic processing system 16 and its curve Each of the creating means 26, the secondary differentiating means 28, the function approximating means 30, and the area determining means 32 may be configured by hardware.
The determination system for carrying out the method for determining the swollen non-collapse region of the noodles of the present invention is basically configured as described above.

次に、本発明の茹麺の膨潤非崩壊領域の判定方法(以下、単に判定方法ともいう)を、図示例の判定システム10を参照して説明する。
本発明の判定方法においては、まず、図1に示す破断試験機14を用いて、茹麺の圧縮試験を以下のようにして行う。
Next, the method for determining the swollen non-disintegrating region of the noodles of the present invention (hereinafter also simply referred to as a determination method) will be described with reference to the determination system 10 in the illustrated example.
In the determination method of the present invention, first, using a fracture testing machine 14 shown in FIG. 1, a crab noodle compression test is performed as follows.

図1に示すように、サンプルである茹麺12は、水平な試料台18の上に試料台18からはみ出さない長さに切断されて戴置される。茹麺12と荷重計22との間には、プランジャ20が試料台18の乗載面に対して垂直に配置される。プランジャ20は、下方に向かうにつれて先が細くなっており、先端部20aは、茹麺12の長手方向に対して垂直に伸びている。プランジャ20は、鉛直方向に昇降可能であり、下降させると、茹麺12の外縁にその先端部20aが近づく。さらに、下降させて、プランジャ先端部20aが茹麺12の外縁に達して以降は、プランジャ20を下降させるとともに,プランジャ20の先端部20aの茹麺12への侵入距離が大きくなり(言い換えれば、変位が増加し)、茹麺12は、試料台18とプランジャ20との間で圧縮されて、その圧縮に対する荷重が生じて、荷重は荷重計22によって測定される。変位は、プランジャ先端部20aが茹麺12の外縁に触れたときを0とし、茹麺12がプランジャ20によって切断されるまで増加する。従って、変位の範囲は、0から茹麺12の直径となる。   As shown in FIG. 1, the noodle 12 as a sample is placed on a horizontal sample table 18 by cutting it to a length that does not protrude from the sample table 18. A plunger 20 is disposed between the bowl noodle 12 and the load meter 22 perpendicular to the mounting surface of the sample stage 18. The plunger 20 is tapered toward the lower side, and the distal end portion 20 a extends perpendicular to the longitudinal direction of the bowl noodle 12. The plunger 20 can be moved up and down in the vertical direction. When the plunger 20 is lowered, the distal end portion 20 a approaches the outer edge of the bowl 12. Further, after the plunger tip 20a reaches the outer edge of the bowl noodle 12, the plunger 20 is lowered and the penetration distance of the tip 20a of the plunger 20 into the bowl noodle 12 is increased (in other words, As the displacement increases, the noodles 12 are compressed between the sample stage 18 and the plunger 20 to generate a load against the compression, and the load is measured by the load meter 22. The displacement is zero when the plunger tip 20 a touches the outer edge of the candy noodle 12 and increases until the candy noodle 12 is cut by the plunger 20. Therefore, the range of displacement is from 0 to the diameter of the noodles 12.

こうして得られた破断試験機14の測定結果として、プランジャ20の変位および荷重計22による荷重が、演算処理系16の曲線作成手段26に送られる。
次に、演算処理系16の曲線作成手段26は、こうして、破断試験機14の測定結果として送られてきた変位と荷重をプロットし、荷重−変位曲線を求める。
こうして得られた荷重−変位曲線の一例を、図2に示す。
As a measurement result of the fracture tester 14 thus obtained, the displacement of the plunger 20 and the load by the load meter 22 are sent to the curve creating means 26 of the arithmetic processing system 16.
Next, the curve creation means 26 of the arithmetic processing system 16 plots the displacement and the load sent as the measurement result of the fracture tester 14 in this way, and obtains a load-displacement curve.
An example of the load-displacement curve thus obtained is shown in FIG.

図2に示す荷重−変位曲線においては、プランジャ先端部20aが茹麺12の外縁に触れた時から、先端部が20aが茹麺12に侵入するにつれて、すなわち変位が増加するにつれて、始めは、荷重もゆっくり徐々に増加していく。
次に、さらに、変位が増加すると、荷重はついに極大点に達し、変位の増加に伴って荷重が減少する部分が生じるが、直ぐに荷重が極小点に達し、その後は、変位の増加に伴って荷重が急上昇する。
変位が茹麺12の直径PDに達すると、プランジャ先端部20aは、試料台18に当接し、変位が止まる。
In the load-displacement curve shown in FIG. 2, from the time when the plunger tip 20a touches the outer edge of the bowl noodle 12, as the tip 20a enters the bowl noodle 12, that is, as the displacement increases, The load gradually increases gradually.
Next, when the displacement further increases, the load finally reaches the maximum point, and there is a portion where the load decreases as the displacement increases, but the load immediately reaches the minimum point, and thereafter, as the displacement increases. The load increases rapidly.
When the displacement reaches the diameter PD of the bowl 12, the plunger tip 20 a comes into contact with the sample stage 18 and the displacement stops.

ここで、図2に示す荷重−変位曲線の極大点は、図1に示すプランジャ20の先端部20aが、図14に示す茹麺12の膨潤非崩壊領域12bに達してこれを破断したことを示すものと考えられるが、先端部20aの茹麺12への侵入によって、試料台18に接触している側の茹麺12の膨潤崩壊領域12aは圧縮されて変形しているので、極大点における変位が、直接的に図14に示す値Mを表しているわけではない。しかし、本発明においては、荷重−変位曲線の極大に至る近傍は、前述の値Mの情報を含んでいるものと考え、図2に示す荷重−変位曲線に対し、さらなる処理(微分処理)行い、正確な値Mを求めてようとしているのである。なお、図14に示す例では、茹麺12の右端部が試料台18に載置され、同左端部が最上部となるものとすると、この左端部に図1に示すプランジャ20の先端部20aが最初に接触するので、破断方向は、矢印aで示す方向に定義される。従って、値Mは、破断方向aに平行な中心線上において定義される。   Here, the maximum point of the load-displacement curve shown in FIG. 2 is that the tip 20a of the plunger 20 shown in FIG. 1 reaches the swollen non-disintegrating region 12b of the noodle 12 shown in FIG. Although it is thought that it shows, since the swelling collapse area 12a of the noodle 12 on the side in contact with the sample stage 18 is compressed and deformed by the penetration of the tip 20a into the noodle 12, the maximum point is reached. The displacement does not directly represent the value M shown in FIG. However, in the present invention, it is considered that the vicinity of the maximum of the load-displacement curve includes the information of the aforementioned value M, and further processing (differential processing) is performed on the load-displacement curve shown in FIG. An accurate value M is being obtained. In the example shown in FIG. 14, if the right end portion of the noodles 12 is placed on the sample stage 18 and the left end portion is the uppermost portion, the tip end portion 20a of the plunger 20 shown in FIG. Are first contacted, so the direction of break is defined by the direction indicated by arrow a. Therefore, the value M is defined on the center line parallel to the breaking direction a.

こうして、曲線作成手段26で得られた荷重−変位曲線のデータは、二次微分手段28に送られる。
次に、二次微分手段28は、こうして送られてきた荷重−変位曲線のデータを用いて、まず、荷重−変位曲線を微分(一次微分)する。
こうして得られた、図2の荷重−変位曲線を微分した一次微分結果を図3に示す。
続いて、二次微分手段28は、こうして得られた一次微分曲線をさらにもう一度微分(二次微分)する。
ここで、図4は、二次微分手段28で図3の一次微分曲線を微分した結果、すなわち、図2の荷重−変位曲線を二次微分した二次微分結果(曲線)である。図4において、点Aは、二次微分曲線の最小点Bに最も近接した極大点である。
Thus, the load-displacement curve data obtained by the curve creation means 26 is sent to the secondary differentiation means 28.
Next, the secondary differentiating means 28 first differentiates (primary differentiation) the load-displacement curve using the load-displacement curve data thus sent.
FIG. 3 shows the first derivative result obtained by differentiating the load-displacement curve of FIG. 2 obtained in this way.
Subsequently, the secondary differentiation means 28 further differentiates (secondary differentiation) the primary differential curve thus obtained once again.
Here, FIG. 4 shows the result of differentiating the primary differential curve of FIG. 3 by the secondary differential means 28, that is, the secondary differential result (curve) obtained by secondary differentiation of the load-displacement curve of FIG. In FIG. 4, a point A is a local maximum point closest to the minimum point B of the secondary differential curve.

次に、こうして、二次微分手段28で得られた二次微分曲線の極大点Aの近傍のデータが、関数近似手段30に送られる。
次に、関数近似手段30は、こうして送られてきた図4に示す二次微分曲線の極大点A近傍のデータを用いて、図4における極大点Aの近辺の曲線を二次関数で近似し、得られた二次関数曲線の極大点を求める。
ここで、図5は、図4の二次微分曲線における極大点A付近の3点のデータをピックアップして直線で結んだものであり、図6は、図5の3点を結ぶ直線を二次関数曲線で近似した結果である。
Next, data in the vicinity of the maximum point A of the secondary differential curve obtained by the secondary differential means 28 is sent to the function approximating means 30.
Next, the function approximating means 30 approximates the curve in the vicinity of the maximum point A in FIG. 4 with a quadratic function using the data in the vicinity of the maximum point A of the quadratic differential curve shown in FIG. Then, the maximum point of the obtained quadratic function curve is obtained.
Here, FIG. 5 picks up three points of data near the maximum point A in the secondary differential curve of FIG. 4 and connects them with straight lines. FIG. 6 shows two straight lines connecting the three points of FIG. This is the result of approximation with a quadratic function curve.

こうして、関数近似手段30で得られた図6の近似二次関数曲線は、下記の二次関数の一般式(式1)で表すことができる。
y = ax + bx + c …(式1)
上記式1を微分すると下記式2になる。
dy/dx = 2ax + b …(式2)
ここで、dy/dx = 0のときのyが極大値であるので、このときのxの値Mは、以下の式3で求められる。
M = −b / 2a …(式3)
従って、領域判定手段32は、関数近似手段30で得られた図6の近似二次関数曲線の係数aおよびbから、値Mを求めることができる。
Thus, the approximate quadratic function curve of FIG. 6 obtained by the function approximating means 30 can be expressed by the following general function (formula 1) of the quadratic function.
y = ax 2 + bx + c (Formula 1)
Differentiating Equation 1 above gives Equation 2 below.
dy / dx = 2ax + b (Formula 2)
Here, since y when dy / dx = 0 is a local maximum value, the value M of x at this time can be obtained by the following Expression 3.
M = −b / 2a (Formula 3)
Therefore, the area determination unit 32 can obtain the value M from the coefficients a and b of the approximate quadratic function curve of FIG. 6 obtained by the function approximation unit 30.

この値Mは、茹麺12の膨潤非崩壊領域12bと膨潤崩壊領域12aの境界を表しており、すなわち、茹麺の外縁からの距離を表している。
従って、領域判定手段32は、マイクロメータで測定した茹麺12の直径に1/2を乗じて得られる茹麺12の半径をD2とすると、茹麺12の膨潤非崩壊領域の半径D1を、以下の式4で求めることができる。
D1 = M − D2 …(式4)
This value M represents the boundary between the swollen non-disintegrating region 12b and the swollen and disintegrating region 12a of the bowl noodle 12, that is, the distance from the outer edge of the bowl noodle.
Accordingly, the region determination means 32 is configured such that the radius D1 of the swollen non-disintegrating region of the noodles 12 is D2 when the radius of the noodles 12 obtained by multiplying the diameter of the noodles 12 measured by the micrometer by 1/2 is D2. It can be obtained by the following formula 4.
D1 = M−D2 (Formula 4)

従って、本発明の判定方法によれば、茹麺を破断試験に供して茹麺の荷重−変位曲線を求め、得られた荷重−変位曲線の二次微分曲線を求め、二次微分曲線の最小点に最も近接する極大点を含む部分を近似した二次関数曲線を求め、その二次関数曲線が極大値を与える点から、茹麺の膨潤非崩壊領域と膨潤崩壊領域との境界を求め、茹麺の膨潤非崩壊領域を判定することができる。
なお、D1およびD2から、膨潤非崩壊領域の麺の断面積に対する比率(R1(%))を、以下の式5で求めることができる。
R1(%) = πD1/πD2×100
= D1/D2×100 …(式5)
本発明の茹麺の膨潤非崩壊領域の判定方法は、基本的に以上のように構成される。
Therefore, according to the determination method of the present invention, the noodles are subjected to a break test to determine the load-displacement curve of the noodles, the second derivative curve of the obtained load-displacement curve is obtained, and the minimum of the second derivative curve Find a quadratic function curve that approximates the part including the local maximum point closest to the point, and from the point where the quadratic function curve gives the local maximum value, determine the boundary between the swollen non-collapse region and the swollen collapse region of the noodles, The swollen non-disintegrating region of the noodles can be determined.
In addition, the ratio (R1 (%)) with respect to the cross-sectional area of noodles of a swelling non-disintegration area | region can be calculated | required from the following Formula 5 from D1 and D2.
R1 (%) = πD1 2 / πD2 2 × 100
= D1 2 / D2 2 × 100 (Formula 5)
The method for determining the swollen non-disintegrating region of the noodles of the present invention is basically configured as described above.

なお、図14に示す例においては、茹麺12の断面形状を、パスタ等を考慮して円形に近似したが、本発明法が適用可能な茹麺の断面形状はこれに限定されず、中実麺であればどのような断面形状の茹麺であっても良い。例えば、うどんや、ソーメンや、中華麺や、日本そばなどの麺は、その断面形状が、パスタのように円形ではなく、矩形や矩形に近いものが多い。このように、その断面形状が矩形に近似できる茹麺の場合にも、図14に示す円形状の茹麺12の場合と同様に、膨潤崩壊領域および膨潤非崩壊領域を定義できる。すなわち、図15に示す茹麺13の場合においても、茹麺13の外側には膨潤崩壊領域13aが存在する一方、茹麺13の中心部には、茹麺13の外形と略相似な矩形状の膨潤非崩壊領域13bが存在するものであると近似できる。   In the example shown in FIG. 14, the cross-sectional shape of the noodles 12 is approximated to a circular shape in consideration of pasta and the like. However, the cross-sectional shape of the noodles to which the method of the present invention can be applied is not limited to this. As long as it is a real noodle, any cross-sectional shape of the noodles may be used. For example, noodles such as udon, somen, Chinese noodles, and Japanese soba noodles are not round as in pasta, but are almost rectangular or rectangular. Thus, also in the case of the bowl noodles whose cross-sectional shape can approximate a rectangle, the swollen collapse region and the swollen non-collapse region can be defined as in the case of the round bowl noodle 12 shown in FIG. That is, in the case of the bowl noodle 13 shown in FIG. 15, the swelling / disintegration region 13 a exists outside the bowl noodle 13, while the central part of the bowl noodle 13 has a rectangular shape substantially similar to the outer shape of the bowl noodle 13. It can be approximated that the swelling non-disintegrating region 13b exists.

ここで、図15に示す矩形状の茹麺13において、茹麺13の右辺13cが試料台18に載置され、同左辺13dが最上部となるとすると、この左辺13dに図1に示すプランジャ20の先端部20aが最初に接触するので、破断方向は、矢印aで示す方向に定義される。
従って、図15に示す矩形状の茹麺13では、茹麺13の右辺13cおよび左辺13d間の距離が、図1に示すプランジャ20の先端部20aが茹麺13において破断する箇所の上端と下端の距離となり、図14に示す円形状の茹麺12の直径PDに対応するものとなるので、この破断箇所の上下端の距離をPDで定義することができる。なお、破断箇所の上下端の距離PDは、茹麺13の矩形断面の対角線の交点(中心)を通り、破断方向aに平行な中心線13e上において、破断方向aに垂直な2辺13cおよび13d間の距離として定義することもできる。
Here, in the bowl-shaped noodles 13 shown in FIG. 15, if the right side 13c of the bowl noodles 13 is placed on the sample stage 18 and the left side 13d is the uppermost part, the plunger 20 shown in FIG. Since the tip part 20a of the first contact is first, the breaking direction is defined in the direction indicated by the arrow a.
Therefore, in the rectangular bowl 13 shown in FIG. 15, the distance between the right side 13c and the left side 13d of the bowl noodle 13 is such that the upper end and the lower end of the portion where the tip 20a of the plunger 20 shown in FIG. 14 and corresponds to the diameter PD of the circular bowl noodles 12 shown in FIG. 14, and therefore, the distance between the upper and lower ends of the broken portion can be defined by PD. The distance PD between the upper and lower ends of the fractured portion passes through the intersection (center) of the diagonal line of the rectangular cross section of the bowl noodles 13, and on the center line 13e parallel to the fracture direction a, the two sides 13c perpendicular to the fracture direction a and It can also be defined as the distance between 13d.

また、同様にして、図14に示す円形状の茹麺12の中心部の膨潤非崩壊領域12bの半径D1に対応して、図15に示す矩形状の茹麺13では、破断箇所における膨潤非崩壊領域13bの上端と下端との間の距離の半分、すなわち、茹麺13の中心部の膨潤非崩壊領域13bの破断方向aに垂直な2辺間の距離の半分、あるいは、中心線13e上における膨潤非崩壊領域13bの長さ(距離)の半分、もしくは、中心と膨潤非崩壊領域13bの破断方向aに垂直な辺との間の距離を、D1として定義することができる。
なお、図14に示す円形状の茹麺12の半径D2に対応して、図15に示す矩形状の茹麺13では、破断箇所の上下端の距離PDの半分、すなわち、中心線13e上における茹麺13の破断方向aに垂直な2辺13cおよび13d間の距離PDの半分を、D2として定義することができる。また、図14に示す円形状の茹麺12の場合と同様に、図15に示す矩形状の茹麺13でも、値Mは、破断方向aに平行な中心線上において定義される。
Similarly, corresponding to the radius D1 of the swelling non-disintegrating region 12b at the center of the circular bowl noodle 12 shown in FIG. 14, the rectangular bowl noodle 13 shown in FIG. Half of the distance between the upper end and the lower end of the collapse region 13b, that is, half of the distance between two sides perpendicular to the breaking direction a of the swelling non-disintegration region 13b at the center of the bowl noodle 13, or on the center line 13e The distance between the half of the length (distance) of the swollen non-collapse region 13b or the center and the side perpendicular to the breaking direction a of the swollen non-collapse region 13b can be defined as D1.
In addition, in the rectangular bowl noodle 13 shown in FIG. 15, corresponding to the radius D2 of the round bowl noodle 12 shown in FIG. 14, half of the distance PD between the upper and lower ends of the broken portion, that is, on the center line 13e. A half of the distance PD between the two sides 13c and 13d perpendicular to the breaking direction a of the crab noodle 13 can be defined as D2. Further, similarly to the case of the circular bowl noodles 12 shown in FIG. 14, the value M is defined on the center line parallel to the breaking direction a in the rectangular bowl noodles 13 shown in FIG. 15.

このように、図15に示す矩形状の茹麺13において、破断箇所の上下端の距離PD、この距離PDの半分の距離D2、破断箇所における膨潤非崩壊領域13bの上端と下端との間の距離の半分の距離D1および値Mを定義することにより、上述した本発明の茹麺の膨潤非崩壊領域の判定方法を、そのまま適用することができ、全く同様にして、値Mを求め、膨潤非崩壊領域13bのサイズを表す破断箇所における膨潤非崩壊領域13bの上端と下端との間の距離の半分の距離D1を求めることができる。
なお、図15に示す矩形状の茹麺13においては、その断面形状が正方形の場合を除いて、その断面形状に異方性があるので、破断方向aと垂直な破断方向bに対しても、破断試験を行い、距離PD、距離D2、値Mおよび距離D1にそれぞれ対応する距離PD’、距離D2’、値M’および距離D1’を求める。
こうして得られた距離D1および距離D2と距離D1’および距離D2’とを用いて、上記式5の代わりに、下記式9を定義することにより、膨潤非崩壊領域の麺の断面積に対する比率(R1(%))を求めることができる。
R1(%) = D1×D1’/(D2×D2’)×100
= 100×D1×D1’/(D2×D2’) …(式9)
As described above, in the rectangular bowl 13 shown in FIG. 15, the distance PD between the upper and lower ends of the broken portion, the distance D2 that is half of this distance PD, and the distance between the upper end and the lower end of the swollen non-collapse region 13b at the broken portion. By defining the distance D1 and the value M which are half of the distance, the method for determining the swollen non-disintegration region of the noodles of the present invention described above can be applied as it is. A distance D1 that is half of the distance between the upper end and the lower end of the swollen non-collapsed region 13b at the break point representing the size of the non-collapsed region 13b can be obtained.
In addition, in the rectangular bowl noodles 13 shown in FIG. 15, except for the case where the cross-sectional shape is a square, the cross-sectional shape has anisotropy. Then, a fracture test is performed to determine distance PD ′, distance D2 ′, value M ′, and distance D1 ′ corresponding to distance PD, distance D2, value M, and distance D1, respectively.
By using the distance D1 and distance D2 thus obtained, the distance D1 ′ and the distance D2 ′, instead of the above formula 5, the following formula 9 is defined, whereby the ratio of the swollen non-collapsed area to the cross-sectional area of the noodle ( R1 (%)) can be obtained.
R1 (%) = D1 × D1 ′ / (D2 × D2 ′) × 100
= 100 × D1 × D1 ′ / (D2 × D2 ′) (Formula 9)

こうして、図15に示す矩形状の茹麺13においても、本発明の茹麺の膨潤非崩壊領域の判定方法を適用することができる。
なお、本発明の茹麺の膨潤非崩壊領域の判定方法は、上述した断面形状が円形状や矩形状の茹麺のみならず、楕円形状や多角形状などの任意の断面形状の茹麺にも適用可能である。このように、任意の断面形状の茹麺の場合において、その断面形状が上述した円形状や矩形状に近似できる場合には、上述した方法をそのまま適用すればよいが、近似できない場合には、茹麺およびその膨潤非崩壊領域の断面積を求めるのに必要な長さ(距離)の方向の全てを破断方向として、本発明法を適用し、すなわち、上述した破断試験を行い、各破断方向における距離D1およびD2を全て求め、それらを用いて、膨潤非崩壊領域の麺の断面積に対する比率(R1(%))を求めるようにすれば良い。
Thus, the method for determining the swollen non-disintegrating region of the noodles of the present invention can also be applied to the rectangular noodles 13 shown in FIG.
In addition, the method for determining the swollen non-disintegration region of the crab noodles of the present invention is not limited to the circular or rectangular crab noodles described above, but also to crab noodles having an arbitrary cross-sectional shape such as an elliptical shape or a polygonal shape. Applicable. Thus, in the case of crab noodles of any cross-sectional shape, if the cross-sectional shape can be approximated to the circular shape or rectangular shape described above, the method described above may be applied as it is, Applying the method of the present invention with all of the length (distance) directions necessary to obtain the cross-sectional area of the noodles and their swollen non-disintegrating regions as the breaking direction, that is, performing the breaking test described above, and each breaking direction All the distances D1 and D2 in the above are obtained, and using them, the ratio (R1 (%)) of the swollen non-disintegrating region to the cross-sectional area of the noodles may be obtained.

以上、本発明に係る茹麺の膨潤非崩壊領域の判定方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲において、種々の改良や変更ならびに設計の変更を行って良いことはもちろんである。例えば、本発明法は、小麦粉などを主体とするうどんやパスタなどのみならず、茹麺のこしの強さや歯ごたえの良さなどの食感が要求される茹麺であれば、ソーメンや中華麺や日本そばなどの種々の麺に適用可能である。   As described above, the method for determining the swollen non-disintegration region of the noodles according to the present invention has been described in detail. However, the present invention is not limited to the above-described embodiment, and various improvements and changes can be made without departing from the spirit of the present invention. Of course, you can change the design. For example, the method of the present invention is applicable not only to udon and pasta mainly made of wheat flour, but also to samen, Chinese noodles, Japan, etc. It can be applied to various noodles such as buckwheat.

次に、本発明の茹麺の膨潤非崩壊領域の判定方法を、さらに具体的に説明するために実施例を掲げるが、本発明は、以下の実施例のみに限定されるものではない。   Next, examples are given to more specifically describe the method for determining the swollen non-disintegration region of the noodles of the present invention, but the present invention is not limited to only the following examples.

(実施例1)
直径1.7mmのパスタ乾麺(日清フーズ株式会社製「セレクト」)を、沸騰水中で8分間茹でて得られたパスタ茹麺について、図1に示す判定システム10において、以下の条件で圧縮破断試験を実施した。なお、このパスタ茹麺は、その断面形状が、図14に示す茹麺12の断面形状で近似できるものである。
破断試験機14:小型卓上試験機EZ Test-20N(島津製作所株式会社製)
プランジャ20:三角(V)型プランジャ:先端部20aの幅1mm
プランジャ20の移動速度:30mm/分
曲線作成手段26のプロットソフトウェア:SHIKIBUレオメータ(島津製作所株式会社
製)
二次微分手段28の微分計算ソフトウェア:unscrambler(CAMO社製)
測定回数:15回
Example 1
With respect to pasta noodles obtained by boiling 1.7 mm diameter pasta dry noodles (“Select” manufactured by Nisshin Foods Co., Ltd.) in boiling water for 8 minutes in the determination system 10 shown in FIG. The test was conducted. In addition, this pasta crab noodle has a cross-sectional shape that can be approximated by the cross-sectional shape of the crab noodle 12 shown in FIG.
Breaking tester 14: Small desktop testing machine EZ Test-20N (manufactured by Shimadzu Corporation)
Plunger 20: Triangular (V) type plunger: 1 mm width of the tip 20a
Movement speed of plunger 20: 30 mm / min Plotting software of curve creating means 26: SHIKIBU rheometer (Shimadzu Corporation)
Made)
Differential calculation software for secondary differential means 28: unscrambler (manufactured by CAMO)
Number of measurements: 15 times

こうして得られた測定結果の平均値を下記の表1に示す。
また、図7は、表1の結果をプロットして得られた荷重−変位曲線である。
The average value of the measurement results thus obtained is shown in Table 1 below.
FIG. 7 is a load-displacement curve obtained by plotting the results of Table 1.

Figure 0004504843
Figure 0004504843

こうして得られた表1の結果から得られる図7に示す荷重−変位曲線を一次微分した結果を表2に示す。
また、図8は、表2の結果をプロットして得られた荷重−変位曲線の一次微分曲線である。
Table 2 shows the result of first-order differentiation of the load-displacement curve shown in FIG. 7 obtained from the results of Table 1 thus obtained.
FIG. 8 is a first derivative curve of a load-displacement curve obtained by plotting the results of Table 2.

Figure 0004504843
Figure 0004504843

こうして得られた表2の結果から得られる図8に示す荷重−変位曲線の一次微分曲線をさらに微分した結果、すなわち、図7に示す荷重−変位曲線を二次微分した結果を表3に示す。また、図9は、表3の結果をプロットして得られた荷重−変位曲線の二次微分曲線である。   Table 3 shows results obtained by further differentiating the primary differential curve of the load-displacement curve shown in FIG. 8 obtained from the results of Table 2 thus obtained, that is, results of secondary differentiation of the load-displacement curve shown in FIG. . FIG. 9 is a second derivative curve of the load-displacement curve obtained by plotting the results of Table 3.

Figure 0004504843
Figure 0004504843

図9において、二次微分曲線の最小点Cに最も近接した極大点として、点mを得た。
図9の点m近辺を、以下のようにして二次関数で近似した。
図10は、図9における点m付近の3点のデータをピックアップして直線で結んだものであり、図11は、図10の3点を結ぶ直線を近似した二次関数曲線である。
In FIG. 9, a point m was obtained as a local maximum point closest to the minimum point C of the secondary differential curve.
The vicinity of the point m in FIG. 9 was approximated by a quadratic function as follows.
FIG. 10 shows data obtained by picking up three points of data near the point m in FIG. 9 and connecting them with straight lines. FIG. 11 is a quadratic function curve approximating the straight line connecting the three points in FIG.

図11の曲線は、下記式6の二次関数式で表すことができた。
y = −150.19x + 492.27x + 402.26 …(式6)
ここで、上記式6を微分すると下記式7になる。
dy/dx = −300.38x + 492.27 …(式7)
そこで、dy/dx = 0のときのyが極大点を与えるので、そのときのxの値を求めると、
M = 1.64(mm)となった。
The curve in FIG. 11 could be expressed by a quadratic function expression of the following expression 6.
y = −150.19x 2 + 492.27x + 402.26 (Expression 6)
Here, when the above equation 6 is differentiated, the following equation 7 is obtained.
dy / dx = −300.38x + 492.27 (Expression 7)
Thus, y gives a maximum point when dy / dx = 0, and when the value of x at that time is found,
M = 1.64 (mm).

また、マイクロメータで15回測定した茹麺の直径の平均値は、2.40mmだったので、茹麺の半径D2は1.20mmとなった。
上記値Mおよび半径D2から、茹麺の膨潤非崩壊領域の半径D1(mm)を求めると、
D1 = 0.44(mm)となった。
Moreover, since the average value of the diameter of the noodles measured 15 times with the micrometer was 2.40 mm, the radius D2 of the noodles was 1.20 mm.
From the value M and the radius D2, when determining the radius D1 (mm) of the swollen non-collapse region of the noodles,
D1 = 0.44 (mm).

従って、茹麺を破断試験に供して茹麺の荷重−変位曲線を求め、得られた荷重−変位曲線の二次微分曲線を求め、二次微分曲線の最小点に最も近接する極大点を含む部分を近似した二次関数曲線を求め、その二次関数曲線の極大点を与える点から、茹麺の膨潤非崩壊領域と膨潤崩壊領域との境界を求めることができ、茹麺の膨潤非崩壊領域の半径を得ることができる。   Therefore, the noodles are subjected to a break test to determine the load-displacement curve of the noodles, the second derivative curve of the obtained load-displacement curve is obtained, and the maximum point closest to the minimum point of the second derivative curve is included. A quadratic function curve that approximates the part is obtained, and from the point that gives the maximum point of the quadratic function curve, the boundary between the swollen non-collapse region and swollen disintegration region of crab noodles can be obtained, and the swollen non-collapse of crab noodles The radius of the region can be obtained.

なお、半径D1およびD2から、上記式5を用いて、膨潤非崩壊領域の茹麺の断面積に対する比率(R1(%))を求めると、
R1(%) = D1/D2×100
= 13.35(%)となった。
In addition, from the radii D1 and D2, using the above formula 5, when determining the ratio (R1 (%)) to the cross-sectional area of the swollen non-disintegrating region,
R1 (%) = D1 2 / D2 2 × 100
= 13.35 (%).

(実施例2〜4)
実施例1で用いた直径1.7mmのパスタ乾麺の茹で時間を、下記表4に示す時間に変更したほかは、実施例1と同様の条件で、圧縮破断試験を実施した。
それぞれの測定結果から、実施例1と同様にして半径D1、半径D2、値M、比率R1を求め、実施例1の結果を含めて表すと、下記の表5に示す通りである。
(Examples 2 to 4)
A compression rupture test was carried out under the same conditions as in Example 1 except that the boiled time of 1.7 mm diameter pasta dry noodle used in Example 1 was changed to the time shown in Table 4 below.
From each measurement result, the radius D1, the radius D2, the value M, and the ratio R1 are obtained in the same manner as in Example 1, and the results including Example 1 are expressed as shown in Table 5 below.

Figure 0004504843
Figure 0004504843

Figure 0004504843
Figure 0004504843

この結果、茹麺を破断試験に供して作成した荷重−変位曲線をもとにして、茹麺の膨潤崩壊領域と膨潤非崩壊領域の境界を求めることができ、茹麺の膨潤非崩壊領域の判定方法として使用できることが確認された。
なお、茹で時間が長くなるにつれて、茹麺の膨潤非崩壊領域の麺の断面積に対する比率が縮小していくことも確認された。
As a result, the boundary between the swollen collapse region and the swollen non-collapse region of the crab noodle can be obtained based on the load-displacement curve created by subjecting the crab noodle to the breaking test. It was confirmed that it can be used as a judgment method.
In addition, it was also confirmed that the ratio of the swollen non-disintegrating region of the noodles to the cross-sectional area of the noodles was reduced as the cooking time increased.

(参考例)
上記非特許文献1に示されるMRIを用いる膨潤非崩壊領域の判定方法を用いて、茹麺の膨潤非崩壊領域を判定した。
ここで、MRIを用いた茹麺の膨潤非崩壊領域の判定方法について簡単に説明する。
MRIを用いると、茹麺の中心からの距離とその位置での水分含量を測定することができる。茹麺中心からの距離を横軸に、水分含量を縦軸にプロットすると、ある距離で、単位距離あたりの水分の変化量(水分勾配)が減少する。この水分勾配が減少した点は、膨潤非崩壊領域/膨潤崩壊領域の境界である。図12に、MRIを用いた水分含量測定結果の一例を示す。
(Reference example)
Using the determination method of the swollen non-disintegrating region using MRI shown in Non-Patent Document 1, the swollen non-disintegrating region of crab noodles was determined.
Here, a method for determining the swollen non-disintegrating region of the noodles using MRI will be briefly described.
When using MRI, the distance from the center of the noodles and the water content at that position can be measured. When the distance from the noodle center is plotted on the horizontal axis and the water content is plotted on the vertical axis, the amount of change in moisture per unit distance (moisture gradient) decreases at a certain distance. The point where the moisture gradient is reduced is the boundary between the swollen non-collapse region / swelling disintegration region. FIG. 12 shows an example of the moisture content measurement result using MRI.

水分勾配が減少する点の中心からの距離は、膨潤非崩壊領域の半径である。これをD3(mm)とする。また、マイクロメータで測定した茹麺の直径に1/2を乗じて得られる茹麺の半径をD4(mm)とする。
半径D3およびD4から、膨潤非崩壊領域判定の指標となる、膨潤非崩壊領域の麺の断面積に対する比率(R2(%))を、以下の式8で求めることができる。
R2(%) = πD3/πD4×100
= D3/D4×100 …(式8)
The distance from the center of the point where the moisture gradient decreases is the radius of the swollen undisintegrated region. This is D3 (mm). Moreover, let the radius of the noodles obtained by multiplying the diameter of the noodles measured with a micrometer by 1/2 be D4 (mm).
From the radii D3 and D4, the ratio (R2 (%)) of the swollen non-collapsed region to the cross-sectional area of the noodle, which is an index for determining the swollen non-collapsed region, can be obtained by the following formula 8.
R2 (%) = πD3 2 / πD4 2 × 100
= D3 2 / D4 2 × 100 (Equation 8)

(参考例1〜4)
実施例1〜4と同条件で茹でた同じパスタ茹麺について、以下のとおりMRI解析を行った。
MRI:DRX300WB(Bruker社製)
解析ソフトウェア:ParaVision(Bruker社製)
測定回数:4回
測定結果から求められた半径D3、半径D4、比率R2の平均値を表6に示す。
(Reference Examples 1-4)
About the same pasta noodles boiled on the same conditions as Examples 1-4, the MRI analysis was performed as follows.
MRI: DRX300WB (manufactured by Bruker)
Analysis software: ParaVision (manufactured by Bruker)
Number of measurements: 4 times Table 6 shows the average values of radius D3, radius D4, and ratio R2 obtained from the measurement results.

Figure 0004504843
Figure 0004504843

(実施例と参考例の判定結果の比較)
実施例1〜4の膨潤非崩壊領域の茹麺の断面積に対する比率(R1(%))および参考例1〜4の膨潤非崩壊領域の茹麺の断面積に対する比率(R2(%))を、一次回帰分析したところ、相関係数(R)は、0.9991という非常に高い値を示した。
ここで、実施例1〜4の比率R1と参考例1〜4の比率R2を、図13に示す。図13は、実施例1〜4の比率R1と参考例1〜4の比率R2の相関を示すグラフである。
この結果、破断試験機を用いて荷重−変位曲線から茹麺の膨潤非崩壊領域を判定する方法で得られた結果は、MRIを用いて解析する方法で得られた結果と比較して、同程度の精度であることが確認された。
(Comparison of judgment results of Examples and Reference Examples)
The ratio (R1 (%)) of the swollen non-disintegration region of Examples 1 to 4 to the cross-sectional area of the crab noodle and the ratio of the swollen non-disintegration region of Reference Examples 1 to 4 to the cross-sectional area of the crab noodle (R2 (%)) As a result of linear regression analysis, the correlation coefficient (R 2 ) showed a very high value of 0.9991.
Here, the ratio R1 of Examples 1 to 4 and the ratio R2 of Reference Examples 1 to 4 are shown in FIG. FIG. 13 is a graph showing the correlation between the ratio R1 of Examples 1 to 4 and the ratio R2 of Reference Examples 1 to 4.
As a result, the results obtained by the method of judging the swollen non-disintegration region of the noodles from the load-displacement curve using a break test machine are the same as the results obtained by the method of analyzing using MRI. It was confirmed that the accuracy was of a certain degree.

本発明の茹麺の膨潤非崩壊領域の判定方法を実施する茹麺の膨潤非崩壊領域の判定システムの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the determination system of the swelling non-disintegration area | region of the strawberry noodle which enforces the determination method of the swelling non-disintegration area | region of the strawberry noodles of this invention. 本発明法において得られる荷重−変位曲線の一例のグラフである。It is a graph of an example of the load-displacement curve obtained in this invention method. 図2に示す荷重−変位曲線の一次微分結果のグラフである。It is a graph of the 1st derivative result of the load-displacement curve shown in FIG. 図2に示す荷重−変位曲線の二次微分結果のグラフである。It is a graph of the second derivative result of the load-displacement curve shown in FIG. 図4に示す二次微分曲線の極大点A付近においてピックアップされた3点を直線で結んだグラフである。5 is a graph obtained by connecting three points picked up in the vicinity of the maximum point A of the second-order differential curve shown in FIG. 図5に示す3点を結ぶ直線を二次関数曲線で近似した結果のグラフである。6 is a graph showing a result obtained by approximating a straight line connecting three points shown in FIG. 5 with a quadratic function curve. 本発明法の実施例1で得られた表1の結果をプロットして得られた荷重−変位曲線のグラフである。It is a graph of the load-displacement curve obtained by plotting the result of Table 1 obtained in Example 1 of this invention method. 実施例1で得られた表2の結果をプロットして得られた荷重−変位曲線の一次微分曲線のグラフである。It is a graph of the primary differential curve of the load-displacement curve obtained by plotting the result of Table 2 obtained in Example 1. FIG. 実施例1で得られた表3の結果をプロットして得られた荷重−変位曲線の二次微分曲線のグラフである。It is a graph of the secondary differential curve of the load-displacement curve obtained by plotting the result of Table 3 obtained in Example 1. FIG. 図9に示す二次微分曲線の極大点m付近においてピックアップされた3点を直線で結んだグラフである。10 is a graph obtained by connecting three points picked up in the vicinity of the maximum point m of the secondary differential curve shown in FIG. 9 with straight lines. 図10に示す3点を結ぶ直線を近似した二次関数曲線のグラフである。It is a graph of the quadratic function curve which approximated the straight line which connects 3 points | pieces shown in FIG. 従来のMRIを用いた水分含量測定結果の一例を示すグラフである。It is a graph which shows an example of the moisture content measurement result using the conventional MRI. 実施例の比率R1と参考例の比率R2の相関を示すグラフである。It is a graph which shows the correlation of ratio R1 of an Example, and ratio R2 of a reference example. 茹麺の断面の一例を模式的に示す断面図である。It is sectional drawing which shows an example of the cross section of crab noodles typically. 茹麺の断面の他の例を模式的に示す断面図である。It is sectional drawing which shows the other example of the cross section of crab noodles typically.

符号の説明Explanation of symbols

10 茹麺の膨潤非崩壊領域の判定システム
12,13 茹麺
12a,13a 膨潤崩壊領域
12b,13b 膨潤非崩壊領域
14 破断試験機
16 演算処理系
18 水平な試料台
20 プランジャ20
20a 先端部
22 荷重計
24 駆動系
26 曲線作成手段
28 二次微分手段
30 関数近似手段
32 領域判定手段
a,b 破断方向
DESCRIPTION OF SYMBOLS 10 Judgment system of swollen non-disintegration area | region 12,13 Crab noodles 12a, 13a Swelling disintegration area | region 12b, 13b Swelling non-disintegration area | region 14 Break tester 16 Computation processing system 18 Horizontal sample stand 20 Plunger 20
20a Tip portion 22 Load meter 24 Drive system 26 Curve creation means 28 Secondary differentiation means 30 Function approximation means 32 Area determination means a, b Break direction

Claims (2)

破断試験機で茹麺の圧縮試験を行い、測定された前記破断試験機のプランジャ先端部の茹麺外縁からの侵入距離を変位とし、該変位に対応して測定された前記茹麺から前記プランジャへの荷重をプロットして前記茹麺の荷重−変位曲線を求め、
得られた荷重−変位曲線を二次微分し、
得られた二次微分曲線の最小点に最も近接する極大点を含む部分を二次関数で近似し、
得られた二次関数曲線の極大値を与える点から前記茹麺の膨潤非崩壊領域を求めることを特徴とする茹麺の膨潤非崩壊領域の判定方法。
A compression test of crab noodles was performed with a break tester, and the penetration distance from the crab noodle outer edge of the plunger tip of the break tester measured as a displacement, and the plunger from the crab noodle measured corresponding to the displacement Plot the load to obtain the load-displacement curve of the noodles,
Second-order differentiation of the obtained load-displacement curve,
Approximate the part including the maximum point closest to the minimum point of the obtained second derivative curve with a quadratic function,
The resulting quadratic function curve determination method of swelling-collapse region of茹麺, characterized in that to determine the swelling-collapse region of the茹麺from the viewpoint of giving the maximum value of.
前記茹麺の荷重−変位曲線は、前記圧縮試験を行い、前記破断試験機のプランジャ先端部の茹麺外縁からの侵入距離を変位として測定すると共に、前記茹麺から前記プランジャにかかる荷重を測定し、前記変位とそれに対応する前記荷重をプロットして求められることを特徴とする請求項1に記載の茹麺の膨潤非崩壊領域の判定方法。The load-displacement curve of the crab noodle performs the compression test, measures the penetration distance from the crab noodle outer edge of the plunger tip of the breaker as a displacement, and measures the load applied from the crab noodle to the plunger. The method according to claim 1, wherein the determination is made by plotting the displacement and the load corresponding to the displacement.
JP2005062383A 2005-03-07 2005-03-07 Judgment method of swollen non-disintegration region of crab noodles Expired - Fee Related JP4504843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062383A JP4504843B2 (en) 2005-03-07 2005-03-07 Judgment method of swollen non-disintegration region of crab noodles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062383A JP4504843B2 (en) 2005-03-07 2005-03-07 Judgment method of swollen non-disintegration region of crab noodles

Publications (2)

Publication Number Publication Date
JP2006242892A JP2006242892A (en) 2006-09-14
JP4504843B2 true JP4504843B2 (en) 2010-07-14

Family

ID=37049445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062383A Expired - Fee Related JP4504843B2 (en) 2005-03-07 2005-03-07 Judgment method of swollen non-disintegration region of crab noodles

Country Status (1)

Country Link
JP (1) JP4504843B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004253B2 (en) * 2009-03-23 2012-08-22 長谷川香料株式会社 Method for evaluating food hardness, texture and texture
JP5311680B2 (en) * 2010-04-01 2013-10-09 長谷川香料株式会社 Method for evaluating food hardness, texture and texture
WO2012029888A1 (en) * 2010-08-31 2012-03-08 国立大学法人広島大学 Texture indication measuring method and measuring device
JP5419181B2 (en) * 2011-08-23 2014-02-19 長谷川香料株式会社 Relative evaluation method based on average value analysis of food hardness, texture and texture

Also Published As

Publication number Publication date
JP2006242892A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
Wilcox et al. Advanced reflector characterization with ultrasonic phased arrays in NDE applications
JP4504843B2 (en) Judgment method of swollen non-disintegration region of crab noodles
US8826740B2 (en) Methods and apparatus for porosity measurement and defect detection
US9835596B2 (en) System and method for identification, grouping and sizing of embedded flaws in rotor components using ultrasonic inspection
US10495454B2 (en) Inspection path display
JP5050873B2 (en) Remaining life evaluation method for machine parts
JP4523489B2 (en) Internal defect inspection method and internal defect inspection apparatus
CN104122328A (en) Reference test block for detecting high-voltage strut porcelain insulator ultrasonic phased array
Bonisoli et al. Testing and simulation of the three point bending anisotropic behaviour of hazelnut shells
CN104165795A (en) Method for determining residual flexural capacity of historic building beams
Zhao et al. Quantitative analysis of wood defect based on 3D scanning technique
US9222918B2 (en) Sizing of a defect using phased array system
He et al. An experimental method for evaluating mode II stress intensity factor from near crack tip field
CN104931587B (en) A kind of ultra supercritical unit main inlet throttle-stop valve Nickel Base Alloys Bolt ultrasonic transverse wave sonic velocity measurement method
Bartscher et al. The influence of data filtering on dimensional measurements with CT
KR101492254B1 (en) Ultrasound diagnostic apparatus and method for quality control
Lu et al. Investigations on electromagnetic wave scattering simulation from rough surface: Some instructions for surface roughness measurement based on machine vison
JP6765382B2 (en) Modules and calibration methods for calibration of metallurgical product inspection equipment and computer programs
Leiss-Holzinger et al. Evaluation of structural change and local strain distribution in polymers comparatively imaged by FFSA and OCT techniques
Chioncel et al. Visual method to recognize breathing cracks from frequency change
JP2008292234A (en) Young's modulus calculation, analysis and calibrating method utilizing instrumented indentation test
Panwitt et al. Automated crack length measurement for mixed mode fatigue cracks using digital image correlation
JP7445130B2 (en) Shear deformation characteristics evaluation method
Barber et al. Optimization of element length for imaging small volumetric reflectors with linear ultrasonic arrays
CN108169341A (en) A kind of detection method of Heat Working Rolls roll surface micro-crack depth

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees