JP4478792B2 - Back-mounted X-ray detection method - Google Patents

Back-mounted X-ray detection method Download PDF

Info

Publication number
JP4478792B2
JP4478792B2 JP2003320847A JP2003320847A JP4478792B2 JP 4478792 B2 JP4478792 B2 JP 4478792B2 JP 2003320847 A JP2003320847 A JP 2003320847A JP 2003320847 A JP2003320847 A JP 2003320847A JP 4478792 B2 JP4478792 B2 JP 4478792B2
Authority
JP
Japan
Prior art keywords
sample
detector
ray
ray detection
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003320847A
Other languages
Japanese (ja)
Other versions
JP2005090981A (en
Inventor
卓郎 酒井
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2003320847A priority Critical patent/JP4478792B2/en
Publication of JP2005090981A publication Critical patent/JP2005090981A/en
Application granted granted Critical
Publication of JP4478792B2 publication Critical patent/JP4478792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、X線測定技術に関し、特に、元素固有の特性X線を効率よく検出する方法に関するものである。   The present invention relates to an X-ray measurement technique, and more particularly to a method for efficiently detecting characteristic X-rays specific to an element.

試料をX線、電子線、イオンビームなどの一次ビームで衝撃して、その際に試料から発生する各元素固有の特性X線を検出する方法は、生物学、医学、歯学、材料科学、地質学、地球科学から犯罪捜査など非常に幅広い分野で利用されている。例えば、特性X線を分光することにより元素分析を行う方法などが知られている。   A method for detecting characteristic X-rays specific to each element generated from a specimen by bombarding the specimen with a primary beam such as an X-ray, an electron beam, or an ion beam is used in biology, medicine, dentistry, material science, geology It is used in a very wide range of fields such as science, earth science, and criminal investigation. For example, a method of performing elemental analysis by spectroscopic analysis of characteristic X-rays is known.

特性X線を分光する際には、X線検出器は従来、一次ビームが入射する試料面を基準としてビーム光源と同じ側に設置され、ビーム光源からみて試料前面から発せられる特性X線を測定する方式が採用されてきた。しかしながら、一次ビームの入射を妨害しないように検出器を設置する必要があるため、この方式では、幾何学的な制約から検出器を試料に近づけることができず、試料を臨む角度は制限されてしまう。   When spectrally analyzing characteristic X-rays, X-ray detectors are conventionally installed on the same side as the beam light source with respect to the sample surface on which the primary beam is incident, and measure characteristic X-rays emitted from the front of the sample as seen from the beam light source. Has been adopted. However, because it is necessary to install a detector so as not to interfere with the incidence of the primary beam, this method cannot bring the detector closer to the sample due to geometrical restrictions, and the angle at which the sample faces is limited. End up.

したがって、本発明は、試料の前方、すなわち、一次ビームが入射する試料面を基準としてビーム光源と同じ側にX線検出器を設置する従来の特性X線検出法と比較して、検出器と試料の位置関係の制限が少なく、格段に効率よくX線検出を行うことができる方法を提供することを課題とする。   Therefore, the present invention provides a detector in comparison with a conventional characteristic X-ray detection method in which an X-ray detector is installed in front of the sample, that is, on the same side as the beam light source with respect to the sample surface on which the primary beam is incident. It is an object of the present invention to provide a method capable of performing X-ray detection extremely efficiently with few restrictions on the positional relationship of the sample.

上記課題を解決するため、本発明は、ビーム光源を基準として光軸延長上に配置された試料の背面にX線検出器を配置する方式により特性X線検出を行う方法を課題解決手段とする。   In order to solve the above problems, the present invention provides a method for solving characteristic X-rays by a method in which an X-ray detector is arranged on the back surface of a sample arranged on an optical axis extension with a beam light source as a reference. .

要するに、本発明は、イオンビームの一次ビームの衝撃により、試料から発生する特性X線を検出する方法であって、ビーム光源を基準として光軸延長上に配置された試料の背面にX線検出器を配置し、ビーム光源を基準として該検出器のビームの光軸延長上を含む前面に、入射一次ビームの該X線検出素子への透過を防ぐダンパー材を設置することを特徴とする方法である。
In summary, the present invention is, by impact of the primary beam of Lee Onbimu, a method of detecting the characteristic X-rays generated from the sample, the X-ray detector on the back of the sample placed on the optical axis on an extension of the beam source as a reference And a damper material for preventing transmission of the incident primary beam to the X-ray detection element on the front surface including the extension of the optical axis of the beam of the detector with reference to the beam light source. It is.

本発明のX線検出方法によれば、従来の方法に比べて検出効率が大幅に向上することから、その波及効果は非常に大きいと思われる。   According to the X-ray detection method of the present invention, the detection efficiency is greatly improved as compared with the conventional method, so that the ripple effect seems to be very large.

本発明は、イオンビームの一次ビームの衝撃により、試料から発生する特性X線を検出する方法であって、ビーム光源を基準として光軸延長上に配置された試料の背面にX線検出器を配置し、ビーム光源を基準として該検出器のビームの光軸延長上を含む前面に、入射一次ビームの該X線検出素子への透過を防ぐダンパー材(ビームダンパー)を設置することを特徴とする方法である。本発明のX線検出方法の一実施態様を図1に示す。 The present invention, by the impact of the primary beam of Lee Onbimu, a method of detecting the characteristic X-rays generated from the sample, the X-ray detector on the back of the sample disposed on the optical axis extending the beam light source as a reference And a damper material (beam damper) that prevents transmission of the incident primary beam to the X-ray detection element is disposed on the front surface including the extension of the optical axis of the beam of the detector with reference to the beam light source. It is a method to do. One embodiment of the X-ray detection method of the present invention is shown in FIG.

検出器から試料を見込む角度を最大にするためには、一次ビームを妨害することのない試料背面に検出器を設置すればよい。この場合、一次ビームを止めるビームダンパーを検出器前面に取り付けなければならない。このビームダンパーを可能限り小さくかつ薄くして、試料と検出器の間に設置することで、試料から発生する低エネルギーから高エネルギーまでの特性X線を効率よく検出することが可能になる。   In order to maximize the angle at which the sample is viewed from the detector, the detector may be installed on the back of the sample without interfering with the primary beam. In this case, a beam damper for stopping the primary beam must be attached to the front surface of the detector. By making this beam damper as small and thin as possible and installing it between the sample and the detector, it becomes possible to efficiently detect characteristic X-rays generated from the sample from low energy to high energy.

本発明においてX線検出器は、当技術分野において既知のいずれか適するものを使用することができる。ビームダンパーは、入射一次ビームのX線検出素子への透過を防ぐ材質のものであればよい。二次X線の発生を防ぐため、炭素などの軽元素で構成され、不純物が少ないことを要する。本発明においては、例えば、グラッシーカーボンを使用することができる。低いエネルギーの特性X線の遮蔽を避けるため、X線検出素子より面積が小さいことが好ましいが、測定対象のX線のエネルギーがダンパー材を透過できるほど高い場合には、検出素子より大きくてもよい。ビームダンパーの厚さは一次ビームの種類とエネルギーに依存して選択することができる。電子・イオンなど物質中での飛程(その物質を透過できる距離)が短い場合は、厚さは数百ミクロンでよく、透過力の強いX線の場合は、そのエネルギーに依存して数ミリ程度の厚さを要する。   In the present invention, any suitable X-ray detector known in the art can be used. The beam damper may be made of a material that prevents the transmission of the incident primary beam to the X-ray detection element. In order to prevent the generation of secondary X-rays, it is necessary to be composed of light elements such as carbon and have few impurities. In the present invention, for example, glassy carbon can be used. In order to avoid shielding of low energy characteristic X-rays, it is preferable that the area is smaller than the X-ray detection element, but if the energy of the X-ray to be measured is high enough to pass through the damper material, it may be larger than the detection element. Good. The thickness of the beam damper can be selected depending on the type and energy of the primary beam. Thickness may be several hundred microns when the range (distance that can pass through the substance) in materials such as electrons and ions is short, and several millimeters depending on the energy of X-rays with strong penetrating power. It needs a certain thickness.

以下、本発明を実施例により詳細に説明するが、本発明はこの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

本発明のX線検出方法を用いて特性X線検出評価を行った。評価は、従来法である検出器を試料の前方に配置する方式と比較して行った。
使用した測定系の配置図を図1及び図2に示す。図1は、本発明のX線検出方法であり、図2は、従来技術のX線検出方法を示す図である。
Characteristic X-ray detection evaluation was performed using the X-ray detection method of the present invention. The evaluation was performed in comparison with a conventional method in which a detector is arranged in front of the sample.
The layout of the measurement system used is shown in FIGS. FIG. 1 shows an X-ray detection method according to the present invention, and FIG. 2 shows a conventional X-ray detection method.

図1において、X線検出器の外径はφ30mm、素子の有効面積は100mm2である。検出器前面(試料側)からその内部の素子までの距離は4mm、試料から検出器までの距離は2.5mmである。ビームダンパーは、直径φ2mm、厚さ0.5mmのグラッシーカーボン(密度1.519g/cm3)を使用した。したがって、試料から検出器素子までの距離は6.5mmで、試料を臨む全体の立体角は1.54sr、ビームダンパーにより影になる部分の立体角は0.66srとなる。X線の検出効率の評価に際しては、ビームダンパーによるX線の吸収を考慮して行った。 In FIG. 1, the outer diameter of the X-ray detector is φ30 mm, and the effective area of the element is 100 mm 2 . The distance from the detector front (sample side) to the internal element is 4 mm, and the distance from the sample to the detector is 2.5 mm. As the beam damper, glassy carbon (density 1.519 g / cm 3 ) having a diameter of 2 mm and a thickness of 0.5 mm was used. Therefore, the distance from the sample to the detector element is 6.5 mm, the entire solid angle facing the sample is 1.54 sr, and the solid angle of the portion shaded by the beam damper is 0.66 sr. The X-ray detection efficiency was evaluated in consideration of X-ray absorption by the beam damper.

図2において、X線検出器は図1と同様であり、一次ビーム光軸に対して45°の角度で、ビーム光軸を妨害しないように検出器をビーム光軸から2mm離すとすると、試料から検出器素子までの距離は21.8mmで、試料を臨む立体角は0.2srとなる。   In FIG. 2, the X-ray detector is the same as in FIG. 1, and if the detector is separated by 2 mm from the beam optical axis at an angle of 45 ° with respect to the primary beam optical axis so as not to disturb the beam optical axis, The distance from the detector to the detector element is 21.8 mm, and the solid angle facing the sample is 0.2 sr.

透過率はX線のエネルギーにより異なることから、評価は、カルシウムの特性X線(3.69keV)と銅の特性X線(8.04keV)について行った。カルシウムの場合、ビームダンパーでのX線の透過率は2.6%であるから、従来法と比較して(0.66×0.026+0.88)/0.2≒4.4倍効率が高くなった。また、銅の場合は、ビームダンパーでのX線の透過率は73%であり、従来法と比較して(0.66×0.73+0.88)/0.2≒6.8倍高効率となった。   Since the transmittance varies depending on the energy of the X-ray, the evaluation was performed on the characteristic X-ray of calcium (3.69 keV) and the characteristic X-ray of copper (8.04 keV). In the case of calcium, the X-ray transmittance of the beam damper is 2.6%, so the efficiency is (0.66 × 0.026 + 0.88) /0.2≈4.4 times that of the conventional method. In the case of copper, the X-ray transmittance of the beam damper is 73%, which is (0.66 × 0.73 + 0.88) /0.2≈6.8 times higher efficiency than the conventional method.

本実施例では、およそ4〜7倍効率よく特性X線を検出することが可能であり、従来の5分の1程度の時間で元素分析を行うことが可能になる。したがって、本発明は、特に、測定に長時間を要する元素の二次元分布測定を行う面分析に有効である。また、一次ビームの照射量を5分の1に低減可能であることから、試料の照射損傷を防ぐことができ、元素分析における感度・精度が格段に向上する。   In this embodiment, characteristic X-rays can be detected approximately 4 to 7 times more efficiently, and elemental analysis can be performed in about 1/5 of the conventional time. Therefore, the present invention is particularly effective for surface analysis for performing two-dimensional distribution measurement of elements that require a long time for measurement. In addition, since the irradiation amount of the primary beam can be reduced to 1/5, it is possible to prevent the irradiation damage of the sample, and the sensitivity and accuracy in the elemental analysis are remarkably improved.

図1は、本発明のX線検出方法の一実施態様を示す図である。FIG. 1 is a diagram showing an embodiment of the X-ray detection method of the present invention. 図2は、従来技術のX線検出方法を示す図である。FIG. 2 is a diagram showing a conventional X-ray detection method.

Claims (1)

オンビームの一次ビームの衝撃により、試料から発生する特性X線を検出する方法であって、ビーム光源を基準として光軸延長上に配置された試料の背面にX線検出器を配置し、ビーム光源を基準として該検出器のビームの光軸延長上を含む前面に、入射一次ビームの該X線検出素子への透過を防ぐダンパー材を設置することを特徴とする方法。 The impact of the primary beam of Lee Onbimu, a method of detecting the characteristic X-rays generated from the sample, the X-ray detector is disposed on the rear surface of the sample disposed on the optical axis extending the beam light source as a reference beam A method comprising: installing a damper material for preventing transmission of an incident primary beam to the X-ray detection element on a front surface including an extension of an optical axis of a beam of the detector with respect to a light source.
JP2003320847A 2003-09-12 2003-09-12 Back-mounted X-ray detection method Expired - Fee Related JP4478792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003320847A JP4478792B2 (en) 2003-09-12 2003-09-12 Back-mounted X-ray detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003320847A JP4478792B2 (en) 2003-09-12 2003-09-12 Back-mounted X-ray detection method

Publications (2)

Publication Number Publication Date
JP2005090981A JP2005090981A (en) 2005-04-07
JP4478792B2 true JP4478792B2 (en) 2010-06-09

Family

ID=34452688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003320847A Expired - Fee Related JP4478792B2 (en) 2003-09-12 2003-09-12 Back-mounted X-ray detection method

Country Status (1)

Country Link
JP (1) JP4478792B2 (en)

Also Published As

Publication number Publication date
JP2005090981A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
KR100680130B1 (en) Detector and method for detection of ionizing radiation
AU2001290484B2 (en) Apparatus for planar beam radiography and method of aligning an ionizing radiation detector with respect to a radiation source
Tremsin et al. On the possibility to image thermal and cold neutron with sub-15 μm spatial resolution
US8884236B2 (en) Detector with active collimators
CN109997031B (en) X-ray fluorescence system and method for detecting material and control system
JP4853964B2 (en) X-ray sensor for X-ray inspection equipment
JP2009031168A (en) X-ray tube and x-ray analyzer
JP2004515791A (en) Radiation detection and positron emission tomography
US6353656B1 (en) Radioisotope based x-ray residual stress analysis apparatus
CN104350576B (en) For radiating, particularly high-energy electromagnetic radiation detector
US6442236B1 (en) X-ray analysis
US3663812A (en) X-ray spectrographic means having fixed analyzing and detecting means
CN112304992A (en) Chrysanthemum cell diffraction detector
KR100806068B1 (en) Radiation detection apparatus and method
Antonello et al. Detection of Cherenkov light emission in liquid argon
EP2952934B1 (en) Light detecting unit and alpha ray observation device
US6731065B1 (en) Apparatus and method for radiation detection with radiation beam impinging on photocathode layer at a grazing incidence
JP4478792B2 (en) Back-mounted X-ray detection method
AU2001262880A1 (en) Apparatus and method for radiation detection
US6596994B1 (en) Beam position monitor
JP3603111B2 (en) Transmission X-ray beam monitoring method and monitoring apparatus
US20070274455A1 (en) Methods and Systems for Analyzing Samples Using Particle Irradition
JP2018200245A (en) Fluorescent x-ray analyzer
CN113984815B (en) High-efficiency Compton scattering imaging system based on inverse Compton scattering X-ray source
US7639783B1 (en) Parallax free and spark protected X-ray detector

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees