JP4480653B2 - Polarization state measuring device, circular dichroism measuring device and method thereof - Google Patents

Polarization state measuring device, circular dichroism measuring device and method thereof Download PDF

Info

Publication number
JP4480653B2
JP4480653B2 JP2005280367A JP2005280367A JP4480653B2 JP 4480653 B2 JP4480653 B2 JP 4480653B2 JP 2005280367 A JP2005280367 A JP 2005280367A JP 2005280367 A JP2005280367 A JP 2005280367A JP 4480653 B2 JP4480653 B2 JP 4480653B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polarization
light
crystal element
polarization state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005280367A
Other languages
Japanese (ja)
Other versions
JP2007093289A (en
Inventor
秀樹 津嶋
吉則 中島
幸利 大谷
俊隆 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Atago Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Atago Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Atago Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2005280367A priority Critical patent/JP4480653B2/en
Publication of JP2007093289A publication Critical patent/JP2007093289A/en
Application granted granted Critical
Publication of JP4480653B2 publication Critical patent/JP4480653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、光学活性物質の旋光度及び円二色性を測定する偏光状態測定装置、円二色性測定装置、及びその方法に関する。   The present invention relates to a polarization state measuring device, a circular dichroism measuring device, and a method for measuring the optical rotation and circular dichroism of an optically active substance.

従来、糖類、アミノ酸など、旋光性を有する光学活性物質の旋光度や濃度を測定するための旋光度測定装置が知られている。   Conventionally, an optical rotation measuring device for measuring the optical rotation and concentration of optically active substances having optical activity such as sugars and amino acids is known.

代表的な旋光度測定装置として、回転検光子法による装置やファラデーセル又はポッケルスセルを用いた装置が知られている。しかし、回転検光子法による装置には、検光子を機械的に回転するため測定時間がかかる、検光子の回転機構のためにスペースを必要とするので装置の小型化が困難である、等の問題があった。ファラデーセルを用いた装置には、ファラデーセルに非常に高い電圧を印加しなければならない、ファラデーセルに鉛が用いられているため環境面で好ましくない、等の問題があった。また、ポッケルスセルを用いた装置には、ポッケルスセルが高価なためコストが高くなる、という問題があった。   As a typical optical rotation measuring apparatus, an apparatus using a rotating analyzer method and an apparatus using a Faraday cell or a Pockels cell are known. However, the rotation analyzer method requires a measurement time because the analyzer is mechanically rotated, and it is difficult to reduce the size of the device because a space is required for the rotation mechanism of the analyzer. There was a problem. The apparatus using the Faraday cell has a problem that a very high voltage must be applied to the Faraday cell, and that lead is used in the Faraday cell, which is not preferable in terms of environment. In addition, the apparatus using the Pockels cell has a problem that the cost is high because the Pockels cell is expensive.

これらの問題点を解決する旋光度測定装置として、液晶素子と1/4波長板とを用いて試料へ入射する直線偏光の偏光面を回転する装置がある(特許文献1参照)。この装置では、旋光度を精度良く検出するために、1/4波長板の複屈折位相差が正確に90°であることが必要とされる。また、1/4波長板は、それぞれ特定の波長に合わせて設計されており、それ以外の波長では正確に機能しない。従って、この装置では、1/4波長板を交換しない限り、波長を変えて旋光度を測定することができず、それにより旋光度の波長依存性(旋光分散)を得ることもできない。   As an optical rotation measuring apparatus that solves these problems, there is an apparatus that rotates a polarization plane of linearly polarized light incident on a sample using a liquid crystal element and a quarter-wave plate (see Patent Document 1). In this apparatus, in order to detect the optical rotation with high accuracy, the birefringence phase difference of the quarter-wave plate is required to be exactly 90 °. In addition, the quarter wave plates are designed for specific wavelengths, respectively, and do not function correctly at other wavelengths. Therefore, in this apparatus, unless the quarter-wave plate is replaced, the optical rotation cannot be measured by changing the wavelength, and thus the wavelength dependency (optical rotation dispersion) of the optical rotation cannot be obtained.

ところで、光学活性物質には、左右の円偏光に対して吸収の度合いが異なる円二色性という性質がある。旋光性と円二色性には密接な関係があり、それらの波長依存性である旋光分散と円二色性分散は、共に光学活性物質の立体構造の解析などに利用される。従って、旋光度と円二色性の両方を測定可能な装置が望まれている。
特開2004−69452号公報
By the way, the optically active substance has a property of circular dichroism with different degrees of absorption with respect to left and right circularly polarized light. There is a close relationship between optical rotation and circular dichroism, and both the optical rotatory dispersion and circular dichroic dispersion, which are wavelength dependence thereof, are used for analysis of the three-dimensional structure of optically active substances. Therefore, an apparatus capable of measuring both optical rotation and circular dichroism is desired.
JP 2004-69452 A

本願発明の目的は、上記の問題点を解決する偏光状態測定装置、及び、円二色性測定装置を提供することである。   An object of the present invention is to provide a polarization state measuring device and a circular dichroism measuring device that solve the above problems.

本願発明による偏光状態測定装置は、所定の帯域成分を含む光の所定の偏光成分を透過させる第1の偏光子と、第1の偏光子を透過した光を所望の偏光に変調する偏光変調手段と、偏光変調手段を介して測定対象を透過した光の所定の偏光成分を透過させる第2の偏光子と、第2の偏光子を透過した光の光強度を検出する検出手段と、検出手段で検出した光強度をフーリエ級数で表したときのフーリエ係数に基づいて測定対象の偏光状態を計測する計測手段と、を有し、偏光変調手段が、第1及び第2の液晶素子と、液晶素子への印加電圧を制御する電圧制御手段と、を有する。   A polarization state measuring apparatus according to the present invention includes a first polarizer that transmits a predetermined polarization component of light including a predetermined band component, and a polarization modulator that modulates light transmitted through the first polarizer into desired polarization. A second polarizer that transmits a predetermined polarization component of the light transmitted through the measurement object via the polarization modulator, a detection unit that detects the light intensity of the light transmitted through the second polarizer, and a detection unit Measuring means for measuring the polarization state of the object to be measured based on the Fourier coefficient when the light intensity detected in (4) is represented by a Fourier series, and the polarization modulating means includes first and second liquid crystal elements, and liquid crystal Voltage control means for controlling the voltage applied to the element.

偏光状態が、測定対象の旋光性または円二色性を含むことが好ましい。   It is preferable that the polarization state includes the optical rotation or circular dichroism of the measurement target.

第1の液晶素子が、第1の偏光子の透過軸に対して45°の奇数倍傾いた進相軸を有し、第2の液晶素子が、第1の偏光子の透過軸に対して45°の偶数倍傾いた進相軸を有することが好ましい。   The first liquid crystal element has a fast axis inclined at an odd multiple of 45 ° with respect to the transmission axis of the first polarizer, and the second liquid crystal element has a transmission axis of the first polarizer. It is preferable to have a fast axis inclined at an even multiple of 45 °.

第1の液晶素子の複屈折位相差が0°から360°の範囲で可変であり、第2の液晶素子の複屈折位相差が第1の液晶素子の複屈折位相差と90°異なることが好ましい。   The birefringence phase difference of the first liquid crystal element is variable in the range of 0 ° to 360 °, and the birefringence phase difference of the second liquid crystal element is 90 ° different from the birefringence phase difference of the first liquid crystal element. preferable.

第1の液晶素子の複屈折位相差をδ、第2の液晶素子の複屈折位相差をδ+90°とすると、計測手段が、検出手段で検出した光強度のフーリエ級数における基底関数cosδ及びsin2δの係数に基づいて測定対象の偏光状態を計測することが好ましい。   Assuming that the birefringence phase difference of the first liquid crystal element is δ and the birefringence phase difference of the second liquid crystal element is δ + 90 °, the measurement means uses the basis functions cos δ and sin 2 δ in the Fourier series of the light intensity detected by the detection means. It is preferable to measure the polarization state of the measurement object based on the coefficient.

第1及び第2の液晶素子がネマチック液晶セルを含むことが好ましい。   The first and second liquid crystal elements preferably include nematic liquid crystal cells.

偏光変調手段が、第1及び第2の液晶素子の温度を制御する温度制御手段を更に有することが好ましい。   It is preferable that the polarization modulation means further includes a temperature control means for controlling the temperatures of the first and second liquid crystal elements.

本願発明による偏光状態測定方法は、所定の帯域成分を含む光の所定の偏光成分を透過させるステップと、透過した光を所望の偏光に変調する偏光変調ステップと、偏光変調をし測定対象を透過した光の所定の偏光成分を透過させるステップと、透過した光の光強度を検出するステップと、検出した光強度をフーリエ級数で表したときのフーリエ係数に基づいて測定対象の偏光状態を計測するステップと、を有し、偏光変調ステップが、第1及び第2の液晶素子により透過光を変調するステップと、液晶素子への印加電圧を制御するステップと、を有する。   A polarization state measuring method according to the present invention includes a step of transmitting a predetermined polarization component of light including a predetermined band component, a polarization modulation step of modulating the transmitted light into a desired polarization, and performing polarization modulation and transmitting the measurement target Transmitting a predetermined polarization component of the transmitted light, detecting the light intensity of the transmitted light, and measuring the polarization state of the measurement object based on a Fourier coefficient when the detected light intensity is represented by a Fourier series And the polarization modulation step includes a step of modulating transmitted light by the first and second liquid crystal elements and a step of controlling a voltage applied to the liquid crystal element.

本願発明による円二色性測定装置は、所定の帯域成分を含む光の所定の偏光成分を透過させる偏光子と、偏光子を透過した光を所望の偏光に変調する偏光変調手段と、偏光変調手段を介して測定対象を透過した光の光強度を検出する検出手段と、検出手段で検出した光強度に基づいて測定対象の円二色性を計測する計測手段と、を有し、偏光変調手段が、第1及び第2の液晶素子と、液晶素子への印加電圧を制御する電圧制御手段と、を有する。   A circular dichroism measuring apparatus according to the present invention includes a polarizer that transmits a predetermined polarization component of light including a predetermined band component, a polarization modulator that modulates light transmitted through the polarizer into a desired polarization, and polarization modulation. A detecting means for detecting the light intensity of the light transmitted through the measuring object via the means, and a measuring means for measuring the circular dichroism of the measuring object based on the light intensity detected by the detecting means, and polarization modulation The means includes first and second liquid crystal elements, and voltage control means for controlling a voltage applied to the liquid crystal elements.

本願発明による円二色性測定方法は、所定の帯域成分を含む光の所定の偏光成分を透過させるステップと、透過した光を所望の偏光に変調する偏光変調ステップと、偏光変調をし、測定対象を透過した光の光強度を検出するステップと、検出した光強度に基づいて測定対象の円二色性を計測するステップと、を有し、偏光変調ステップが、第1及び第2の液晶素子により透過光を変調するステップと、液晶素子への印加電圧を制御するステップと、を有する。   The circular dichroism measurement method according to the present invention is a method of transmitting a predetermined polarization component of light including a predetermined band component, a polarization modulation step of modulating the transmitted light into a desired polarization, and performing polarization modulation and measuring. A step of detecting light intensity of light transmitted through the object; and a step of measuring circular dichroism of the measurement object based on the detected light intensity, wherein the polarization modulation step includes the first and second liquid crystals. Modulating the transmitted light by the element, and controlling a voltage applied to the liquid crystal element.

本願発明によれば、測定精度及び測定速度が向上し、小型で安価、且つ環境にも配慮された偏光状態測定装置、及び、円二色性測定装置を提供することができる。   According to the present invention, it is possible to provide a polarization state measuring device and a circular dichroism measuring device that improve measurement accuracy and measurement speed, are small and inexpensive, and are environmentally friendly.

図1は、本願発明による偏光状態測定装置10の実施形態を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing an embodiment of a polarization state measuring apparatus 10 according to the present invention.

図1に示すように、この装置10は、白色光を出射する光源12と、光源12からの白色光から所定の波長を有する単色光を選択する波長選択手段14と、波長選択手段14により選択された単色光を直線偏光にする偏光子22と、偏光子22からの直線偏光を所望の偏光に変調する偏光変調手段24と、偏光変調手段24に変調され且つ試料Sを透過した光の所定の偏光成分を透過させる検光子48と、検光子48を透過した光の強度を検出する検出手段50と、検出手段50が検出した光強度に基づいて、試料Sの旋光度を計測する計測手段52と、を備える。   As shown in FIG. 1, the apparatus 10 includes a light source 12 that emits white light, a wavelength selection unit 14 that selects monochromatic light having a predetermined wavelength from the white light from the light source 12, and a wavelength selection unit 14. A polarizer 22 that converts the monochromatic light into linearly polarized light, a polarization modulator 24 that modulates the linearly polarized light from the polarizer 22 to a desired polarization, and a predetermined light of the light modulated by the polarization modulator 24 and transmitted through the sample S. Analyzer 48 that transmits the polarization component of light, detection means 50 that detects the intensity of light transmitted through the analyzer 48, and measurement means that measures the optical rotation of the sample S based on the light intensity detected by the detection means 50. 52.

より詳細には、以下の通りである。   More details are as follows.

光源12は、ハロゲンランプなどの白色光源からなり、広域の波長成分を含む白色光を出射する。   The light source 12 is a white light source such as a halogen lamp, and emits white light including a wide range of wavelength components.

波長選択手段14は、光源12から出射された白色光の各波長成分を波長に応じて異なる方向に反射させる反射型回折格子16と、反射型回折格子16に対して所定の位置に配置され、反射型回折格子16により所定の方向に反射された光の波長成分を通過させるスリット18と、を有する。より詳細には、反射型回折格子16は、入射した自然光の各波長成分である単色光を、回折により、波長に応じて異なる方向に出射させる。スリット18は、反射型回折格子16からスリット18の開口に向かって出射された単色光を通過させる。   The wavelength selection unit 14 is arranged at a predetermined position with respect to the reflection type diffraction grating 16 and the reflection type diffraction grating 16 that reflects each wavelength component of the white light emitted from the light source 12 in different directions according to the wavelength. And a slit 18 through which the wavelength component of the light reflected in a predetermined direction by the reflective diffraction grating 16 passes. More specifically, the reflective diffraction grating 16 emits monochromatic light, which is each wavelength component of incident natural light, in different directions depending on the wavelength by diffraction. The slit 18 transmits monochromatic light emitted from the reflective diffraction grating 16 toward the opening of the slit 18.

波長選択手段14は、反射形回折格子16を回転させる駆動手段20をさらに有する。反射型回折格子16の回転により、スリット18を通過する単色光の波長を変えることができる。このような構成により、広域の波長成分を含む白色光から所定波長の単色光を選択することができる。   The wavelength selecting unit 14 further includes a driving unit 20 that rotates the reflective diffraction grating 16. The wavelength of the monochromatic light passing through the slit 18 can be changed by the rotation of the reflective diffraction grating 16. With such a configuration, monochromatic light having a predetermined wavelength can be selected from white light including a wide range of wavelength components.

偏光子22は、例えばポラロイド板からなり、その透過軸a(図1)の方向に偏光面を有する直線偏光を透過させる。以下、光の進行方向をz方向と称し、偏光子22の透過軸aの方向をx方向と称する。   The polarizer 22 is made of, for example, a polaroid plate, and transmits linearly polarized light having a polarization plane in the direction of the transmission axis a (FIG. 1). Hereinafter, the traveling direction of light is referred to as the z direction, and the direction of the transmission axis a of the polarizer 22 is referred to as the x direction.

偏光子22は、透過軸aの方向(x方向)を水平方向とするとき、ミュラー・マトリックスを用いて、

Figure 0004480653
The polarizer 22 uses a Mueller matrix when the direction of the transmission axis a (x direction) is the horizontal direction.
Figure 0004480653

と表される。一方、入射する単色光は、ストークス・ベクトルを用いて、

Figure 0004480653
It is expressed. On the other hand, the incident monochromatic light uses Stokes vector,
Figure 0004480653

と表されるので、偏光子22から出射する光は、

Figure 0004480653
Therefore, the light emitted from the polarizer 22 is
Figure 0004480653

と表されるx方向の直線偏光である。 X-direction linearly polarized light expressed as follows.

この直線偏光の偏光状態は、ストークス・パラメータ(S1,S2,S3)を直交座標とする図2のポアンカレ球においてS1軸上の点P1で表される。 The polarization state of this linearly polarized light is represented by a point P 1 on the S 1 axis in the Poincare sphere of FIG. 2 having Stokes parameters (S 1 , S 2 , S 3 ) as orthogonal coordinates.

再び図1を参照すると、偏光変調手段24は、平行ネマチック液晶セルからなる第1及び第2の液晶素子26、28と、第1及び第2液晶素子26、28への印加電圧をそれぞれ制御し、液晶素子26、28の複屈折位相差δ1、δ2を変化させる第1及び第2の電圧制御手段30、32と、を含む。 Referring to FIG. 1 again, the polarization modulation means 24 controls the voltages applied to the first and second liquid crystal elements 26 and 28 made of parallel nematic liquid crystal cells and the first and second liquid crystal elements 26 and 28, respectively. , And first and second voltage control means 30 and 32 for changing the birefringence phase differences δ 1 and δ 2 of the liquid crystal elements 26 and 28.

より詳細には、光進行方向の手前側にある第1液晶素子26は、偏光子22の透過軸a(x方向)に対して、光進行方向に向かって反時計回りに45°回転した方向に主軸(進相軸)bを有する。従って、第1液晶素子26の複屈折位相差をδ1とすると、第1液晶素子26は、ミュラー・マトリックスを用いて、

Figure 0004480653
More specifically, the first liquid crystal element 26 on the near side of the light traveling direction is a direction rotated 45 ° counterclockwise toward the light traveling direction with respect to the transmission axis a (x direction) of the polarizer 22. Has a main axis (phase advance axis) b. Accordingly, when the birefringence phase difference of the first liquid crystal element 26 is δ 1 , the first liquid crystal element 26 uses the Mueller matrix.
Figure 0004480653

と表される。従って、第1液晶素子26から出射する光は、

Figure 0004480653
It is expressed. Therefore, the light emitted from the first liquid crystal element 26 is
Figure 0004480653

と表される。 It is expressed.

図2のポアンカレ球において、第1液晶素子26からの出射光の偏光状態は点P2で表される。従って、第1液晶素子26による偏光状態の変化は、点P1を、S2軸を中心として矢印Aの方向に角度δ1回転移動することに相当する。 In the Poincare sphere of FIG. 2, the polarization state of the light emitted from the first liquid crystal element 26 is represented by the point P 2. Therefore, the change in the polarization state by the first liquid crystal element 26 corresponds to moving the point P 1 by an angle δ 1 around the S 2 axis in the direction of the arrow A.

複屈折位相差δ1は第1液晶素子26への印加電圧を制御することにより可変である。従って、点P2は、ポアンカレ球の球面とS13面の交点である円B上の任意の点とすることができる。より詳細には、第1液晶素子26からの出射光は、0°<δ1<90°のとき図1のx方向に長軸を有する左楕円偏光となり、δ1=90°のとき左円偏光となり、90°<δ1<180°のときy方向(鉛直方向)に長軸を有する左楕円偏光となり、δ1=180°のときy方向の直線偏光となる。また、180°<δ1<270°のときy方向に長軸を有する右楕円偏光となり、δ1=270°のとき右円偏光となり、270°<δ1<360°のときx方に長軸を有する右楕円偏光となり、δ1=0°又は360°のときx方向の直線偏光となる。 The birefringence phase difference δ 1 is variable by controlling the voltage applied to the first liquid crystal element 26. Therefore, the point P 2 can be an arbitrary point on the circle B that is the intersection of the spherical surface of the Poincare sphere and the S 1 S 3 surface. More specifically, the outgoing light from the first liquid crystal element 26 becomes left elliptically polarized light having a major axis in the x direction in FIG. 1 when 0 ° <δ 1 <90 °, and the left circle when δ 1 = 90 °. It becomes polarized light, when it is 90 ° <δ 1 <180 °, it becomes left elliptically polarized light having a major axis in the y direction (vertical direction), and when it is δ 1 = 180 °, it becomes linearly polarized light in the y direction. Also, when 180 ° <δ 1 <270 °, right elliptically polarized light having a major axis in the y direction is obtained, when δ 1 = 270 °, right circularly polarized light is obtained, and when 270 ° <δ 1 <360 °, it is long in the x direction. It becomes right elliptically polarized light having an axis, and becomes linearly polarized light in the x direction when δ 1 = 0 ° or 360 °.

光進行方向の2番目にある第2液晶素子28は、偏光子22の透過軸a(x方向)に平行な主軸(進相軸)cを有する。従って、第2液晶素子28の複屈折位相差をδ2とすると、第2液晶素子28は、ミュラー・マトリックスを用いて、

Figure 0004480653
The second liquid crystal element 28 in the second light traveling direction has a principal axis (fast axis) c parallel to the transmission axis a (x direction) of the polarizer 22. Therefore, if the birefringence phase difference of the second liquid crystal element 28 is δ 2 , the second liquid crystal element 28 uses the Mueller matrix,
Figure 0004480653

と表される。従って、第2液晶素子28から出射する光は、

Figure 0004480653
It is expressed. Therefore, the light emitted from the second liquid crystal element 28 is
Figure 0004480653

と表される。 It is expressed.

図2のポアンカレ球において、第2液晶素子28からの出射光の偏光状態は点P3で表される。従って、第2液晶素子28による偏光状態の変化は、円B上の点P2を、S1軸を中心として矢印Cの方向に角度δ2回転移動することに相当する。 In the Poincare sphere shown in FIG. 2, the polarization state of the outgoing light from the second liquid crystal element 28 is represented by a point P 3 . Therefore, the change in the polarization state by the second liquid crystal element 28 corresponds to moving the point P 2 on the circle B by an angle δ 2 around the S 1 axis in the direction of the arrow C.

複屈折位相差δ2は第2液晶素子28への印加電圧を制御することにより可変である。従って、点P2は円B上の任意の点とすることができるので、点P3は、ポアンカレ球の球面上の任意の点とすることができる。すなわち、第2液晶素子28からの出射光は、任意の偏光状態の偏光とすることができる。 The birefringence phase difference δ 2 is variable by controlling the voltage applied to the second liquid crystal element 28. Therefore, since the point P 2 can be an arbitrary point on the circle B, the point P 3 can be an arbitrary point on the spherical surface of the Poincare sphere. That is, the outgoing light from the second liquid crystal element 28 can be polarized in an arbitrary polarization state.

このように、偏光子22の透過軸aに対する進相軸の傾きがそれぞれ45°及び0°であり、且つ複屈折位相差δ1、δ2が可変である2つの液晶素子26、28を用いて位相変調することにより、偏光子22から出射された所定の直線偏光を、任意の直線偏光又は楕円偏光又は円偏光に変えることができる。 As described above, the two liquid crystal elements 26 and 28 in which the inclinations of the fast axis with respect to the transmission axis a of the polarizer 22 are 45 ° and 0 ° and the birefringence phase differences δ 1 and δ 2 are variable are used. Thus, the predetermined linearly polarized light emitted from the polarizer 22 can be changed into arbitrary linearly polarized light, elliptically polarized light, or circularly polarized light.

再び図1を参照すると、試料Sが、偏光変調手段24と検光子48の間に配置された測定セル46に収容されている。試料Sの旋光度をθとすると、試料Sは、ミュラー・マトリックスを用いて、

Figure 0004480653
Referring to FIG. 1 again, the sample S is accommodated in a measurement cell 46 disposed between the polarization modulation means 24 and the analyzer 48. When the optical rotation of the sample S is θ, the sample S uses a Mueller matrix,
Figure 0004480653

と表される。従って、偏光変調手段24から試料Sに入射した光は、試料Sの旋光性により偏光面が回転し、

Figure 0004480653
It is expressed. Therefore, the polarization plane of the light incident on the sample S from the polarization modulator 24 is rotated by the optical rotation of the sample S,
Figure 0004480653

と表される楕円偏光として出射する。 Is emitted as elliptically polarized light expressed as follows.

検光子48は、偏光子22の透過軸a(x方向)に対して垂直な透過軸dを有し、透過軸dの方向(y方向)に偏光面を有する直線偏光を透過させる。検光子48は、例えば、偏光子22と同様にポラロイド板からなる。   The analyzer 48 has a transmission axis d perpendicular to the transmission axis a (x direction) of the polarizer 22 and transmits linearly polarized light having a polarization plane in the direction of the transmission axis d (y direction). The analyzer 48 is made of a polaroid plate, for example, like the polarizer 22.

検光子48は、ミュラー・マトリックスを用いて、

Figure 0004480653
The analyzer 48 uses a Mueller matrix,
Figure 0004480653

と表される。従って、試料Sを透過して検光子48から出射する光は、

Figure 0004480653
It is expressed. Therefore, the light transmitted through the sample S and emitted from the analyzer 48 is
Figure 0004480653

と表される直線偏光となる。 The linearly polarized light expressed as

検出手段50は、例えば光電センサからなり、検光子48からの出射光の光強度を検出し、電圧に変換して出力する。検出手段50が検出する光強度は、検光子48からの出射光のストークス・パラメータのS0であるから、式(11)より、

Figure 0004480653
The detection means 50 is composed of, for example, a photoelectric sensor, detects the light intensity of the outgoing light from the analyzer 48, converts it into a voltage, and outputs it. Since the light intensity detected by the detection means 50 is S 0 of the Stokes parameter of the light emitted from the analyzer 48, from the equation (11),
Figure 0004480653

となる。 It becomes.

計測手段52は、検出手段50からの出力に基づいて、試料Sの旋光度を計測する。   The measuring unit 52 measures the optical rotation of the sample S based on the output from the detecting unit 50.

例えば、試料Sの旋光度は、試料Sへの入射光の偏光状態を変化させながら試料Sを透過した光の光強度を測定し、以下のように求める。   For example, the optical rotation of the sample S is obtained as follows by measuring the light intensity of the light transmitted through the sample S while changing the polarization state of the incident light on the sample S.

例えば、第1及び第2液晶素子26、28の複屈折位相差δ1、δ2をδ1=δ、δ2=δ+90°とし、δを0°から360°まで連続的に変化させる。このとき、偏光変調手段24の第2液晶素子28から出射する光は、式(7)より、

Figure 0004480653
For example, the birefringence phase differences δ 1 and δ 2 of the first and second liquid crystal elements 26 and 28 are set to δ 1 = δ and δ 2 = δ + 90 °, and δ is continuously changed from 0 ° to 360 °. . At this time, the light emitted from the second liquid crystal element 28 of the polarization modulator 24 is expressed by the following equation (7):
Figure 0004480653

と表される。 It is expressed.

図3は、偏光変調手段24から出射する光の偏光状態を示すポアンカレ球である。図示のように、点P3で表される出射光の偏光状態はδに応じて変化し、その変化はS1軸と球面の交点である赤道上の2点(S1,S2,S3)=(1,0,0)、(−1,0,0)及び北極点(0,0,1)を通る北半球の8の字状の軌道Dで示される。従って、偏光変調手段24からの出射光は、水平方向の直線偏光から、左円偏光、鉛直方向の直線偏光、左円偏光を経て、再び水平方向の直線偏光へと偏光面を回転させながら連続的に変化する左回りの偏光となる。 FIG. 3 is a Poincare sphere showing the polarization state of the light emitted from the polarization modulator 24. As shown in the figure, the polarization state of the emitted light represented by the point P 3 changes according to δ, and the change is two points on the equator (S 1 , S 2 , S 2) that are the intersections of the S 1 axis and the spherical surface. 3 ) = (1,0,0), (-1,0,0) and the northern hemisphere 8-shaped trajectory D passing through the north pole (0,0,1). Therefore, the outgoing light from the polarization modulator 24 continues from the horizontal linearly polarized light to the left circularly polarized light, the vertical linearly polarized light, the left circularly polarized light, and again to the horizontal linearly polarized light while rotating the polarization plane. The left-handed polarization changes.

偏光状態がこのように変化する光を試料Sに入射させたとき、検出手段50により検出される光強度は、式(12)より、

Figure 0004480653
When the light whose polarization state changes in this way is incident on the sample S, the light intensity detected by the detection means 50 is expressed by the equation (12):
Figure 0004480653

となる。ここで、a0(=1/4)、a1(=−1/4cos2θ)及びb2(=1/8sin2θ)は、それぞれフーリエ関数cos0、cosδ及びsin2δの係数を示す。式(14)から、δを連続的に0°〜360°の範囲で変調させると光強度Iθ(δ)が周期的に変化することがわかる。従って、検出手段50により測定された光強度Iθ(δ)の周期的変化をフーリエ解析し、係数a1、b2を求めることにより、試料Sの旋光度θは、

Figure 0004480653
It becomes. Here, a 0 (= 1/4), a 1 (= −1 / 4 cos 2θ) and b 2 (= 1/8 sin 2θ) indicate the coefficients of the Fourier functions cos 0, cos δ and sin 2 δ, respectively. From equation (14), it can be seen that when δ is continuously modulated in the range of 0 ° to 360 °, the light intensity I θ (δ) periodically changes. Therefore, by performing a Fourier analysis on the periodic change of the light intensity I θ (δ) measured by the detection means 50 and obtaining the coefficients a 1 and b 2 , the optical rotation θ of the sample S is
Figure 0004480653

により計算することができる。 Can be calculated.

再び図1を参照すると、偏光変調手段24は、各液晶素子26、28の温度を制御する温度制御手段34、36をさらに含む。図4に示すように、各温度制御手段34、36は、内側すなわち液晶素子側に設けた、ペルチェ素子などのサーモモジュールからなる温度調整素子38、40と、外側に設けた、銅板からなる熱伝達板42、44と、を含む。温度調整素子38、40及び熱伝達板42、44は、それぞれ、液晶素子26、28への入射光又は液晶素子26、28からの出射光が通過する開口38a、40a、42a、44aを有する。   Referring again to FIG. 1, the polarization modulation unit 24 further includes temperature control units 34 and 36 that control the temperatures of the liquid crystal elements 26 and 28. As shown in FIG. 4, each temperature control means 34, 36 includes a temperature adjustment element 38, 40 made of a thermo module such as a Peltier element provided on the inner side, that is, the liquid crystal element side, and a heat made of a copper plate provided on the outer side. Transmission plates 42 and 44. The temperature adjusting elements 38, 40 and the heat transfer plates 42, 44 have openings 38a, 40a, 42a, 44a through which light incident on the liquid crystal elements 26, 28 or light emitted from the liquid crystal elements 26, 28 passes, respectively.

温度制御手段34、36を用いて液晶素子26、28の温度を均一かつ一定に保つことにより、試料Sへの入射光を精度良く所望の偏光状態にすることができ、旋光度を精度良く検出することができる。   By keeping the temperature of the liquid crystal elements 26 and 28 uniform and constant by using the temperature control means 34 and 36, the incident light on the sample S can be accurately set in a desired polarization state, and the optical rotation can be detected with high accuracy. can do.

図5は、液晶素子への印加電圧と液晶素子の複屈折位相差の関係を温度毎に示す。より詳細には、液晶素子の温度をそれぞれ26℃、30℃、35℃、40℃に保った状態で、800mVから3800mVの電圧を印加したときの液晶素子の複屈折位相差を示す。図示のように、印加電圧と液晶素子の複屈折位相差の関係は温度に依存する。従って、液晶素子の温度が一定でなければ、同じ印加電圧に対する複屈折位相差に誤差(設定値と実際値の差)が生じる。   FIG. 5 shows the relationship between the voltage applied to the liquid crystal element and the birefringence phase difference of the liquid crystal element for each temperature. More specifically, the birefringence phase difference of the liquid crystal element when a voltage of 800 mV to 3800 mV is applied with the temperature of the liquid crystal element maintained at 26 ° C., 30 ° C., 35 ° C., and 40 ° C., respectively. As shown in the figure, the relationship between the applied voltage and the birefringence phase difference of the liquid crystal element depends on the temperature. Therefore, if the temperature of the liquid crystal element is not constant, an error (difference between the set value and the actual value) occurs in the birefringence phase difference with respect to the same applied voltage.

図6は、液晶素子の複屈折位相差の誤差による旋光度の誤差を示す。曲線a、b、c、d、e及びfは、それぞれ、液晶素子の複屈折位相差の誤差が0°、2°、4°、6°、8°及び10°であるときの旋光度の誤差を解析により求めたものである。曲線fで示すように、液晶素子の複屈折位相差の誤差が10°のとき、測定される旋光度の誤差は最大0.6°以上になる。従って、旋光度を精度良く測定するには、温度制御手段34、36により液晶素子26、28の温度を一定に保つことが必要なのである。   FIG. 6 shows the optical rotation error due to the birefringence phase difference error of the liquid crystal element. Curves a, b, c, d, e, and f show the optical rotation when the error of the birefringence phase difference of the liquid crystal element is 0 °, 2 °, 4 °, 6 °, 8 °, and 10 °, respectively. The error is obtained by analysis. As shown by the curve f, when the error of the birefringence phase difference of the liquid crystal element is 10 °, the measured error of the optical rotation becomes a maximum of 0.6 ° or more. Therefore, in order to accurately measure the optical rotation, it is necessary to keep the temperature of the liquid crystal elements 26 and 28 constant by the temperature control means 34 and 36.

上記偏光状態測定装置10の構成によれば、波長選択手段14を備えることにより、試料Sに応じて測定波長を変えて旋光度を測定することができる。また、旋光度を様々な測定波長で測定することにより、容易に旋光分散を得ることができる。   According to the configuration of the polarization state measuring apparatus 10, the optical rotation can be measured by changing the measurement wavelength according to the sample S by providing the wavelength selection unit 14. Moreover, optical rotation dispersion can be easily obtained by measuring the optical rotation at various measurement wavelengths.

偏光子22の透過軸aに対する主軸b、cの傾きがそれぞれ45°及び0°である2つの液晶素子26、28を含む偏光変調手段24を備えることにより、偏光子22からの所定の直線偏光を所望の偏光に変えて試料Sに入射させ、様々な方法で旋光度を検出することができる。   A predetermined linearly polarized light from the polarizer 22 is provided by including the polarization modulation means 24 including two liquid crystal elements 26 and 28 whose inclinations of the main axes b and c with respect to the transmission axis a of the polarizer 22 are 45 ° and 0 °, respectively. Can be made incident on the sample S with the desired polarization changed, and the optical rotation can be detected by various methods.

検光子回転機構の代わりに、2つ液晶素子26、28を含む偏光変調手段24を用いることにより、装置を小型化することができる。また、液晶素子22、24の複屈折位相差をミリ秒(msec)オーダーの高速で変化させることができるので、試料Sへの入射光の偏光状態を高速で変化させ、測定に要する時間を短縮することができる。さらに、液晶素子22、24への印加電圧は概ね0〜5Vの範囲であるため、従来のファラデーセルを用いた場合に比べ、装置を低電圧で駆動することができる。また、ポッケルスセルを用いた場合に比べ、装置を安価に製造することができる。   By using the polarization modulation means 24 including the two liquid crystal elements 26 and 28 instead of the analyzer rotating mechanism, the apparatus can be miniaturized. In addition, since the birefringence phase difference of the liquid crystal elements 22 and 24 can be changed at a high speed on the order of milliseconds (msec), the polarization state of the incident light on the sample S can be changed at a high speed, thereby shortening the time required for measurement. can do. Furthermore, since the voltage applied to the liquid crystal elements 22 and 24 is generally in the range of 0 to 5 V, the device can be driven at a lower voltage than when a conventional Faraday cell is used. Also, the apparatus can be manufactured at a lower cost than when a Pockels cell is used.

液晶素子の温度を均一かつ一定に保つ温度制御手段を備えることにより、旋光度を精度良く検出することができる。   By providing the temperature control means for keeping the temperature of the liquid crystal element uniform and constant, the optical rotation can be detected with high accuracy.

偏光状態測定装置10は、試料Sへの入射光を任意の偏光状態にすることができるので、旋光度だけでなく円二色性を測定することが可能であってもよい。また、円二色性測定装置とすることもできる。   Since the polarization state measuring apparatus 10 can change the incident light to the sample S into an arbitrary polarization state, it may be possible to measure not only the optical rotation but also circular dichroism. Moreover, it can also be set as a circular dichroism measuring apparatus.

偏光状態測定装置10又は円二色性測定装置で円二色性を測定する際、偏光変調手段24は、試料Sへの入射光を右円偏光とするために、例えば、第1液晶素子26の複屈折位相差δ1を90°とし、第2液晶素子28の複屈折位相差δ2を0°とする。 When the circular dichroism is measured by the polarization state measuring device 10 or the circular dichroism measuring device, the polarization modulation unit 24 uses, for example, the first liquid crystal element 26 in order to change the incident light on the sample S to right circularly polarized light. of the birefringent phase difference [delta] 1 and 90 °, the birefringence phase difference [delta] 2 of the second liquid crystal element 28 to 0 °.

同様に、偏光変調手段24は、試料Sへの入射光を左円偏光とするために、例えば、第1液晶素子26の複屈折位相差δ1を90°とし、第2液晶素子28の複屈折位相差δ2を180°とする。 Similarly, the polarization modulation unit 24 sets the birefringence phase difference δ 1 of the first liquid crystal element 26 to 90 °, for example, so that the incident light on the sample S is left circularly polarized light. The refractive phase difference δ 2 is set to 180 °.

計測手段52は、右円偏光における吸光係数αR及び左円偏光における吸光係数αLを、それぞれ、

Figure 0004480653
The measuring means 52 calculates the extinction coefficient α R for right circularly polarized light and the extinction coefficient α L for left circularly polarized light, respectively.
Figure 0004480653

により計算する。ここで、ISR及びISLは、それぞれ、検出手段50で測定した、試料Sを透過した右円偏光及び左円偏光の光強度である。INR及びINLは、それぞれ、試料Sを置かずに検出手段50で測定した右円偏光及び左円偏光の光強度である。このINR及びINLは、予め測定され、記憶されていることが好ましい。 Calculate by Here, I SR and I SL are the light intensities of right circularly polarized light and left circularly polarized light transmitted through the sample S, respectively, measured by the detection means 50. I NR and I NL are the light intensities of right circularly polarized light and left circularly polarized light measured by the detection means 50 without placing the sample S, respectively. The I NR and I NL are preferably measured and stored in advance.

円二色性は左右円偏光の吸光係数の差であるから、計測手段52は、右円偏光及び左円偏光の吸光係数αR及びαLから、試料Sの円二色性Δαを、

Figure 0004480653
Since circular dichroism is the difference between the extinction coefficients of left and right circularly polarized light, the measuring means 52 calculates the circular dichroism Δα of the sample S from the extinction coefficients α R and α L of right circularly polarized light and left circularly polarized light.
Figure 0004480653

により計算する。 Calculate according to

上記偏光状態測定装置10又は円二色性測定装置によれば、波長選択手段14を備えることにより、様々な測定波長で円二色性を測定し、容易に円二色性分散を得ることができる。   According to the polarization state measuring apparatus 10 or the circular dichroism measuring apparatus, the circular dichroism dispersion can be easily obtained by measuring the circular dichroism at various measurement wavelengths by providing the wavelength selecting means 14. it can.

尚、円二色性を測定する際、検光子48は不要である。検光子48を取り外し可能に装置に設置し、円二色性を測定するときに検光子48を取り外すように構成してもよいし、検光子48を配置したまま旋光度と円二色性の両方の測定を行うように構成してもよい。   Note that the analyzer 48 is not necessary when measuring circular dichroism. The analyzer 48 may be detachably installed in the apparatus, and the analyzer 48 may be configured to be removed when the circular dichroism is measured, or the optical rotation and the circular dichroism can be maintained with the analyzer 48 placed. You may comprise so that both measurements may be performed.

実施例1
図7は、本願発明による偏光状態測定装置の実施形態を用いて、1/2波長板の回転に対する旋光角度を測定した結果を示す。
Example 1
FIG. 7 shows the result of measuring the optical rotation angle with respect to the rotation of the half-wave plate using the embodiment of the polarization state measuring device according to the present invention.

測定は、図1の構成において波長選択手段を省略し、波長632.8nmのHe−Neレーザーを光源として行った。より詳細には、試料である1/2波長板を、偏光子22の透過軸に対する1/2波長板の光学軸の傾きが−45°〜45°となる範囲で5°ずつ回転し、その旋光度を測定した。   The measurement was performed by omitting the wavelength selection means in the configuration of FIG. More specifically, the half-wave plate as the sample is rotated by 5 ° in a range where the inclination of the optical axis of the half-wave plate with respect to the transmission axis of the polarizer 22 is −45 ° to 45 °. The optical rotation was measured.

測定された旋光度は、1/2波長板の回転角度の2倍、すなわち偏光子22の透過軸に対する1/2波長板の光学軸の角度の2倍であった。従って、本願発明による偏光状態測定装置により、1/2波長板の回転に対する旋光角度が精度良く測定されたことがわかる。   The measured optical rotation was twice the rotation angle of the half-wave plate, that is, twice the angle of the optical axis of the half-wave plate with respect to the transmission axis of the polarizer 22. Therefore, it can be understood that the optical rotation angle with respect to the rotation of the half-wave plate was accurately measured by the polarization state measuring apparatus according to the present invention.

実施例2
図8は、本願発明による偏光状態測定装置の実施形態を用いて、標準水晶板の旋光度を測定した結果を示す。
Example 2
FIG. 8 shows the results of measuring the optical rotation of a standard quartz plate using an embodiment of the polarization state measuring device according to the present invention.

測定は、図1の構成において、ハロゲンランプを光源とし、波長選択手段として干渉フィルターを用いて得た波長589.3nmの光と、波長選択手段を省略し、He−Neレーザーを光源として得た波長632.8nmの光を用いて行った。試料Sには、比旋光度8°及び34°の標準水晶板を使用した。   In the configuration of FIG. 1, a halogen lamp was used as a light source in the configuration of FIG. 1, light having a wavelength of 589.3 nm obtained using an interference filter as a wavelength selection means, and a wavelength selection means were omitted, and a He—Ne laser was obtained as a light source. The measurement was performed using light having a wavelength of 632.8 nm. For sample S, standard quartz plates with specific rotations of 8 ° and 34 ° were used.

図8において、実線は波長589.3nmでの測定結果を示し、破線は波長632.8nmでの測定結果を示す。波長589.3nmでは、縦軸に示す測定された旋光度は、横軸に示す比旋光度に概ね等しい。従って、本願発明による偏光状態測定装置により試料Sの旋光度が精度良く測定できることがわかる。波長632.8nmでは、波長589.3nmの場合に比べて旋光度が小さく測定されているが、これは旋光分散の影響によるものと考えられる。   In FIG. 8, the solid line shows the measurement result at a wavelength of 589.3 nm, and the broken line shows the measurement result at a wavelength of 632.8 nm. At a wavelength of 589.3 nm, the measured optical rotation shown on the vertical axis is approximately equal to the specific optical rotation shown on the horizontal axis. Therefore, it can be seen that the optical rotation of the sample S can be measured with high accuracy by the polarization state measuring apparatus according to the present invention. At a wavelength of 632.8 nm, the optical rotation is measured to be smaller than that at the wavelength of 589.3 nm. This is considered to be due to the influence of optical rotation dispersion.

要するに、本願発明による偏光状態測定装置の実施形態は、以下の特徴を有する。   In short, the embodiment of the polarization state measuring device according to the present invention has the following characteristics.

1. 偏光状態測定装置(10)が、
所定の帯域成分を含む光の所定の偏光成分を透過させる第1の偏光子(22)と、
第1の偏光子を透過した光を所望の偏光に変調する偏光変調手段(24)と、
偏光変調手段を介して測定対象(S)を透過した光の所定の偏光成分を透過させる第2の偏光子(48)と、
第2の偏光子を透過した光の光強度を検出する検出手段(50)と、
検出手段で検出した光強度をフーリエ級数で表したときのフーリエ係数に基づいて測定対象の偏光状態を計測する計測手段(52)と、
を有し、
偏光変調手段が、第1及び第2の液晶素子(26、28)と、液晶素子への印加電圧を制御する電圧制御手段(30、32)と、を有する。
1. The polarization state measuring device (10)
A first polarizer (22) that transmits a predetermined polarization component of light including a predetermined band component;
Polarization modulation means (24) for modulating the light transmitted through the first polarizer into a desired polarization;
A second polarizer (48) that transmits a predetermined polarization component of the light transmitted through the measurement object (S) via the polarization modulator;
Detection means (50) for detecting the light intensity of the light transmitted through the second polarizer;
Measurement means (52) for measuring the polarization state of the measurement object based on the Fourier coefficient when the light intensity detected by the detection means is represented by a Fourier series;
Have
The polarization modulation means includes first and second liquid crystal elements (26, 28) and voltage control means (30, 32) for controlling a voltage applied to the liquid crystal elements.

2. 偏光状態が、測定対象の旋光性または円二色性を含む。 2. The polarization state includes the optical rotation or circular dichroism of the measurement target.

3. 第1の液晶素子(26)が、第1の偏光子(22)の透過軸に対して45°の奇数倍傾いた進相軸(b)を有し、
第2の液晶素子(28)が、第1の偏光子(22)の透過軸に対して45°の偶数倍傾いた進相軸(c)を有する。
3. The first liquid crystal element (26) has a fast axis (b) inclined at an odd multiple of 45 ° with respect to the transmission axis of the first polarizer (22);
The second liquid crystal element (28) has a fast axis (c) inclined at an even multiple of 45 ° with respect to the transmission axis of the first polarizer (22).

4. 第1の液晶素子の複屈折位相差(δ1)が0°から360°の範囲で可変であり、第2の液晶素子の複屈折位相差(δ2)が第1の液晶素子の複屈折位相差と90°異なる。 4). The birefringence phase difference (δ 1 ) of the first liquid crystal element is variable in the range of 0 ° to 360 °, and the birefringence phase difference (δ 2 ) of the second liquid crystal element is birefringence of the first liquid crystal element. It is 90 ° different from the phase difference.

5. 第1の液晶素子の複屈折位相差をδ、第2の液晶素子の複屈折位相差をδ+90°とすると、計測手段が、検出手段で検出した光強度のフーリエ級数における基底関数cosδ及びsin2δの係数に基づいて測定対象の偏光状態を計測する。 5. Assuming that the birefringence phase difference of the first liquid crystal element is δ and the birefringence phase difference of the second liquid crystal element is δ + 90 °, the measurement means uses the basis functions cos δ and sin 2 δ in the Fourier series of the light intensity detected by the detection means. The polarization state of the measurement object is measured based on the coefficient.

6. 第1及び第2の液晶素子がネマチック液晶セルを含む。 6). The first and second liquid crystal elements include nematic liquid crystal cells.

7. 偏光変調手段が、第1及び第2の液晶素子の温度を制御する温度制御手段(34、36)を更に有する。 7). The polarization modulation means further includes temperature control means (34, 36) for controlling the temperature of the first and second liquid crystal elements.

本願発明による旋光度の測定方法の実施形態は、以下の特徴を有する。   The embodiment of the optical rotation measurement method according to the present invention has the following features.

8. 偏光状態測定方法が、
所定の帯域成分を含む光の所定の偏光成分を透過させるステップと、
透過した光を所望の偏光に変調する偏光変調ステップと、
偏光変調をし測定対象を透過した光の所定の偏光成分を透過させるステップと、
透過した光の光強度を検出するステップと、
検出した光強度をフーリエ級数で表したときのフーリエ係数に基づいて測定対象の偏光状態を計測するステップと、
を有し、
偏光変調ステップが、第1及び第2の液晶素子により透過光を変調するステップと、液晶素子への印加電圧を制御するステップと、を有する。
8). The polarization state measurement method is
Transmitting a predetermined polarization component of light including a predetermined band component;
A polarization modulation step for modulating the transmitted light to a desired polarization;
Transmitting a predetermined polarization component of light that has undergone polarization modulation and transmitted through the measurement object;
Detecting the light intensity of the transmitted light;
Measuring the polarization state of the measurement object based on the Fourier coefficient when the detected light intensity is represented by a Fourier series;
Have
The polarization modulation step includes a step of modulating the transmitted light by the first and second liquid crystal elements and a step of controlling a voltage applied to the liquid crystal element.

本願発明による円二色性測定装置の実施形態は、以下の特徴を有する。   The embodiment of the circular dichroism measuring device according to the present invention has the following features.

9. 円二色性測定装置が、
所定の帯域成分を含む光の所定の偏光成分を透過させる偏光子(22)と、
偏光子を透過した光を所望の偏光に変調する偏光変調手段(24)と、
偏光変調手段を介して測定対象を透過した光の光強度を検出する検出手段(50)と、
検出手段で検出した光強度に基づいて測定対象の円二色性を計測する計測手段(52)と、
を有し、
偏光変調手段が、第1及び第2の液晶素子(26、28)と、液晶素子への印加電圧を制御する電圧制御手段(30、32)と、を有する。
9. Circular dichroism measuring device
A polarizer (22) that transmits a predetermined polarization component of light including a predetermined band component;
Polarization modulation means (24) for modulating the light transmitted through the polarizer into a desired polarization;
Detection means (50) for detecting the light intensity of light transmitted through the measurement object via the polarization modulation means;
Measurement means (52) for measuring the circular dichroism of the measurement object based on the light intensity detected by the detection means;
Have
The polarization modulation means includes first and second liquid crystal elements (26, 28) and voltage control means (30, 32) for controlling a voltage applied to the liquid crystal elements.

本願発明による旋光度及び円二色性の測定方法の実施形態は、以下の特徴を有する。   The embodiment of the method for measuring optical rotation and circular dichroism according to the present invention has the following features.

10.円二色性測定方法が、
所定の帯域成分を含む光の所定の偏光成分を透過させるステップと、
透過した光を所望の偏光に変調する偏光変調ステップと、
偏光変調をし、測定対象を透過した光の光強度を検出するステップと、
検出した光強度に基づいて測定対象の円二色性を計測するステップと、
を有し、
偏光変調ステップが、第1及び第2の液晶素子により透過光を変調するステップと、液晶素子への印加電圧を制御するステップと、を有する。
10. Circular dichroism measurement method is
Transmitting a predetermined polarization component of light including a predetermined band component;
A polarization modulation step for modulating the transmitted light to a desired polarization;
Performing polarization modulation and detecting the light intensity of the light transmitted through the measurement object;
Measuring the circular dichroism of the measurement object based on the detected light intensity;
Have
The polarization modulation step includes a step of modulating the transmitted light by the first and second liquid crystal elements and a step of controlling a voltage applied to the liquid crystal element.

また、上記の測定装置及び測定方法は以下の効果を奏する。   Moreover, said measuring apparatus and measuring method have the following effects.

(1) 装置を小型化することができる。 (1) The apparatus can be reduced in size.

(2) 装置の製造コストを低減することができる。 (2) The manufacturing cost of the apparatus can be reduced.

(3) 装置を低電圧で駆動することができる。 (3) The device can be driven at a low voltage.

(4) 測定時間を短縮できる。 (4) The measurement time can be shortened.

(5) 精度良く測定することができる。 (5) It can measure with high accuracy.

(6) 旋光分散、円二色性分散を容易に得ることができる。 (6) Optical rotation dispersion and circular dichroism dispersion can be easily obtained.

尚、この発明は上記実施形態に限定されるものでなく、他の様々な形態で実施されることができる。   In addition, this invention is not limited to the said embodiment, It can implement with other various forms.

例えば、旋光度の計算方法に関して、サンプリング数を減らすために、液晶素子の位相変調量δを0°、135°、180°及び225°としたときの光強度Iθ(0)、Iθ(135)、Iθ(180)及びIθ(225)をそれぞれ検出してもよい。この場合、旋光度θは、

Figure 0004480653
For example, regarding the optical rotation calculation method, in order to reduce the number of samplings, the light intensity I θ (0), I θ (when the phase modulation amount δ of the liquid crystal element is 0 °, 135 °, 180 °, and 225 °. 135), I θ (180) and I θ (225), respectively. In this case, the optical rotation θ is
Figure 0004480653

から計算することができる。 Can be calculated from

糖類、アミノ酸の濃度計測だけでなく、タンパク質の構造解析や、有機材料、光学結晶の物性分析などに利用することができる。   It can be used not only for measuring the concentration of saccharides and amino acids, but also for structural analysis of proteins, physical properties analysis of organic materials, and optical crystals.

また、血液中のグルコース濃度、すなわち血糖値を非浸襲で測定するグルコースセンサーとして利用することができる。腕時計程の小型センサーとすることも可能である。   Moreover, it can utilize as a glucose sensor which measures the glucose level in blood, ie, a blood glucose level, non-invasively. It is possible to make it as small as a wristwatch.

図1は、本願発明による偏光状態測定装置の実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of a polarization state measuring apparatus according to the present invention. 図2は、光の偏光状態の変化を表すポアンカレ球である。FIG. 2 is a Poincare sphere representing a change in the polarization state of light. 図3は、偏光変調手段から出射する光の偏光状態の一例を示すポアンカレ球である。FIG. 3 is a Poincare sphere showing an example of the polarization state of the light emitted from the polarization modulation means. 図4は、図1の温度制御手段の構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of the temperature control means of FIG. 図5は、液晶素子への印加電圧と液晶素子の複屈折位相差の関係を示す。FIG. 5 shows the relationship between the voltage applied to the liquid crystal element and the birefringence phase difference of the liquid crystal element. 図6は、液晶素子の複屈折位相差の誤差による旋光度の測定誤差を示す。FIG. 6 shows an optical rotation measurement error due to a birefringence phase difference error of the liquid crystal element. 図7は、本願発明による偏光状態測定装置の実施形態を用いて測定した1/2波長板の回転に対する旋光角度を示す。FIG. 7 shows the optical rotation angle with respect to the rotation of the half-wave plate measured using the embodiment of the polarization state measuring device according to the present invention. 図8は、本願発明による偏光状態測定装置の実施形態を用いて測定した標準水晶板の旋光度を示す。FIG. 8 shows the optical rotation of a standard quartz plate measured using an embodiment of the polarization state measuring apparatus according to the present invention.

符号の説明Explanation of symbols

10 偏光状態測定装置
12 光源
14 波長選択手段
16 反射型回折格子
18 スリット
20 駆動手段
22 偏光子
24 偏光変調手段
26 第1液晶素子
28 第2液晶素子
30、32 電圧制御手段
34、36 温度制御手段
46 測定セル
48 検光子
50 検出手段
52 計測手段
DESCRIPTION OF SYMBOLS 10 Polarization state measuring apparatus 12 Light source 14 Wavelength selection means 16 Reflection type diffraction grating 18 Slit 20 Driving means 22 Polarizer 24 Polarization modulation means 26 First liquid crystal element 28 Second liquid crystal elements 30, 32 Voltage control means 34, 36 Temperature control means 46 measuring cell 48 analyzer 50 detecting means 52 measuring means

Claims (7)

光透過性を有する測定対象の偏光状態を計測する偏光状態測定装置において、
所定の帯域成分を含む光の所定の偏光成分を透過させる第1の偏光子と、
前記第1の偏光子を透過した光を所望の偏光に変調する偏光変調手段と、
前記偏光変調手段を介して前記測定対象を透過した光の所定の偏光成分を透過させる第2の偏光子と、
前記第2の偏光子を透過した光の光強度を検出する検出手段と、
前記検出手段で検出した光強度をフーリエ級数で表したときのフーリエ係数に基づいて前記測定対象の偏光状態を計測する計測手段と、
を有し、
前記偏光変調手段が、第1及び第2の液晶素子と、前記液晶素子への印加電圧を制御する電圧制御手段と、を有
前記第1の液晶素子の複屈折位相差が0°から360°の範囲で可変であり、前記第2の液晶素子の複屈折位相差が第1の液晶素子の複屈折位相差と90°異なる、
ことを特徴とする偏光状態測定装置。
In a polarization state measuring apparatus for measuring the polarization state of a measurement object having light transmittance,
A first polarizer that transmits a predetermined polarization component of light including a predetermined band component;
Polarization modulation means for modulating the light transmitted through the first polarizer into a desired polarization;
A second polarizer that transmits a predetermined polarization component of light transmitted through the measurement object via the polarization modulator;
Detecting means for detecting the light intensity of the light transmitted through the second polarizer;
Measuring means for measuring the polarization state of the measurement object based on a Fourier coefficient when the light intensity detected by the detection means is represented by a Fourier series;
Have
The polarization modulation means possess first and second liquid crystal element, and a voltage control means for controlling a voltage applied to the liquid crystal element,
The birefringence phase difference of the first liquid crystal element is variable in the range of 0 ° to 360 °, and the birefringence phase difference of the second liquid crystal element is 90 ° different from the birefringence phase difference of the first liquid crystal element. ,
A polarization state measuring device.
前記偏光状態が、測定対象の旋光性または円二色性を含む
ことを特徴とする請求項1に記載の偏光状態測定装置。
The polarization state measuring apparatus according to claim 1, wherein the polarization state includes optical rotation or circular dichroism to be measured.
前記第1の液晶素子が、前記第1の偏光子の透過軸に対して45°の奇数倍傾いた進相軸を有し、
前記第2の液晶素子が、前記第1の偏光子の透過軸に対して45°の偶数倍傾いた進相軸を有する
ことを特徴とする請求項1に記載の偏光状態測定装置。
The first liquid crystal element has a fast axis inclined at an odd multiple of 45 ° with respect to the transmission axis of the first polarizer;
The polarization state measuring apparatus according to claim 1, wherein the second liquid crystal element has a fast axis inclined at an even multiple of 45 ° with respect to the transmission axis of the first polarizer.
前記第1の液晶素子の複屈折位相差をδ、前記第2の液晶素子の複屈折位相差をδ+90°とすると、前記計測手段が、前記検出手段で検出した光強度のフーリエ級数における基底関数cosδ及びsin2δの係数に基づいて測定対象の偏光状態を計測する
ことを特徴とする請求項1に記載の偏光状態測定装置。
Assuming that the birefringence phase difference of the first liquid crystal element is δ and the birefringence phase difference of the second liquid crystal element is δ + 90 °, the measurement means is a basis function in the Fourier series of the light intensity detected by the detection means. The polarization state measuring apparatus according to claim 1, wherein the polarization state of the measurement target is measured based on the coefficients of cos δ and sin 2 δ.
前記第1及び第2の液晶素子がネマチック液晶セルを含むことを特徴とする請求項1または3に記載の偏光状態測定装置。 The polarization state measuring device according to claim 1 or 3, wherein the first and second liquid crystal elements include nematic liquid crystal cells. 前記偏光変調手段が、第1及び第2の液晶素子の温度を制御する温度制御手段を更に有することを特徴とする請求項1に記載の偏光状態測定装置。   2. The polarization state measuring apparatus according to claim 1, wherein the polarization modulation unit further includes a temperature control unit that controls the temperatures of the first and second liquid crystal elements. 光透過性を有する測定対象の偏光状態を測定する偏光状態測定方法において、
所定の帯域成分を含む光の所定の偏光成分を透過させるステップと、
透過した光を所望の偏光に変調する偏光変調ステップと、
偏光変調をし前記測定対象を透過した光の所定の偏光成分を透過させるステップと、
透過した光の光強度を検出するステップと、
検出した光強度をフーリエ級数で表したときのフーリエ係数に基づいて前記測定対象の偏光状態を計測するステップと、
を有し、
前記偏光変調ステップが、第1及び第2の液晶素子により透過光を変調するステップと、前記液晶素子への印加電圧を制御するステップと、を有
前記第1の液晶素子の複屈折位相差が0°から360°の範囲で可変であり、前記第2の液晶素子の複屈折位相差が第1の液晶素子の複屈折位相差と90°異なる、
ことを特徴とする偏光状態測定方法。
In a polarization state measurement method for measuring a polarization state of a measurement object having light transmittance,
Transmitting a predetermined polarization component of light including a predetermined band component;
A polarization modulation step for modulating the transmitted light to a desired polarization;
Transmitting a predetermined polarization component of light that has undergone polarization modulation and transmitted through the measurement object;
Detecting the light intensity of the transmitted light;
Measuring the polarization state of the measurement object based on a Fourier coefficient when the detected light intensity is represented by a Fourier series;
Have
The polarization modulation step, possess the step of modulating transmitted light by the first and second liquid crystal element, and controlling the voltage applied to the liquid crystal element, a,
The birefringence phase difference of the first liquid crystal element is variable in the range of 0 ° to 360 °, and the birefringence phase difference of the second liquid crystal element is 90 ° different from the birefringence phase difference of the first liquid crystal element. ,
A polarization state measuring method characterized by the above.
JP2005280367A 2005-09-27 2005-09-27 Polarization state measuring device, circular dichroism measuring device and method thereof Active JP4480653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280367A JP4480653B2 (en) 2005-09-27 2005-09-27 Polarization state measuring device, circular dichroism measuring device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280367A JP4480653B2 (en) 2005-09-27 2005-09-27 Polarization state measuring device, circular dichroism measuring device and method thereof

Publications (2)

Publication Number Publication Date
JP2007093289A JP2007093289A (en) 2007-04-12
JP4480653B2 true JP4480653B2 (en) 2010-06-16

Family

ID=37979198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280367A Active JP4480653B2 (en) 2005-09-27 2005-09-27 Polarization state measuring device, circular dichroism measuring device and method thereof

Country Status (1)

Country Link
JP (1) JP4480653B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947998B2 (en) * 2006-02-28 2012-06-06 国立大学法人宇都宮大学 Optical characteristic measuring apparatus and optical characteristic measuring method
JP2009133850A (en) * 2007-11-09 2009-06-18 Nokodai Tlo Kk Polarization modulator and measuring apparatus
JP4879197B2 (en) * 2008-02-14 2012-02-22 株式会社アタゴ Measuring device that measures the optical rotation of the measurement object
JP4977671B2 (en) * 2008-09-22 2012-07-18 株式会社アタゴ Polarization modulator and measuring device
JP2010145332A (en) * 2008-12-22 2010-07-01 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument, optical characteristic measurement method, and calibration method of optical characteristic measuring instrument
CN102483376A (en) 2009-03-04 2012-05-30 株式会社全球纤维光学 Optical rotation measuring device and optical rotation measuring method
DE102009015393B3 (en) * 2009-03-20 2010-09-02 Carl Zeiss Smt Ag Measuring method and measuring system for measuring birefringence
JP5308208B2 (en) * 2009-03-27 2013-10-09 学校法人 埼玉医科大学 Polarization characteristic measuring apparatus and polarization characteristic measuring method
JP5493599B2 (en) * 2009-08-28 2014-05-14 株式会社ニコン Multi-channel spectrum light source device
WO2011145652A1 (en) 2010-05-19 2011-11-24 塩野義製薬株式会社 Defocused optical rotation measurement apparatus, optical rotation measurement method and defocused optical fiber system
JP5747317B2 (en) * 2010-11-05 2015-07-15 国立大学法人宇都宮大学 Polarization measuring apparatus and polarization measuring method
JP5361843B2 (en) * 2010-11-15 2013-12-04 三菱電機株式会社 Optical anisotropy evaluation method and evaluation apparatus
JP2012255731A (en) * 2011-06-09 2012-12-27 Hamamatsu Photonics Kk Circular dichroic imaging device
JP2013036792A (en) 2011-08-05 2013-02-21 Seiko Epson Corp Apparatus and method for measuring polarization state
WO2013179140A2 (en) 2012-05-29 2013-12-05 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method
FR3008497B1 (en) * 2013-07-10 2015-08-07 Univ Strasbourg DEVICE FOR COMPENSATING THE DERIVATIVE OF A PHASING MODULATOR OF A POLARIZATION STATE OF A LIGHT BEAM
CN104132900A (en) * 2014-08-08 2014-11-05 厦门大学 Solid chirality spectrum testing method of crystal chiral drug
KR101661470B1 (en) * 2014-12-26 2016-10-05 전자부품연구원 Polarizing mutation detecting apparatus using optical waveguide
CN111896486B (en) * 2020-06-19 2022-11-11 南京大学 Chiral substance optical activity measuring device and method
CN114018830B (en) * 2021-10-27 2024-05-28 北京航空航天大学 Linear polarization direction detection method based on liquid crystal polarization grating
CN114815020B (en) * 2022-04-21 2023-09-22 岭南师范学院 Design method of high-quality-factor refractive index sensor and refractive index sensor

Also Published As

Publication number Publication date
JP2007093289A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4480653B2 (en) Polarization state measuring device, circular dichroism measuring device and method thereof
KR100765709B1 (en) Spectroscopic polarimetry
ES2231864T3 (en) NON-INVASIVE MEASUREMENT OF OPTICAL ACTIVITY COMPOUNDS.
JP4205704B2 (en) Imaging polarization measurement method
JP4556463B2 (en) Birefringence measuring device
JP5904793B2 (en) Spectroscopic polarimetry apparatus and method in visible and near infrared region
JP4538344B2 (en) Axial bearing measuring apparatus and method
JP3844222B2 (en) Birefringence measuring device
JP2010145332A (en) Optical characteristic measuring instrument, optical characteristic measurement method, and calibration method of optical characteristic measuring instrument
JP2007526981A (en) Method and apparatus for three-dimensional measurement of the refractive index of a transparent or partially transparent layer
US6348966B1 (en) Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
KR20010107968A (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
Watad et al. Spectro-ellipsometric surface plasmon resonance sensor using a liquid crystal achromatic waveplate
US6697161B2 (en) Optical characterization of retarding devices
CN204855372U (en) Heavy -calibre uniaxial crystal refracting index homogeneity measuring device
JP5747317B2 (en) Polarization measuring apparatus and polarization measuring method
JP5041508B2 (en) Optical characteristic measuring apparatus and method
JP4879197B2 (en) Measuring device that measures the optical rotation of the measurement object
JP4926003B2 (en) Polarization analysis method
JP5991230B2 (en) Phase difference measuring method and apparatus
JP2010271279A (en) Measuring apparatus and measurement method
JP2009133850A (en) Polarization modulator and measuring apparatus
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
JP4977671B2 (en) Polarization modulator and measuring device
US7952712B2 (en) Method for detecting equatorial plane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4480653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250