JP4496066B2 - Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus - Google Patents

Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus Download PDF

Info

Publication number
JP4496066B2
JP4496066B2 JP2004352552A JP2004352552A JP4496066B2 JP 4496066 B2 JP4496066 B2 JP 4496066B2 JP 2004352552 A JP2004352552 A JP 2004352552A JP 2004352552 A JP2004352552 A JP 2004352552A JP 4496066 B2 JP4496066 B2 JP 4496066B2
Authority
JP
Japan
Prior art keywords
resin
point side
layer
multilayer
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004352552A
Other languages
Japanese (ja)
Other versions
JP2006159537A (en
Inventor
庸介 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2004352552A priority Critical patent/JP4496066B2/en
Publication of JP2006159537A publication Critical patent/JP2006159537A/en
Application granted granted Critical
Publication of JP4496066B2 publication Critical patent/JP4496066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は多層フィルムの製造方法および装置に関する。更に詳しくは、5層以上積層された多層フィルムの各層厚み分布を幅方向に均一にできる、または各層の厚み分布を厚み方向にも幅方向にも積極的に制御することができる多層フィルムの製造方法および装置に関する。   The present invention relates to a method and apparatus for producing a multilayer film. More specifically, the production of a multilayer film in which each layer thickness distribution of a multilayer film laminated with five or more layers can be made uniform in the width direction, or the thickness distribution of each layer can be actively controlled in both the thickness direction and the width direction. It relates to a method and an apparatus.

多層フィルムは、例えば屈折率の高い層と低い層を交互に多数積層すると、これら層間の構造的な光干渉によって特定波長の光を選択的に反射または透過する光学干渉フィルムとなる。このような積層フィルムは選択的に反射または透過する光の波長領域を可視光領域とすることによって、反射型の偏光板や発色フィルム、金属光沢フィルム、反射ミラーフィルムへの用途が広がりつつある。例えば赤色の発色フィルムであれば波長が650nm近辺を選択的に反射するように各層厚みを調整すれば良い。また、プラズマディスプレイ等の映像表示パネル面に使用できる近赤外線反射フィルムでは、周辺機器への誤作動防止のため、ある幅を持った波長領域(820〜980nm)で近赤外線を反射する必要がある。また、日射カット用の窓張り用フィルム等でも近赤外領域をカットすることで日射を和らげられる。   For example, when a plurality of layers having a high refractive index and a plurality of low layers are alternately laminated, the multilayer film becomes an optical interference film that selectively reflects or transmits light of a specific wavelength by structural optical interference between these layers. Such a laminated film has a wide range of uses for a reflective polarizing plate, a coloring film, a metallic gloss film, and a reflective mirror film by making the wavelength region of light selectively reflected or transmitted into the visible light region. For example, in the case of a red colored film, the thickness of each layer may be adjusted so that the wavelength is selectively reflected in the vicinity of 650 nm. In addition, a near-infrared reflective film that can be used on the surface of an image display panel such as a plasma display needs to reflect near-infrared light in a wavelength region (820 to 980 nm) having a certain width in order to prevent malfunction of peripheral devices. . Also, solar radiation can be reduced by cutting the near-infrared region even with a solar-cut window covering film or the like.

共押出フィードブロックを用い多層フィルムを製造するにあたり例えば、米国特許第3557265号公報や米国特許第4627138号公報に製造方法が、また米国特許第3884606号公報に製造装置が開示されている。しかしこれらの装置および方法を用いても、フィルムの幅方向に亘り各層の厚み分布を均一に押し出すことができない。これはダイの中で各層の積層状態に変化が起こるためフィルム幅方向の各ポイントで層厚みの分布に変化が起きていると考えられる。   In producing a multilayer film using a coextrusion feed block, for example, a production method is disclosed in US Pat. No. 3,557,265 and US Pat. No. 4,627,138, and a production apparatus is disclosed in US Pat. No. 3,884,606. However, even if these apparatuses and methods are used, the thickness distribution of each layer cannot be uniformly extruded across the width direction of the film. This is thought to be due to a change in the layer thickness distribution at each point in the film width direction because a change occurs in the lamination state of each layer in the die.

また、米国特許第5389324号公報に、各層の厚みに分布をつける方法及び装置が開示されている。この方法では各層の厚み分布を任意に調整できるが、ダイの中でフィルムの幅方向に意図しない各層厚みの変化があった場合、この変化を調整できない問題がある。   Also, US Pat. No. 5,389,324 discloses a method and apparatus for distributing the thickness of each layer. In this method, the thickness distribution of each layer can be arbitrarily adjusted. However, when there is an unintended change in the thickness of each layer in the width direction of the film in the die, there is a problem that this change cannot be adjusted.

米国特許第3557265号公報U.S. Pat. No. 3,557,265 米国特許第4627138号公報U.S. Pat. No. 4,627,138 米国特許第3884606号公報U.S. Pat. No. 3,884,606 米国特許第5389324号公報US Pat. No. 5,389,324

本発明の課題は、上述の問題を解消し、多層フィルムの厚み分布をフィルムの幅方向に制御でき、フィルムの幅方向に亘り各層の厚み分布を均一な多層フィルムを生産できる多層フィルムの製造方法および装置を提供することにある。   An object of the present invention is to solve the above-described problems, to control the thickness distribution of the multilayer film in the width direction of the film, and to produce a multilayer film having a uniform thickness distribution of each layer in the width direction of the film. And providing an apparatus.

本発明の課題は、本発明によれば、樹脂Aと樹脂Bとを別個に押出機で溶融し、多層フィードブロック中の合流ブロックへ前記樹脂Aと前記樹脂Bとをそれぞれ異なる方向から導き、前記合流ブロックに設けられた隔壁によって区分されて形成された扁平な各流路へ前記樹脂Aと前記樹脂Bとを交互に5層以上流入させ、前記合流ブロックを出たところで前記樹脂Aと前記樹脂Bとを合流させ、前記樹脂Aと前記樹脂Bとが交互に積層された樹脂の流れを形成し、多層フィードブロックに続くダイへ合流させた樹脂を供給して前記ダイよりシート状に押出し、樹脂Aと樹脂Bが厚み方向に多層となる向きで交互に5層以上積層された多層シートとする多層シートの製造方法において、
扁平な前記流路から前記ダイへの導入側(FE点側)と展開側(BE点側)とへ流れる樹脂の流れによって形成される前記多層シートの各層の幅方向の厚みに関して、前記厚みが小さくなる一方側の前記FE点側または前記BE点側へ流れる樹脂の流量が厚みの大きくなる他方側の前記BE点側または前記FE点側を流れる樹脂の流量と比較してより大きくなるように、一方側の前記FE点側または前記BE点側を樹脂が流れる前記流路の長さを、他方側の前記BE点側または前記FE点側を樹脂が流れる前記流路の長さと比較してより短く設定することにより、前記多層シートの各層の厚みを幅方向で均一とすることを特徴とする多層シートの製造方法により達成できる。
According to the present invention, according to the present invention, the resin A and the resin B are separately melted by an extruder, and the resin A and the resin B are led from different directions to the merging block in the multilayer feed block, Five or more layers of the resin A and the resin B are alternately flowed into each flat flow path formed by being partitioned by a partition provided in the merge block, and when the merge block is exited, the resin A and the resin B Resin B is merged to form a resin flow in which the resin A and the resin B are alternately laminated, and the merged resin is supplied to the die following the multilayer feed block and extruded from the die into a sheet shape. In the method for producing a multilayer sheet, a multilayer sheet in which the resin A and the resin B are alternately laminated in the thickness direction in the direction of the multilayer,
Regarding the thickness in the width direction of each layer of the multilayer sheet formed by the flow of resin flowing from the flat flow path to the introduction side (FE point side) and the development side (BE point side) into the die, the thickness is The flow rate of the resin flowing toward the FE point side or the BE point side on one side which becomes smaller is larger than the flow rate of the resin flowing on the BE point side or the FE point side where the thickness is increased. The length of the flow path through which the resin flows on the one side of the FE point side or the BE point side is compared with the length of the flow path through which the resin flows on the other side of the BE point side or the FE point side. By setting it to be shorter, the thickness of each layer of the multilayer sheet can be made uniform in the width direction .

本発明において、各層の厚み分布をより均一にするために、前記流路の長さが前記FE点側から前記BE点側へ線形に直線的に変化して設定されていることが好ましい。 In the present invention, in order to more uniform the thickness distribution of each layer, it is not preferable that the length of the flow path is linearly changed to set linearly from the FE point side to the BE point side .

本発明の製造方法で得られた多層シートはキャスティングドラムで冷却固化して未延伸フィルムとし、この未延伸フィルムを縦方向及び横方向の少なくとも一方向に延伸して多層フィルムとすることができる。この多層フィルムは、A層の厚みおよびB層の厚みがフィルム幅方向に実質的に均一であり、多層フィルムの各層の厚みは好ましくは0.01〜0.5μmである。   The multilayer sheet obtained by the production method of the present invention can be cooled and solidified with a casting drum to form an unstretched film, and the unstretched film can be stretched in at least one direction of the machine direction and the transverse direction to form a multilayer film. In this multilayer film, the thickness of the A layer and the thickness of the B layer are substantially uniform in the film width direction, and the thickness of each layer of the multilayer film is preferably 0.01 to 0.5 μm.

次に、前記課題を解決するための本発明に係る多層シートの製造装置として、多層フィードブロック中に設けられ、かつ押出機により別個に溶融された樹脂Aと樹脂Bが交互に5層以上それぞれ流入する流路が隔壁によって区分されて形成された合流ブロックと、前記合流ブロックを出たところで前記樹脂Aと前記樹脂Bを合流させてシート状に押出して前記樹脂Aと前記樹脂Bが厚み方向に多層となる向きで交互に5層以上積層された多層シートとするダイとを少なくとも備えた多層シートの製造装置において、
扁平な前記流路から前記ダイへの導入側(FE点側)と展開側(BE点側)とへ流れる樹脂の流れによって形成される前記多層シートの各層の幅方向の厚みに関して、
前記厚みが小さくなる一方側の前記FE点側または前記BE点側へ流れる樹脂の流量が、厚みの大きくなる他方側の前記BE点側または前記FE点側を流れる樹脂の流量と比較してより大きくなるように、一方側の前記FE点側または前記BE点側を樹脂が流れる前記流路の長さを、他方側の前記BE点側または前記FE点側を流れる流路の長さと比較してより短く設定されている多層シートの製造装置が提供される。
このとき、各層の厚み分布をより均一にするために、本発明の製造装置は、前記流路の長さが前記FE点側から前記BE点側へ線形に直線的に変化していることが好ましい。
Next, as a multi-layer sheet manufacturing apparatus according to the present invention for solving the above-described problems, resin A and resin B provided in a multi-layer feed block and separately melted by an extruder are alternately provided in five or more layers. The flow path into which the flow path is divided is formed by a partition wall, and the resin A and the resin B are merged when exiting the merge block and extruded into a sheet shape so that the resin A and the resin B are in the thickness direction. In a multilayer sheet manufacturing apparatus comprising at least a die that is a multilayer sheet in which five or more layers are alternately laminated in a direction to be multilayered,
Regarding the thickness in the width direction of each layer of the multilayer sheet formed by the flow of resin flowing from the flat flow path to the die introduction side (FE point side) and the development side (BE point side),
The flow rate of the resin flowing to the FE point side or the BE point side on the one side where the thickness is reduced is larger than the flow rate of the resin flowing on the BE point side or the FE point side on the other side where the thickness is increased. Compare the length of the flow path through which the resin flows on the one side of the FE point side or the BE point side with the length of the flow path on the other side of the BE point side or the FE point side so as to increase. Thus, a multilayer sheet manufacturing apparatus that is set shorter is provided.
At this time, in order to more uniform the thickness distribution of each layer, the manufacturing apparatus of the present invention, that the length of the channel is changing linearly linearly from the FE point side to the BE point side preferable.

本発明によれば、合流ブロックの個々の流路の中で流路長さを調整することで、各層の厚みを幅方向に均一化できる。   According to the present invention, the thickness of each layer can be made uniform in the width direction by adjusting the channel length among the individual channels of the merge block.

以下、本発明を詳細に説明する。説明の便宜上図面を引用する。
図1は、本発明の一つの実施形態を例示した多層フィードブロックの合流ブロックの斜視図である。図2は図1の扁平な流路を例示しており、図2(a)は樹脂Aの流路、図2(b)は樹脂Bの流路を示している。図3、図4(a)、図4(b)は従来の多層フィードブロックの説明の図である。図5は、本発明の一つの実施形態を例示した正面図であり多層フィルムの押出装置のうち押出機からキャスティングドラムまでを示している。
Hereinafter, the present invention will be described in detail. For convenience of explanation, the drawings are cited.
FIG. 1 is a perspective view of a confluence block of a multilayer feed block illustrating one embodiment of the present invention. 2 illustrates the flat flow path of FIG. 1, FIG. 2 (a) shows the flow path of resin A, and FIG. 2 (b) shows the flow path of resin B. 3, 4 (a), and 4 (b) are explanatory diagrams of a conventional multilayer feed block. FIG. 5 is a front view illustrating one embodiment of the present invention, and shows an extruder to a casting drum in a multilayer film extrusion apparatus.

多層フィルムの押出装置は、樹脂Bの流れ方向の上流側から順に押出機1、ギアポンプ2、フィルター3、ポリマーパイプ4a、同様に樹脂Aの流れ方向の上流側から順に押出機5、ギアポンプ6、フィルター7、ポリマーパイプ4bとなっており、多層フィードブロック9の内部で2つの溶融樹脂を合流させ単層ダイ10からシート状に溶融樹脂11を多層シートとして押し出し、キャスティングドラム8で冷却する構成となっている。   The multilayer film extrusion apparatus includes an extruder 1, a gear pump 2, a filter 3, a polymer pipe 4a in order from the upstream side in the flow direction of the resin B. Similarly, an extruder 5, a gear pump 6 in order from the upstream side in the flow direction of the resin A, The filter 7 and the polymer pipe 4b are configured such that two molten resins are merged inside the multilayer feed block 9 and the molten resin 11 is extruded as a multilayer sheet from the single-layer die 10 as a multilayer sheet and cooled by the casting drum 8. It has become.

本発明において、A層とB層が交互に重ねられた多層フィルムは次の様に積層できる。すなわち、図5のようにポリマーパイプ4bでフィードブロック9に導かれたA層用の溶融樹脂Aは図示省略したマニホールド内で一旦幅方向に広げられ図1のように一列に並んだ扁平な流路27に対し、22の方向から流入し23の方向へ押出される。一方、B層用の溶融樹脂Bは図5のようにポリマーパイプ4aでフィードブロック9に導かれ図示省略したマニホールド内で一旦幅方向に広げられ、図1のように一列に並んだ扁平かつ90度にターンした流路25に対し、21の方向から流入し23の方向へ押出される。合流ブロック20の内部ではすでに樹脂Aと樹脂Bとが隔壁を介して交互に配置され、合流ブロックの出口で各溶融樹脂が流動状態で接触し交互に積層されダイ10へと導かれる。   In the present invention, a multilayer film in which A layers and B layers are alternately stacked can be laminated as follows. That is, the molten resin A for the A layer guided to the feed block 9 by the polymer pipe 4b as shown in FIG. 5 is once spread in the width direction in the manifold not shown in the figure, and is a flat flow arranged in a line as shown in FIG. It flows in from the direction 22 to the path 27 and is extruded in the direction 23. On the other hand, the molten resin B for the B layer is guided to the feed block 9 by the polymer pipe 4a as shown in FIG. 5 and once spread in the width direction in the manifold (not shown), and flat and 90 aligned in a row as shown in FIG. With respect to the flow path 25 that is turned every time, it flows in from the direction 21 and is pushed out in the direction 23. Inside the merge block 20, the resin A and the resin B are already alternately arranged via the partition walls, and the molten resins are contacted in a fluid state at the exit of the merge block and are alternately stacked and led to the die 10.

本発明においては次のように各層の厚みをフィルム幅方向に制御することができる。図9は従来のフィードブロック(図3)を使用したときのフィルム断面の各層厚み分布を示しており、FE側では表層が薄くBE側では比較的各層厚みが均一となる場合を例示している。これは図5のダイ10に示すように、ダイのFE側とBE側で樹脂の流れる経路が異なるためと考えられる。図9の場合、フィルムの光学的な特性がフィルム幅方向に変化してしまうため、図8や図10の様に各層の厚み分布が幅方向に均一であることが好ましく、図1に示すような合流ブロックで解決することができる。すなわち、図1の合流ブロック20においてA層側の樹脂の流路のうち表層側に当たる流路26は図2(a)の様にFE点の流量がBE点の流量より大きくなる様にFE点側の流路を短くする(LMIN)。同様に、B層側の樹脂の流路のうち表層側に当たる流路24は図2(b)の様にFE点の流量がBE点の流量より大きくなる様にFE点側の流路を短くする(LMIN)。これにより、各層厚みを幅方向に均一にできる。 In the present invention, the thickness of each layer can be controlled in the film width direction as follows. FIG. 9 shows the thickness distribution of each layer of the film cross section when the conventional feed block (FIG. 3) is used, and exemplifies the case where the surface layer is thin on the FE point side and the layer thickness is relatively uniform on the BE point side. ing. This is presumably because the resin flow path is different between the FE point side and the BE point side of the die as shown in the die 10 of FIG. In the case of FIG. 9, since the optical characteristics of the film change in the film width direction, the thickness distribution of each layer is preferably uniform in the width direction as shown in FIGS. 8 and 10, as shown in FIG. Can be solved with a simple confluence block. That, FE point as the flow rate of the FE point is greater than the flow rate of the BE point as the flow path 26 falls surface side of the flow path of the resin of the A layer side in the combination block 20 of FIG. 1 FIGS. 2 (a) Shorten the channel on the side ( LMIN ). Similarly, the flow path 24 corresponding to the surface layer among the flow paths of the resin on the B layer side shortens the flow path on the FE point side so that the flow rate at the FE point is larger than the flow rate at the BE point as shown in FIG. ( LMIN ). Thereby, each layer thickness can be made uniform in the width direction.

本発明において、合流ブロック20に加工する扁平な流路24、25、26、27の断面形状のうち幅Wは、狭すぎると幅寸法に対して各層流量が敏感に反応するため高精度の加工を要求され、逆に広すぎると流路内で圧が立たないため僅かな外乱で各層流量がばらつきやすいので、0.2〜3mmが好ましく、0.5〜1.5mmがより好ましい。A層側の流路26、27の長さL、LMIN、LMAXは、ワイヤーによる放電加工の関係から長すぎると加工しにくいため、10〜120mmが好ましく、30〜90mmがより好ましい。B層側の流路24、25の長さL、LMIN、LMAXは放電電極をスタンピングして掘り込むためこれも深いと加工がしにくいため5〜100mmが好ましく、10〜60mmがより好ましい。各層厚みをフィルム幅方向に制御するため、LMINとMAXの長さを調整方法は、例えば図1の掘り込み部28の様に角錐形に掘り込むことで長さを調整する方法を例示できる。図2(a)および図2(b)ではLMINからLMAXに至る流路の長さが線形に直線的に変化する場合を例示しているが、この他に線形の組み合わせ、曲線やステップ状、曲線と線形の組み合わせで長さが変化していても良い。また図6の掘り込み部36の様に、掘り込みの深さがブロックの幅方向に変化するように掘り込み、となりあう個々の扁平な流路の体積を徐々に変化させることによって各層の幅方向の厚み分布を独立にかつ精密に修正し、図8や図10に示すフィルムを製造できる。また各層厚みをフィルム幅方向に制御する方法としては、例えば図2(a)において加工に時間を要するが流路幅Wを高さHの方向に徐々に変化させることも可能であり、流路長さを変える方法と組み合わせても良い。 In the present invention, if the width W is too narrow among the cross-sectional shapes of the flat flow paths 24, 25, 26, and 27 to be processed into the merge block 20, each layer flow rate reacts sensitively to the width dimension, so that high-precision processing is performed. On the contrary, if the pressure is too wide, the pressure in the flow path does not rise, and the flow rate of each layer tends to vary with a slight disturbance, so 0.2 to 3 mm is preferable, and 0.5 to 1.5 mm is more preferable. The lengths L, LMIN, and LMAX of the flow paths 26 and 27 on the A layer side are preferably 10 to 120 mm, and more preferably 30 to 90 mm, because the length L, LMIN, and LMAX are difficult to process if they are too long due to the relationship of electric discharge machining with wires. The lengths L, LMIN, and LMAX of the flow paths 24 and 25 on the B layer side are preferably 5 to 100 mm, and more preferably 10 to 60 mm, because the discharge electrode is stamped and dug, and if this is too deep, it is difficult to process. In order to control the thickness of each layer in the film width direction, the method of adjusting the lengths of LMIN and MAX can be exemplified by a method of adjusting the length by digging into a pyramid shape like the digging portion 28 in FIG. 2 (a) and 2 (b) exemplify the case where the length of the flow path from LMIN to LMAX changes linearly and linearly, other than this, linear combinations, curves and step shapes, The length may be changed by a combination of a curve and a linear shape. Further, like the digging portion 36 in FIG. 6, the width of each layer is obtained by digging so that the digging depth changes in the width direction of the block, and gradually changing the volume of the respective flat flow paths. The thickness distribution in the direction can be corrected independently and precisely, and the films shown in FIGS. 8 and 10 can be manufactured. Further, as a method for controlling the thickness of each layer in the film width direction, for example, in FIG. 2A, processing takes time, but the flow path width W can be gradually changed in the direction of height H. You may combine with the method of changing length.

以上で判るとおり、フィードブロック9を構成する合流ブロック20、31は高精度で複雑な加工が必要であり材質としては硬めのSUS630やSUS420(J2)が好適である。   As can be seen from the above, the merging blocks 20 and 31 constituting the feed block 9 need to be processed with high precision and complexity, and a hard material such as SUS630 or SUS420 (J2) is preferable.

本発明におけるA層とB層の積層状態は、A層とB層を交互に総数で5層以上、好ましくは31層以上積層したものである。積層数が5層未満だと多重干渉による選択反射が小さく十分な反射率が得られない。尚、積層数の上限はフィードブロックの製作上の観点から301層であることが好ましい。多層積層フィルムの層数に応じて個々に専用フィードブロックを用意しても良いが、必要層数に応じて扁平な流路の樹脂入り口を塞ぐインナーディッケルを挿入し層数をコントロールする方がコストの面で有利である。
また、A層およびB層はそれぞれ1層の厚みは0.01〜0.5μmであることが層間の光干渉によって選択的に光を反射するのに必要である。
The layered state of the A layer and the B layer in the present invention is such that the A layer and the B layer are alternately stacked in a total number of 5 layers or more, preferably 31 layers or more. If the number of stacked layers is less than 5, the selective reflection due to multiple interference is small and a sufficient reflectance cannot be obtained. The upper limit of the number of stacked layers is preferably 301 layers from the viewpoint of manufacturing the feed block. Depending on the number of layers of the multilayer film, you may prepare a dedicated feed block, but it is better to control the number of layers by inserting an inner deckle that closes the resin inlet of the flat flow path according to the required number of layers. It is advantageous in terms of cost.
In addition, each of the A layer and the B layer has a thickness of 0.01 to 0.5 μm, which is necessary for selectively reflecting light by optical interference between layers.

本発明における多層積層フィルムは、例えば、ポリエチレンテレフタレートを主とするA層を形成する樹脂と、B層を形成するイソフタル酸を共重合成分とするポリエチレンテレフタレートを図に例示したフィードブロックで2層を交互に積層し、積層状態を維持したままこれに続くダイに展開される。ダイより押出されたシートはキャスティングドラムで冷却固化され未延伸フィルムとなる。未延伸フィルムは所定の温度で、縦かつまたは横方向に延伸され所定の温度で熱処理され、必要によっては熱弛緩処理され、巻き取られる。   The multilayer laminated film in the present invention is composed of, for example, a feed block illustrated in the figure with a resin block forming A layer mainly composed of polyethylene terephthalate and a polyethylene terephthalate copolymerized with isophthalic acid forming B layer. The layers are alternately stacked and developed on subsequent dies while maintaining the stacked state. The sheet extruded from the die is cooled and solidified by a casting drum to form an unstretched film. The unstretched film is stretched longitudinally and / or laterally at a predetermined temperature, heat-treated at the predetermined temperature, heat-relaxed if necessary, and wound.

ところで、本発明の多層積層フィルムは少なくとも1方向に延伸され、好ましくは2軸延伸されているが、例示したようにA層側に高屈折率のポリマーを選定する場合は、延伸温度はA層の樹脂のガラス転移点(Tg)から(Tg+50)℃の範囲で行うことが好ましい。延伸倍率としては1軸延伸の場合、2〜10倍で延伸方向は縦であっても横でも構わない。2軸延伸の場合は面積倍率として5〜25倍である。延伸倍率が大きいほど、A層およびB層の個々の層における面方向のばらつきが、延伸による薄膜化により絶対的に小さくなり、多層積層フィルムの光干渉が面方向に均一になるので好ましい。延伸方法としては、逐次2軸延伸、同時2軸延伸、チューブラー延伸、インフレーション延伸等の公知の延伸方法が可能であるが、好ましくは逐次2軸延伸が生産性、品質の面で有利である。また、延伸されたフィルムは熱的な安定化のために、熱処理により安定化されるのが好ましい。
また本発明の多層積層フィルムの製造過程、または製造後にフィルムの表面に機能性を持たせる等の目的で、塗液を塗布し乾燥する工程を設けても良い。
By the way, the multilayer laminated film of the present invention is stretched in at least one direction, preferably biaxially stretched. However, when a polymer having a high refractive index is selected on the A layer side as illustrated, the stretching temperature is the A layer. It is preferable to carry out in the range of the glass transition point (Tg) of the resin of (Tg + 50) degreeC. In the case of uniaxial stretching, the stretching ratio may be 2 to 10 times, and the stretching direction may be vertical or horizontal. In the case of biaxial stretching, the area magnification is 5 to 25 times. The larger the draw ratio, the better the variation in the plane direction in the individual layers of the A layer and the B layer because the film thickness is reduced by stretching and the optical interference of the multilayer laminated film becomes uniform in the plane direction. As the stretching method, known stretching methods such as sequential biaxial stretching, simultaneous biaxial stretching, tubular stretching, and inflation stretching are possible, but sequential biaxial stretching is preferable in terms of productivity and quality. . In addition, the stretched film is preferably stabilized by heat treatment for thermal stabilization.
Moreover, you may provide the process of apply | coating a coating liquid and drying for the objective of giving the surface of a film the manufacturing process of the multilayer laminated film of this invention, or after manufacture.

本発明においてA層またはB層を構成する樹脂はさらに以下を例示することができる。延伸可能なポリマーを主成分とする熱可塑性樹脂であり、例えばポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリブチレンテレフタレートのような芳香族ポリエステル、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリスチレンのようなポリビニル、ナイロン6(ポリカプロラクタム)、ナイロン66(ポリ(ヘキサメチレンジアミン−co−アジピン酸))のようなポリアミド、ビスフェノールAポリカーボネートのような芳香族ポリカーボネート、ポリスルフォン等の単独重合体或いはこれらの共重合体を主成分とする樹脂を挙げることができる。また例示した樹脂の混合体であってもよい。共重合体を使用する場合、その共重合成分はジカルボン酸成分であってもグリコール成分であっても良く、ジカルボン酸成分としては例えばイソフタル酸、フタル酸、ナフタレンジカルボン酸等の如き芳香族ジカルンボン酸;アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の如き脂肪族ジカルボン酸;シクロヘキサンジカルボン酸の如き脂環族ジカルボン酸等を挙げることができ、グリコール成分としては例えばブタンジオール、ヘキサンジオール等の如き脂肪族ジオール;シクロヘキサンジメタノールの如き脂環族ジオール等を挙げることができる。   In the present invention, the resin constituting the A layer or the B layer can be further exemplified as follows. A thermoplastic resin mainly composed of a stretchable polymer, for example, an aromatic polyester such as polyethylene terephthalate, polyethylene-2,6-naphthalate and polybutylene terephthalate, a polyolefin such as polyethylene and polypropylene, and a polyvinyl such as polystyrene. , Polyamides such as nylon 6 (polycaprolactam) and nylon 66 (poly (hexamethylenediamine-co-adipic acid)), aromatic polycarbonates such as bisphenol A polycarbonate, homopolymers such as polysulfone, A resin mainly composed of coalescence can be mentioned. Moreover, the mixture of resin illustrated may be sufficient. When a copolymer is used, the copolymer component may be a dicarboxylic acid component or a glycol component. Examples of the dicarboxylic acid component include aromatic dicarbomonic acids such as isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid. An aliphatic dicarboxylic acid such as adipic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, and the like; an alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid, and the like. Examples of the glycol component include butanediol and hexanediol. Examples thereof include aliphatic diols such as cycloaliphatic diols such as cyclohexanedimethanol.

本発明において、A層またはB層を構成する樹脂の少なくとも一方は、フィルムの巻き取り性を向上させるため、平均粒径が好ましくは0.01〜2μm、より好ましくは0.05〜1μm、最も好ましくは0.1〜0.3μmの範囲にある不活性粒子を好ましくは0.001〜0.5重量%、より好ましくは0.005〜0.2重量%の割合で含有する。不活性粒子の平均粒径が0.01μm未満または含有量が0.001重量%未満ではフィルムの巻き取り性向上が不十分になりやすく、他方、不活性粒子の平均粒径が2μmを超えるまたは含有量が0.5重量%を越えると粒子による光学特性の悪化が顕著になりやすく、フィルム全体の光線透過率が減少する場合がある。このような不活性粒子としては例えばシリカ、アルミナ、炭酸カルシウム、燐酸カルシウム、カオリン、タルクのような無機不活性粒子、シリコーン、架橋ポリスチレン、スチレン−ジビニルベンゼン共重合体のような有機不活性粒子をあげることができる。   In the present invention, at least one of the resins constituting the A layer or the B layer preferably has an average particle diameter of 0.01 to 2 μm, more preferably 0.05 to 1 μm, in order to improve the winding property of the film. Preferably, the inert particles in the range of 0.1 to 0.3 μm are contained in a proportion of preferably 0.001 to 0.5% by weight, more preferably 0.005 to 0.2% by weight. If the average particle size of the inert particles is less than 0.01 μm or the content is less than 0.001% by weight, the improvement in the winding property of the film tends to be insufficient, while the average particle size of the inert particles exceeds 2 μm or When the content exceeds 0.5% by weight, the optical properties are easily deteriorated by the particles, and the light transmittance of the entire film may be reduced. Examples of such inert particles include inorganic inert particles such as silica, alumina, calcium carbonate, calcium phosphate, kaolin, and talc, and organic inert particles such as silicone, crosslinked polystyrene, and styrene-divinylbenzene copolymer. I can give you.

本発明では、樹脂Aと樹脂Bの2種類の組み合わせを例示しているが、各層厚みの分布をフィルム幅方向に制御する観点では、さらに樹脂Cや樹脂Dを組み合わせても問題なく適用できる。   In the present invention, two types of combinations of the resin A and the resin B are illustrated, but from the viewpoint of controlling the distribution of the thickness of each layer in the film width direction, the resin C and the resin D can be further applied without any problem.

以下、実施例によって本発明を更に説明する。尚、例中の性能は下記の方法で測定した。
(1)各層の厚み
多層フィルムサンプルを三角形に切り出し、包理カプセルに固定後、エポキシ樹脂にて包理する。そして、包理されたサンプルをミクロト−ム(ULTRACUT−S)で縦方向に平行な断面を50nm厚みの薄膜切片にしたあと、透過型電子顕微鏡を用いて、加速電子100kvにて観察・投影し、写真から各層の厚みを測定した。
(2)幅方向の厚み分布の評価
測定点は2軸延伸フィルムの両エッジから約50mmの位置をそれぞれ、FE、BEとした。厚み方向には、最表層から5層目を表層、中央を芯層とし、FEとBEの厚みの差を評価した。
○:厚みの差(FE−BE)の絶対値が10nm以下である
×:厚みの差(FE−BE)の絶対値が10nmを超えている
Hereinafter, the present invention will be further described by way of examples. The performance in the examples was measured by the following method.
(1) Thickness of each layer A multilayer film sample is cut into a triangle, fixed to an embedding capsule, and then embedded with an epoxy resin. Then, the embedded sample was made into a thin film slice having a thickness of 50 nm in a longitudinal direction with a microtome (ULTRACUT-S), and then observed and projected at 100 kv using a transmission electron microscope. The thickness of each layer was measured from the photograph.
(2) Evaluation of thickness distribution in the width direction The measurement points were FE and BE, respectively, at positions of about 50 mm from both edges of the biaxially stretched film. In the thickness direction, the fifth layer from the outermost layer was the surface layer and the center was the core layer, and the difference in thickness between FE and BE was evaluated.
○: The absolute value of the difference in thickness (FE-BE) is 10 nm or less. X: The absolute value of the difference in thickness (FE-BE) exceeds 10 nm.

[実施例1]
まず図1と図2(a)、図2(b)、図5に示す装置を用い、合流ブロック20のうちA層の流路を101個、B層の流路を100個とし201層の多層フィルムを製膜した。A層の流路26は15個ずつ合計30個とし、幅W=2mm、長さLMIN=55mm、長さLMAX=63mm、A層の流路27は個数が71個、幅W=2mm、長さLが65mmとした。B層の流路24は、15個ずつ合計30個とし、幅W=1.5mm、長さLMIN=18mm、長さLMAX=28mm、B層の流路25は個数が70個、幅W=1.5mm、長さLが30mmとした。
[Example 1]
First, using the apparatus shown in FIG. 1, FIG. 2 (a), FIG. 2 (b), and FIG. 5, in the confluence block 20, there are 101 layer A channels and 100 layer B channels, and 201 layers. A multilayer film was formed. The number of the A-layer channels 26 is 15 in total, and the width W = 2 mm, the length LMIN = 55 mm, the length LMAX = 63 mm, the number of the A-layer channels 27 is 71, the width W = 2 mm, and the length The length L was 65 mm. The number of the B-layer channels 24 is 15 in total, and the width W = 1.5 mm, the length LMIN = 18 mm, the length LMAX = 28 mm, the number of the B-layer channels 25 is 70, and the width W = The length L was 1.5 mm and the length L was 30 mm.

また、樹脂は固有粘度(オルトクロロフェノール、35℃)0.62dl/gのポリエチレン−2,6−ナフタレート(PEN)と固有粘度(オルトクロロフェノール、35℃)0.63dl/gのポリエチレンテレフタレート(PET)を準備した。そして、PENに真球状シリカ粒子(平均粒径:0.12μm、長径と短径の比:1.02、粒径の平均偏差:0.1)を0.11wt%添加したものをA層用の樹脂とし、不活性粒子を含まないPENとPETを30:70の重量比で混合したものをB層用の樹脂として調整した。   The resin is composed of polyethylene-2,6-naphthalate (PEN) having an intrinsic viscosity (orthochlorophenol, 35 ° C.) of 0.62 dl / g and polyethylene terephthalate having an intrinsic viscosity (orthochlorophenol, 35 ° C.) of 0.63 dl / g ( PET) was prepared. And for the A layer, 0.15 wt% of spherical silica particles (average particle size: 0.12 μm, ratio of major axis to minor axis: 1.02, average deviation of particle size: 0.1) added to PEN A mixture of PEN and PET containing no inert particles at a weight ratio of 30:70 was prepared as a resin for the B layer.

A層用の樹脂を170℃で3時間、B層用の混合樹脂を160℃で3時間乾燥後、A層用押出機5とB層用押出機1に夫々供給して溶融し、溶融した樹脂Aと樹脂Bを多層フィードブロック9内に導き、多層フィードブロック内の合流ブロック20でA層の樹脂を101層、B層の樹脂を100層に分岐させた後、合流部ブロックの出口でA層とB層を交互に積層させ、その積層状態を維持したままダイ10ヘと導き、キャスティングドラム上にキャストしてA層とB層が交互に積層された201層の積層未延伸フィルムを作成した。   The resin for the A layer was dried at 170 ° C. for 3 hours, and the mixed resin for the B layer was dried at 160 ° C. for 3 hours, and then supplied to the A layer extruder 5 and the B layer extruder 1 to melt. The resin A and the resin B are guided into the multilayer feed block 9, and after the branching block 20 in the multilayer feed block branches the A layer resin into 101 layers and the B layer resin into 100 layers, at the exit of the junction block A 201 layer laminated unstretched film in which the A layer and the B layer are alternately laminated, led to the die 10 while maintaining the laminated state, cast on a casting drum, and the A layer and the B layer are alternately laminated. Created.

この未延伸積層シートを縦方向に3.5倍、次いで横方向に4.0倍延伸し、さらに熱固定処理を行った後、フィルムの両エッジをトリミングし、幅が約1000mm、厚み約18μmの2軸延伸フィルムを作成した。得られた多層フィルムの各層厚みを表1に示す。尚、得られたフィルムは波長620nmを選択的に反射でき、目視で赤色に見えるものであった。   This unstretched laminated sheet was stretched 3.5 times in the longitudinal direction and then 4.0 times in the transverse direction, and after further heat setting, both edges of the film were trimmed, the width was about 1000 mm, and the thickness was about 18 μm. A biaxially stretched film was prepared. Table 1 shows the thickness of each layer of the obtained multilayer film. In addition, the obtained film was able to selectively reflect a wavelength of 620 nm and looked red visually.

[実施例2]
まず図6と図7(a)〜図7(d)、図5に示す装置を用い、合流ブロック31のうちA層の流路を101個、B層の流路を100個とし201層の多層フィルムを製膜した。A層の流路は両端の流路34の2個が、幅W=2mm、長さLMIN=56mm、長さLMAX=60mm、中央の流路35の1個が、幅W=2mm、長さLMIN=60mm、長さLMAX=64mm、B層の流路は両端の流路32の2個が、幅W=1.5mm、長さLMIN=24mm、長さLMAX=28mm、中央の流路33の2個が、幅W=1.5mm、長さLMIN=26mm、長さLMAX=28mmとし、A層とB層の流路は両端から中央へは徐々に長さが変化するよう掘り込み分36を掘り込んだ。
[Example 2]
First, using the apparatus shown in FIG. 6 and FIGS. 7 (a) to 7 (d) and FIG. 5, in the merging block 31, there are 101 layer A channels and 100 layer B channels and 201 layers. A multilayer film was formed. As for the flow path of the A layer, two of the flow paths 34 at both ends have a width W = 2 mm, a length LMIN = 56 mm, a length LMAX = 60 mm, and one of the central flow paths 35 has a width W = 2 mm and a length. LMIN = 60 mm, length LMAX = 64 mm, and B layer has two channels 32 at both ends, width W = 1.5 mm, length LMIN = 24 mm, length LMAX = 28 mm, center channel 33 The width W = 1.5mm, the length LMIN = 26mm, the length LMAX = 28mm, and the flow path of the A layer and the B layer is dug so that the length gradually changes from both ends to the center. I dug 36.

また、真球状シリカ粒子を添加したPETをA層用、不活性粒子を含まないイソフタル酸を12mol%共重合したPET共重合体をB層用樹脂とした以外は実施例1と同様に多層フィルムを得た。得られた多層フィルムの各層厚みを表1に示す。   A multilayer film as in Example 1 except that PET added with true spherical silica particles was used for the A layer, and a PET copolymer obtained by copolymerizing 12 mol% of isophthalic acid not containing inert particles was used as the B layer resin. Got. Table 1 shows the thickness of each layer of the obtained multilayer film.

[実施例3]
実施例2で用いたフィードブロックでA層の流路は両端の流路34の2個が、幅W=2mm、長さLMIN=46mm、長さLMAX=50mm、中央の流路35の1個が、幅W=2mm、長さLMIN=60mm、長さLMAX=64mm、B層の流路は両端の流路32の2個が、幅W=1.5mm、長さLMIN=14mm、長さLMAX=18mm、中央の流路33の2個が、幅W=1.5mm、長さLMIN=26mm、長さLMAX=28mmとし、A層とB層の流路のうち両端から中央へは徐々に長さが変化するよう掘り込み分36を掘り込んだ。これら以外は実施例2と同様に多層フィルムを得た。得られた多層フィルムの各層厚みを表1に示す。
[Example 3]
In the feed block used in Example 2, two of the flow paths 34 at both ends are the width W = 2 mm, the length LMIN = 46 mm, the length LMAX = 50 mm, and one of the central flow paths 35. However, the width W = 2 mm, the length LMIN = 60 mm, the length LMAX = 64 mm, and the B layer has two channels 32 at both ends, the width W = 1.5 mm, the length LMIN = 14 mm, and the length. LMAX = 18 mm, two of the central flow path 33 are width W = 1.5 mm, length LMIN = 26 mm, length LMAX = 28 mm, and gradually from both ends of the flow paths of the A layer and the B layer to the center. The dug 36 was dug so that the length would change. A multilayer film was obtained in the same manner as Example 2 except for these. Table 1 shows the thickness of each layer of the obtained multilayer film.

[比較例1、2]
図3、図4(a)、図4(b)、図5に示す装置で、A層の流路27としては、個数が101個、幅Wが2mm、長さLが60mm、B層の流路25としては、個数が100個、幅Wが1.5mm、長さLが30mmとした。これら以外は実施例1、2と同様に多層フィルムを得た。得られた多層フィルムの各層厚みを表1に示す。
[Comparative Examples 1 and 2]
In the apparatus shown in FIG. 3, FIG. 4 (a), FIG. 4 (b) and FIG. 5, the number of the A-layer flow paths 27 is 101, the width W is 2 mm, the length L is 60 mm, The number of channels 25 is 100, the width W is 1.5 mm, and the length L is 30 mm. A multilayer film was obtained in the same manner as in Examples 1 and 2 except for these. Table 1 shows the thickness of each layer of the obtained multilayer film.

Figure 0004496066
Figure 0004496066

本発明は多数の層が積層された多層フィルム、特に超多層フィルムの製造に好適に用いることができる。   The present invention can be suitably used for producing a multilayer film in which a large number of layers are laminated, particularly a super multilayer film.

本発明の一つの実施形態を示す多層フィードブロックの合流ブロックの斜視図である。It is a perspective view of the confluence | merging block of the multilayer feed block which shows one embodiment of this invention. (a)は本発明の一つの実施形態を示す合流ブロック20のA層樹脂が通る扁平な流路の斜視図であり、(b)は本発明の一つの実施形態を示す合流ブロック20のB層樹脂が通る扁平な流路の斜視図である。(A) is a perspective view of the flat flow path which A layer resin of the confluence | merging block 20 which shows one embodiment of this invention passes, (b) is B of the confluence | merging block 20 which shows one embodiment of this invention. It is a perspective view of the flat flow path through which layer resin passes. 従来のフィードブロックの合流ブロックの斜視図である。It is a perspective view of the confluence | merging block of the conventional feed block. (a)は従来の合流ブロック30のA層樹脂が通る扁平な流路の斜視図である。(b)は従来の合流ブロック30のB層樹脂が通る扁平な流路の斜視図である。(A) is a perspective view of the flat flow path through which A layer resin of the conventional confluence block 30 passes. (B) is a perspective view of the flat flow path through which B layer resin of the conventional confluence block 30 passes. 本発明の一つの実施形態において、押出機、多層フィードブロック、ダイ、冷却ドラム等の配置を示す正面図である。In one embodiment of the present invention, it is a front view showing the arrangement of an extruder, a multilayer feed block, a die, a cooling drum and the like. 本発明の一つの実施形態を示す多層フィードブロックの合流ブロックの斜視図である。It is a perspective view of the confluence | merging block of the multilayer feed block which shows one embodiment of this invention. (a)は本発明の一つの実施形態を示す合流ブロック31の表層に対応するA層樹脂が通る扁平な流路の斜視図である。(b)は本発明の一つの実施形態を示す合流ブロック31の芯層に対応するA層樹脂が通る扁平な流路の斜視図である。(c)は本発明の一つの実施形態を示す合流ブロック31の表層に対応するB層樹脂が通る扁平な流路の斜視図である。(d)は本発明の一つの実施形態を示す合流ブロック31の芯層に対応するB層樹脂が通る扁平な流路の斜視図である。(A) is a perspective view of the flat flow path through which A layer resin corresponding to the surface layer of the confluence | merging block 31 which shows one Embodiment of this invention passes. (B) is a perspective view of the flat flow path through which A layer resin corresponding to the core layer of the confluence | merging block 31 which shows one Embodiment of this invention passes. (C) is a perspective view of the flat flow path through which B layer resin corresponding to the surface layer of the confluence | merging block 31 which shows one Embodiment of this invention passes. (D) is a perspective view of the flat flow path through which B layer resin corresponding to the core layer of the confluence | merging block 31 which shows one Embodiment of this invention passes. 多層フィルム断面の各層厚みの分布が幅方向に均一な場合の図である。It is a figure in case the distribution of each layer thickness of a multilayer film cross section is uniform in the width direction. 多層フィルム断面の各層厚みの分布が幅方向に不均一な場合の図である。It is a figure in case the distribution of each layer thickness of a multilayer film cross section is non-uniform | heterogenous in the width direction. 多層フィルム断面の各層厚みの分布が厚み方向には分布しているが、幅方向に均一な場合の図である。It is a figure in case the distribution of each layer thickness of a multilayer film cross section is distributed in the thickness direction, but is uniform in the width direction. 多層フィルム断面の各層厚みの分布が幅方向に不均一な場合の図である。It is a figure in case the distribution of each layer thickness of a multilayer film cross section is non-uniform | heterogenous in the width direction. 図3の矢視Cの図であり、合流ブロックの出口の図である。It is a figure of the arrow C of FIG. 3, and is a figure of the exit of a merge block.

符号の説明Explanation of symbols

1:B層用の押出し機
2:B層用のギアポンプ
3:B層用のフィルター
4a、4b:ポリマーパイプ
5:A層用の押出し機
6:A層用のギアポンプ
7:A層用のフィルター
8:キャスティングドラム
9:多層フィードブロック
10:ダイ
11:未延伸フィルム
20:合流ブロック
21:B層樹脂の流れ方向
22:A層樹脂の流れ方向
23:合流後の樹脂の流れ方向
24:B層樹脂が通る扁平な流路(長さ変化)
25:B層樹脂が通る扁平な流路(長さ一定)
26:A層樹脂が通る扁平な流路(長さ変化)
27:A層樹脂が通る扁平な流路(長さ一定)
28:掘り込み部
31:合流ブロック
32:最表層に対応するB層樹脂が通る扁平な流路
33:芯層に対応するB層樹脂が通る扁平な流路
34:最表層に対応するA層樹脂が通る扁平な流路
35:芯層に対応するA層樹脂が通る扁平な流路
1: B layer extruder 2: B layer gear pump 3: B layer filter 4a, 4b: Polymer pipe 5: A layer extruder 6: A layer gear pump 7: A layer filter 8: Casting drum 9: Multilayer feed block 10: Die 11: Unstretched film 20: Merge block 21: Flow direction of B layer resin 22: Flow direction of A layer resin 23: Flow direction of resin after merge 24: B layer Flat flow path (length change) through which resin passes
25: Flat flow path (constant length) through which B layer resin passes
26: Flat flow path (length change) through which the A layer resin passes
27: Flat flow path (constant length) through which the A layer resin passes
28: digging portion 31: confluence block 32: flat flow path 33 through which B layer resin corresponding to the outermost layer passes: flat flow path 34 through which B layer resin corresponding to the core layer passes: A layer corresponding to the outermost layer Flat flow path 35 through which resin passes: Flat flow path through which A layer resin corresponding to the core layer passes

Claims (5)

樹脂Aと樹脂Bとを別個に押出機で溶融し、多層フィードブロック中の合流ブロックへ前記樹脂Aと前記樹脂Bとをそれぞれ異なる方向から導き、前記合流ブロックに設けられた隔壁によって区分されて形成された扁平な各流路へ前記樹脂Aと前記樹脂Bとを交互に5層以上それぞれ流入させ、前記合流ブロックを出たところで前記樹脂Aと前記樹脂Bとを合流させ、前記樹脂Aと前記樹脂Bとが交互に積層された樹脂の流れを形成し、前記多層フィードブロックに続くダイよりシート状に押出し、樹脂Aと樹脂Bが厚み方向に多層となる向きで交互に5層以上積層された多層シートとする多層シートの製造方法において、
扁平な前記流路から前記ダイへの導入側(FE点側)と展開側(BE点側)とへ流れる樹脂の流れによって形成される前記多層シートの各層の幅方向の厚みに関して、前記厚みが小さくなる一方側の前記FE点側または前記BE点側へ流れる樹脂の流量が厚みの大きくなる他方側の前記BE点側または前記FE点側を流れる樹脂の流量と比較してより大きくなるように一方側の前記FE点側または前記BE点側を樹脂が流れる前記流路の長さを、他方側の前記BE点側または前記FE点側を樹脂が流れる前記流路の長さと比較してより短く設定することにより、前記多層シートの各層の厚みを幅方向で均一とすることを特徴とする多層シートの製造方法。
Resin A and resin B are melted separately by an extruder, and the resin A and the resin B are guided from different directions to the merge block in the multilayer feed block, and are separated by partition walls provided in the merge block. Five or more layers of the resin A and the resin B are alternately flowed into each formed flat flow path, and the resin A and the resin B are merged at the exit of the merge block. Form a resin flow in which the resin B is alternately laminated, extrude into a sheet form from the die following the multilayer feed block, and laminate five or more layers alternately in the direction in which the resin A and the resin B are multilayered in the thickness direction In the method for producing a multilayer sheet as a multilayer sheet,
Regarding the thickness in the width direction of each layer of the multilayer sheet formed by the flow of resin flowing from the flat flow path to the introduction side (FE point side) and the development side (BE point side) into the die, the thickness is The flow rate of the resin flowing toward the FE point side or the BE point side on one side which becomes smaller is larger than the flow rate of the resin flowing on the BE point side or the FE point side where the thickness is increased. The length of the flow path through which the resin flows on the one side of the FE point side or the BE point side is compared with the length of the flow path through which the resin flows on the other side of the BE point side or the FE point side. A method for producing a multilayer sheet, characterized in that the thickness of each layer of the multilayer sheet is made uniform in the width direction by setting it short .
前記流路の長さが前記FE点側から前記BE点側へ線形に直線的に変化するように設定されている、請求項1記載の多層シートの製造方法。 The method for producing a multilayer sheet according to claim 1, wherein the length of the flow path is set to linearly and linearly change from the FE point side to the BE point side . 請求項1で得られた多層シートをキャスティングドラムで冷却固化して未延伸フィルムとし、この未延伸フィルムを縦方向及び横方向の少なくとも一方向に延伸して多層フィルムとする多層フィルムの製造方法。   A method for producing a multilayer film, wherein the multilayer sheet obtained in claim 1 is cooled and solidified with a casting drum to form an unstretched film, and the unstretched film is stretched in at least one direction of the longitudinal direction and the transverse direction to form a multilayer film. 多層フィードブロック中に設けられ、かつ押出機により別個に溶融された樹脂Aと樹脂Bが交互に5層以上それぞれ流入する流路が隔壁によって区分されて形成された合流ブロックと、前記合流ブロックを出たところで前記樹脂Aと前記樹脂Bを合流させてシート状に押出して前記樹脂Aと前記樹脂Bが厚み方向に多層となる向きで交互に5層以上積層された多層シートとするダイとを少なくとも備えた多層シートの製造装置において、
扁平な前記流路から前記ダイへの導入側(FE点側)と展開側(BE点側)とへ流れる樹脂の流れによって形成される前記多層シートの各層の幅方向の厚みに関して、
前記厚みが小さくなる一方側の前記FE点側または前記BE点側へ流れる樹脂の流量が、厚みの大きくなる他方側の前記BE点側または前記FE点側を流れる樹脂の流量と比較してより大きくなるように一方側の前記FE点側または前記BE点側を樹脂が流れる前記流路の長さを、他方側の前記BE点側または前記FE点側を流れる流路の長さと比較してより短く設定していることを特徴とする多層シートの製造装置。
A merge block formed in a multi-layer feed block and formed by dividing a flow path into which five or more layers of resin A and resin B, which are separately melted by an extruder, alternately flow, are divided by partition walls; Upon exiting, the resin A and the resin B are merged and extruded into a sheet shape, and the die is formed into a multilayer sheet in which the resin A and the resin B are alternately laminated in a thickness direction in a multilayer direction. In the multilayer sheet manufacturing apparatus provided at least,
Regarding the thickness in the width direction of each layer of the multilayer sheet formed by the flow of resin flowing from the flat flow path to the die introduction side (FE point side) and the development side (BE point side),
The flow rate of the resin flowing to the FE point side or the BE point side on the one side where the thickness is reduced is larger than the flow rate of the resin flowing on the BE point side or the FE point side on the other side where the thickness is increased. The length of the flow path through which the resin flows on the one side of the FE point side or the BE point side is compared with the length of the flow path on the other side of the BE point side or the FE point side so as to increase. An apparatus for producing a multilayer sheet, characterized by being set shorter .
前記流路の長さが前記FE点側から前記BE点側へ線形に直線的に変化している、請求項記載の多層シートの製造装置The multilayer sheet manufacturing apparatus according to claim 4 , wherein the length of the flow path linearly and linearly changes from the FE point side to the BE point side .
JP2004352552A 2004-12-06 2004-12-06 Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus Active JP4496066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352552A JP4496066B2 (en) 2004-12-06 2004-12-06 Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352552A JP4496066B2 (en) 2004-12-06 2004-12-06 Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2006159537A JP2006159537A (en) 2006-06-22
JP4496066B2 true JP4496066B2 (en) 2010-07-07

Family

ID=36662069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352552A Active JP4496066B2 (en) 2004-12-06 2004-12-06 Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4496066B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702012B2 (en) * 2005-11-29 2011-06-15 東レ株式会社 Laminate flow forming apparatus, laminated sheet manufacturing apparatus and manufacturing method
JP5434002B2 (en) 2007-08-07 2014-03-05 東レ株式会社 Laminate sheet manufacturing apparatus and method
JP2011086327A (en) 2009-10-14 2011-04-28 Sony Corp Optical recording medium and method for manufacturing the same
US8981178B2 (en) 2009-12-30 2015-03-17 Kimberly-Clark Worldwide, Inc. Apertured segmented films
CN102811849A (en) * 2010-03-25 2012-12-05 3M创新有限公司 Feedblock for making multilayered films
US10081123B2 (en) 2010-12-31 2018-09-25 Kimberly-Clark Worldwide, Inc. Segmented films with high strength seams
US8895126B2 (en) 2010-12-31 2014-11-25 Kimberly-Clark Worldwide, Inc. Segmented films with high strength seams
US9676164B2 (en) 2011-07-18 2017-06-13 Kimberly-Clark Worldwide, Inc. Extensible sheet material with visual stretch indicator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240525A (en) * 1986-04-11 1987-10-21 Mitsubishi Plastics Ind Ltd Co-extrusion feed block
JPH06344414A (en) * 1993-06-08 1994-12-20 Sekisui Chem Co Ltd Co-extrusion multi-layer molding method
JPH07178787A (en) * 1993-12-24 1995-07-18 Teijin Ltd Multilayered film extrusion apparatus
JP2003112355A (en) * 2001-10-04 2003-04-15 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayer film
JP2003251675A (en) * 2002-02-28 2003-09-09 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayered film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240525A (en) * 1986-04-11 1987-10-21 Mitsubishi Plastics Ind Ltd Co-extrusion feed block
JPH06344414A (en) * 1993-06-08 1994-12-20 Sekisui Chem Co Ltd Co-extrusion multi-layer molding method
JPH07178787A (en) * 1993-12-24 1995-07-18 Teijin Ltd Multilayered film extrusion apparatus
JP2003112355A (en) * 2001-10-04 2003-04-15 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayer film
JP2003251675A (en) * 2002-02-28 2003-09-09 Teijin Dupont Films Japan Ltd Method and apparatus for manufacturing multilayered film

Also Published As

Publication number Publication date
JP2006159537A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP4816419B2 (en) Laminated film
JP3752410B2 (en) Multilayer laminated stretched film
KR100601228B1 (en) Process for Making Multilayer Optical Films
JP4620526B2 (en) Multilayer film manufacturing method and apparatus
CN101031407B (en) Apparatus and method for producing laminated sheet
JP2003251675A (en) Method and apparatus for manufacturing multilayered film
JP2003112355A (en) Method and apparatus for manufacturing multilayer film
JP4496066B2 (en) Multilayer sheet manufacturing method, multilayer film manufacturing method, and multilayer sheet manufacturing apparatus
KR101842416B1 (en) Method of eliminating defects while extrusion coating film using speed control of the nip roll
JP4882331B2 (en) Laminate sheet manufacturing apparatus and method
JP2002160339A (en) Multi-layer laminated stretched film
JP2007079349A (en) Optical filter
JP4600066B2 (en) Laminate film manufacturing apparatus and method
JP4857700B2 (en) Laminate sheet manufacturing apparatus and method
JP6299747B2 (en) Die and method for producing multilayer film
JP2006327079A (en) Manufacturing method of multilayered film
KR20100041776A (en) Apparatus and process for producing laminated sheet
JP2015164798A (en) Decorative metallic luster film
JP4702012B2 (en) Laminate flow forming apparatus, laminated sheet manufacturing apparatus and manufacturing method
JP7119954B2 (en) Multilayer body manufacturing apparatus and manufacturing method, and multilayer film manufacturing method
JP2000052399A (en) Manufacture of optical control element
KR101574190B1 (en) White polyester reflective film and method for manufacturing the same and reflective sheet using the same
JP6357838B2 (en) Multilayer film manufacturing method and retardation film manufacturing method
KR101671817B1 (en) White polyester film with low surface gloss and method of manufacturing the same and reflective sheet using the same
JP2017043083A (en) Laminate polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4496066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250