JP4486713B2 - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
JP4486713B2
JP4486713B2 JP07583497A JP7583497A JP4486713B2 JP 4486713 B2 JP4486713 B2 JP 4486713B2 JP 07583497 A JP07583497 A JP 07583497A JP 7583497 A JP7583497 A JP 7583497A JP 4486713 B2 JP4486713 B2 JP 4486713B2
Authority
JP
Japan
Prior art keywords
layer
cathode
bis
metal
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07583497A
Other languages
Japanese (ja)
Other versions
JPH10270172A (en
Inventor
淳二 城戸
時雄 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP07583497A priority Critical patent/JP4486713B2/en
Publication of JPH10270172A publication Critical patent/JPH10270172A/en
Application granted granted Critical
Publication of JP4486713B2 publication Critical patent/JP4486713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【技術分野】
本発明は、平面光源や表示素子に利用される有機エレクトロルミネッセント素子(以下、有機EL素子)に関するものである。
【0002】
【従来の技術およびその問題点】
発光層が有機化合物から構成される有機エレクトロルミネッセント素子(以下、有機EL素子)は、低電圧駆動の大面積表示素子を実現するものとして注目されている。Tangらは素子の高効率化のため、キャリア輸送性の異なる有機化合物を積層し、正孔と電子がそれぞれ陽極、陰極よりバランスよく注入される構造とし、しかも有機層の膜厚が2000Å以下とすることで、10V 以下の印加電圧で1000cd/m2 と外部量子効率1%の実用化に十分な高輝度、高効率を得ることに成功した(Appl. Phys. Lett., 51, 913 (1987). )。
この高効率素子において、Tangらは基本的に絶縁物とみなされる有機化合物に対して、金属電極から電子を注入する際に問題となるエネルギー障壁を低下させるため、仕事関数の小さいMg( マグネシウム)を使用した。その際、Mgは酸化しやすく、不安定であるのと、有機表面への接着性に乏しいので比較的安定で、しかも有機表面に密着性の良いAg(銀)と共蒸着により合金化して用いた。
【0003】
凸版印刷株式会社のグループ(第51回応用物理学会学術講演会、講演予稿集28a-PB-4、p.1040)およびパイオニア株式会社のグループ(第54回応用物理学会学術講演会、講演予稿集29p-ZC-15 、p.1127)は、Mgより更に仕事関数の小さいLi(リチウム)を用いAl(アルミニウム)と合金化する事により安定化させ陰極として用いることにより、Mg合金を用いた素子より低い駆動電圧と高い発光輝度を達成している。また、本発明者らは有機化合物層上にLiを単独で10Å程度に極めて薄く蒸着し、その上から銀を積層した二層型陰極が低駆動電圧の実現に有効であることを報告している(IEEE Trans. Electron Devices., 40, 1342 (1993))。
【0004】
最近ではUNIAX 社のPei らが、ポリマー発光層全体にLi塩を均一にドーピングし、駆動電圧を低下する事に成功している(Science, 269, 1086 (1995) )。これは電圧印加によってポリマー発光層中に均一分散したLi塩を解離させ、陰極と陽極近傍にそれぞれLiイオンと対イオンを分布させることにより電極近傍のポリマー分子をin situ でドーピングするものである。この場合、陰極近傍のポリマーは電子供与性(ドナー)ドーパントであるLiによって還元されたラジカルアニオン状態で存在するため、陰極からの電子注入障壁はLiドーピングしない場合より極めて低くなる(Science, 269, 1086 (1995) )。
【0005】
さらに最近になって、イーストマン- コダック社のHungらはフッ化リチウム(LiF )や酸化マグネシウム(MgO )などの誘電体を極めて薄く(5 〜10Å)電子輸送性有機化合物層と陰極との間に挿入することにより、陰極からの電子注入障壁を低下させ低電圧駆動を実現している。この二層型陰極を有する素子では、誘電体が陰極と有機化合物層の間に存在することにより、誘電体に接する有機化合物のエネルギー準位(バンド構造)が変化し、陰極からの電子注入が容易になると解釈されている(Appl. Phys. Lett., 70, 152 (1997) )。
【0006】
しかしながら、MgやLiの合金電極においても電極の酸化等による素子劣化が起こる上、配線材料としての機能を考慮しなければならないので、合金電極では電極材料選択において制限を受ける。本発明者らの二層型陰極では、Li層の厚みが20Å以上では陰極機能しないうえ(IEEE Trans. Electron Devices., 40, 1342 (1993))、極めて薄い10Å程度のLiの蒸着は膜厚制御が困難であり素子作製の再現性に問題がある。また、Pei らの発光層中に塩を添加して電界にて解離させるin situ ドーピング法では、解離したイオンの電極近傍までの移動時間が律速となり、素子応答速度が著しく遅くなる欠点がある。Hungらの二層型陰極においても最適な誘電体層膜厚が5 Åと極めて薄いため、有機化合物上へ均一な膜厚を有する誘電体超薄膜層を作製しにくい欠点がある。
【0007】
【発明の目的】
本発明は、以上の事情に鑑みてなされたものであり、その目的は陰極から有機化合物層への電子注入におけるエネルギー障壁を低下させることにより、陰極材料の仕事関数に関わらず低駆動電圧を実現することを目的とする。
本発明の他の目的は、Alの様な従来より配線材として一般に用いられてきた安価で安定な金属を陰極材料として単独で用いた場合でも、上述の合金を電極として用いた場合と同様、若しくはそれ以上の特性を発現しうる素子を提供することである。
【0008】
【発明の概要】
本発明は、陰極に接する有機化合物層を特定の金属塩からなる誘電体でドーピングすると、陰極から有機化合物層への電子注入障壁が小さくなり、駆動電圧を低下させることができることを見出して完成されたものである。すなわち、本発明の有機EL素子は、対向する陽極電極と陰極電極の間に、有機化合物から構成される少なくとも一層の発光層を有するEL素子において、陰極電極がアルミニウムからなり、陰極電極との界面に、アルカリ金属またはアルカリ土類金属からなる金属塩でドーピングした有機化合物層を有することを特徴としている。
【0009】
【発明の実施の形態】
図1は、本発明による有機EL素子の一実施形態を示す模式図である。ガラス基板( 透明基板)1上には、順に、陽極電極を構成する透明電極2、正孔輸送性を有する正孔輸送層3、発光層4、金属ドーピング層5および陰極となる背面電極6を積層してなっている。これらの要素(層)のうち、ガラス基板(透明基板)1、透明電極2、正孔輸送層3、発光層4、および陰極電極6は周知の要素であり、金属ドーピング層5が本発明で提案した要素(層)である。有機EL素子の具体的な積層構成としては、この他、陽極/発光層/金属ドーピング層/陰極、陽極/正孔輸送層/発光層/金属ドーピング層/陰極、陽極/正孔輸送層/発光層/電子輸送層/金属ドーピング層/陰極、陽極/正孔注入層/発光層/金属ドーピング層/陰極、陽極/正孔注入層/正孔輸送層/発光層/金属ドーピング層/陰極、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/金属ドーピング層/陰極、などが挙げられるが、本発明による有機EL素子は、金属ドーピング層5を陰極電極6との界面に有するものであればいかなる素子構成であっても良い。
【0010】
図2は、陰極電極6と有機発光層4との間に電子輸送層8が存在し、この電子輸送層8と陰極電極6の界面に金属ドーピング層5が設けられている例を示している。金属ドーピング層5は、有機化合物中に誘電体である金属酸化物や金属塩がドーパントとして存在しており、このため、ドーパントに接する有機分子のバンド構造が変化し、LUMO準位が下がる。この結果、陰極からの電子注入が容易になる。
【0011】
図3は、比較のために、Hungらの提案した従来の有機EL素子の陰極界面部分を示している。この例は誘電体薄膜層9を陰極電極6と電子輸送層8との界面に有する場合であるが、この素子では誘電体に接する陰極界面近傍の有機化合物のバンド構造が変化し、電子が注入される有機化合物の最低空準位(LUMO)が低下し、陰極からの電子注入が容易になると言われてきたが、本発明による有機EL素子では、図3の従来の陰極界面構造に比較して、さらに陰極からの電子注入が容易となり、駆動電圧を低下させることができる。
【0012】
有機EL素子では陰極から基本的に絶縁物である有機化合物層への電子注入過程は、陰極表面での有機化合物の還元、すなわちラジカルアニオン状態の形成である(Phys. Rev. Lett., 14, 229 (1965))。これはすなわち有機化合物の最低空準位(LUMO)への電子注入である。したがって、LUMO準位の低い有機化合物ほど陰極から電子が注入しやすい。本発明の素子においては、予め有機化合物のLUMOを低下させる効果のある金属酸化物あるいは金属塩を陰極に接触する有機化合物層中にドーピングする事により、陰極電極からの電子注入に際するエネルギー障壁を低下させることができる。金属ドーピング層5は、このように金属酸化物あるいは金属塩からなるドーパント物質をドーピングした有機化合物層である。金属ドーピングした有機化合物は先に述べたようにLUMO準位が低くなるので、陰極からの電子注入エネルギー障壁が小さく、従来の有機EL素子と比べて駆動電圧を低下できる。しかも陰極には一般に配線材として用いられている安定なAlのような金属を使用できる。
【0013】
ドーパントはホストとなる有機化合物の電子エネルギー準位を変化させ、LUMO準位を低下させることのできるLi等のアルカリ金属、Mg等のアルカリ土類金属、あるいは稀土類金属を含む遷移金属の金属酸化物や金属塩であれば特に限定はないが、金属酸化物の場合は、Li2O、Na2O、K2O 、Rb2O、Cs2O、MgO 、CaO など、金属塩の場合はLiF 、NaF 、KF、RbF 、CsF 、MgF2、CaF2、SrF2、BaF2、LiCl、NaCl、KCl 、RbCl、CsCl、MgCl2 、CaCl2 、SrCl2 、BaCl2 などを好適に用いることができる。
【0014】
金属ドーピング層5のドーパント濃度は特に限定されないが、0.1〜99重量%であることが好ましい。0.1重量%未満では、ドーパントの濃度が低すぎドーピングの効果が小さく、99重量%を超えると、膜中のドーパント濃度が高過ぎ、陰極近傍で電子が注入されるべき有機化合物濃度が逆に低すぎるので、ドーピングの効果が下がる。また、この金属ドーピング層の厚みは、特に限定されないが10Å〜2000Åが好ましい。10Å未満では、金属ドーピング層の膜厚が薄すぎ、均一な膜が得られにいうえ、電子が注入されるべきLUMO準位の下がった有機分子の量が少なすぎる。また、2000Åを超えると有機層全体の膜厚が厚すぎ、逆に駆動電圧の上昇を招くので好ましくない。
【0015】
上記金属ドーピング層5の成膜法は、いかなる薄膜形成法であってもよく、たとえば蒸着法やスパッタ法が使用できる。また、溶液からの塗布で薄膜形成が可能な場合には、スピンコーティング法やディップコーティング法などの溶液からの塗布法が使用できる。この場合、ドーピングされる有機化合物とドーパントを不活性なポリマー中に分散して用いても良い。
【0016】
発光層、電子輸送層、金属ドーピング層として使用できる有機化合物としては、特に限定はないが、p-テルフェニルやクアテルフェニルなどの多環化合物およびそれらの誘導体、ナフタレン、テトラセン、ピレン、コロネン、クリセン、アントラセン、ジフェニルアントラセン、ナフタセン、フェナントレンなどの縮合多環炭化水素化合物及びそれらの誘導体、フェナントロリン、バソフェナントロリン、フェナントリジン、アクリジン、キノリン、キノキサリン、フェナジンなどの縮合複素環化合物およびそれらの誘導体や。フルオロセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、オキシン、アミノキノリン、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、キナクリドン、ルブレン等およびそれらの誘導体などを挙げることができる。
【0017】
また、特開昭63-295695 号公報、特開平8-22557 号公報、特開平8-81472 号公報、特開平5-9470号公報、特開平5-17764 号公報に開示されている金属キレート錯体化合物、特に金属キレート化オキサノイド化合物では、トリス(8-キノリノラト)アルミニウム、ビス(8-キノリノラト)マグネシウム、ビス[ベンゾ(f )-8- キノリノラト]亜鉛、ビス(2-メチル-8- キノリノラト)アルミニウム、トリス(8-キノリノラト)インジウム、トリス(5-メチル-8- キノリノラト)アルミニウム、8-キノリノラトリチウム、トリス(5-クロロ-8- キノリノラト)ガリウム、ビス(5-クロロ-8- キノリノラト)カルシウムなどの8-キノリノラトあるいはその誘導体を配位子として少なくとも一つ有する金属錯体が好適に使用される。
【0018】
特開平5-202011号公報、特開平7-179394号公報、特開平7-278124号公報、特開平7-228579号公報に開示されているオキサジアゾール類、特開平7-157473号公報に開示されているトリアジン類、特開平6-203963号公報に開示されているスチルベン誘導体およびジスチリルアリーレン誘導体、特開平6-132080号公報や特開平6-88072 号公報に開示されているスチリル誘導体、特開平6-100857号公報や特開平6-207170号公報に開示されているジオレフィン誘導体も発光層、電子輸送層、金属ドーピング層として好ましい。
【0019】
さらに、ベンゾオキサゾール系、ベンゾチアゾール系、ベンゾイミダゾール系などの蛍光増白剤も使用でき、例えば、特開昭59-194393 号公報に開示されているものが挙げられる。その代表例としては、2,5-ビス(5,7-ジ-t- ベンチル-2- ベンゾオキサゾリル)-1,3,4- チアゾール、4,4'- ビス(5,7-t-ペンチル-2- ベンゾオキサゾリル)スチルベン、4,4'- ビス[5,7-ジ- (2-メチル-2- ブチル)-2- ベンゾオキサゾリル]スチルベン、2,5-ビス(5.7-ジ-t- ペンチル-2- ベンゾオキサゾリル)チオフェン、2,5-ビス[5-(α, α- ジメチルベンジル)-2- ベンゾオキサゾリル]チオフェン、2,5-ビス[5,7-ジ- (2-メチル-2- ブチル)-2- ベンゾオキサゾリル]-3,4- ジフェニルチオフェン、2,5-ビス(5-メチル-2- ベンゾオキサゾリル)チオフェン、4,4'- ビス(2-ベンゾオキサゾリル)ビフェニル、5-メチル-2- {2-[4-(5-メチル-2- ベンゾオキサゾリル)フェニル]ビニル}ベンゾオキサゾール、2-[2-(4-クロロフェニル)ビニル]ナフト(1,2-d)オキサゾールなどのベンゾオキサゾール系、2,2'-(p-フェニレンジピニレン)-ビスベンゾチアゾールなどのベンゾチアゾール系、2-{2-[4-(2-ベンゾイミダゾリル)フェニル〕ビニル}ベンゾイミダゾール、2-[2-(4-カルボキシフェニル)ビニル]ベンゾイミダゾールなどのベンゾイミダゾール系などの蛍光増白剤が挙げられる。
【0020】
ジスチリルベンゼン系化合物としては、例えば欧州特許第0373582 号明細書に開始されているものを用いることができる。その代表例としては、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(3-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、ジスチリルベンゼン、1,4-ビス(2-エチルスチリル)ベンゼン、1,4-ビス(3-エチルスチリル)ベンゼン、1,4-ビス(2-メチルスチリル)-2- メチルベンゼン、1,4-ビス(2-メチルスチリル)-2- エチルベンゼンなどが挙げられる。
【0021】
また、特開平2-252793号公報に開示されているジスチリルピラジン誘導体も発光層、電子輸送層、金属ドーピング層として用いることができる。その代表例としては、2,5-ビス(4-メチルスチリル)ピラジン、2,5-ビス(4-エチルスチリル)ピラジン、2,5-ビス[2-(1-ナフチル)ビニル]ピラジン、2,5-ビス(4-メトキシスチリル)ピラジン、2,5-ビス[2-(4-ビフェニル)ビニル]ピラジン、2,5-ビス[2-(1-ピレニル)ビニル]ピラジンなどが挙げられる。
【0022】
その他、欧州特許第388768号明細書や特開平3-231970号公報に開示されているジメチリディン誘導体を発光層、電子輸送層、金属ドーピング層の材料として用いることもできる。その代表例としては、1,4-フェニレンジメチリディン、4,4'- フェニレンジメチリディン、2,5-キシリレンジメチリディン、2,6-ナフチレンジメチリディン、1,4-ビフェニレンジメチリディン、1,4-p-テレフェニレンジメチリディン、9,10- アントラセンジイルジメチリディン、4,4'- (2,2- ジ-t- ブチルフェニルビニル)ビフェニル、4,4'-(2,2-ジフェニルビニル)ビフェニル、など、及びこれらの誘導体や、特開平6-49079 号公報、特開平6-293778号公報に開示されているシラナミン誘導体、特開平6-279322号公報、特開平6-279323号公報に開示されている多官能スチリル化合物、特開平6-107648号公報や特開平6-92947 号公報に開示されているオキサジアゾール誘導体、特開平6-206865号公報に開示されているアントラセン化合物、特開平6-145146号公報に開示されているオキシネイト誘導体、特開平4-96990 号公報に開示されているテトラフェニルブタジエン化合物、特開平3-296595号公報に開示されている有機三官能化合物、さらには、特開平2-191694号公報に開示されているクマリン誘導体、特開平2-196885号公報に開示されているペリレン誘導体、特開平2-255789号に開示されているナフタレン誘導体、特開平2-289676号及び特開平2-88689 号公報に開示されているフタロペリノン誘導体、特開平2-250292号公報に開示されているスチリルアミン誘導体などが挙げられる。
さらに、従来有機EL素子の作製に使用されている公知のものを適宜用いることができる。
【0023】
正孔注入層、正孔輸送層、正孔輸送性発光層として使用されるアリールアミン化合物類としては、特に限定はないが、特開平6-25659 号公報、特開平6-203963号公報、特開平6-215874号公報、特開平7-145116号公報、特開平7-224012号公報、特開平7-157473号公報、特開平8-48656 号公報、特開平7-126226号公報、特開平7-188130号公報、特開平8-40995 号公報、特開平8-40996 号公報、特開平8-40997 号公報、特開平7-126225号公報、特開平7-101911号公報、特開平7-97355 号公報に開示されているアリールアミン化合物類が好ましく、例えば、N,N,N',N'-テトラフェニル-4,4'-ジアミノフェニル、N,N'- ジフェニル-N,N'-ジ(3-メチルフェニル)-4,4'-ジアミノビフェニル、2,2-ビス(4-ジ-p- トリルアミノフェニル)プロパン、N,N,N',N'-テトラ-p- トリル-4,4'-ジアミノビフェニル、ビス(4-ジ-p- トリルアミノフェニル)フェニルメタン、N,N'- ジフェニル-N,N'-ジ(4-メトキシフェニル)-4,4'-ジアミノビフェニル、N,N,N',N'-テトラフェニル-4,4'-ジアミノジフェニルエーテル、4,4'- ビス(ジフェニルアミノ)クオードリフェニル、4-N,N-ジフェニルアミノ- (2-ジフェニルビニル)ベンゼン、3-メトキシ-4'-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、1,1-ビス(4- ジ-p- トリアミノフェニル)- シクロヘキサン、1,1-ビス(4-ジ-p- トリアミノフェニル)-4- フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2- メチルフェニル)- フェニルメタン、N,N,N-トリ(p-トリル)アミン、4-(ジ-p- トリルアミノ)-4'-[4 (ジ-p- トリルアミノ)スチリル]スチルベン、N,N,N',N'-テトラ-p- トリル-4,4'-ジアミノ- ビフェニル、N,N,N',N'-テトラフェニル-4,4'-ジアミノ- ビフェニルN-フェニルカルバゾール、4,4'- ビス[N-(1-ナフチル)-N- フェニル- アミノ]ビフェニル、4,4''-ビス[N-(1-ナフチル)-N- フェニル- アミノ]p-ターフェニル、4,4'- ビス[N-(2-ナフチル)-N- フェニル- アミノ]ビフェニル、4,4'- ビス[N-(3-アセナフテニル)-N- フェニル- アミノ]ビフェニル、1,5-ビス[N-(1-ナフチル)-N- フェニル- アミノ]ナフタレン、4,4'- ビス[N-(9-アントリル)-N- フェニル- アミノ]ビフェニル、4,4''-ビス[N-(1-アントリル)-N- フェニル- アミノ]p-ターフェニル、4,4'- ビス[N-(2-フェナントリル)-N- フェニル- アミノ]ビフェニル、4,4'- ビス[N-(8-フルオランテニル)-N- フェニル- アミノ]ビフェニル、4,4'- ビス[N-(2-ピレニル)-N- フェニル- アミノ]ビフェニル、4,4'- ビス[N-(2-ペリレニル)-N- フェニル- アミノ]ビフェニル、4,4'- ビス[N-(1-コロネニル)-N- フェニル- アミノ]ビフェニル、2,6-ビス(ジ-p- トリルアミノ)ナフタレン、2,6-ビス[ジ- (1-ナフチル)アミノ]ナフタレン、2,6-ビス[N-(1-ナフチル)-N- (2-ナフチル)アミノ]ナフタレン、4.4''-ビス[N,N-ジ(2-ナフチル)アミノ]ターフェニル、4.4'- ビス{N-フェニル-N- [4-(1-ナフチル)フェニル]アミノ}ビフェニル、4,4'- ビス[N-フェニル-N- (2-ピレニル)- アミノ]ビフェニル、2,6-ビス[N,N-ジ(2-ナフチル)アミノ]フルオレン、4,4''- ビス(N,N-ジ-p- トリルアミノ)ターフェニル、ビス(N-1-ナフチル)(N-2-ナフチル)アミンなどがある。さらに、従来有機EL素子の作製に使用されている公知のものを適宜用いることができる
【0024】
さらに、正孔注入層、正孔輸送層、正孔輸送性発光層として、上述の有機化合物をポリマー中に分散したものや、ポリマー化したものも使用できる。ポリパラフェニレンビニレンやその誘導体などのいわゆるπ共役ポリマー、ポリ(N-ビニルカルバゾール)に代表されるホール輸送性非共役ポリマー、ポリシラン類のシグマ共役ポリマーも用いることができる。
【0025】
ITO 電極上に形成する正孔注入層としては、特に限定はないが、銅フタロシアニンなどの金属フタロシアニン類および無金属フタロシアニン類、カーボン膜、ポリアニリンなどの導電性ポリマーが好適に使用できる。さらに、前述のアリールアミン類に酸化剤としてルイス酸を作用させ、ラジカルカチオンを形成させて正孔注入層として用いることもできる。
【0026】
陰極電極には、空気中で安定に使用できる金属であれば限定はないが、特に配線電極として一般に広く使用されているアルミニウムが好ましい。
【0027】
[実施例]
以下に実施例を挙げて本発明を説明するが、本発明はこれにより限定されるものではない。なお、有機化合物および金属の蒸着には、真空機工社製VPC-400 真空蒸着機を使用した。膜厚の測定はスローン社製DekTak3ST 触針式段差計を用いた。
素子の特性評価には、菊水PBX 40-2.5直流電源、岩通VOAC-7510 マルチメーター、トプコンBM-8輝度計を使用した。素子のITO を陽極、Alを陰極として直流電圧を0.5 V/2秒あるいは1V/2秒の割合でステップ状に印加し、電圧上昇1秒後の輝度および電流値を測定した。また、ELスペクトルは浜松ホトニクスPMA-10オプチカルマルチチャンネルアナライザーを使用して定電流駆動し測定した。
【0028】
実施例1
図1の積層構成の有機EL素子に本発明を適用したものである。ガラス基板1上に、陽極透明電極2として、シート抵抗15Ω/□のITO (インジウム−スズ酸化物、旭硝子社製電子ビーム蒸着品)がコートされている。その上に正孔輸送性を有する下記式1:
【化1】

Figure 0004486713
で表されるαNPD を10-6torr下で、3 Å/秒の蒸着速度で400 Åの厚さに成膜し、正孔輸送層3を形成した。
【0029】
次に、前記正孔輸送層3の上に、発光層4として緑色発光を有する下記式2:
【化2】
Figure 0004486713
で表されるトリス(8- キノリノラト)アルミニウム錯体層(以下「Alq」という)4を3と同じ条件で600 Åの厚さに真空蒸着して形成した。
次に、前記発光層4の上に金属ドーピング層5として、Alq とLiF をLiF が2重量%となるように各々の蒸着速度を調整して100 Å成膜した。
最後に、前記金属ドーピング層5の上に陰極となる背面電極6としてAlを蒸着速度15Å/秒で1000Å蒸着した。発光領域は縦0.5cm 、横0.5cm の正方形状とした。
前記の有機EL素子において、陽極電極であるITO と陰極電極であるAl6との間に、直流電圧を印加し、発光層Alq4からの緑色発光の輝度を測定した。この素子からは15000cd/m2の高輝度を13V において示した。このときの電流密度は440mA/cm2 であった。
【0030】
比較例1
実施例1と同じく、ITO 上にまず正孔輸送層としてαNPD を400 Åの厚さに成膜し、その上に、発光層としてAlq を3と同じ条件で600 Åの厚さに真空蒸着して形成した。そして、Alq の上から陰極としてAlを2000Å蒸着した。この素子では15V で最高6700cd/m2 の輝度しか与えず、輝度の向上と駆動電圧を下げるのに金属ドーピング層5が有効であることがわかる。
【0031】
比較例2
実施例1と同条件で、ITO 上にまず正孔輸送層としてαNPD を400 Åの厚さに成膜し、その上に、Alq を500 Å蒸着した後に、LiF のみを100 Åの厚さに真空蒸着して形成し、その上から陰極としてAlを2000Å蒸着した。
この素子では電流が全く注入されず、素子からの発光が観測されなかった。これはLiF のみ100 Å挿入したのではLiF 層が完全な絶縁体層であるため、陰極からの電子注入が行われなかったと思われる。したがって、LiF が100 Åの場合には陰極に接する部分には電子注入のために有機分子が必要であることを示している。
【0032】
実施例2
厚さ1mmの石英ガラス上に、Alq とLiF をLiF が2重量%となるように各々の蒸着速度を調整して1000Å成膜した。また、Alq のみを蒸着して1000Å成膜した試料も作製した。これらの可視紫外吸収スペクトルにおいて、Alq のみを蒸着した膜ではキノリン環による吸収が400nm 付近に見られたが、LiF をドーピングしたAlq 膜ではこのようなキノリン環による強い吸収が375nm に見られた。これはLiF がAlq 分子の近傍に存在することでAlq 分子のエネルギー準位が変化していることを表している。
【0033】
実施例3
ITO 上に、正孔輸送層3としてαNPD を400 Å、発光層4としてAlq を600 Å真空蒸着した後、Alq と酸化リチウム(Li2O)を金属ドーピング層5としてLi2O濃度が3重量%となるよう100 Åの厚みに共蒸着した。その上から、陰極電極6として、Alを1000Å蒸着し素子を作製した。この素子は印加電圧13Vで最高輝度16000cd/m2と電流密度480mA/cm2 を与え、実施例1と同じく、低い駆動電圧で高輝度を与えた。
【0034】
比較例3
実施例1と同条件で、ITO 上にまず正孔輸送層としてαNPD を400 Åの厚さに成膜し、その上に、Alq を600 Å蒸着した後に、Li2Oのみを100 Åの厚さに真空蒸着して形成し、その上から陰極としてAlを2000Å蒸着した。
この素子では電流が全く注入されず、発光は観測されなかった。これはLi2Oのみ100 Å挿入したのではLi2O層が完全な絶縁体層であるため、陰極からの電子注入が行われなかったと思われる。したがって、金属ドーピング層には電子注入のために有機化合物との共蒸着が必要不可欠であることを示している。
【0035】
実施例4
ITO 上に、正孔輸送層3としてαNPD を400 Å、発光層4としてAlq を500 Å真空蒸着した後、バソフェナントロリンとLi2Oを金属ドーピング層5としてLi2Oが3重量%となるように100 Åの厚みに共蒸着した。その上から、陰極電極6としてAlを1000Å蒸着し素子を作製した。この素子は印加電圧13Vで最高輝度21000cd/m2、電流密度630mA/cm2 を与え、実施例1と同じく、低い駆動電圧で高輝度を与えた。
【0036】
【発明の効果】
以上の如く、本発明の有機EL素子は、金属酸化物と金属塩の少なくとも一方によってドーピングした有機化合物層(金属ドーピング層)を陰極電極との界面に設けることによって、駆動電圧が低く、高効率、高輝度発光素子の作製を可能にした。したがって、本発明の有機EL素子は、実用性が高く、表示素子や光源としての有効利用を期待できる。
【図面の簡単な説明】
【図1】本発明の有機EL素子の積層構造例を示す模式断面図である。
【図2】本発明の有機EL素子の陰極部分を示す説明図である。
【図3】従来の有機EL素子の陰極部分を示す説明図である。
【符号の説明】
1 透明基板
2 陽極透明電極
4 発光層
5 金属ドーピング層
6 陰極電極[0001]
【Technical field】
The present invention relates to an organic electroluminescent element (hereinafter referred to as an organic EL element) used for a planar light source or a display element.
[0002]
[Prior art and its problems]
2. Description of the Related Art An organic electroluminescent element (hereinafter referred to as an organic EL element) in which a light emitting layer is composed of an organic compound has been attracting attention as a device that realizes a large area display element driven at a low voltage. Tang et al. Stacked organic compounds with different carrier transport properties to increase the efficiency of the device, so that holes and electrons were injected in a balanced manner from the anode and cathode, respectively, and the thickness of the organic layer was 2000 mm or less. 1000cd / m at an applied voltage of 10V or less 2 And achieved high brightness and high efficiency sufficient for practical use with an external quantum efficiency of 1% (Appl. Phys. Lett., 51, 913 (1987)).
In this high-efficiency device, Tang et al. Have a low work function Mg (magnesium) to reduce the energy barrier that is a problem when injecting electrons from metal electrodes to organic compounds that are basically regarded as insulators. It was used. At that time, Mg is easy to oxidize and is unstable, and it is relatively stable because it has poor adhesion to the organic surface, and it is alloyed by co-evaporation with Ag (silver) which has good adhesion to the organic surface. It was.
[0003]
Toppan Printing Co., Ltd. Group (51th JSAP Scientific Lecture Meeting, Proceedings 28a-PB-4, p.1040) and Pioneer Corporation Group (54th JSAP Meeting, Lecture Proceedings) 29p-ZC-15, p.1127) is a device using Mg alloy by using Li (lithium), which has a lower work function than Mg, and stabilizing it by alloying with Al (aluminum) and using it as a cathode. A lower driving voltage and a higher luminance are achieved. In addition, the present inventors have reported that a two-layer cathode in which Li is deposited on an organic compound layer as thin as about 10 mm alone and silver is laminated thereon is effective in realizing a low driving voltage. (IEEE Trans. Electron Devices., 40, 1342 (1993)).
[0004]
Recently, PEI et al. From UNIAX have succeeded in uniformly doping the entire polymer light-emitting layer with Li salt to lower the driving voltage (Science, 269, 1086 (1995)). In this method, Li salt uniformly dispersed in the polymer light emitting layer is dissociated by applying a voltage, and polymer ions in the vicinity of the electrode are doped in situ by distributing Li ions and counter ions in the vicinity of the cathode and the anode, respectively. In this case, since the polymer in the vicinity of the cathode exists in a radical anion state reduced by Li, which is an electron donating (donor) dopant, the electron injection barrier from the cathode is much lower than that without Li doping (Science, 269, 1086 (1995)).
[0005]
More recently, Hung et al. From Eastman-Kodak Corp. have extremely thin (5-10 mm) dielectrics such as lithium fluoride (LiF) and magnesium oxide (MgO) between the electron-transporting organic compound layer and the cathode. By inserting it into the gate, the barrier for electron injection from the cathode is lowered to realize low voltage driving. In a device having this two-layer cathode, the energy level (band structure) of the organic compound in contact with the dielectric changes due to the presence of the dielectric between the cathode and the organic compound layer, and electron injection from the cathode is prevented. It is interpreted as easy (Appl. Phys. Lett., 70, 152 (1997)).
[0006]
However, elemental deterioration due to electrode oxidation or the like also occurs in an alloy electrode of Mg or Li, and the function as a wiring material must be taken into consideration, so the alloy electrode is limited in electrode material selection. In the two-layer cathode of the present inventors, the cathode does not function when the thickness of the Li layer is 20 mm or more (IEEE Trans. Electron Devices., 40, 1342 (1993)). Control is difficult and there is a problem in reproducibility of device fabrication. In addition, the in situ doping method in which salt is added to the light-emitting layer of Pei et al. And dissociated by an electric field has the disadvantage that the time required for the dissociated ions to move to the vicinity of the electrode is rate-determined and the device response speed is significantly slowed down. Even in the two-layer cathode of Hung et al., The optimum dielectric layer thickness is as thin as 5 mm, so that it is difficult to produce a dielectric ultrathin layer having a uniform thickness on an organic compound.
[0007]
OBJECT OF THE INVENTION
The present invention has been made in view of the above circumstances, and its purpose is to realize a low driving voltage regardless of the work function of the cathode material by lowering the energy barrier in electron injection from the cathode to the organic compound layer. The purpose is to do.
Another object of the present invention is that even when an inexpensive and stable metal that has been generally used as a wiring material from the past, such as Al, is used alone as a cathode material, as in the case where the above alloy is used as an electrode, Or it is providing the element which can express the characteristic beyond it.
[0008]
SUMMARY OF THE INVENTION
The present invention provides an organic compound layer in contact with the cathode. Consists of specific metal salts It has been completed by finding that doping with a dielectric reduces the electron injection barrier from the cathode to the organic compound layer, and can reduce the driving voltage. That is, the organic EL element of the present invention is an EL element having at least one light-emitting layer composed of an organic compound between an opposing anode electrode and cathode electrode, the cathode electrode is made of aluminum, and the interface with the cathode electrode In addition, Made of alkali metal or alkaline earth metal It has an organic compound layer doped with a metal salt.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing one embodiment of an organic EL device according to the present invention. On a glass substrate (transparent substrate) 1, a transparent electrode 2 constituting an anode electrode, a hole transport layer 3 having a hole transport property, a light emitting layer 4, a metal doping layer 5 and a back electrode 6 serving as a cathode are sequentially arranged. It is layered. Among these elements (layers), the glass substrate (transparent substrate) 1, the transparent electrode 2, the hole transport layer 3, the light emitting layer 4, and the cathode electrode 6 are well-known elements, and the metal doping layer 5 is the present invention. The proposed element (layer). In addition to this, as a specific laminated structure of the organic EL element, anode / light emitting layer / metal doping layer / cathode, anode / hole transport layer / light emitting layer / metal doping layer / cathode, anode / hole transport layer / light emission Layer / electron transport layer / metal doping layer / cathode, anode / hole injection layer / light emitting layer / metal doping layer / cathode, anode / hole injection layer / hole transport layer / light emitting layer / metal doping layer / cathode, anode / Hole injection layer / hole transport layer / light emitting layer / electron transport layer / metal doping layer / cathode, and the like. The organic EL device according to the present invention has the metal doping layer 5 at the interface with the cathode electrode 6. Any element configuration may be used as long as it has.
[0010]
FIG. 2 shows an example in which an electron transport layer 8 exists between the cathode electrode 6 and the organic light emitting layer 4, and a metal doping layer 5 is provided at the interface between the electron transport layer 8 and the cathode electrode 6. . In the metal doping layer 5, a metal oxide or metal salt that is a dielectric exists in an organic compound as a dopant, and therefore, the band structure of organic molecules in contact with the dopant is changed, and the LUMO level is lowered. As a result, electron injection from the cathode is facilitated.
[0011]
FIG. 3 shows a cathode interface portion of a conventional organic EL device proposed by Hung et al. For comparison. In this example, the dielectric thin film layer 9 is provided at the interface between the cathode electrode 6 and the electron transport layer 8, but in this device, the band structure of the organic compound near the cathode interface in contact with the dielectric changes, and electrons are injected. It has been said that the lowest vacancy level (LUMO) of the organic compound to be reduced is lowered and the electron injection from the cathode is facilitated. However, in the organic EL device according to the present invention, compared with the conventional cathode interface structure of FIG. In addition, it becomes easier to inject electrons from the cathode, and the driving voltage can be lowered.
[0012]
In the organic EL device, the electron injection process from the cathode to the organic compound layer, which is basically an insulator, is reduction of the organic compound on the cathode surface, that is, formation of a radical anion state (Phys. Rev. Lett., 14, 229 (1965)). This is the electron injection into the lowest vacancy level (LUMO) of the organic compound. Therefore, an organic compound having a lower LUMO level is more likely to inject electrons from the cathode. In the device of the present invention, an energy barrier at the time of electron injection from the cathode electrode is obtained by doping the organic compound layer in contact with the cathode with a metal oxide or metal salt that has an effect of reducing the LUMO of the organic compound in advance. Can be reduced. The metal doping layer 5 is an organic compound layer doped with a dopant substance made of a metal oxide or a metal salt in this way. Since the metal-doped organic compound has a low LUMO level as described above, the barrier against electron injection energy from the cathode is small, and the driving voltage can be reduced as compared with a conventional organic EL device. Moreover, a stable metal such as Al that is generally used as a wiring material can be used for the cathode.
[0013]
Dopants can change the electronic energy level of organic compounds that serve as hosts, and can reduce the LUMO level. Metal oxidation of transition metals including alkali metals such as Li, alkaline earth metals such as Mg, or rare earth metals. If it is a metal oxide, there is no particular limitation. 2 O, Na 2 OK 2 O, Rb 2 O, Cs 2 LiF, NaF, KF, RbF, CsF, MgF for metal salts such as O, MgO, CaO 2 , CaF 2 , SrF 2 , BaF 2 , LiCl, NaCl, KCl, RbCl, CsCl, MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 Etc. can be used suitably.
[0014]
The dopant concentration of the metal doping layer 5 is not particularly limited, but is preferably 0.1 to 99% by weight. If it is less than 0.1% by weight, the dopant concentration is too low and the effect of doping is small. If it exceeds 99% by weight, the dopant concentration in the film is too high, and the concentration of the organic compound to which electrons should be injected in the vicinity of the cathode is reversed. In other words, the doping effect is reduced. The thickness of the metal doping layer is not particularly limited, but is preferably 10 to 2000 mm. If it is less than 10 mm, the thickness of the metal doping layer is too thin to obtain a uniform film, and the amount of organic molecules lowered to the LUMO level to which electrons are to be injected is too small. On the other hand, if it exceeds 2000 mm, the film thickness of the whole organic layer is too thick, and conversely, the drive voltage increases, which is not preferable.
[0015]
The film forming method of the metal doping layer 5 may be any thin film forming method. For example, a vapor deposition method or a sputtering method can be used. When a thin film can be formed by coating from a solution, a coating method from a solution such as a spin coating method or a dip coating method can be used. In this case, the organic compound to be doped and the dopant may be dispersed in an inert polymer.
[0016]
The organic compound that can be used as the light emitting layer, the electron transport layer, and the metal doping layer is not particularly limited, but polycyclic compounds such as p-terphenyl and quaterphenyl and derivatives thereof, naphthalene, tetracene, pyrene, coronene, Condensed polycyclic hydrocarbon compounds such as chrysene, anthracene, diphenylanthracene, naphthacene, phenanthrene and derivatives thereof, condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and derivatives thereof; . Fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, oxine, aminoquinoline, imine, diphenylethylene, Examples thereof include vinyl anthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, quinacridone, rubrene, and derivatives thereof.
[0017]
Further, metal chelate complexes disclosed in JP-A-63-295695, JP-A-8-22557, JP-A-8-81472, JP-A-5-9470, and JP-A-5-17764 Compounds, especially metal chelated oxanoid compounds, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis [benzo (f) -8-quinolinolato] zinc, bis (2-methyl-8-quinolinolato) aluminum , Tris (8-quinolinolato) indium, tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris (5-chloro-8-quinolinolato) gallium, bis (5-chloro-8-quinolinolato) A metal complex having at least one 8-quinolinolato or a derivative thereof such as calcium as a ligand is preferably used.
[0018]
Oxadiazoles disclosed in JP-A-5-202011, JP-A-7-179394, JP-A-7-278124, JP-A-7-228579, disclosed in JP-A-7-157473 Triazines, stilbene derivatives and distyrylarylene derivatives disclosed in JP-A-6-203963, styryl derivatives disclosed in JP-A-6-132080 and JP-A-6-88072, Diolefin derivatives disclosed in Kaihei 6-100857 and JP-A-6-207170 are also preferred as the light emitting layer, the electron transport layer, and the metal doping layer.
[0019]
Furthermore, fluorescent brighteners such as benzoxazole, benzothiazole, and benzimidazole can also be used, and examples thereof include those disclosed in JP-A-59-194393. Typical examples are 2,5-bis (5,7-di-t-benzyl-2-benzoxazolyl) -1,3,4-thiazole, 4,4'-bis (5,7-t -Pentyl-2-benzoxazolyl) stilbene, 4,4'-bis [5,7-di- (2-methyl-2-butyl) -2-benzoxazolyl] stilbene, 2,5-bis ( 5.7-di-t-pentyl-2-benzoxazolyl) thiophene, 2,5-bis [5- (α, α-dimethylbenzyl) -2-benzoxazolyl] thiophene, 2,5-bis [5 , 7-Di- (2-methyl-2-butyl) -2-benzoxazolyl] -3,4-diphenylthiophene, 2,5-bis (5-methyl-2-benzoxazolyl) thiophene, 4 , 4'-bis (2-benzoxazolyl) biphenyl, 5-methyl-2- {2- [4- (5-methyl-2-benzoxazolyl) phenyl] vinyl} benzoxazole, 2- [2 -(4-Chlorophenyl) vinyl] naphtho (1,2-d) oxazole etc. Benzoxazoles, benzothiazoles such as 2,2 '-(p-phenylenedipinylene) -bisbenzothiazole, 2- {2- [4- (2-benzimidazolyl) phenyl] vinyl} benzimidazole, Examples thereof include fluorescent whitening agents such as benzimidazoles such as [2- (4-carboxyphenyl) vinyl] benzimidazole.
[0020]
As the distyrylbenzene compound, for example, those starting from EP 0373582 can be used. Typical examples are 1,4-bis (2-methylstyryl) benzene, 1,4-bis (3-methylstyryl) benzene, 1,4-bis (4-methylstyryl) benzene, distyrylbenzene, 1 , 4-Bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2-methylstyryl) -2-methylbenzene, 1,4-bis (2- And methyl styryl) -2-ethylbenzene.
[0021]
Further, a distyrylpyrazine derivative disclosed in JP-A-2-252793 can also be used as a light emitting layer, an electron transport layer, and a metal doping layer. Typical examples include 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4-ethylstyryl) pyrazine, 2,5-bis [2- (1-naphthyl) vinyl] pyrazine, 2 , 5-bis (4-methoxystyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine, 2,5-bis [2- (1-pyrenyl) vinyl] pyrazine, and the like.
[0022]
In addition, dimethylidin derivatives disclosed in European Patent No. 388768 and JP-A-3-231970 can also be used as materials for the light emitting layer, the electron transport layer, and the metal doping layer. Typical examples include 1,4-phenylene dimethylidin, 4,4'-phenylene dimethylidin, 2,5-xylylene dimethylidin, 2,6-naphthylene dimethylidin, 1,4-biphenylene. Dimethylidin, 1,4-p-terephenylenedimethylidin, 9,10-anthracenediyldimethylidin, 4,4 '-(2,2-di-t-butylphenylvinyl) biphenyl, 4,4' -(2,2-diphenylvinyl) biphenyl, and the like, and derivatives thereof, silanamine derivatives disclosed in JP-A-6-49079, JP-A-6-29378, JP-A-6-279322, Polyfunctional styryl compounds disclosed in JP-A-6-279323, oxadiazole derivatives disclosed in JP-A-6-107648 and JP-A-6-92947, JP-A-6-206865 Disclosed anthracene compound, oxine disclosed in JP-A-6-145146 Derivatives, tetraphenylbutadiene compounds disclosed in JP-A-4-96990, organic trifunctional compounds disclosed in JP-A-3-296595, and further disclosed in JP-A-2-191694. Coumarin derivatives, perylene derivatives disclosed in JP2-196885, naphthalene derivatives disclosed in JP2-255789, JP2-289676 and JP-2-88689. Phthaloperinone derivatives, styrylamine derivatives disclosed in JP-A-2-250292, and the like.
Furthermore, known materials that have been used in the production of conventional organic EL devices can be used as appropriate.
[0023]
The arylamine compounds used as the hole injection layer, the hole transport layer, and the hole transporting light emitting layer are not particularly limited, but are described in JP-A-6-25659 and JP-A-6-203963. JP-A-6-215874, JP-A-7-115116, JP-A-7-224012, JP-A-7-157473, JP-A-8-48656, JP-A-7-126226, JP-A-7 -188130, JP-A-8-40995, JP-A-8-40996, JP-A-8-40997, JP-A-7-12225, JP-A-7-101911, JP-A-7-97355 The arylamine compounds disclosed in Japanese Patent Publication No. H1 are preferred, for example, N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4'-diaminobiphenyl, 2,2-bis (4-di-p-tolylaminophenyl) propane, N, N, N ', N'-tetra-p-tolyl-4 , 4'-Diaminobiphenyl, bis (4-di-p-tri Aminophenyl) phenylmethane, N, N'-diphenyl-N, N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4 '-Diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl, 4-N, N-diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostil Benzene, N-phenylcarbazole, 1,1-bis (4-di-p-triaminophenyl) -cyclohexane, 1,1-bis (4-di-p-triaminophenyl) -4-phenylcyclohexane, bis ( 4-dimethylamino-2-methylphenyl) -phenylmethane, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4 (di-p-tolylamino) Styryl] stilbene, N, N, N ', N'-tetra-p-tolyl-4,4'-diamino-biphenyl, N, N, N', N'-tetraphenyl-4,4'-di Mino-biphenyl N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl, 4,4 ''-bis [N- (1-naphthyl) -N-phenyl -Amino] p-terphenyl, 4,4'-bis [N- (2-naphthyl) -N-phenyl-amino] biphenyl, 4,4'-bis [N- (3-acenaphthenyl) -N-phenyl- Amino] biphenyl, 1,5-bis [N- (1-naphthyl) -N-phenyl-amino] naphthalene, 4,4'-bis [N- (9-anthryl) -N-phenyl-amino] biphenyl, 4 , 4 ''-bis [N- (1-anthryl) -N-phenyl-amino] p-terphenyl, 4,4'-bis [N- (2-phenanthryl) -N-phenyl-amino] biphenyl, 4 , 4'-bis [N- (8-fluoranthenyl) -N-phenyl-amino] biphenyl, 4,4'-bis [N- (2-pyrenyl) -N-phenyl-amino] biphenyl, 4,4 '-Bis [N- (2-perylenyl) -N- Enyl-amino] biphenyl, 4,4'-bis [N- (1-coronenyl) -N-phenyl-amino] biphenyl, 2,6-bis (di-p-tolylamino) naphthalene, 2,6-bis [di -(1-Naphtyl) amino] naphthalene, 2,6-bis [N- (1-naphthyl) -N- (2-naphthyl) amino] naphthalene, 4.4 ″ -bis [N, N-di (2-naphthyl) Amino] terphenyl, 4.4'-bis {N-phenyl-N- [4- (1-naphthyl) phenyl] amino} biphenyl, 4,4'-bis [N-phenyl-N- (2-pyrenyl)- Amino] biphenyl, 2,6-bis [N, N-di (2-naphthyl) amino] fluorene, 4,4 ″ -bis (N, N-di-p-tolylamino) terphenyl, bis (N-1 -Naphthyl) (N-2-naphthyl) amine. Furthermore, known materials that have been used in the production of conventional organic EL devices can be used as appropriate.
[0024]
Furthermore, as the hole injection layer, the hole transport layer, and the hole transport light-emitting layer, those obtained by dispersing the above-described organic compound in a polymer or those polymerized can be used. So-called π-conjugated polymers such as polyparaphenylene vinylene and derivatives thereof, hole-transporting non-conjugated polymers represented by poly (N-vinylcarbazole), and sigma-conjugated polymers of polysilanes can also be used.
[0025]
The hole injection layer formed on the ITO electrode is not particularly limited, and conductive polymers such as metal phthalocyanines such as copper phthalocyanine and metal phthalocyanines, carbon films, and polyaniline can be preferably used. Furthermore, a Lewis acid can be allowed to act on the above-mentioned arylamines as an oxidizing agent to form radical cations and used as a hole injection layer.
[0026]
The cathode electrode is not limited as long as it is a metal that can be used stably in the air, but aluminum which is generally widely used as a wiring electrode is particularly preferable.
[0027]
[Example]
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, the VPC-400 vacuum evaporation machine made from a vacuum machine company was used for vapor deposition of an organic compound and a metal. The film thickness was measured using a Sloan DekTak3ST stylus step meter.
For the device characteristic evaluation, Kikusui PBX 40-2.5 DC power supply, Iwatori VOAC-7510 multimeter, and Topcon BM-8 luminance meter were used. A direct current voltage was applied stepwise at a rate of 0.5 V / 2 seconds or 1 V / 2 seconds with ITO as the anode and Al as the cathode, and the luminance and current value after 1 second of voltage increase were measured. The EL spectrum was measured by driving at constant current using a Hamamatsu Photonics PMA-10 optical multichannel analyzer.
[0028]
Example 1
The present invention is applied to the organic EL element having the laminated structure of FIG. On the glass substrate 1, ITO (indium-tin oxide, electron beam evaporated product manufactured by Asahi Glass Co., Ltd.) having a sheet resistance of 15Ω / □ is coated as the anode transparent electrode 2. The following formula 1: having hole transportability thereon
[Chemical 1]
Figure 0004486713
ΑNPD represented by 10 -6 Under torr, the film was formed to a thickness of 400 mm at a deposition rate of 3 mm / second to form the hole transport layer 3.
[0029]
Next, the following formula 2 having green light emission as the light emitting layer 4 on the hole transport layer 3:
[Chemical formula 2]
Figure 0004486713
A tris (8-quinolinolato) aluminum complex layer (hereinafter referred to as “Alq”) 4 represented by the following formula was formed by vacuum deposition to a thickness of 600 mm under the same conditions as 3.
Next, 100 nm of Alq and LiF were deposited on the light-emitting layer 4 while adjusting the deposition rate so that LiF was 2 wt% as a metal doping layer 5.
Finally, Al was vapor deposited on the metal doping layer 5 as a back electrode 6 serving as a cathode at a vapor deposition rate of 15 mm / sec. The light emitting area was a square shape with a length of 0.5 cm and a width of 0.5 cm.
In the organic EL device, a direct current voltage was applied between ITO as the anode electrode and Al6 as the cathode electrode, and the luminance of green light emitted from the light emitting layer Alq4 was measured. 15000cd / m from this device 2 The high brightness of was shown at 13V. The current density at this time is 440 mA / cm 2 Met.
[0030]
Comparative Example 1
As in Example 1, first, αNPD was deposited as a hole transport layer on ITO to a thickness of 400 mm on ITO, and then Alq was vacuum deposited as a light emitting layer to a thickness of 600 mm on the same conditions as 3. Formed. Then, 2000 liters of Al was deposited as a cathode from above Alq. This device is up to 6700cd / m at 15V 2 It can be seen that the metal doping layer 5 is effective in improving the luminance and lowering the driving voltage.
[0031]
Comparative Example 2
Under the same conditions as in Example 1, αNPD was first deposited as a hole transport layer on ITO to a thickness of 400 mm on ITO. After depositing 500 nm of Alq thereon, only LiF was deposited to a thickness of 100 mm. It was formed by vacuum vapor deposition, and Al was deposited as a cathode on top of the cathode.
In this device, no current was injected, and no light emission from the device was observed. It seems that electron injection from the cathode was not performed when only 100% LiF was inserted because the LiF layer was a complete insulator layer. Therefore, it is shown that when LiF is 100 有機, an organic molecule is required for electron injection in the part in contact with the cathode.
[0032]
Example 2
On the quartz glass with a thickness of 1 mm, Alq and LiF were deposited in a thickness of 1000 mm by adjusting the deposition rate so that LiF was 2% by weight. In addition, a sample was formed by depositing only Alq and depositing 1000 mm. In these visible and ultraviolet absorption spectra, absorption by the quinoline ring was observed at around 400 nm in the film deposited with Alq alone, whereas such absorption by the quinoline ring was observed at 375 nm in the Alq film doped with LiF. This indicates that the energy level of the Alq molecule changes due to the presence of LiF in the vicinity of the Alq molecule.
[0033]
Example 3
On the ITO, vacuum deposition of αNPD as the hole transport layer 3 and 400 nm of Alq as the light emitting layer 4 was performed, and then Alq and lithium oxide (Li 2 O) as the metal doping layer 5 Li 2 Co-deposited to a thickness of 100 mm so that the O concentration was 3% by weight. On top of that, 1000 elements of Al were vapor-deposited as a cathode electrode 6 to produce a device. This device has a maximum luminance of 16000cd / m at an applied voltage of 13V. 2 And current density 480mA / cm 2 In the same manner as in Example 1, high luminance was given with a low driving voltage.
[0034]
Comparative Example 3
Under the same conditions as in Example 1, first, αNPD was deposited as a hole transport layer on ITO to a thickness of 400 mm on ITO. 2 Only O was vacuum-deposited to a thickness of 100 mm, and Al was deposited as a cathode from the thickness of 2000 mm.
In this device, no current was injected and no light emission was observed. This is Li 2 If only O was inserted 100 Li Li 2 Since the O layer is a complete insulator layer, it seems that electron injection from the cathode was not performed. Therefore, it is shown that co-evaporation with an organic compound is indispensable for the metal doping layer for electron injection.
[0035]
Example 4
On the ITO, vacuum deposition of αNPD of 400 と し て as the hole transport layer 3 and Alq of 500 と し て as the light emitting layer 4 was performed by vacuum deposition, and then bathophenanthroline and Li 2 Li as metal doping layer 5 2 Co-deposited to a thickness of 100 mm so that O was 3% by weight. From there, 1000 elements of Al were deposited as the cathode electrode 6 to produce a device. This device has a maximum luminance of 21000cd / m at an applied voltage of 13V. 2 , Current density 630mA / cm 2 In the same manner as in Example 1, high luminance was given with a low driving voltage.
[0036]
【The invention's effect】
As described above, the organic EL device of the present invention has a low driving voltage and high efficiency by providing an organic compound layer (metal doping layer) doped with at least one of a metal oxide and a metal salt at the interface with the cathode electrode. This makes it possible to manufacture a high-luminance light-emitting element. Therefore, the organic EL device of the present invention is highly practical and can be expected to be effectively used as a display device or a light source.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a laminated structure example of an organic EL element of the present invention.
FIG. 2 is an explanatory view showing a cathode portion of the organic EL device of the present invention.
FIG. 3 is an explanatory view showing a cathode portion of a conventional organic EL element.
[Explanation of symbols]
1 Transparent substrate
2 Anode transparent electrode
4 Light emitting layer
5 Metal doping layer
6 Cathode electrode

Claims (2)

対向する陽極電極と陰極電極の間に、有機化合物から構成される少なくとも一層の発光層を有する有機エレクトロルミネッセント素子において、上記陰極電極はアルミニウムからなり、上記陰極電極との界面に、アルカリ金属またはアルカリ土類金属からなる金属塩でドーピングした有機化合物層を金属ドーピング層として有することを特徴とする有機エレクトロルミネッセント素子。In an organic electroluminescent device having at least one light emitting layer composed of an organic compound between an opposing anode electrode and cathode electrode, the cathode electrode is made of aluminum, and an alkali metal is formed at the interface with the cathode electrode. An organic electroluminescent device having an organic compound layer doped with a metal salt made of an alkaline earth metal as a metal doping layer. 請求項1記載の素子において、金属ドーピング層の金属塩の濃度が、0.1〜99重量%である有機エレクトロルミネッセント素子。2. The organic electroluminescent device according to claim 1, wherein the concentration of the metal salt in the metal doping layer is 0.1 to 99% by weight.
JP07583497A 1997-01-27 1997-03-27 Organic electroluminescent device Expired - Lifetime JP4486713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07583497A JP4486713B2 (en) 1997-01-27 1997-03-27 Organic electroluminescent device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1281597 1997-01-27
JP9-12815 1997-01-27
JP07583497A JP4486713B2 (en) 1997-01-27 1997-03-27 Organic electroluminescent device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009242808A Division JP4825296B2 (en) 1997-01-27 2009-10-21 Organic electroluminescent device

Publications (2)

Publication Number Publication Date
JPH10270172A JPH10270172A (en) 1998-10-09
JP4486713B2 true JP4486713B2 (en) 2010-06-23

Family

ID=26348493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07583497A Expired - Lifetime JP4486713B2 (en) 1997-01-27 1997-03-27 Organic electroluminescent device

Country Status (1)

Country Link
JP (1) JP4486713B2 (en)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3777812B2 (en) * 1997-09-29 2006-05-24 コニカミノルタホールディングス株式会社 Organic electroluminescence device
JP3266573B2 (en) * 1998-04-08 2002-03-18 出光興産株式会社 Organic electroluminescence device
JP4105429B2 (en) * 1998-04-08 2008-06-25 出光興産株式会社 Organic electroluminescence device
JP2000040589A (en) * 1998-07-22 2000-02-08 Tdk Corp Organic el element
JP2000068065A (en) 1998-08-13 2000-03-03 Tdk Corp Organic el element
JP2000164361A (en) * 1998-11-25 2000-06-16 Tdk Corp Organic el element
JP4505067B2 (en) * 1998-12-16 2010-07-14 淳二 城戸 Organic electroluminescent device
JP2000231989A (en) * 1999-02-10 2000-08-22 Tdk Corp Organic electroluminescence element
JP2000268965A (en) * 1999-03-16 2000-09-29 Tdk Corp Organic el element
JP2000268969A (en) 1999-03-17 2000-09-29 Tdk Corp Organic electroluminescent element
JP4543446B2 (en) 1999-04-05 2010-09-15 Tdk株式会社 Organic EL device
JP4423701B2 (en) * 1999-06-07 2010-03-03 Tdk株式会社 Organic EL display device
JP2002141173A (en) * 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd Light emitting device
JP4632628B2 (en) * 2000-09-07 2011-02-16 出光興産株式会社 Organic electroluminescence device
TW545079B (en) * 2000-10-26 2003-08-01 Semiconductor Energy Lab Light emitting device
EP1285957A3 (en) 2001-08-20 2005-12-21 TDK Corporation Organic electroluminescent device and method of its preparation
AU2002366136A1 (en) * 2001-11-22 2003-06-10 Canon Kabushiki Kaisha Light-emitting element, production method thereof, and light-emitting apparatus
US7956349B2 (en) * 2001-12-05 2011-06-07 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
JP3757272B2 (en) 2002-02-13 2006-03-22 国立大学法人富山大学 Organic electroluminescence device
EP2182777A1 (en) * 2003-04-24 2010-05-05 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display
JP3890317B2 (en) * 2003-04-30 2007-03-07 キヤノン株式会社 Light emitting element
EP2276088B1 (en) * 2003-10-03 2018-02-14 Semiconductor Energy Laboratory Co, Ltd. Light emitting element, and light emitting device using the light emitting element
JP4276603B2 (en) 2003-12-16 2009-06-10 セイコーエプソン株式会社 Organic electroluminescence device and electronic device
CN101847653B (en) 2004-05-21 2013-08-28 株式会社半导体能源研究所 Light emitting element and light emitting device using the same
KR101187402B1 (en) 2004-05-21 2012-10-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lighting appliance
KR101197691B1 (en) 2004-09-24 2012-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device
US7750560B2 (en) 2004-10-01 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting-element
US7952089B2 (en) 2004-10-22 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Composite material and light emitting element
WO2006046678A1 (en) 2004-10-29 2006-05-04 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emittintg element, light-emitting device, and manufacturing method thereof
WO2006049323A1 (en) 2004-11-05 2006-05-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light emitting device using the same
KR101210858B1 (en) 2004-11-05 2012-12-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element and light emitting device using the same
WO2006059745A1 (en) 2004-11-30 2006-06-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US7714501B2 (en) 2004-12-01 2010-05-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device and electronic equipment
US8569742B2 (en) 2004-12-06 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Organic field-effect transistor and semiconductor device including the same
JP2006190995A (en) * 2004-12-06 2006-07-20 Semiconductor Energy Lab Co Ltd Composite material comprising organic compound and inorganic compound, light emitting element and light emitting device employing the composite material as well as manufacturing method of the light emitting element
JP5025948B2 (en) * 2004-12-06 2012-09-12 株式会社半導体エネルギー研究所 Organic field effect transistor and semiconductor device
US8633473B2 (en) 2004-12-28 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. High contrast light emitting device and method for manufacturing the same
JP4939809B2 (en) 2005-01-21 2012-05-30 株式会社半導体エネルギー研究所 Light emitting device
US20090039764A1 (en) * 2005-03-17 2009-02-12 Cho Kyung Sang Quantum Dot Light-Emitting Diode Comprising Inorganic Electron Transport Layer
WO2006104118A1 (en) * 2005-03-29 2006-10-05 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
JP5314834B2 (en) * 2005-04-21 2013-10-16 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, LIGHTING DEVICE, AND ELECTRONIC DEVICE
KR101296712B1 (en) * 2005-04-21 2013-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting element, light emitting device, and electronic device
WO2006126363A1 (en) * 2005-04-22 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Electrode for organic transistor, organic transistor, and semiconductor device
EP1724852A3 (en) 2005-05-20 2010-01-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
JP5137330B2 (en) * 2005-05-20 2013-02-06 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
US8395313B2 (en) * 2005-06-10 2013-03-12 Thomson Licensing Light-emitting organic diode comprising not more than two layers of different organic materials
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
KR100672535B1 (en) * 2005-07-25 2007-01-24 엘지전자 주식회사 Organic electroluminescence device and method for fabricating the same
JP5050333B2 (en) * 2005-09-20 2012-10-17 コニカミノルタホールディングス株式会社 Organic electroluminescence device
EP1784055A3 (en) 2005-10-17 2009-08-05 Semiconductor Energy Laboratory Co., Ltd. Lighting system
JP4548301B2 (en) * 2005-10-21 2010-09-22 セイコーエプソン株式会社 Manufacturing method of organic light emitting device
JP5078329B2 (en) * 2005-11-30 2012-11-21 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND ELECTRONIC DEVICE
WO2007069539A1 (en) * 2005-12-15 2007-06-21 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
USRE44831E1 (en) 2006-01-05 2014-04-08 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device
JP2007227907A (en) * 2006-01-26 2007-09-06 Semiconductor Energy Lab Co Ltd Organic field effect transistor and semiconductor device
WO2007086534A1 (en) 2006-01-26 2007-08-02 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor and semiconductor device
JPWO2007119473A1 (en) 2006-03-30 2009-08-27 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND DISPLAY DEVICE
WO2007114244A1 (en) 2006-03-30 2007-10-11 Konica Minolta Holdings, Inc. Organic electroluminescent device, illuminating device and display device
JP4724585B2 (en) 2006-03-31 2011-07-13 キヤノン株式会社 Organic electroluminescent device and light emitting device
JP4804196B2 (en) 2006-03-31 2011-11-02 キヤノン株式会社 Organic electroluminescent device and light emitting device
JP2007294901A (en) 2006-03-31 2007-11-08 Canon Inc Organic luminous device
JP2008108995A (en) * 2006-10-27 2008-05-08 Shinshu Univ Organic light-emitting diode
WO2008072596A1 (en) 2006-12-13 2008-06-19 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
EP2117063B1 (en) 2007-02-19 2012-09-26 Dai Nippon Printing Co., Ltd. Organic electroluminescence element
KR100918401B1 (en) * 2007-12-24 2009-09-24 삼성모바일디스플레이주식회사 Organic light emitting device
KR100894066B1 (en) 2007-12-28 2009-04-24 삼성모바일디스플레이 주식회사 Organic light emitting device
KR20090082778A (en) 2008-01-28 2009-07-31 삼성모바일디스플레이주식회사 Organic light emitting diode and manufacturing thereof
KR100922760B1 (en) * 2008-03-03 2009-10-21 삼성모바일디스플레이주식회사 Organic light emitting device
KR100898075B1 (en) 2008-03-04 2009-05-18 삼성모바일디스플레이주식회사 Organic light emitting device
JP5515234B2 (en) * 2008-03-31 2014-06-11 住友化学株式会社 Intermediate layer forming coating liquid, method for producing organic electroluminescent element, and organic electroluminescent element
EP2460866B1 (en) 2008-05-13 2019-12-11 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
CN102265422A (en) 2008-12-26 2011-11-30 先锋株式会社 Organic electroluminescent element
EP2453496B1 (en) 2009-07-07 2018-11-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, novel compound, lighting device and display device
JP5829070B2 (en) * 2010-07-26 2015-12-09 株式会社半導体エネルギー研究所 Light emitting device, lighting device, and method for manufacturing light emitting device
US8759826B2 (en) 2010-10-22 2014-06-24 Konica Minolta, Inc. Organic electroluminescent element
US8415031B2 (en) * 2011-01-24 2013-04-09 Universal Display Corporation Electron transporting compounds
US9368735B2 (en) 2011-02-15 2016-06-14 Konica Minolta, Inc. Organic electroluminescence element and illumination device
US9923154B2 (en) 2011-02-16 2018-03-20 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
JP2012212575A (en) * 2011-03-31 2012-11-01 Rohm Co Ltd Organic el device
US20140021462A1 (en) 2011-04-06 2014-01-23 Konica Minolta, Inc. Method for manufacturing organic electroluminescent element, and organic electroluminescent element
WO2012137640A1 (en) 2011-04-07 2012-10-11 コニカミノルタホールディングス株式会社 Organic electroluminescent element and lighting device
WO2012153603A1 (en) 2011-05-10 2012-11-15 コニカミノルタホールディングス株式会社 Phosphorescent organic electroluminescent element and lighting device
WO2013002051A1 (en) 2011-06-28 2013-01-03 コニカミノルタホールディングス株式会社 Organic electroluminescent element
WO2013021971A1 (en) 2011-08-09 2013-02-14 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element and organic solar cell employing same
JP5742586B2 (en) 2011-08-25 2015-07-01 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
JPWO2013035490A1 (en) 2011-09-07 2015-03-23 コニカミノルタ株式会社 Organic electroluminescence element, lighting device and display device
WO2013042446A1 (en) 2011-09-21 2013-03-28 コニカミノルタホールディングス株式会社 Organic electroluminescent element, display device, and illumination device
JP6362330B2 (en) 2011-11-14 2018-07-25 コニカミノルタ株式会社 Organic electroluminescence device and planar light emitter
US9627653B2 (en) 2011-11-14 2017-04-18 Konica Minolta, Inc. Organic electroluminescence element and planar light-emitting body each having light extraction sheet
WO2013073356A1 (en) 2011-11-17 2013-05-23 コニカミノルタ株式会社 Transparent electrode and electronic device
CN103988581A (en) * 2011-12-21 2014-08-13 昭和电工株式会社 Method for manufacturing organic light emitting element
EP2799226A4 (en) 2011-12-27 2016-01-20 Konica Minolta Inc Transparent electrode, electronic device, organic electroluminescence element, and method for manufacturing organic electroluminescence elements
JP2013179293A (en) * 2012-02-09 2013-09-09 Yamagata Univ Organic electronic device and method for manufacturing the same
EP2830397A4 (en) 2012-03-21 2015-12-23 Konica Minolta Inc Organic electroluminescence element
KR20130108026A (en) * 2012-03-23 2013-10-02 주식회사 엘지화학 Organic light emitting device
JP6003981B2 (en) 2012-04-23 2016-10-05 コニカミノルタ株式会社 Transparent electrode, electronic device, and organic electroluminescent element
WO2013161603A1 (en) 2012-04-24 2013-10-31 コニカミノルタ株式会社 Transparent electrode, electronic device, and transparent electrode manufacturing method
US20150207080A1 (en) 2012-08-24 2015-07-23 Konica Minolta Inc. Transparent electrode, electronic device, and method for manufacturing transparent electrode
EP2930763B1 (en) 2012-12-10 2020-07-29 Konica Minolta, Inc. Organic electroluminescence element, illumination device and display device
KR101798307B1 (en) 2013-03-29 2017-11-15 코니카 미놀타 가부시키가이샤 Material for organic electroluminescent elements, organic electroluminescent element, display device and lighting device
EP2980876B1 (en) 2013-03-29 2019-05-08 Konica Minolta, Inc. Organic electroluminescent element, lighting device and display device
EP2980878B1 (en) 2013-03-29 2019-05-01 Konica Minolta, Inc. Organic electroluminescent element, and lighting device and display device which are provided with same
JP2015159066A (en) 2014-02-25 2015-09-03 コニカミノルタ株式会社 Light diffusion sheet for organic electroluminescence, and organic electroluminescent panel
JP6788314B2 (en) 2016-01-06 2020-11-25 コニカミノルタ株式会社 Organic electroluminescence element, manufacturing method of organic electroluminescence element, display device and lighting device
CN114023895B (en) * 2021-11-05 2024-03-29 江苏穿越光电科技有限公司 Quantum dot light-emitting device and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846503B2 (en) * 1990-06-14 1999-01-13 出光興産株式会社 Device thin film electrode, electroluminescent device having the same, and methods of manufacturing the same
JP3300069B2 (en) * 1992-11-19 2002-07-08 パイオニア株式会社 Organic electroluminescence device
JP2931229B2 (en) * 1995-02-13 1999-08-09 出光興産株式会社 Organic electroluminescence device
JP3529543B2 (en) * 1995-04-27 2004-05-24 パイオニア株式会社 Organic electroluminescence device
JPH10162959A (en) * 1996-11-29 1998-06-19 Idemitsu Kosan Co Ltd Organic electro-luminescence element

Also Published As

Publication number Publication date
JPH10270172A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP4486713B2 (en) Organic electroluminescent device
JP4514841B2 (en) Organic electroluminescent device
JP4505067B2 (en) Organic electroluminescent device
JP4729154B2 (en) Organic electroluminescent device, organic electroluminescent device group, and method for controlling emission spectrum thereof
JP4824848B2 (en) Organic electroluminescent device, organic electroluminescent device group, and method for identifying emission spectrum thereof
US6013384A (en) Organic electroluminescent devices
EP0948063B1 (en) Organic electroluminescent devices
EP1089361B1 (en) Organic electroluminescent device and method of controlling emission spectrum
KR101254167B1 (en) Organic electroluminescent element
WO2009110075A1 (en) Organic semiconductor element
JP3651347B2 (en) Organic electroluminescence device
JP4825296B2 (en) Organic electroluminescent device
WO2009107541A1 (en) Organic electroluminescent element
JP4820902B2 (en) Organic electroluminescent device and method for controlling emission spectrum thereof
JPH10270167A (en) Novel light emitting material, novel electron transport transport material and organic el element using the same
KR20210015222A (en) Organic light emitting device and manufacturing method for same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term