JP4488671B2 - Display device and driving method thereof - Google Patents

Display device and driving method thereof Download PDF

Info

Publication number
JP4488671B2
JP4488671B2 JP2002273300A JP2002273300A JP4488671B2 JP 4488671 B2 JP4488671 B2 JP 4488671B2 JP 2002273300 A JP2002273300 A JP 2002273300A JP 2002273300 A JP2002273300 A JP 2002273300A JP 4488671 B2 JP4488671 B2 JP 4488671B2
Authority
JP
Japan
Prior art keywords
electrode
fine particles
grid
display device
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002273300A
Other languages
Japanese (ja)
Other versions
JP2004109612A (en
Inventor
康夫 都甲
正志 赤羽
和也 小林
泰樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Stanley Electric Co Ltd
Original Assignee
Sharp Corp
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Stanley Electric Co Ltd filed Critical Sharp Corp
Priority to JP2002273300A priority Critical patent/JP4488671B2/en
Publication of JP2004109612A publication Critical patent/JP2004109612A/en
Application granted granted Critical
Publication of JP4488671B2 publication Critical patent/JP4488671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は媒質として働く液晶などの誘電性流体に光制御媒体として働く微粒子を分散させて電気制御により各種画像を得られるようにした表示装置およびその駆動方法に関する。
【0002】
【従来の技術】
従来、互いに平行に配設され、互いに対向する内面もしくは同一内面側に少なくとも一対の電極を備えた二枚の基板と、これらの基板の間に封入された液晶性材料層とからなり、前記液晶性材料層には液晶性材料層の厚みよりも小さな外径を有する不溶性の光制御媒体が均一に分散混入されており、上記した電極間に電界を加えることにより、前記光制御媒体が移動して、光制御媒体が密に分散する領域と、疎に分散する領域を形成して透過率差を生じさせて光制御を行うことを特徴とする光学スイッチング装置が知られる(例えば、特許文献1参照。)。
【0003】
また、流体中の粒子を移動させて光学的表示を行う光学スイッチング装置において、簡易な構成で高い表示コントラストが得られるようにする光学スイッチング装置が知られる(例えば、特許文献2参照。)。
【0004】
そして、透明な第1の基板と、第1の基板に対して所定のギャップを介して対向配置された第2の基板と、両基板間に狭持された分散媒と、分散媒中に分散する多数の微粒子と、第1の基板の一表面上に形成された複数の電極と、第1の基板と前記第2の基板との対向面のうち少なくともいずれか一方の表面であって、隣接する電極のいずれか一方の電極の近傍の第1の領域または第1の領域とほぼ対向する第2の基板表面の第2の領域のうち少なくともいずれか一方に形成され、微粒子を収容することができる複数の収容部とを含む表示装置とその製造方法が知られる(例えば、特許文献3参照。)。
【0005】
本出願人は、かねてより液晶などの誘電性流体に微粒子を分散させ、かつ上下基板上に電極を配置したディスプレイであって、微粒子の動きを横方向に制御しその微粒子の位置で表示を切り替える流動性微粒子ディスプレイ(MobileFine Particle Display、以下、MFPDという。)を提案し開発を行ってきた。このMFPDは、明るく高CRの反射表示をすることができ、表示切り替え後は、電界を切っても、その表示状態を長時間保持するという表示のメモリー性を有しているという特徴を持ち、特に、電子の紙即ち電子ペーパーに適している。
【0006】
ここに先願の特願2001−289724号のMFPDの断面構造を図9に示す。図面において垂直もしくは水平に配向された液晶1中に微粒子2を分散させておく。この微粒子2は光制御媒体として、また液晶1は媒質として働く。そして、一般には、微粒子2としてはTiO、SiO、ZnO等の各種金属酸化物やその中空体、スチレンボール等の有機物及びそれらの着色物等を用いることができる。図5では微粒子2として白色微粒子や着色微粒子を用いた場合であり、下基板3上に光吸収層4を設けている。なお、黒色微粒子や着色微粒子の場合、下基板3上に反射層(図示せず)を設けても良い。したがって、前者の場合、ノーマリーブラック表示、後者はノーマリーホワイト表示になる。なお、上基板5の内側には上電極6が、また光吸収層4の内側には下電極7が設けられている。
【0007】
微粒子2の光制御媒体を移動させる媒質として例えば液晶性有機材料の液晶1等の絶縁性の流動性材料を用いるが液晶1としては、誘電率異方性が正もしくは負の材料いずれでも良い。液晶1に誘電率異方性により微粒子2の挙動に影響を与え、大まかに言うと誘電率異方性の絶対値が大きい方が微粒子2の移動速度が速い傾向がある。液晶1中に分散させる微粒子2の添加量は1から50wt%程度、望ましくは10から30wt%程度が良く、微粒子2の粒径は0.5から100μm程度、望ましくは2から20μm程度がよい。ガラス、プラスチックなどの透明上下基板5,3上に形成する上下電極6,7は、ITOのような透明電極でもAl、Mo等の不透明電極でも良い。セル厚Aは2から300μm程度、望ましくは20から100μm程度がよいとされている。
【0008】
つぎに、基本的な電極配置における微粒子2の挙動を図10に示す。
【0009】
図10(a)は、上電極6を陽極、下電極7を陰極として用いて電界を形成したときの媒質の液晶1の流動方向および微粒子2の移動方向を概略的に示しており、上電極6と下電極7との間に直流電圧または単極性矩形パルス(数十Hz〜数十kHz)を印加して電界を形成すると、図中に矢印A1〜A4、B1〜B2で示す方向に媒質の液晶1が流動し、これらの方向に微粒子2が移動する。
【0010】
媒質1および微粒子2は、基本的に陽極から電気的引力を受け、陰極から電気的斥力を受けたように振る舞う。
【0011】
つぎに図10(b)は、上電極6を陰極、下電極7を陽極として用いて電界を形成したときの媒質の液晶1の流動方向および微粒子2の移動方向を概略的に示しており、同図に示すように、上電極6と下電極7との間に電界を形成すると、図中に矢印A5〜A8、B5〜B6で示す方向に媒質の液晶1が流動し、これらの方向に微粒子2が移動する。
【0012】
媒質1および微粒子2は、基本的に、陽極から電気的斥力を受け、陰極から電気的引力を受けたように振る舞う。
【0013】
図10(a)および(b)のいずれの場合でも、媒質1を電界に従って流動させると、微粒子2の多くは、平面視上、面内方向に移動する。微粒子2を容器の厚さ方向に電気泳動させる場合に比べ、低い電圧で微粒子2をより高速に移動させることが可能である。
【0014】
つぎに、上述の微粒子2の挙動に基づいて、表示原理を図11に示す。ノーマリーホワイトの場合は、微粒子(白)2が集まった所では微粒子2の散乱反射により白表示が得られ(図11(a)参照)、微粒子2が移動して無くなったところでは、液晶1が透明なので下基板3上の光吸収層4により外光が吸収され、黒く見える(図11(b)参照)。
【0015】
さらに、表示特性を図12に示す。視角によらず明るい白表示と暗い黒表示が得られている事がわかる。
【0016】
図13(a)に、白表示の際の表示装置の様子を拡大して示し、図13(b)に、黒表示の際の表示装置の様子を拡大して示す。これらの図に示した表示装置は、上電極6のパターンおよび下電極7のパターンそれぞれでの電極ピッチを300μm、上下電極6,7の線幅を150μmとし、各電極6,7をモリブデンで形成したときのものである。
【0017】
【特許文献1】
特開2001−318629号公報
【特許文献2】
特開2002−244164号公報
【特許文献3】
特開2002−162649号公報
【0018】
【発明が解決しようとする課題】
しかし乍ら、このようなMFPDにあっては、白表示特性を得るためにディスプレイのセル厚を厚くすると上下電極間の横電界を用いている本ディスプレイでは電極中央付近の微粒子を十分に制御できず表示の切り替えを所望通りに行えないという問題があった。
【0019】
本発明は叙上の点に着目して成されたものでこのようなMFPDのディスプレイを始め、各種の表示手段の厚いセル厚であっても高速に制度よく、微粒子位置を制御可能にできるようにした表示装置およびその駆動方法を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明は下記の構成により上記課題を解決するものである。
【0021】
(1)透明な上基板と下基板の間に液晶性を有する有機材料からなる誘電性の流体(分散媒)とその流体に分散された白色もしくは着色された微粒子とをはさみ、前記上基板上には上電極、前記下基板上には下電極が横電界を生ずるようそれぞれ配置され、さらに前記上電極と前記下電極はそれぞれ格子状とされ、一方の格子状電極に対して他方の格子状電極が幅広く形成され、前記一方の格子状電極における電極交差部と前記他方の格子状電極における電極開口部が対向配置するよう構成され、さらに前記一方の格子状電極が形成された基板上に、該一方の格子状電極とは電気的に絶縁された形で前記他方の格子状電極と対向するように補助電極が形成されることを特徴とする表示装置。
【0022】
(2)前記微粒子は、前記各電極に印加する電圧によりその位置が制御され、その位置により表示を切り替えることを特徴とする前記(1)記載の表示装置。
【0023】
(3)前記補助電極は、前記一方の格子状電極における電極開口部である画素に相当する表示部分の中央付近に形成されることを特徴とする前記(1)記載の表示装置。
【0025】
前記上基板と前記下基板の間の距離に相当するセル厚が100ミクロン以上であることを特徴とする前記(1)記載の表示装置。
【0026】
(5)前記(1)の表示装置を備えると共に、前他方の格子状電極と前記一方の格子状電極間に直流もしくは直流成分を含んだ単極性交流電圧を印加するタイミングと同期させたタイミングで前記直流とは逆極性の直流もしくは前記直流成分とは逆極性の直流成分を含んだ単極性交流電圧を前記他方の格子状電極と前記補助電極間に印加することを特徴とする表示装置の駆動方法。
【0027】
(6)前記微粒子は前記一方の格子状電極、前記他方の格子状電極及び前記補助電極に印加される電圧により横方向に移動することを特徴とする前記(5)記載の表示装置の駆動方法。
【0028】
【発明の実施の形態】
以下に本発明の一実施の形態について図面と共に説明する。
【0029】
図1は、本発明の一実施の形態を示す表示装置の上下電極および補助電極のパターン構成を平面から見た拡大構造図、図2は、図1のII−II線を断面で見た表示装置の拡大模式図である。
【0030】
そして、この表示装置は図9に示す従来例と同様に垂直もしくは水平に配向された液晶1中に微粒子2を分散させて置き、微粒子2は光制御媒体として、また液晶1は媒質として働く。
【0031】
さらに図面では、格子状の上電極6と板状の下電極7を上下基板5,3上に直接または光吸収層4を介して配設してあるが、この実施の形態では上基板5側に補助電極8を絶縁膜9を介して形成している。この補助電極8は下基板3側に形成してもよいが、その場合、上下電極6,7の位置も逆になり上電極6が微粒子2を隠す不透明電極にならないため別途微粒子2を隠すためのパターンを上基板5上に形成する必要があるため製造面からは上基板5側が望ましい。
【0032】
前記絶縁膜9としてアクリル系絶縁性有機膜を用いたが、その他の有機絶縁膜やSiO、SiNx等の無機絶縁膜及びそれらの組み合わせでもよい。
【0033】
微粒子2としてはTiOと有機物の混合系を用いた。図示では微粒子2として白色微粒子や着色微粒子を用いた場合であり、下基板3上に光吸収層4を設けている。黒色微粒子や着色微粒子の場合、下基板3上に反射層を設けても良い。前者の場合ノーマリーブラック表示、後者はノーマリーホワイト表示になる。
【0034】
微粒子2の光制御媒体を移動させる媒質として例えば液晶1等の絶縁性の流動性材料を用いる。液晶1としては誘電率異方性が正もしくは負の材料いずれでも良い。液晶1に誘電率異方性により微粒子2の挙動に影響を与え、大まかに言うと誘電率異方性の絶対値が大きい方が微粒子2の移動速度が速い傾向がある。ここでは液晶1としてRDP−00333(大日本インキ製)を用いた。液晶1中に分散させる微粒子2の添加量は1から50wt%程度、望ましくは10から30wt%程度が良い。ここでは微粒子2を20wt%添加した。微粒子2の粒径は0.5から100μm程度、望ましくは2から20μm程度がよい。ここでは6μm粒子を用いた。ガラス、プラスチックなどの透明上下基板5,3上に形成する電極はITOのような透明電極でもAl、Mo等の不透明電極でも良い。ここでは上電極6としてMo、下電極7と補助電極8としてITOを用いた。
【0035】
ここでMFPDのセル厚Aに対する白表示の明るさの変化を図3に示す(微粒子添加量20wt%)。図3より新聞紙の明るさ(反射率:約40%)以上となるのは、セル厚Aが100μm以上の場合であり、明るさの面から望ましくは100μm以上がよいことがわかる。
【0036】
ところが従来のMFPDでは上下電極間の横電界を用いて微粒子2を制御しており、図5におけるA(セル厚)/B(画素サイズの1/2)比が1以下になると、すなわち画素サイズ200μmのセルでセル厚Aが100μm以上になると、画素中央部の微粒子2は全く動かなくなる。その様子を図7の写真(セル厚200μmのセル写真)に示す。ここでは透過で写真撮影しているため微粒子2がある部分が黒く、微粒子2のない部分が白く見える(白黒反転)。
【0037】
このようにセル厚Aを厚くしてもA/B比が1以上になるため画素サイズを大きくする必要があるが、画素サイズを大きくすれば、当然のこととして解像度が低くなり、また駆動電圧を高くしなければならないという問題があった。また反射率を犠牲にしてセル厚Aを薄くした場合において画素中央部の微粒子2を制御できるものの中央部から画素周辺部に微粒子が移動するのに要する時間がかかるため、切り替えに数秒以上も時間がかかるという問題があった。
【0038】
これに対し、本発明に係る補助電極を備えたMFPDの電圧印加に対する微粒子2の挙動を図8の写真(セル厚200μmのセル写真)に示す。ここでも透過で写真撮影しているため微粒子2がある部分が黒く、微粒子2のない部分が白く見える。電圧は上電極6に+70Vもしくは−70V、下電極7に0V、補助電極8に上電極6と極性逆の電圧を印加した。この写真からわかるように微粒子2は完全に制御されており、画素中央部などの微粒子2が動かなくなるといった現象は見られず、逆に、さらに非常に高速に微粒子2が移動することが確認できた。
【0039】
本発明に係るMFPDのレスポンス特性を図4に示す。この図から分るように、非常に高速にスイッチングしており応答時間は200msec(0.2sec)以下であることがわかる。
【0040】
また、図6に示す写真から分るように、表示切替操作が立ち上がりから200msec以内にセル厚Aが150μm、190μm、250μmと変化させても微粒子2の制御は可能であり、最大450μmまで確認できた。
【0041】
本発明のMFPDにおける微粒子2の位置は下電極7を接地した状態で上電極6に印加する電圧の極性を変えることにより制御できるが、その点は従来のMFPDも同様である。本発明では上電極6に印加する電圧に対し同期させるかもしくはわずかにずらせた状態で同期させる形で補助電極8に電圧を印加する。その動作原理ははっきりしていないが、以下のように考えられる。たとえば白表示即ち画素上に微粒子が分散している状態から黒表示即ち画素外(上電極6の下)に微粒子2が集められている状態に表示を変える場合、補助電極8と下電極7間の電圧差により微粒子2は下電極7側に集められる(縦方向の移動)。次に、下電極7と上電極6の電圧差により微粒子2は上電極6側に集められる(横方向の移動)。上記現象が同時進行して画素上に分散していた微粒子2は画素外(上電極6の下)に微粒子2が集められる。これが本発明における微粒子2の動作原理と仮定できる。
【0042】
この考えを検証するため、まず補助電極8と下電極7間に所定の電圧を印加し、その後、下電極7と上電極6間に所定の電圧を印加したところ三電極に所定の電圧を同時に印加した時と同様に微粒子2を制御できることを確認した。一方まず上電極6と下電極7間に所定の電圧を印加し、その後、下電極7と補助電極8間に所定の電圧を印加したところ従来のMFPDと同様に中央部の微粒子2が動かなかったことも上記仮定を裏付けしている。上記仮定によれば検証実験のように補助電極8−下電極7間に印加する電圧と下電極7−上電極6間に印加する電圧を少しずらした方が効率よく微粒子2を移動できるはずであり、好ましいといえる。但し、駆動上同期させた方が製造容易であり、かつ同期させた駆動条件でも図4のように従来のMFPDに比べ表示性能、応答性能とも著しく改善できていることを確認しており、タイミングをずらす駆動方法は必須ではない。
【0043】
この実施の形態では補助電極8として下電極7と同じパターン・大きさ(画素電極と同じ大きさ)のものを用いたが異なるパターン・大きさ、例えば画素中央部のみの小さなパターン等でもよい。補助電極8は透明なITO電極であるが、ITOとガラスとの屈折率差により外部光が反射されるため補助電極8は小さいことが望ましい。その場合、特に黒レベルが改善され図4のコントラスト(12程度)はさらに向上できる。
【0044】
この実施の形態における構造により、450ミクロンのMFPDにおいても微粒子2を所望の状態に制御できることを確認している。このときの白表示の反射率は60%以上でありコピー紙(反射率70%程度)に近い明るい表示と高コントラストを実現できる。
【0045】
電極パターンは格子状の上電極6とべタに近い幅広い格子状の下電極7及び補助電極8の場合について示したがそれに限らない。例えば上電極6は円周状、蜂の巣状、ストライプ状等でもよく、下電極7や補助電極8はベタ状、円状、多角形、ストライプ状等でもよい。
【0046】
なお、微粒子2、媒質(液晶1)、電極等その他の構成材料は上記実施の形態に限らず、例えば媒質は、液晶性を有さない液体でも良い。
【0047】
補助電極8は上基板5上に形成する場合について述べたが、下基板3上もしくは両基板5,3上に形成してもよい。また補助電極8を形成する位置は絶縁膜9を介して上電極6もしくは下電極7の上でも下でもかまわない。
【0048】
【発明の効果】
以上述べたように本発明によりセル厚、画素サイズ(A/B比)によらず、しかも微粒子の位置を所望の位置に制御できるためディスプレイのセル条件によらず高いコントラストを得ることができ、図4からも現状でコントラスト12を確認しており特に、セル厚を厚くするとディスプレイの反射率も現状で反射率60%を確認しており著しく向上できると共に殊に単位面積あたりの白微粒子の密度を高くできるため新聞紙(新聞紙の反射率40%程度)より明るく、コピー紙(コピー紙の反射率70%程度)に近い明るさと、新聞紙(新聞紙のコントラストは5程度)及びコピー紙(コピー紙のコントラストは7から8程度)以上の高コントラストの反射型ディスプレイを実現できる。
【0049】
また本発明により微粒子の位置を効率よく移動でき、そのためレスポンスが改善され従来数秒かかっていた表示切り替えが200msec以下で行え高速応答を実現できるものであって200msecはSTN−LCDと同等であり、アニメなどの動画表示も可能になる。
【0050】
しかも本発明はディスプレイ全般、児童用玩具等、紙・印刷物(雑誌、新聞、ポスターなど)の代替品全般(電子の紙)、カメラの絞り、ストロボの光量調整、印画紙用書き込み光源等の光学部品全般などその応用技術ないし産業分野は、きわめて広範である。
【図面の簡単な説明】
【図1】 本発明に係る一実施の形態を示す表示装置であって上下基板、液晶および微粒子を取除いて上下電極および補助電極のパターン構造を示す平面から見た拡大構造図
【図2】 図1のII−II線を断面で見た拡大模式図
【図3】 セル厚と反射率との関係を示すグラフ
【図4】 本発明のレスポンス特性を示すもので電圧の印加時間とコントラスト比および反射率(%)との関係を示すグラフ
【図5】 セル厚AとB(画面サイズの1/2)との相対関係を示す縦断説明図
【図6】 本発明に係る表示切替の状態を写真で示すものでセル厚と色調との関係を示す一連の写真
【図7】 拡大写真
【図8】 拡大写真
【図9】 従来例の拡大断面模式図
【図10】 (a)は、図9に示した表示装置に所定の電圧を印加したときにおける微粒子分散層中の媒質および微粒子の流動方向ないし移動方向を説明するための模式図であり、(b)は、同装置に他の電圧を形成したときにおける微粒子分散層中の媒質および微粒子の流動方向ないし移動方向を説明するための模式図
【図11】(a),(b) 微粒子の表示原理を示す拡大断面模式図
【図12】 白表示と黒表示とを行ったときの反射率と視角との関係を示すグラフ
【図13】 (a)は、図9に示した表示装置によって白表示を行った際の顕微鏡写真の写しであり、(b)は、同装置によって黒表示を行った際の顕微鏡写真の写し
【符号の説明】
1 液晶(媒質)
2 微粒子(光制御媒体)
3 下基板
4 光吸収層
5 上基板
6 上電極
7 下電極
8 補助電極
9 絶縁膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a display device in which fine particles acting as a light control medium are dispersed in a dielectric fluid such as liquid crystal that acts as a medium so that various images can be obtained by electrical control, and a driving method thereof.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, the liquid crystal includes two substrates that are arranged in parallel to each other and that have at least a pair of electrodes on inner surfaces facing each other or on the same inner surface side, and a liquid crystalline material layer sealed between these substrates. An insoluble light control medium having an outer diameter smaller than the thickness of the liquid crystal material layer is uniformly dispersed and mixed in the conductive material layer, and the light control medium moves by applying an electric field between the electrodes. Thus, there is known an optical switching device characterized in that light control is performed by forming a region in which the light control medium is densely dispersed and a region in which the light control medium is sparsely dispersed to generate a transmittance difference (for example, Patent Document 1). reference.).
[0003]
In addition, an optical switching device that performs high-speed display contrast with a simple configuration in an optical switching device that performs optical display by moving particles in a fluid is known (see, for example, Patent Document 2).
[0004]
Then, the transparent first substrate, the second substrate opposed to the first substrate through a predetermined gap, a dispersion medium sandwiched between the two substrates, and the dispersion in the dispersion medium A plurality of fine particles, a plurality of electrodes formed on one surface of the first substrate, and at least one of the opposing surfaces of the first substrate and the second substrate, and adjacent to each other Formed in at least one of the first region in the vicinity of one of the electrodes or the second region on the surface of the second substrate substantially opposite to the first region, and contains fine particles A display device including a plurality of storage units that can be manufactured and a manufacturing method thereof are known (for example, see Patent Document 3).
[0005]
The present applicant has long been a display in which fine particles are dispersed in a dielectric fluid such as liquid crystal and electrodes are arranged on upper and lower substrates, and the movement of the fine particles is controlled in the lateral direction to switch the display at the position of the fine particles. We have proposed and developed a fluid fine particle display (hereinafter referred to as MFPD). This MFPD is capable of bright and high-CR reflective display, and has a display memory property that maintains its display state for a long time even when the electric field is turned off after switching the display. In particular, it is suitable for electronic paper, that is, electronic paper.
[0006]
FIG. 9 shows a cross-sectional structure of MFPD of Japanese Patent Application No. 2001-289724 of the prior application. In the drawing, fine particles 2 are dispersed in a liquid crystal 1 that is aligned vertically or horizontally. The fine particles 2 function as a light control medium, and the liquid crystal 1 functions as a medium. In general, the fine particles 2 can be various metal oxides such as TiO 2 , SiO 2 , ZnO, hollow bodies thereof, organic substances such as styrene balls, and colored substances thereof. In FIG. 5, white fine particles or colored fine particles are used as the fine particles 2, and the light absorption layer 4 is provided on the lower substrate 3. In the case of black fine particles or colored fine particles, a reflective layer (not shown) may be provided on the lower substrate 3. Therefore, the former is normally black display, and the latter is normally white display. An upper electrode 6 is provided inside the upper substrate 5, and a lower electrode 7 is provided inside the light absorption layer 4.
[0007]
As a medium for moving the light control medium of the fine particles 2, for example, an insulating fluid material such as a liquid crystal 1 of a liquid crystal organic material is used. The liquid crystal 1 may be a material having a positive or negative dielectric anisotropy. The behavior of the fine particles 2 is affected by the dielectric anisotropy of the liquid crystal 1, and roughly speaking, the moving speed of the fine particles 2 tends to be higher when the absolute value of the dielectric anisotropy is larger. The addition amount of the fine particles 2 dispersed in the liquid crystal 1 is about 1 to 50 wt%, preferably about 10 to 30 wt%, and the particle size of the fine particles 2 is about 0.5 to 100 μm, preferably about 2 to 20 μm. The upper and lower electrodes 6 and 7 formed on the transparent upper and lower substrates 5 and 3 such as glass and plastic may be transparent electrodes such as ITO or opaque electrodes such as Al and Mo. The cell thickness A is about 2 to 300 μm, preferably about 20 to 100 μm.
[0008]
Next, the behavior of the fine particles 2 in a basic electrode arrangement is shown in FIG.
[0009]
FIG. 10A schematically shows the flow direction of the liquid crystal 1 and the movement direction of the fine particles 2 when an electric field is formed using the upper electrode 6 as an anode and the lower electrode 7 as a cathode. When an electric field is formed by applying a DC voltage or a unipolar rectangular pulse (several tens of Hz to several tens of kHz) between 6 and the lower electrode 7, the medium in the direction indicated by arrows A1 to A4 and B1 to B2 in the figure Liquid crystal 1 flows, and fine particles 2 move in these directions.
[0010]
The medium 1 and the fine particles 2 basically behave as if they received an electrical attraction from the anode and an electrical repulsion from the cathode.
[0011]
Next, FIG. 10B schematically shows the flow direction of the liquid crystal 1 and the movement direction of the fine particles 2 when an electric field is formed using the upper electrode 6 as a cathode and the lower electrode 7 as an anode. As shown in the figure, when an electric field is formed between the upper electrode 6 and the lower electrode 7, the liquid crystal 1 of the medium flows in the directions indicated by arrows A5 to A8 and B5 to B6 in the figure, and in these directions The fine particles 2 move.
[0012]
The medium 1 and the fine particles 2 basically behave as if they received an electric repulsive force from the anode and an electric attractive force from the cathode.
[0013]
10A and 10B, when the medium 1 is caused to flow according to an electric field, most of the fine particles 2 move in the in-plane direction in plan view. Compared to the case where the microparticles 2 are electrophoresed in the thickness direction of the container, the microparticles 2 can be moved at a higher speed with a lower voltage.
[0014]
Next, the display principle is shown in FIG. 11 based on the behavior of the fine particles 2 described above. In the case of normally white, white display is obtained by scattering reflection of the fine particles 2 (see FIG. 11A) when the fine particles (white) 2 gather, and the liquid crystal 1 is removed when the fine particles 2 move and disappear. Is transparent, external light is absorbed by the light absorption layer 4 on the lower substrate 3 and appears black (see FIG. 11B).
[0015]
Further, the display characteristics are shown in FIG. It can be seen that bright white display and dark black display are obtained regardless of the viewing angle.
[0016]
FIG. 13A shows an enlarged view of the display device during white display, and FIG. 13B shows an enlarged view of the display device during black display. In the display device shown in these drawings, the electrode pitch in the pattern of the upper electrode 6 and the pattern of the lower electrode 7 is 300 μm, the line width of the upper and lower electrodes 6 and 7 is 150 μm, and the electrodes 6 and 7 are formed of molybdenum. It is a thing when I did it.
[0017]
[Patent Document 1]
JP 2001-318629 A [Patent Document 2]
JP 2002-244164 A [Patent Document 3]
JP 2002-162649 A
[Problems to be solved by the invention]
However, in such an MFPD, if the cell thickness of the display is increased in order to obtain white display characteristics, fine particles near the center of the electrode can be sufficiently controlled in this display using the horizontal electric field between the upper and lower electrodes. There is a problem that the display cannot be switched as desired.
[0019]
The present invention has been made paying attention to the above points, and it is possible to control the position of fine particles at high speed and in a high-speed system even with a thick cell thickness of various display means such as the display of MFPD. An object of the present invention is to provide a display device and a driving method thereof.
[0020]
[Means for Solving the Problems]
This invention solves the said subject with the following structure.
[0021]
(1) Between a transparent upper substrate and a lower substrate, a dielectric fluid (dispersion medium) made of an organic material having liquid crystallinity and white or colored fine particles dispersed in the fluid are sandwiched between the upper substrate and the upper substrate. The upper electrode and the lower electrode are arranged on the lower substrate so as to generate a lateral electric field, respectively, and the upper electrode and the lower electrode are each in a lattice shape, with respect to one lattice electrode. electrode is widely formed, the electrode openings in the lattice-shaped electrodes of the the electrode crossing portion in the one of the grid-shaped electrode and the other is configured to opposed, on a further substrate on which the the one of the grid-shaped electrode is formed, display device, characterized in that the auxiliary electrode so as to face the other of the lattice-shaped electrode in an electrically insulated form is formed with one of the grid-shaped electrode the.
[0022]
(2) The display device according to (1), wherein the position of the fine particles is controlled by a voltage applied to each electrode, and the display is switched according to the position.
[0023]
(3) The display device according to (1) , wherein the auxiliary electrode is formed near a center of a display portion corresponding to a pixel which is an electrode opening in the one grid electrode .
[0025]
(4) The electrolyte cell thickness corresponding to the distance between the substrate the lower substrate is characterized in that 100 microns or more (1) The display device according.
[0026]
(5) the provided with a display device (1), is synchronized with the timing of applying a pre-Symbol unipolar alternating voltage including a direct current or a direct current component between the other of the grid-shaped electrode and the one of the grid-shaped electrode Timing And a unipolar AC voltage including a DC component having a polarity opposite to the DC component or a DC component having a polarity opposite to the DC component is applied between the other grid electrode and the auxiliary electrode. Driving method.
[0027]
(6) The driving of the display device according to (5) , wherein the fine particles move in a lateral direction by a voltage applied to the one grid electrode, the other grid electrode, and the auxiliary electrode. Method.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0029]
FIG. 1 is an enlarged structural view in which a pattern configuration of upper and lower electrodes and auxiliary electrodes of a display device according to an embodiment of the present invention is viewed from above, and FIG. 2 is a display in which a II-II line in FIG. It is an expansion schematic diagram of an apparatus.
[0030]
In this display device, fine particles 2 are dispersed and placed in vertically or horizontally aligned liquid crystal 1 as in the conventional example shown in FIG. 9, and fine particles 2 serve as a light control medium and liquid crystal 1 serves as a medium.
[0031]
Further, in the drawing, the grid-like upper electrode 6 and the plate-like lower electrode 7 are arranged on the upper and lower substrates 5 and 3 directly or via the light absorption layer 4, but in this embodiment, the upper substrate 5 side is arranged. In addition, an auxiliary electrode 8 is formed through an insulating film 9. The auxiliary electrode 8 may be formed on the lower substrate 3 side, but in this case, the positions of the upper and lower electrodes 6 and 7 are also reversed, and the upper electrode 6 does not become an opaque electrode that hides the fine particles 2, so that the fine particles 2 are separately hidden. Since it is necessary to form the above pattern on the upper substrate 5, the upper substrate 5 side is desirable from the manufacturing surface.
[0032]
Although the acrylic insulating organic film is used as the insulating film 9, other organic insulating films, inorganic insulating films such as SiO 2 and SiNx, and combinations thereof may be used.
[0033]
As the fine particles 2, a mixed system of TiO 2 and an organic substance was used. In the drawing, white fine particles or colored fine particles are used as the fine particles 2, and the light absorption layer 4 is provided on the lower substrate 3. In the case of black fine particles or colored fine particles, a reflective layer may be provided on the lower substrate 3. The former is normally black, and the latter is normally white.
[0034]
As a medium for moving the light control medium of the fine particles 2, for example, an insulating fluid material such as the liquid crystal 1 is used. The liquid crystal 1 may be a material having a positive or negative dielectric anisotropy. The behavior of the fine particles 2 is affected by the dielectric anisotropy of the liquid crystal 1, and roughly speaking, the moving speed of the fine particles 2 tends to be higher when the absolute value of the dielectric anisotropy is larger. Here, RDP-00333 (Dainippon Ink) was used as the liquid crystal 1. The addition amount of the fine particles 2 dispersed in the liquid crystal 1 is about 1 to 50 wt%, preferably about 10 to 30 wt%. Here, 20 wt% of fine particles 2 was added. The particle diameter of the fine particles 2 is about 0.5 to 100 μm, preferably about 2 to 20 μm. Here, 6 μm particles were used. The electrodes formed on the transparent upper and lower substrates 5 and 3 such as glass and plastic may be transparent electrodes such as ITO or opaque electrodes such as Al and Mo. Here, Mo is used as the upper electrode 6, and ITO is used as the lower electrode 7 and the auxiliary electrode 8.
[0035]
Here, the change in brightness of white display with respect to the cell thickness A of MFPD is shown in FIG. 3 (fine particle addition amount 20 wt%). It can be seen from FIG. 3 that the brightness of the newspaper (reflectance: about 40%) or more is when the cell thickness A is 100 μm or more, and is preferably 100 μm or more in terms of brightness.
[0036]
However, in the conventional MFPD, the fine particles 2 are controlled using a lateral electric field between the upper and lower electrodes, and when the A (cell thickness) / B (1/2 pixel size) ratio in FIG. When the cell thickness A is 100 μm or more in a 200 μm cell, the fine particles 2 in the center of the pixel do not move at all. This is shown in the photograph of FIG. 7 (cell photograph of cell thickness 200 μm). Here, since the photograph is taken with transmission, the portion with the fine particles 2 appears black and the portion without the fine particles 2 appears white (black and white reversal).
[0037]
In this way, even if the cell thickness A is increased, the A / B ratio becomes 1 or more, so it is necessary to increase the pixel size. However, if the pixel size is increased, the resolution is naturally lowered and the drive voltage is increased. There was a problem that had to be raised. In addition, when the cell thickness A is reduced at the sacrifice of the reflectance, the fine particles 2 in the central portion of the pixel can be controlled, but it takes time for the fine particles to move from the central portion to the peripheral portion of the pixel. There was a problem that it took.
[0038]
On the other hand, the behavior of the fine particles 2 with respect to the voltage application of the MFPD having the auxiliary electrode according to the present invention is shown in the photograph of FIG. 8 (cell photograph of cell thickness 200 μm). Again, since the photograph was taken through, the portion with the fine particles 2 appears black and the portion without the fine particles 2 appears white. As for the voltage, +70 V or −70 V was applied to the upper electrode 6, 0 V was applied to the lower electrode 7, and a voltage having a polarity opposite to that of the upper electrode 6 was applied to the auxiliary electrode 8. As can be seen from this photograph, the fine particles 2 are completely controlled, and there is no phenomenon that the fine particles 2 at the center of the pixel stop moving. On the contrary, it can be confirmed that the fine particles 2 move at a very high speed. It was.
[0039]
FIG. 4 shows the response characteristics of the MFPD according to the present invention. As can be seen from this figure, switching is very fast and the response time is 200 msec (0.2 sec) or less.
[0040]
In addition, as can be seen from the photograph shown in FIG. 6, the fine particles 2 can be controlled even when the cell thickness A is changed to 150 μm, 190 μm, and 250 μm within 200 msec from the start of the display switching operation, and can be confirmed up to 450 μm. It was.
[0041]
The position of the fine particles 2 in the MFPD of the present invention can be controlled by changing the polarity of the voltage applied to the upper electrode 6 while the lower electrode 7 is grounded. This is also the case with the conventional MFPD. In the present invention, the voltage is applied to the auxiliary electrode 8 in the form of being synchronized with the voltage applied to the upper electrode 6 or being slightly shifted. The operating principle is not clear, but it can be considered as follows. For example, when the display is changed from white display, that is, a state where fine particles are dispersed on the pixel, to black display, that is, the state where the fine particles 2 are collected outside the pixel (under the upper electrode 6), between the auxiliary electrode 8 and the lower electrode 7 Due to the voltage difference, the fine particles 2 are collected on the lower electrode 7 side (vertical movement). Next, the fine particles 2 are collected on the upper electrode 6 side by the voltage difference between the lower electrode 7 and the upper electrode 6 (lateral movement). The fine particles 2 that have been dispersed on the pixel as the above phenomenon progresses simultaneously are collected outside the pixel (under the upper electrode 6). This can be assumed as the operating principle of the fine particles 2 in the present invention.
[0042]
In order to verify this idea, first, a predetermined voltage is applied between the auxiliary electrode 8 and the lower electrode 7, and then a predetermined voltage is applied between the lower electrode 7 and the upper electrode 6. It was confirmed that the fine particles 2 could be controlled in the same manner as when applied. On the other hand, when a predetermined voltage is first applied between the upper electrode 6 and the lower electrode 7, and then a predetermined voltage is applied between the lower electrode 7 and the auxiliary electrode 8, the fine particles 2 in the central portion do not move as in the conventional MFPD. This also supports the above assumption. According to the above assumption, the fine particles 2 should move more efficiently if the voltage applied between the auxiliary electrode 8 and the lower electrode 7 and the voltage applied between the lower electrode 7 and the upper electrode 6 are slightly shifted as in the verification experiment. Yes, it is preferable. However, it has been confirmed that it is easier to manufacture when synchronized in terms of driving, and that display performance and response performance are significantly improved compared to the conventional MFPD as shown in FIG. 4 even under synchronized driving conditions. A driving method for shifting is not essential.
[0043]
In this embodiment, the auxiliary electrode 8 has the same pattern and size as the lower electrode 7 (the same size as the pixel electrode), but may have a different pattern and size, for example, a small pattern only at the center of the pixel. Although the auxiliary electrode 8 is a transparent ITO electrode, it is desirable that the auxiliary electrode 8 is small because external light is reflected by the difference in refractive index between ITO and glass. In that case, the black level is particularly improved, and the contrast (about 12) in FIG. 4 can be further improved.
[0044]
With the structure in this embodiment, it has been confirmed that the fine particles 2 can be controlled to a desired state even in a 450-micron MFPD. At this time, the reflectance of white display is 60% or more, and a bright display close to copy paper (with a reflectance of about 70%) and high contrast can be realized.
[0045]
Although the electrode pattern is shown for the case of the upper electrode 6 and the lower electrode 7 and the auxiliary electrode 8 having a wide lattice shape close to a solid shape, the present invention is not limited to this. For example, the upper electrode 6 may have a circumferential shape, a honeycomb shape, a stripe shape, or the like, and the lower electrode 7 or the auxiliary electrode 8 may have a solid shape, a circular shape, a polygonal shape, a stripe shape, or the like.
[0046]
The other constituent materials such as the fine particles 2, the medium (liquid crystal 1), and the electrodes are not limited to the above embodiment, and the medium may be a liquid having no liquid crystallinity, for example.
[0047]
Although the auxiliary electrode 8 is formed on the upper substrate 5, it may be formed on the lower substrate 3 or both the substrates 5 and 3. The position where the auxiliary electrode 8 is formed may be above or below the upper electrode 6 or the lower electrode 7 via the insulating film 9.
[0048]
【The invention's effect】
As described above, according to the present invention, high contrast can be obtained regardless of the cell condition of the display because the position of the fine particles can be controlled to a desired position regardless of the cell thickness and the pixel size (A / B ratio). FIG. 4 shows that the contrast 12 is confirmed at present, and in particular, when the cell thickness is increased, the reflectance of the display is confirmed to be 60% at present, and the density of white fine particles per unit area can be significantly improved. Is brighter than newspaper (about 40% of newspaper reflectivity), close to copy paper (about 70% of copy paper reflectivity), newspaper (contrast of newspaper is about 5) and copy paper (of copy paper) A high-contrast reflective display with a contrast of about 7 to 8) can be realized.
[0049]
In addition, the present invention can efficiently move the position of the fine particles, so that the response is improved and the display switching which has conventionally taken several seconds can be performed at 200 msec or less and a high-speed response can be realized. 200 msec is equivalent to STN-LCD, It is also possible to display videos such as
[0050]
In addition, the present invention is a general display, a toy for children, paper / printed materials (magazines, newspapers, posters, etc.), general replacements (electronic paper), camera aperture, strobe light adjustment, optical writing light for photographic paper, etc. The applied technology and industrial fields such as general parts are very wide.
[Brief description of the drawings]
FIG. 1 is a display device showing an embodiment according to the present invention, and is an enlarged structural view seen from a plane showing a pattern structure of upper and lower electrodes and auxiliary electrodes by removing upper and lower substrates, liquid crystals and fine particles. FIG. 3 is a graph showing the relationship between the cell thickness and the reflectance. FIG. 4 shows the response characteristics of the present invention, and shows the voltage application time and contrast ratio. FIG. 5 is a longitudinal explanatory view showing the relative relationship between the cell thickness A and B (1/2 of the screen size). FIG. 6 is a display switching state according to the present invention. Is a series of photographs showing the relationship between cell thickness and color tone. [Fig. 7] Enlarged photo [Fig. 8] Enlarged photo [Fig. 9] Fig. 10 (a) is an enlarged cross-sectional schematic diagram of a conventional example. In the fine particle dispersed layer when a predetermined voltage is applied to the display device shown in FIG. FIG. 4B is a schematic diagram for explaining the flow direction and movement direction of the particle and the fine particles, and FIG. Schematic diagram for explanation [FIG. 11] (a), (b) Schematic enlarged sectional view showing the display principle of fine particles [FIG. 12] The relationship between reflectance and viewing angle when white display and black display are performed FIG. 13A is a copy of a micrograph when white display is performed by the display device shown in FIG. 9, and FIG. 13B is a micrograph when black display is performed by the device. Copy of [Description of sign]
1 Liquid crystal (medium)
2 Fine particles (light control medium)
3 Lower substrate 4 Light absorption layer 5 Upper substrate 6 Upper electrode 7 Lower electrode 8 Auxiliary electrode 9 Insulating film

Claims (6)

透明な上基板と下基板の間に液晶性を有する有機材料からなる誘電性の流体(分散媒)とその流体に分散された白色もしくは着色された微粒子とをはさみ、前記上基板上には上電極、前記下基板上には下電極が横電界を生ずるようそれぞれ配置され、さらに前記上電極と前記下電極はそれぞれ格子状とされ、一方の格子状電極に対して他方の格子状電極が幅広く形成され、前記一方の格子状電極における電極交差部と前記他方の格子状電極における電極開口部が対向配置するよう構成され、さらに前記一方の格子状電極が形成された基板上に、該一方の格子状電極とは電気的に絶縁された形で前記他方の格子状電極と対向するように補助電極が形成されることを特徴とする表示装置。A dielectric fluid (dispersion medium) made of an organic material having liquid crystallinity is sandwiched between a transparent upper substrate and a lower substrate, and white or colored fine particles dispersed in the fluid are sandwiched between the upper substrate and the upper substrate. The lower electrode is disposed on the lower substrate so as to generate a transverse electric field, and the upper electrode and the lower electrode are each in a lattice shape, and the other lattice electrode is wider than the other lattice electrode. is formed, the electrode opening in the other of the grid-shaped electrode and the electrode crossing portion in the one of the grid-shaped electrodes are arranged to face each further wherein one of the grid-shaped electrode is formed on the substrate, one of the display device, characterized in that the auxiliary electrode so as to face the other of the lattice-shaped electrode in an electrically insulated form is formed from a lattice-like electrode. 前記微粒子は、前記各電極に印加する電圧によりその位置が制御され、その位置により表示を切り替えることを特徴とする請求項1記載の表示装置。  The display device according to claim 1, wherein the position of the fine particles is controlled by a voltage applied to each of the electrodes, and the display is switched according to the position. 前記補助電極は、前記一方の格子状電極における電極開口部である画素に相当する表示部分の中央付近に形成されることを特徴とする請求項1記載の表示装置。The display device according to claim 1 , wherein the auxiliary electrode is formed near a center of a display portion corresponding to a pixel which is an electrode opening in the one grid-like electrode . 前記上基板と前記下基板の間の距離に相当するセル厚が100ミクロン以上であることを特徴とする請求項1記載の表示装置。  2. The display device according to claim 1, wherein a cell thickness corresponding to a distance between the upper substrate and the lower substrate is 100 microns or more. 請求項1の表示装置を備えると共に、前他方の格子状電極と前記一方の格子状電極間に直流もしくは直流成分を含んだ単極性交流電圧を印加するタイミングと同期させたタイミングで前記直流とは逆極性の直流もしくは前記直流成分とは逆極性の直流成分を含んだ単極性交流電圧を前記他方の格子状電極と前記補助電極間に印加することを特徴とする表示装置の駆動方法。Provided with a display device according to claim 1, and the DC at a timing synchronized with the timing of applying a unipolar alternating voltage including a direct-current or direct-current component between before SL other grid-like electrode and the one of the grid-shaped electrode A method for driving a display device, comprising: applying a unipolar AC voltage having a reverse polarity direct current or a direct current component having a reverse polarity to the direct current component between the other grid electrode and the auxiliary electrode. 前記微粒子は前記一方の格子状電極、前記他方の格子状電極及び前記補助電極に印加される電圧により横方向に移動することを特徴とする請求項5記載の表示装置の駆動方法。6. The method of driving a display device according to claim 5 , wherein the fine particles move in the horizontal direction by a voltage applied to the one grid electrode, the other grid electrode, and the auxiliary electrode.
JP2002273300A 2002-09-19 2002-09-19 Display device and driving method thereof Expired - Fee Related JP4488671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273300A JP4488671B2 (en) 2002-09-19 2002-09-19 Display device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273300A JP4488671B2 (en) 2002-09-19 2002-09-19 Display device and driving method thereof

Publications (2)

Publication Number Publication Date
JP2004109612A JP2004109612A (en) 2004-04-08
JP4488671B2 true JP4488671B2 (en) 2010-06-23

Family

ID=32270087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273300A Expired - Fee Related JP4488671B2 (en) 2002-09-19 2002-09-19 Display device and driving method thereof

Country Status (1)

Country Link
JP (1) JP4488671B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4296116B2 (en) * 2004-03-31 2009-07-15 株式会社東芝 Electrophoretic display device
JP5573182B2 (en) * 2010-01-18 2014-08-20 富士ゼロックス株式会社 Display medium and display device
KR101958587B1 (en) * 2015-01-05 2019-03-14 이 잉크 코포레이션 Electro-optic displays, and methods for driving same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222236B2 (en) * 1972-05-04 1977-06-16
JPH0386327U (en) * 1989-12-21 1991-08-30
JPH0463428U (en) * 1990-10-11 1992-05-29
JP3610300B2 (en) * 1999-11-08 2005-01-12 キヤノン株式会社 Electrophoretic display device and driving method thereof
JP3667242B2 (en) * 2000-04-13 2005-07-06 キヤノン株式会社 Electrophoretic display method and electrophoretic display device
JP4591901B2 (en) * 2000-04-17 2010-12-01 スタンレー電気株式会社 Reflective display device
JP4743810B2 (en) * 2000-06-05 2011-08-10 株式会社リコー Image display medium
JP4106870B2 (en) * 2000-09-21 2008-06-25 富士ゼロックス株式会社 Image display medium and image display device
JP4785244B2 (en) * 2000-11-29 2011-10-05 キヤノン株式会社 Electrophoretic display device and display method
JP3842567B2 (en) * 2001-03-21 2006-11-08 株式会社東芝 Electrophoretic display device

Also Published As

Publication number Publication date
JP2004109612A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3566524B2 (en) Electrophoretic display
US8089686B2 (en) Electronic display device providing static grayscale image
US7411721B2 (en) Particle movement-type display device and particle movement-type display apparatus
JP4764069B2 (en) Particle movement type display device
JP4785244B2 (en) Electrophoretic display device and display method
US6831712B1 (en) Polymer-dispersed liquid-crystal display comprising an ultraviolet blocking layer and methods for making the same
JP2007057722A (en) Particle transfer type display apparatus and method of manufacturing same
CN101093330B (en) In-plane switching active matrix liquid crystal display apparatus
JP3862906B2 (en) Electrophoretic display device
JP4488671B2 (en) Display device and driving method thereof
JP2002287128A (en) Display sheet with conductor layer on polymer dispersed cholesteric liquid crystal
JP4717546B2 (en) Particle movement type display device
JP2007133013A (en) Particle movement type display device
JP2004177950A (en) Electrophoresis display apparatus
JP2005265921A (en) Display device and manufacturing method therefor
JP2003121887A (en) Electrophoresis display device
JP3931550B2 (en) Electrophoretic display device
WO2014108409A1 (en) Fine pixel pitch display having anti-ferroelectric particles dispersed in a fluid
JP2001296564A (en) Reflection type display device
JP2009069366A (en) Display device and method of manufacturing the same
JP2000171839A (en) Electrophoresis display device
JP4986645B2 (en) Optical device
JP2009086390A (en) Display device and manufacturing method
JP2004252265A (en) Screen
KR102218158B1 (en) Method for forming electrochromic device of three-dimensional nanostructure and electrochromic device by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091015

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees