JP4494325B2 - Manufacturing method of glass preform for optical fiber - Google Patents

Manufacturing method of glass preform for optical fiber Download PDF

Info

Publication number
JP4494325B2
JP4494325B2 JP2005325805A JP2005325805A JP4494325B2 JP 4494325 B2 JP4494325 B2 JP 4494325B2 JP 2005325805 A JP2005325805 A JP 2005325805A JP 2005325805 A JP2005325805 A JP 2005325805A JP 4494325 B2 JP4494325 B2 JP 4494325B2
Authority
JP
Japan
Prior art keywords
glass
reaction vessel
optical fiber
glass preform
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005325805A
Other languages
Japanese (ja)
Other versions
JP2007131487A (en
Inventor
智宏 布目
成敏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005325805A priority Critical patent/JP4494325B2/en
Publication of JP2007131487A publication Critical patent/JP2007131487A/en
Application granted granted Critical
Publication of JP4494325B2 publication Critical patent/JP4494325B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、光ファイバ用ガラス母材の製造方法に関し、特に、光ファイバ用ガラス母材を長手方向にわたり均質に製造する方法に関する。   The present invention relates to a method for producing a glass preform for an optical fiber, and more particularly to a method for producing a glass preform for an optical fiber homogeneously in the longitudinal direction.

光ファイバ用ガラス母材の製造には、VAD法や外付け法などのスート法が一般に用いられる。該方法は、酸水素バーナ火炎中にSiClやGeClなどのガラス原料ガスを投入し、生成したガラス微粒子を、回転するターゲット上に堆積させ石英ガラス多孔質体とする。その後、この石英ガラス多孔質体を焼結炉内で焼結ガラス化し、光ファイバ用ガラス母材を得る方法である。このようにして得られた光ファイバ用ガラス母材を観察すると、ガラス母材内部に欠陥を生じる場合がある。ここでいう欠陥とは、金属及び無機物などに起因する異物や気泡である。 A soot method such as a VAD method or an external method is generally used for manufacturing a glass preform for an optical fiber. In this method, a glass raw material gas such as SiCl 4 or GeCl 4 is introduced into an oxyhydrogen burner flame, and the generated glass fine particles are deposited on a rotating target to form a porous silica glass body. Thereafter, this porous silica glass is made into sintered glass in a sintering furnace to obtain a glass preform for optical fiber. Observing the glass preform for optical fiber thus obtained may cause defects in the glass preform. A defect here is a foreign material or a bubble resulting from a metal, an inorganic substance, etc.

欠陥が発生する主な原因は、反応容器の周辺雰囲気中にある浮遊物や、製造装置のモータなどの可動部から発塵した金属塵等が反応容器内に混入し、石英ガラス多孔質体に付着したためと思われる。この状態でガラス微粒子をさらに上から堆積させた場合、一部は火炎に焙られて揮発又は飛散する。しかし、一部は石英ガラス多孔質体内部に異物として残存する。この異物は、場合によっては、焼結時に発泡し、気泡として痕跡を残すことがある。これらの異物や気泡等は、大きさが0.1mm以上であれば、焼結後の観察で欠陥として確認できる。光ファイバ用石英ガラス母材中の欠陥は、紡糸工程において断線の原因となったり、ファイバの強度低下となる等好ましくない。そのため、石英ガラス多孔質体に混入する異物を低減することが重要である。   The main causes of defects are floating substances in the ambient atmosphere of the reaction vessel, metal dust generated from moving parts such as motors of manufacturing equipment, etc. entering the reaction vessel, resulting in the porous silica glass body. It seems to have adhered. When glass particles are further deposited from above in this state, some of them are roasted by a flame and volatilized or scattered. However, a part remains as a foreign substance inside the porous silica glass body. In some cases, this foreign material foams during sintering and may leave traces as bubbles. These foreign matters and bubbles can be confirmed as defects by observation after sintering if the size is 0.1 mm or more. Defects in the silica glass preform for optical fibers are not preferable because they cause breaks in the spinning process and decrease the strength of the fiber. Therefore, it is important to reduce foreign matters mixed in the quartz glass porous body.

このような光ファイバ用ガラス母材の製造方法の従来技術として、例えば、特許文献1,2が提案されている。
特許文献1には、石英ガラスを製造する反応容器内及び、反応容器を囲むように設置された密閉外套の双方に、クリーンエアを一定流速で導入する方法が記載されている。また、その状態でガラス微粒子の堆積を行うことで、石英ガラス中の欠陥を低減することができる旨が記載されている。
特許文献2には、多孔質母材の製造において、ガラス微粒子堆積体の成長側先端前方側に設けた前室内にて、出発コア部材の表面に不活性ガス又は清浄空気を吹き付け、前室と反応容器との間に設けた仕切り部材の貫通孔から出発コア部材を反応容器側に導き、出発コア部材上にガラス微粒子を堆積させる方法が開示されている。また、特許文献2には、市販の静電気除去装置を用いて不活性ガス又は清浄空気をイオン化してから出発コア部材に吹き付けると、静電気力で付着しているダストを効果的に除去できる旨が記載されている。
特許第3196629号公報 特開2000−109329号公報
For example, Patent Documents 1 and 2 have been proposed as conventional techniques for manufacturing such a glass preform for optical fiber.
Patent Document 1 describes a method of introducing clean air at a constant flow rate into both a reaction vessel for producing quartz glass and a sealed mantle installed so as to surround the reaction vessel. Further, it is described that defects in quartz glass can be reduced by depositing glass particles in that state.
In Patent Document 2, in the production of a porous base material, an inert gas or clean air is blown onto the surface of the starting core member in the front chamber provided on the front side of the growth side of the glass particulate deposit, A method is disclosed in which a starting core member is guided to the reaction container side from a through hole of a partition member provided between the reaction container and glass fine particles are deposited on the starting core member. Patent Document 2 also states that dust adhered to the starting core member can be effectively removed by ionizing inert gas or clean air using a commercially available static eliminator and then spraying the starting core member. Are listed.
Japanese Patent No. 3196629 JP 2000-109329 A

しかしながら、前述した従来技術には以下のような問題があった。
特許文献1では、ブース内及び反応容器内の両方にクリーンエアを供給する。しかしその場合でも、エアフィルターでは異物微粒子を100%捕集することはできない。通常クリーンルーム内で使用されるHEPAフィルターは、粒子径0.3μmの粒子捕集率が99.97%程度である。そのため粒子径が0.3μm以下の微粒子については、フィルターを通過し反応容器内に混入してしまう恐れがある。HEPAフィルターよりも微粒子の捕集率が高い、ULPAフィルタなどの高性能フィルタも存在する。しかし、この場合でも、フィルター内を通過する微粒子はわずかに存在する上、フィルターの前後における圧力損失も大きい。そのため一定の風量を確保するためには、大型のファンが必要になる場合があり、コスト上昇につながる恐れがある。またフィルターは経時的に目詰まりが発生し、捕集能力が低下していく。そのため、局所的にクリーン度が低下し、結果的に反応容器内に異物が混入する恐れがある。
このように、反応容器への異物混入を防止する試みは、光ファイバ用石英ガラス母材中の欠陥抑制に効果は大きいが、異物微粒子の混入を100%防止することは困難である。
However, the above-described prior art has the following problems.
In Patent Document 1, clean air is supplied to both the booth and the reaction vessel. However, even in that case, the air filter cannot collect 100% of the foreign particles. The HEPA filter normally used in a clean room has a particle collection rate of about 99.97% with a particle size of 0.3 μm. Therefore, fine particles having a particle size of 0.3 μm or less may pass through the filter and be mixed into the reaction vessel. There are also high performance filters such as ULPA filters that have a higher particulate collection rate than HEPA filters. However, even in this case, there are few fine particles passing through the filter, and the pressure loss before and after the filter is large. Therefore, in order to ensure a constant air volume, a large fan may be required, which may lead to an increase in cost. In addition, the filter is clogged over time, and the collection ability decreases. Therefore, the degree of cleanliness is locally reduced, and as a result, foreign matter may be mixed in the reaction vessel.
As described above, the attempt to prevent foreign matter from mixing into the reaction vessel is very effective in suppressing defects in the optical fiber quartz glass preform, but it is difficult to prevent foreign matter from being mixed 100%.

特許文献2では、母材先端側から、イオン化されたガスを流すので、局所的な流れが起こり、堆積効率の低下やスート割れ増加を招く恐れがある。
また、ガスを母材に吹き付けるという行為をデポジション中に行うと、冷却効果が発現してしまうので、母材に歪みを生じたり、母材折れが発生する恐れがある。
また、特許文献2に図示された製造装置は、狭い隙間からイオン化されたガスを流す構造になっているので、ガスがその隙間を通過する際に摩擦を生じて静電気が再度発生する可能性もあるので、異物付着を防ぐ効果が不十分になると思われる。
さらに、特許文献2には、イオン化に関して詳細な記述はなく、母材の表面電位がどの程度になるのか開示されていないため、陽イオン又は陰イオンのいずれか一方を照射した場合には母材表面がプラスかマイナスに帯電してしまい、異物付着を防ぐ効果が望めない可能性がある。
In Patent Document 2, since ionized gas is flowed from the front end side of the base material, a local flow occurs, which may cause a decrease in deposition efficiency and an increase in soot cracking.
In addition, if the act of blowing gas to the base material is performed during deposition, a cooling effect will be manifested, which may cause distortion of the base material or breakage of the base material.
In addition, since the manufacturing apparatus illustrated in Patent Document 2 has a structure in which ionized gas flows through a narrow gap, there is a possibility that static electricity is generated again due to friction when the gas passes through the gap. Therefore, it seems that the effect of preventing foreign matter adhesion is insufficient.
Furthermore, Patent Document 2 does not have a detailed description on ionization and does not disclose how much the surface potential of the base material is, and therefore when the base material is irradiated with either a cation or an anion, The surface may be charged positively or negatively, and there is a possibility that the effect of preventing foreign matter adhesion cannot be expected.

本発明は、前記事情に鑑みてなされ、内部に欠陥が少なく、高品質な光ファイバを歩留まり良く製造し得る光ファイバ用ガラス母材の製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a glass preform for an optical fiber that can produce a high-quality optical fiber with a low yield and a high yield.

前記目的を達成するため、本発明は、クリーンエアが供給されるブース内に反応容器が設置され、該反応容器内で回転するターゲット上に、酸水素バーナ火炎中に投入されたガラス原料ガスから生成したガラス微粒子を堆積させ、石英ガラス多孔質体とした後、焼結ガラス化し、光ファイバ用ガラス母材を得る製造方法において、前記ブース内に静電気除去装置を設置し、陽イオンと陰イオンを交互または同時に照射して、前記反応容器内に浮遊する異物微粒子の表面電位を−0.1〜0.1kVの範囲に保ちながらガラス微粒子の堆積を実施することを特徴とする光ファイバ用ガラス母材の製造方法を提供する。   In order to achieve the above object, the present invention provides a reaction vessel installed in a booth to which clean air is supplied, and a glass source gas introduced into an oxyhydrogen burner flame on a target rotating in the reaction vessel. In the manufacturing method of depositing the generated glass fine particles to form a quartz glass porous body and then converting to sintered glass to obtain a glass preform for optical fiber, a static electricity removing device is installed in the booth, and cations and anions Glass particles are deposited while maintaining the surface potential of foreign particles suspended in the reaction vessel in the range of -0.1 to 0.1 kV by alternately or simultaneously irradiating A method for producing a base material is provided.

本発明の光ファイバ用ガラス母材の製造方法において、前記静電気除去装置は、クリーンエア吹出口又は反応容器の吸気口のいずれかに設置されることが好ましい。   In the method for manufacturing a glass preform for an optical fiber according to the present invention, the static eliminator is preferably installed at either a clean air outlet or an inlet of a reaction vessel.

本発明によれば、反応容器内に浮遊する異物微粒子の表面電位を−0.1〜0.1kVの範囲に保ちながらガラス微粒子を堆積して石英ガラス多孔質体を作製し、次いでこれを焼結して光ファイバ用ガラス母材を得ることによって、母材製造中の静電気に起因した異物の付着を低減でき、内部に欠陥が少なく、高品質な光ファイバを歩留まり良く製造し得る光ファイバ用ガラス母材を製造することができる。   According to the present invention, a silica glass porous body is produced by depositing glass particulates while maintaining the surface potential of the foreign particulates floating in the reaction vessel in the range of −0.1 to 0.1 kV. Bonding to obtain a glass preform for optical fiber, which can reduce the adhesion of foreign matters due to static electricity during the production of the preform, and can produce high-quality optical fibers with high yield with few defects. A glass base material can be manufactured.

本発明者らは、石英ガラス多孔質母材と異物との間に作用する引力に着目した。異物となる微粒子について、微粒子同士の付着または壁面への付着を考えた場合、静電気力による影響が大きいことがわかった。
一般的にガラスは絶縁体ではあるが、正(+)に耐電しやすく、付着する微粒子は負(−)に耐電しやすい傾向がある。その際の帯電量は、異物の種類や、摩擦の有無、湿度や室温などによって大きく変わるが、帯電量を小さくすることで、電気的な引力は小さくなる。石英ガラス多孔質体のような絶縁体に対して電気的引力を低下させるには、石英ガラス多孔質体又は付着する異物のいずれか一方の帯電量を低下させることでも効果が得られる。実用的には、クリーンエアフィルタで捕集できなかった微粒子や製造装置から発塵した金属塵など、反応容器内を浮遊する異物微粒子の静電気を除去することで、石英ガラス多孔質体への付着を防止することが有効であった。
The present inventors paid attention to the attractive force acting between the quartz glass porous base material and the foreign material. It was found that the influence of electrostatic force is large when considering the adhesion of fine particles to the wall surface or the adhesion to the wall surface with respect to the fine particles as foreign matter.
Although glass is generally an insulator, it tends to withstand positive (+) electricity, and attached fine particles tend to withstand negative (-) electricity. The amount of charge at that time varies greatly depending on the type of foreign matter, the presence or absence of friction, humidity, room temperature, and the like, but the electrical attractive force is reduced by reducing the amount of charge. In order to reduce the electric attractive force with respect to an insulator such as a quartz glass porous body, an effect can also be obtained by reducing the charge amount of either the quartz glass porous body or the adhering foreign matter. Practically, by removing static electricity from foreign particles floating in the reaction vessel, such as fine particles that could not be collected by the clean air filter and metal dust generated from the manufacturing equipment, it adheres to the quartz glass porous body. It was effective to prevent.

各種検討を行った結果、反応容器内を浮遊する異物微粒子の帯電量をある範囲に抑えることが、欠陥の低減に効果があることを見出した。静電気の帯電量は、静電気センサーなどを用いて、表面電位を測定することで知ることができる。このような状態で、石英ガラス微粒子を堆積させれば、反応容器内に異物微粒子が混入した場合でも、石英ガラス多孔質体に付着することなく、反応容器の外部へ排出させることができた。その結果、焼結後に、母材中の欠陥が少ない光ファイバ用石英ガラス母材を得ることができ、そのような母材を紡糸した結果、紡糸中の断線が少なくなり、歩留まりが向上した。断線頻度としては、1回/300km以下であれば、良好と判断できる。ただし、断線頻度=断線回数(回)/1母材の紡糸長(km)である。   As a result of various investigations, it has been found that suppressing the amount of charge of foreign particles floating in the reaction vessel within a certain range is effective in reducing defects. The amount of electrostatic charge can be determined by measuring the surface potential using an electrostatic sensor or the like. If quartz glass fine particles are deposited in such a state, even if foreign particles are mixed in the reaction vessel, they can be discharged outside the reaction vessel without adhering to the porous silica glass. As a result, a quartz glass preform for optical fibers with few defects in the preform can be obtained after sintering, and as a result of spinning such a preform, disconnection during spinning is reduced and yield is improved. The disconnection frequency can be determined to be good if it is 1 time / 300 km or less. However, disconnection frequency = number of disconnections (times) / 1 spinning length of base material (km).

以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明による光ファイバ用ガラス母材の製造方法を実施するために好適な製造装置の一例を示す構成図である。この製造装置は、長手方向を垂直に向けて保持された石英ガラス多孔質体1を収容する反応容器2と、該反応容器2を囲むブース3と、反応容器2内の石英ガラス多孔質体1に向けて火炎を当てるように配置された複数のバーナ4と、反応容器2内のガスを外部に排出する排気口5と、ブース3内部にクリーンエアを供給するクリーンエア供給装置6と、ブース3内のクリーンエアの供給部に設けられたクリーンエアフィルタ7と、ブース3内の反応容器2外側に設けられた静電気除去装置8とを備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an example of a production apparatus suitable for carrying out the method for producing a glass preform for optical fiber according to the present invention. This manufacturing apparatus includes a reaction vessel 2 containing a quartz glass porous body 1 held with its longitudinal direction oriented vertically, a booth 3 surrounding the reaction vessel 2, and a quartz glass porous body 1 in the reaction vessel 2. A plurality of burners 4 arranged so as to impinge on the flame, an exhaust port 5 for discharging the gas in the reaction vessel 2 to the outside, a clean air supply device 6 for supplying clean air into the booth 3, and a booth 3 is provided with a clean air filter 7 provided in a clean air supply unit 3 and a static electricity removing device 8 provided outside the reaction vessel 2 in the booth 3.

また図2は、本発明による光ファイバ用ガラス母材の製造方法を実施するために好適な製造装置の他の例を示す構成図である。この製造装置は、長手方向を水平に向けて保持された石英ガラス多孔質体1を収容し、下側が開口されている反応容器2と、該反応容器2を囲むブース3と、石英ガラス多孔質体1に向けて下方から火炎を当てるように配置されたバーナ4と、ブース3の上部に設けられ反応容器2内のガスを外部に排出する排気口5と、ブース3の下部からブース3内にクリーンエアを供給するクリーンエア供給装置6と、ブース3内の下側に設けられたクリーンエアフィルタ7と、ブース3内のクリーンエアフィルタ7上に設けられた静電気除去装置8とを備えて構成されている。   Moreover, FIG. 2 is a block diagram which shows the other example of the manufacturing apparatus suitable in order to implement the manufacturing method of the glass preform for optical fibers by this invention. This manufacturing apparatus accommodates a porous silica glass body 1 that is held with its longitudinal direction oriented horizontally, a reaction vessel 2 having an open lower side, a booth 3 surrounding the reaction vessel 2, and a porous silica glass porous body. A burner 4 disposed so as to be exposed to a flame from below toward the body 1, an exhaust port 5 provided at the upper part of the booth 3 for discharging the gas in the reaction vessel 2 to the outside, and the booth 3 from the lower part of the booth 3 A clean air supply device 6 for supplying clean air to the booth 3, a clean air filter 7 provided on the lower side of the booth 3, and a static electricity removing device 8 provided on the clean air filter 7 in the booth 3. It is configured.

本発明の製造方法では、図1に示す製造装置又は図2に示す製造装置を用い、反応容器2内で回転するターゲット上に、酸水素バーナ火炎中に投入されたガラス原料ガスから生成したガラス微粒子を堆積させ、石英ガラス多孔質体1を作製する際に、ブース3内に静電気除去装置8を設置し、陽イオンと陰イオンを交互または同時に照射して、反応容器2内に浮遊する異物微粒子の表面電位を−0.1〜0.1kVの範囲に保ちながらガラス微粒子の堆積を実施する。   In the production method of the present invention, the glass produced from the glass raw material gas introduced into the oxyhydrogen burner flame on the target rotating in the reaction vessel 2 using the production apparatus shown in FIG. 1 or the production apparatus shown in FIG. When the quartz glass porous body 1 is produced by depositing fine particles, a static eliminating device 8 is installed in the booth 3, and foreign substances floating in the reaction vessel 2 are irradiated by cation and anion alternately or simultaneously. The glass fine particles are deposited while maintaining the surface potential of the fine particles in the range of -0.1 to 0.1 kV.

静電気除去装置8としては、イオナイザーなどの除電機を用いることが望ましい。イオナイザーから発生したイオンにより、クリーンエアフィルタ7で捕集できなかった粒子や製造装置から発塵した金属など、反応容器内を浮遊する異物微粒子の表面電位を小さくすることができる。静電気除去装置8の設置箇所については、製造装置毎に適宜選択すればよい。一般的には、クリーンエアの吹出し口や反応容器の吸気口付近に設置すると、効果が高いので望ましい。なお、ここで発生させるイオンは、陽イオンと陰イオンを交互又は同時に照射することが望ましい。どちらかの極性のイオンのみであると、反対の極性の静電気は除去できない。陽イオンと陰イオンを交互に照射する場合は、発生周波数を調整する必要があるが、通常は10Hz程度とすれば問題はない。   As the static eliminator 8, it is desirable to use a static eliminator such as an ionizer. Due to the ions generated from the ionizer, the surface potential of foreign particles floating in the reaction vessel, such as particles that could not be collected by the clean air filter 7 or metal generated from the manufacturing apparatus, can be reduced. What is necessary is just to select suitably the installation location of the static eliminating device 8 for every manufacturing apparatus. Generally, it is desirable to install near the blowout port of clean air or the intake port of the reaction vessel because the effect is high. In addition, as for the ion generated here, it is desirable to irradiate a cation and an anion alternately or simultaneously. If only ions of either polarity are used, static electricity of the opposite polarity cannot be removed. In the case of alternately irradiating positive ions and negative ions, it is necessary to adjust the generation frequency, but there is usually no problem if the frequency is about 10 Hz.

条件を種々変更し検討を行った結果、反応容器2内を浮遊する異物微粒子の表面電位が−0.1〜0.1kVの範囲であれば、石英ガラス多孔質体1への異物付着が少なくなり、その結果、焼結後に欠陥が少ない光ファイバ用石英ガラス母材を得ることができた。その母材を紡糸する場合には断線頻度が1回/300km以下とすることが可能となる。一方、反応容器2内を浮遊する異物微粒子の表面電位が前記範囲外であると、焼結後の欠陥が多くなり、断線頻度が高くなり製造歩留まりが悪化し、製造コストが高くなる。   As a result of various changes in the conditions, if the surface potential of the foreign particle floating in the reaction vessel 2 is in the range of −0.1 to 0.1 kV, the foreign material adheres less to the porous silica glass body 1. As a result, a quartz glass preform for optical fiber with few defects after sintering could be obtained. In the case of spinning the base material, the disconnection frequency can be set to 1 time / 300 km or less. On the other hand, if the surface potential of the foreign particles floating in the reaction vessel 2 is outside the above range, defects after sintering increase, the frequency of disconnection increases, the manufacturing yield deteriorates, and the manufacturing cost increases.

次に、前述した通り作製した石英ガラス多孔質体1を焼結し、透明ガラス化して光ファイバ用光ファイバ用ガラス母材を得る。
この焼結工程は、光ファイバ製造分野で従来公知の方法及び装置を用いて実施することができる。
Next, the quartz glass porous body 1 produced as described above is sintered and made into a transparent glass to obtain a glass preform for an optical fiber for an optical fiber.
This sintering step can be performed using a conventionally known method and apparatus in the optical fiber manufacturing field.

本発明によれば、反応容器内に浮遊する異物微粒子の表面電位を−0.1〜0.1kVの範囲に保ちながらガラス微粒子を堆積して石英ガラス多孔質体を作製し、次いでこれを焼結して光ファイバ用ガラス母材を得ることによって、母材製造中の静電気に起因した異物の付着を低減でき、内部に欠陥が少なく、高品質な光ファイバを歩留まり良く製造し得る光ファイバ用ガラス母材を製造することができる。   According to the present invention, a silica glass porous body is produced by depositing glass particulates while maintaining the surface potential of the foreign particulates floating in the reaction vessel in the range of −0.1 to 0.1 kV. Bonding to obtain a glass preform for optical fiber, which can reduce the adhesion of foreign matters due to static electricity during the production of the preform, and can produce high-quality optical fibers with high yield with few defects. A glass base material can be manufactured.

[実施例1〜3、比較例1〜2]
図1に示す装置を用いて、石英ガラス多孔質体の製造を行った。ここでは、クリーンエアが供給されるブース内に反応容器を設置した状態で製造を行った。静電気除去装置(キーエンス社製 クリーンエアバリア除電機 SJ−G)は、図示したように反応容器の吸気口付近に設置した。イオン照射時間は適宜変更し、その際の反応容器内を浮遊する微粒子の表面電位を測定した。表面電位は、静電気センサー(キーエンス社製 高精度静電気センサ SK)を用いて測定した。
その後、複数のバーナを用いて、反応容器内で30rpm回転するターゲット上に、ガラス微粒子を堆積させ、直径230mm×長さ1900mmの石英ガラス多孔質体を作製した。この際のガス流量は、SiCl流量:5.5〜7.5SLM、水素ガス流量:40〜100SLM、酸素ガス流量15〜40SLM、アルゴンガス流量1SLMとした。
石英ガラス多孔質体作製後、焼結炉に投入し焼結ガラス化を行って光ファイバ用ガラス母材とした。その光ファイバ用ガラス母材について、焼結後の欠陥の個数を確認した。
その後、該光ファイバ用ガラス母材を紡糸し、断線頻度を調査した。結果を表1に示す。
[Examples 1-3, Comparative Examples 1-2]
A quartz glass porous body was manufactured using the apparatus shown in FIG. Here, it manufactured in the state which installed the reaction container in the booth supplied with clean air. A static eliminator (Clean Air Barrier Eliminator SJ-G manufactured by Keyence Corporation) was installed in the vicinity of the inlet of the reaction vessel as shown. The ion irradiation time was appropriately changed, and the surface potential of the fine particles floating in the reaction vessel at that time was measured. The surface potential was measured using an electrostatic sensor (High-precision electrostatic sensor SK manufactured by Keyence Corporation).
Thereafter, using a plurality of burners, glass fine particles were deposited on a target rotating at 30 rpm in the reaction vessel to produce a porous silica glass body having a diameter of 230 mm and a length of 1900 mm. The gas flow rates at this time were SiCl 4 flow rate: 5.5-7.5 SLM, hydrogen gas flow rate: 40-100 SLM, oxygen gas flow rate 15-40 SLM, and argon gas flow rate 1 SLM.
After producing a porous silica glass body, it was put into a sintering furnace and subjected to sintering vitrification to obtain an optical fiber glass preform. With respect to the glass preform for optical fiber, the number of defects after sintering was confirmed.
Thereafter, the glass preform for optical fiber was spun and the frequency of disconnection was investigated. The results are shown in Table 1.

Figure 0004494325
Figure 0004494325

表1に示す実施例1〜3のように、反応容器内を浮遊する微粒子の表面電位が−0.1〜0.1kVの範囲であれば、焼結後の欠陥の個数が2個以下と少なくなり、作製した光ファイバ用ガラス母材を紡糸する際の断線頻度を1回/300km以下とすることができた。
一方、反応容器内を浮遊する微粒子の表面電位が前記範囲から外れた比較例1〜2は、焼結後の欠陥の個数が7個以上と多くなり、作製した光ファイバ用ガラス母材を紡糸する際の断線頻度が2.5回/300km以上と増加した。
As in Examples 1 to 3 shown in Table 1, if the surface potential of the fine particles floating in the reaction vessel is in the range of -0.1 to 0.1 kV, the number of defects after sintering is 2 or less. As a result, the frequency of disconnection when spinning the produced optical fiber glass preform could be reduced to 1 time / 300 km or less.
On the other hand, in Comparative Examples 1 and 2 in which the surface potential of the fine particles floating in the reaction vessel deviated from the above range, the number of defects after sintering was increased to 7 or more, and the produced optical fiber glass preform was spun. The frequency of disconnection when doing so increased to 2.5 times / 300 km or more.

[比較例3]
反応容器内を浮遊する微粒子の静電気除去を行わなかった以外は、前記各例と同様にして光ファイバ用ガラス母材を作製し、焼結後の欠陥の個数を確認した。その後、該光ファイバ用ガラス母材を紡糸し、断線頻度を調査した。
静電気除去を行わなかった場合、反応容器内を浮遊する微粒子の表面電位は1.5kVであった。焼結後の欠陥の個数は、8個であり、破断頻度も5.1回/300km以上と実施例1〜3よりも悪化した。
[Comparative Example 3]
An optical fiber glass preform was prepared in the same manner as in each of the examples except that the static particles floating in the reaction vessel were not removed, and the number of defects after sintering was confirmed. Thereafter, the glass preform for optical fiber was spun and the frequency of disconnection was investigated.
When static electricity was not removed, the surface potential of the fine particles floating in the reaction vessel was 1.5 kV. The number of defects after sintering was 8, and the fracture frequency was 5.1 times / 300 km or more, which was worse than Examples 1-3.

[比較例4]
反応容器内を浮遊する微粒子の静電気除去を陽イオンのみで行った以外は、前記各例と同様にして光ファイバ用ガラス母材を作製し、焼結後の欠陥の個数を確認した。その後、該光ファイバ用ガラス母材を紡糸し、断線頻度を調査した。
静電気除去を陽イオンのみで行った場合、反応容器内を浮遊する微粒子の表面電位は0.3kVであった。焼結後の欠陥の個数は、5個であり、破断頻度も2.6回/300km以上と実施例1〜3よりも悪化した。
[Comparative Example 4]
An optical fiber glass preform was prepared in the same manner as in each of the above examples except that static electricity removal of fine particles floating in the reaction vessel was performed only with cations, and the number of defects after sintering was confirmed. Thereafter, the glass preform for optical fiber was spun and the frequency of disconnection was investigated.
When the static electricity was removed only with cations, the surface potential of the fine particles floating in the reaction vessel was 0.3 kV. The number of defects after sintering was 5, and the fracture frequency was 2.6 times / 300 km or more, which was worse than Examples 1-3.

[比較例5]
反応容器内を浮遊する微粒子の静電気除去を陰イオンのみで行った以外は、前記各例と同様にして光ファイバ用ガラス母材を作製し、焼結後の欠陥の個数を確認した。その後、該光ファイバ用ガラス母材を紡糸し、断線頻度を調査した。
静電気除去を陰イオンのみで行った場合、反応容器内を浮遊する微粒子の表面電位は−0.35kVであった。焼結後の欠陥の個数は、4個であり、破断頻度も2.1回/300km以上と実施例1〜3よりも悪化した。
[Comparative Example 5]
An optical fiber glass preform was prepared in the same manner as in each of the above examples except that static electricity removal of fine particles floating in the reaction vessel was performed only with anions, and the number of defects after sintering was confirmed. Thereafter, the glass preform for optical fiber was spun and the frequency of disconnection was investigated.
When static electricity was removed only with anions, the surface potential of the fine particles floating in the reaction vessel was -0.35 kV. The number of defects after sintering was 4, and the fracture frequency was 2.1 times / 300 km or more, which was worse than Examples 1-3.

本発明による光ファイバ用ガラス母材の製造方法を実施するために好適な製造装置の一例を示す構成図である。It is a block diagram which shows an example of a suitable manufacturing apparatus in order to implement the manufacturing method of the glass preform for optical fibers by this invention. 本発明による光ファイバ用ガラス母材の製造方法を実施するために好適な製造装置の他の例を示す構成図である。It is a block diagram which shows the other example of the manufacturing apparatus suitable in order to implement the manufacturing method of the glass preform for optical fibers by this invention.

符号の説明Explanation of symbols

1…石英ガラス多孔質体、2…反応容器、3…ブース、4…バーナ、5…排気口、6…クリーンエア供給装置、7…クリーンエアフィルタ、8…静電気除去装置。
DESCRIPTION OF SYMBOLS 1 ... Silica glass porous body, 2 ... Reaction container, 3 ... Booth, 4 ... Burner, 5 ... Exhaust port, 6 ... Clean air supply apparatus, 7 ... Clean air filter, 8 ... Static electricity removal apparatus.

Claims (2)

クリーンエアが供給されるブース内に反応容器が設置され、該反応容器内で回転するターゲット上に、酸水素バーナ火炎中に投入されたガラス原料ガスから生成したガラス微粒子を堆積させ、石英ガラス多孔質体とした後、焼結ガラス化し、光ファイバ用ガラス母材を得る製造方法において、
前記ブース内に静電気除去装置を設置し、陽イオンと陰イオンを交互または同時に照射して、前記反応容器内に浮遊する異物微粒子の表面電位を−0.1〜0.1kVの範囲に保ちながらガラス微粒子の堆積を実施することを特徴とする光ファイバ用ガラス母材の製造方法。
A reaction vessel is installed in a booth to which clean air is supplied, and glass fine particles generated from the glass raw material gas introduced into the oxyhydrogen burner flame are deposited on a target that rotates in the reaction vessel to obtain a porous quartz glass. In a manufacturing method for obtaining a glass preform for an optical fiber after forming into a sintered body,
A static eliminator is installed in the booth, and the surface potential of the foreign particles suspended in the reaction vessel is kept in the range of −0.1 to 0.1 kV by alternately or simultaneously irradiating positive ions and negative ions. A method for producing a glass preform for optical fibers, comprising depositing glass particles.
前記静電気除去装置は、クリーンエア吹出口又は反応容器の吸気口のいずれかに設置されることを特徴とする請求項1に記載の光ファイバ用ガラス母材の製造方法。


The method for producing a glass preform for an optical fiber according to claim 1, wherein the static eliminating device is installed at either a clean air outlet or an inlet of a reaction vessel.


JP2005325805A 2005-11-10 2005-11-10 Manufacturing method of glass preform for optical fiber Expired - Fee Related JP4494325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325805A JP4494325B2 (en) 2005-11-10 2005-11-10 Manufacturing method of glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325805A JP4494325B2 (en) 2005-11-10 2005-11-10 Manufacturing method of glass preform for optical fiber

Publications (2)

Publication Number Publication Date
JP2007131487A JP2007131487A (en) 2007-05-31
JP4494325B2 true JP4494325B2 (en) 2010-06-30

Family

ID=38153451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325805A Expired - Fee Related JP4494325B2 (en) 2005-11-10 2005-11-10 Manufacturing method of glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JP4494325B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678711B2 (en) * 2011-02-16 2015-03-04 住友電気工業株式会社 Method for producing glass particulate deposit
EP3218317B1 (en) 2014-11-13 2018-10-17 Gerresheimer Glas GmbH Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter
JP7399835B2 (en) * 2020-10-07 2023-12-18 信越化学工業株式会社 Method for manufacturing porous glass deposit for optical fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215540A (en) * 1984-04-06 1985-10-28 Sumitomo Electric Ind Ltd Production unit for porous parent material of optical fiber
JPH04312796A (en) * 1991-04-10 1992-11-04 Kitagawa Ind Co Ltd Ion generating apparatus for electric charge prevention
JPH08319132A (en) * 1995-05-19 1996-12-03 Fujikura Ltd Production of optical fiber
JP2000233933A (en) * 1999-02-12 2000-08-29 Shin Etsu Chem Co Ltd Production of porous-glass base material
JP2001019442A (en) * 1999-07-06 2001-01-23 Shin Etsu Chem Co Ltd Removal of residual fine particles of glass in vessel used for producing accumulated body of fine particles of glass
JP2002270668A (en) * 2001-03-13 2002-09-20 Nikon Corp Substrate transfer apparatus and aligner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215540A (en) * 1984-04-06 1985-10-28 Sumitomo Electric Ind Ltd Production unit for porous parent material of optical fiber
JPH04312796A (en) * 1991-04-10 1992-11-04 Kitagawa Ind Co Ltd Ion generating apparatus for electric charge prevention
JPH08319132A (en) * 1995-05-19 1996-12-03 Fujikura Ltd Production of optical fiber
JP2000233933A (en) * 1999-02-12 2000-08-29 Shin Etsu Chem Co Ltd Production of porous-glass base material
JP2001019442A (en) * 1999-07-06 2001-01-23 Shin Etsu Chem Co Ltd Removal of residual fine particles of glass in vessel used for producing accumulated body of fine particles of glass
JP2002270668A (en) * 2001-03-13 2002-09-20 Nikon Corp Substrate transfer apparatus and aligner

Also Published As

Publication number Publication date
JP2007131487A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
TWI410385B (en) Platinum condensation abatement by electrostatic precipitation
JP4494325B2 (en) Manufacturing method of glass preform for optical fiber
JPH04194527A (en) Air ionization system
KR20150022858A (en) Electrostatic method and apparatus to form low-particulate defect thin glass sheets
JP2017060917A (en) Electric dust collector
JP5830979B2 (en) Sintering apparatus and sintering method for glass base material
JP3998450B2 (en) Porous optical fiber preform manufacturing equipment
US20040055339A1 (en) Method for producing glass-particle deposited body
TW564242B (en) Porous optical fiber base materials, optical fiber base materials and methods for producing them
JP5150365B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP4663487B2 (en) Manufacturing method of glass preform for optical fiber
JP2007007586A (en) Filter medium for air filter, and air filter
CN102408192B (en) Optical fiber preform manufacturing apparatus and optical fiber preform manufacturing method
JP2000319024A (en) Apparatus for production of porous glass preform and production of porous glass preform using the same
JP2003040626A (en) Method for producing fine glass particle heap
JP3154768B2 (en) Manufacturing method of preform preform for optical fiber
JP4449272B2 (en) Method for producing glass particulate deposit
JP2000109329A (en) Production of porous preform
JP2003054957A (en) Method for manufacturing porous glass preform
JP2014062006A (en) Porous glass preform manufacturing apparatus
JP2003286033A (en) Method and apparatus for manufacturing glass particulate deposit
JP4099987B2 (en) Method for producing glass particulate deposit
JP2003020242A (en) Method and device for manufacturing porous glass preform for optical fiber
JP2006193361A (en) Method and apparatus for manufacturing glass preform for optical fiber
JP2022061560A (en) Manufacturing method for porous glass deposit for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees