JP4459011B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP4459011B2
JP4459011B2 JP2004301643A JP2004301643A JP4459011B2 JP 4459011 B2 JP4459011 B2 JP 4459011B2 JP 2004301643 A JP2004301643 A JP 2004301643A JP 2004301643 A JP2004301643 A JP 2004301643A JP 4459011 B2 JP4459011 B2 JP 4459011B2
Authority
JP
Japan
Prior art keywords
core
current
magnetoelectric conversion
conversion element
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004301643A
Other languages
Japanese (ja)
Other versions
JP2006112957A (en
Inventor
真一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2004301643A priority Critical patent/JP4459011B2/en
Publication of JP2006112957A publication Critical patent/JP2006112957A/en
Application granted granted Critical
Publication of JP4459011B2 publication Critical patent/JP4459011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、ホール素子等の磁電変換素子を用いて電流検出体を通る電流の大きさを検出する電流センサに関する。   The present invention relates to a current sensor that detects the magnitude of a current passing through a current detector using a magnetoelectric conversion element such as a Hall element.

この種の従来の電流センサとしては、図6〜図8に示すものがある。   Such conventional current sensors include those shown in FIGS.

図6〜図8に示すように、電流センサ100のケース101は、内部に部品収容室102が形成されたケース本体103と、この上面に固定され、部品収容室102を塞ぐ蓋体(図示せず)とから構成されている。ケース本体103及び蓋体(図示せず)の中央には、電流検出体であるブスバー(図示せず)が貫通する貫通孔104が形成されており、このブスバーに検出電流が通電される。   As shown in FIGS. 6 to 8, the case 101 of the current sensor 100 includes a case main body 103 in which a component accommodating chamber 102 is formed, and a lid (not shown) that is fixed to the upper surface and closes the component accommodating chamber 102. Z)). A through-hole 104 through which a bus bar (not shown) as a current detection body passes is formed in the center of the case main body 103 and the lid (not shown), and the detection current is supplied to the bus bar.

部品収容室102にはコア105と基板106とが収容されている。コア105は、略方形枠状を有し、その一箇所にギャップ105aが形成されている。基板106には磁電変換素子であるホール素子107が搭載され、このホール素子107は、コア105のギャップ105a内に配置されている。   The component storage chamber 102 stores a core 105 and a substrate 106. The core 105 has a substantially rectangular frame shape, and a gap 105a is formed at one location. A Hall element 107 that is a magnetoelectric conversion element is mounted on the substrate 106, and the Hall element 107 is disposed in the gap 105 a of the core 105.

上記構成において、ブスバー(図示せず)に検出電流が通電されると、この電流に比例した磁界がコア105に発生し、この発生磁界の大きさに比例した電圧値をホール素子107が出力する。以上により、検出電流の大きさを検出する。   In the above configuration, when a detection current is passed through a bus bar (not shown), a magnetic field proportional to the current is generated in the core 105, and the Hall element 107 outputs a voltage value proportional to the magnitude of the generated magnetic field. . As described above, the magnitude of the detection current is detected.

上記従来例に類似する技術は、例えば、特許文献1に開示されている。
特開平6−235735号公報
A technique similar to the conventional example is disclosed in, for example, Patent Document 1.
JP-A-6-235735

しかしながら、上述した従来の電流センサ100では、検出電流の大きさに対してコア105内に発生する磁界の大きさがリニアリティ性を有する範囲が検出範囲となる。従って、コア105に飽和磁束密度の大きいコア材を使用すると、電流の検出範囲を広く取ることができるが、飽和磁束密度の大きい材料は磁気ヒステリシスが大きいために高精度の電流検出ができないという問題がある。   However, in the above-described conventional current sensor 100, the range in which the magnitude of the magnetic field generated in the core 105 has linearity with respect to the magnitude of the detected current is the detection range. Therefore, if a core material having a high saturation magnetic flux density is used for the core 105, a wide current detection range can be obtained. However, a material having a high saturation magnetic flux density has a large magnetic hysteresis, so that the current cannot be detected with high accuracy. There is.

一方、コア105に磁気ヒステリシスが小さいコア材を使用すると、低電流域において高精度の電流検出が可能であるが、磁気ヒステリシスが小さい材料は飽和磁束密度が小さいために電流の検出範囲を高電流域まで広く取ることができない。   On the other hand, when a core material having a small magnetic hysteresis is used for the core 105, a highly accurate current detection is possible in a low current region. However, a material with a small magnetic hysteresis has a low saturation magnetic flux density, so that the current detection range is high. Cannot take as wide as the basin.

そこで、本発明は、前記した課題を解決すべくなされたものであり、電流の検出範囲が広く、しかも、低電流域では高精度の検出ができる電流センサを提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a current sensor that has a wide current detection range and can perform high-precision detection in a low current region.

請求項1の発明は、飽和磁束密度が1.30〜1.50Teslaの第1コアと、該第1コアを通る磁界の大きさを電気量に変換する第1磁電変換素子と、磁気ヒステリシスが保磁力0.4〜1.6A/m、残留磁束密度0.30〜0.45Teslaの第2コアと、該第2コアを通る磁界の大きさを電気量に変換する第2磁電変換素子とを同一のケース内に備え、前記ケース内に部品収容室の低段差面と高段差面を形成し、夫々の段差面に、前記第1コア及び前記第1磁電変換素子と、前記第2コア及び前記第2磁電変換素子とは、検出電流の電流方向に所定の間隔を開けて配置されていることを特徴とする。 The invention of claim 1 includes a first core saturation flux density 1.30~1.50Tesla, a first magneto-electric transducer for converting the magnitude of the magnetic field passing through the first core in an electrical quantity, a magnetic hysteresis A second core having a coercive force of 0.4 to 1.6 A / m and a residual magnetic flux density of 0.30 to 0.45 Tesla; and a second magnetoelectric conversion element that converts the magnitude of the magnetic field passing through the second core into an electric quantity. Are formed in the same case, and a low step surface and a high step surface of the component storage chamber are formed in the case, and the first core, the first magnetoelectric conversion element, and the second core are formed on each step surface. The second magnetoelectric conversion element is arranged at a predetermined interval in the current direction of the detection current.

この電流センサでは、検出電流の低電流域では、検出電流に高精度に比例した磁界が第2コアに発生し、検出電流の高電流域では、検出電流にほぼ比例した磁界が第1コアに発生する。また、第1磁電変換素子と第2磁電変換素子は、互いの漏れ磁束による干渉を極力受けない磁界の大きさを検出できる。 In this current sensor, a magnetic field proportional to the detection current is generated in the second core in the low current region of the detection current, and a magnetic field substantially proportional to the detection current is generated in the first core in the high current region of the detection current. appear. Further, the first magnetoelectric conversion element and the second magnetoelectric conversion element can detect the magnitude of the magnetic field that is not affected by the mutual leakage magnetic flux as much as possible.

請求項の発明は、請求項1記載の電流センサであって、前記ケースには、前記第1コアと前記第2コアの中心を貫通する貫通孔が設けられ、この貫通孔内に検出電流が通電される電流検出体が固定されていることを特徴とする。 A second aspect of the present invention, a current sensor according to claim 1 Symbol placement, the said case, the first core and the through hole is provided through the center of the second core, detected in the through hole A current detector to which a current is applied is fixed.

この電流センサでは、請求項の発明の作用に加え、電流検出体と第1コア及び第2コアとの相対的位置が振動等によって変動することがない。 In this current sensor, in addition to the operation of the first aspect of the invention, the relative positions of the current detector and the first core and the second core do not vary due to vibration or the like.

請求項1の発明によれば、検出電流の低電流域では、第2コアに検出電流に高精度に比例した磁界が発生し、検出電流の低電流域から高電流域の全電流域では、第1コアに検出電流にほぼ比例した磁界が発生する。従って、高電流域では第1磁電変換素子の出力を、低電流域では第2磁電変換素子の出力を検出出力として採用すれば、電流の検出範囲が広く、しかも、低電流域では高精度の検出ができる。さらに、第1磁電変換素子と第2磁電変換素子は、互いの漏れ磁束による干渉を極力受けない検出ができる。従って、検出精度の向上になる。 According to the invention of claim 1, in the low current region of the detected current, a magnetic field proportional to the detected current is generated in the second core with high accuracy, and in the entire current region from the low current region of the detected current to the high current region, A magnetic field substantially proportional to the detected current is generated in the first core. Therefore, if the output of the first magnetoelectric conversion element is adopted as the detection output in the high current region and the output of the second magnetoelectric conversion element is adopted as the detection output in the low current region, the current detection range is wide, and high accuracy is achieved in the low current region. Can be detected. Further, the first magnetoelectric conversion element and the second magnetoelectric conversion element can be detected so as not to receive interference due to the leakage magnetic flux as much as possible. Therefore, detection accuracy is improved.

請求項の発明によれば、請求項の発明の効果に加え、電流検出体と第1コア及び第2コアとの相対的位置が振動等によって変動することがない。従って、第1磁電変換素子及び第2磁電変換素子からは、常に所定の出力特性が得られ、検出出力の信頼性が向上する。
According to the invention of claim 2 , in addition to the effect of the invention of claim 1 , the relative position between the current detector and the first core and the second core does not vary due to vibration or the like. Therefore, predetermined output characteristics are always obtained from the first magnetoelectric conversion element and the second magnetoelectric conversion element, and the reliability of the detection output is improved.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1〜図5は本発明の一実施形態を示し、図1は電流センサ1の分解斜視図、図2は電流センサ1の斜視図、図3は電流センサ1の断面図、図4は電流センサ1の回路図、図5は第1ホール素子12と第2ホール素子13の出力特性線図である。   1 to 5 show an embodiment of the present invention, FIG. 1 is an exploded perspective view of a current sensor 1, FIG. 2 is a perspective view of the current sensor 1, FIG. 3 is a sectional view of the current sensor 1, and FIG. FIG. 5 is a circuit diagram of the sensor 1, and FIG. 5 is an output characteristic diagram of the first Hall element 12 and the second Hall element 13.

図1〜図3に示すように、電流センサ1のケース2は、内部に部品収容室3が形成されたケース本体4と、この上面に固定され、部品収容室3を塞ぐ蓋体(図示せず)とから構成されている。ケース本体4の中央箇所には内壁部4aが立設され、この内壁部4aの中心には貫通孔5が形成されている。貫通孔5には電流検出体であるブスバー(図示せず)が貫通した状態で固定されている。ブスバー(図示せず)は、下記する第1コア9及び第2コア10の中心を貫通する。部品収容室3は、内壁部4aと外周壁4bに囲まれ、その底面の外周側が低段差面6に内周側が高段差面7に形成されていると共に、低段差面6の更に外側は高段差面7より高い基板搭載面8に形成されている。   As shown in FIGS. 1 to 3, the case 2 of the current sensor 1 includes a case main body 4 in which a component housing chamber 3 is formed, and a lid (not shown) that is fixed to the upper surface and closes the component housing chamber 3. Z)). An inner wall portion 4a is erected at the center of the case body 4, and a through hole 5 is formed at the center of the inner wall portion 4a. A bus bar (not shown), which is a current detector, is fixed in the through hole 5 in a state of passing therethrough. The bus bar (not shown) penetrates the centers of the first core 9 and the second core 10 described below. The component housing chamber 3 is surrounded by an inner wall portion 4a and an outer peripheral wall 4b. The outer peripheral side of the bottom surface is formed as a low step surface 6 and the inner peripheral side is formed as a high step surface 7, and the outer side of the low step surface 6 is further high. It is formed on the substrate mounting surface 8 higher than the step surface 7.

部品収容室3の外周側の低段差面6上には第1コア9が、内周側の高段差面7上には第2コア10がそれぞれ収容されている。第1コア9は、飽和磁束密度の大きい強磁性体(飽和磁束密度1.30〜1.50Tesla程度)、例えば純鉄やケイ素鋼材にてほぼ方形枠状に形成されている。方形枠状の第1コア9の一箇所にはギャップ9aが形成されている。ブスバー(図示せず)への通電電流によって磁界が発生すると、その発生磁界の磁路が第1コア9に形成される。第2コア10は、磁気ヒステリシスが小さい強磁性体(保磁力0.4〜1.6A/m程度,残留磁束密度0.30〜0.45Tesla程度)、例えばパーマロイ材にてほぼ方形枠状に形成されている。方形枠状の第2コア10の一箇所にはギャップ10aが形成されている。ブスバー(図示せず)への通電電流によって磁界が発生すると、その発生磁界の磁路が第2コア10に形成される。   A first core 9 is accommodated on the low step surface 6 on the outer peripheral side of the component storage chamber 3, and a second core 10 is accommodated on the high step surface 7 on the inner peripheral side. The first core 9 is formed in a substantially rectangular frame shape with a ferromagnetic material having a high saturation magnetic flux density (saturation magnetic flux density of about 1.30 to 1.50 Tesla), for example, pure iron or silicon steel. A gap 9 a is formed at one location of the rectangular frame-shaped first core 9. When a magnetic field is generated by an energization current to a bus bar (not shown), a magnetic path of the generated magnetic field is formed in the first core 9. The second core 10 is formed of a ferromagnetic material having a small magnetic hysteresis (coercive force of about 0.4 to 1.6 A / m, residual magnetic flux density of about 0.30 to 0.45 Tesla), for example, a substantially rectangular frame shape with a permalloy material. Is formed. A gap 10 a is formed at one location of the rectangular frame-shaped second core 10. When a magnetic field is generated by an energization current to a bus bar (not shown), a magnetic path of the generated magnetic field is formed in the second core 10.

部品収容室3の基板搭載面8上には基板11が収容されている。基板11には第1磁電変換素子である第1ホール素子12と第2磁電変換素子である第2ホール素子13とが搭載されている。第1ホール素子12は基板11の面より離間した位置に搭載され、第1コア9のギャップ9a内に配置されている。第2ホール素子13は基板11の面に近接した位置に搭載され、第2コア10のギャップ10a内に配置されている。   A substrate 11 is accommodated on the substrate mounting surface 8 of the component accommodating chamber 3. A first Hall element 12 that is a first magnetoelectric conversion element and a second Hall element 13 that is a second magnetoelectric conversion element are mounted on the substrate 11. The first Hall element 12 is mounted at a position separated from the surface of the substrate 11 and is disposed in the gap 9 a of the first core 9. The second Hall element 13 is mounted at a position close to the surface of the substrate 11 and is disposed in the gap 10 a of the second core 10.

このように部品収容室3の低段差面6と高段差面7を形成し、それぞれの面に第1コア9と第2コア10を収容すると共に各コア9,10のギャップ9a,10a内に第1ホール素子12及び第2ホール素子13を配置することによって、第1コア9及び第1ホール素子12と第2コア10及び第2ホール素子13とは、検出電流の流れ方向に対し所定の間隔d(図3に示す)を開けた位置に配置されている。   In this way, the low step surface 6 and the high step surface 7 of the component storage chamber 3 are formed, and the first core 9 and the second core 10 are stored on the respective surfaces, and in the gaps 9a and 10a of the cores 9 and 10, respectively. By arranging the first Hall element 12 and the second Hall element 13, the first core 9, the first Hall element 12, the second core 10 and the second Hall element 13 have a predetermined current flow direction. They are arranged at positions where a gap d (shown in FIG. 3) is opened.

又、ケース本体4にはコネクタ部14が一体に設けられ、このコネクタ部14の端子15は基板11にまで延設されている。このコネクタ部14を介して外部より電源供給を受けると共に、図4に示す如く、第1及び第2ホール素子12,13の検出出力を共に出力するようになっている。   The case body 4 is integrally provided with a connector portion 14, and the terminal 15 of the connector portion 14 extends to the substrate 11. A power supply is received from the outside via the connector section 14, and the detection outputs of the first and second Hall elements 12, 13 are output together as shown in FIG.

上記構成において、検出電流がブスバー(図示せず)に通電されると、この電流に比例した磁界が第1コア9及び第2コア10に共に発生し、第1コア9に発生した磁界の大きさに比例する電圧が第1ホール素子12より、又、第2コア10に発生した磁界の大きさに比例する電圧が第2ホール素子13より出力される。   In the above configuration, when a detection current is passed through a bus bar (not shown), a magnetic field proportional to this current is generated in both the first core 9 and the second core 10, and the magnitude of the magnetic field generated in the first core 9. A voltage proportional to the height is output from the first Hall element 12, and a voltage proportional to the magnitude of the magnetic field generated in the second core 10 is output from the second Hall element 13.

ここで、第2コア10が磁気ヒステリシスの小さい強磁性体より形成されているため、検出電流の低電流域(±50A)では、検出電流に対し高精度に比例した磁界が第2コア10に発生し、図5に示すように、第2ホール素子13からは高精度の検出電圧値(出力2)が出力される。又、第1コア9が飽和磁束密度の大きい強磁性体より形成されているため、検出電流の低電流域から高電流域の全電流域(±400A)に亘って、検出電流に対しほぼ比例した磁界が第1コア9に発生し、図5に示すように、第1ホール素子12からは検出電流にほぼ比例する検出電圧値(出力1)が出力される。従って、高電流域では第1ホール素子12の出力を、低電流域では第2ホール素子13の出力を検出出力として採用すれば、電流の検出範囲が広範囲で、しかも、低電流域では高精度の検出ができる。   Here, since the second core 10 is formed of a ferromagnetic material having a small magnetic hysteresis, a magnetic field proportional to the detected current is highly proportional to the detected current in the low current region (± 50 A) of the detected current. As shown in FIG. 5, the second Hall element 13 outputs a highly accurate detection voltage value (output 2). Further, since the first core 9 is formed of a ferromagnetic material having a high saturation magnetic flux density, it is substantially proportional to the detected current over the entire current range (± 400 A) from the low current range to the high current range. The generated magnetic field is generated in the first core 9, and as shown in FIG. 5, the first Hall element 12 outputs a detection voltage value (output 1) substantially proportional to the detection current. Therefore, if the output of the first Hall element 12 is used as the detection output in the high current range and the output of the second Hall element 13 is used as the detection output in the low current range, the current detection range is wide and high accuracy is achieved in the low current range. Can be detected.

上記した実施形態では、第1コア9及び第1ホール素子12と、第2コア10及び第2ホール素子13とは、検出電流の流れ方向に対し所定の間隔dを開けて配置されているので、第1ホール素子12と第2ホール素子13は、互いの漏れ磁束による干渉を極力受けない検出ができる。従って、本実施形態では、検出精度を向上させることができる。   In the above-described embodiment, the first core 9 and the first Hall element 12 and the second core 10 and the second Hall element 13 are arranged at a predetermined interval d with respect to the flow direction of the detected current. The first Hall element 12 and the second Hall element 13 can be detected so as not to receive interference due to the leakage magnetic flux as much as possible. Therefore, in this embodiment, detection accuracy can be improved.

また、上記した実施形態では、ケース2には、第1コア9と第2コア10の中心を貫通する貫通孔5が設けられ、この貫通孔5内に検出電流が通電されるブスバー(図示せず)が固定されているので、ブスバーと第1コア9及び第2コア10との相対的位置が振動等によって変動することがない。従って、第1ホール素子12及び第2ホール素子13からは、常に所定の出力特性が得られ、検出出力の信頼性が向上する。   Further, in the above-described embodiment, the case 2 is provided with the through hole 5 penetrating the centers of the first core 9 and the second core 10, and a bus bar (not shown) through which the detection current is passed in the through hole 5. ) Is fixed, the relative positions of the bus bar and the first core 9 and the second core 10 do not fluctuate due to vibration or the like. Therefore, predetermined output characteristics are always obtained from the first Hall element 12 and the second Hall element 13, and the reliability of the detection output is improved.

さらに、上記した実施形態では、検出電流をブスバーに通電する構成であるが、検出電流体は、ワイヤーハーネス等であっても良いことはもちろんである。   Furthermore, in the above-described embodiment, the detection current is supplied to the bus bar, but the detection current body may be a wire harness or the like.

また、上記した実施形態では、第1及び第2磁電変換素子は第1及び第2ホール素子12,13であるが、磁界の強度を電気量に変換できる素子であれば良い。   In the above-described embodiment, the first and second magnetoelectric conversion elements are the first and second Hall elements 12 and 13, but any element that can convert the strength of the magnetic field into an electric quantity may be used.

本発明の一実施形態に係る電流センサの分解斜視図である。It is a disassembled perspective view of the current sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電流センサの斜視図である。It is a perspective view of the current sensor concerning one embodiment of the present invention. 本発明の一実施形態に係る電流センサの断面図である。It is sectional drawing of the current sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電流センサの回路図である。It is a circuit diagram of the current sensor concerning one embodiment of the present invention. 本発明の一実施形態に係る第1ホール素子と第2ホール素子の出力特性線図である。It is an output characteristic diagram of the 1st hall element and the 2nd hall element concerning one embodiment of the present invention. 従来の電流センサの分解斜視図である。It is a disassembled perspective view of the conventional current sensor. 従来の電流センサの斜視図である。It is a perspective view of the conventional current sensor. 従来の電流センサの断面図である。It is sectional drawing of the conventional current sensor.

符号の説明Explanation of symbols

1 電流センサ
2 ケース
5 貫通孔
9 第1コア
10 第1ホール素子(第1磁電変換素子)
12 第2コア
13 第2ホール素子(第2磁電変換素子)
DESCRIPTION OF SYMBOLS 1 Current sensor 2 Case 5 Through-hole 9 1st core 10 1st Hall element (1st magnetoelectric conversion element)
12 2nd core 13 2nd Hall element (2nd magnetoelectric conversion element)

Claims (2)

飽和磁束密度が1.30〜1.50Teslaの第1コアと、該第1コアを通る磁界の大きさを電気量に変換する第1磁電変換素子と、磁気ヒステリシスが保磁力0.4〜1.6A/m、残留磁束密度0.30〜0.45Teslaの第2コアと、該第2コアを通る磁界の大きさを電気量に変換する第2磁電変換素子とを同一のケース内に備え、前記ケース内に部品収容室の低段差面と高段差面を形成し、夫々の段差面に、前記第1コア及び前記第1磁電変換素子と、前記第2コア及び前記第2磁電変換素子とは、検出電流の電流方向に所定の間隔を開けて配置されていることを特徴とする電流センサ。 A first core having a saturation magnetic flux density of 1.30 to 1.50 Tesla, a first magnetoelectric conversion element for converting the magnitude of a magnetic field passing through the first core into an electric quantity, and a magnetic hysteresis having a coercive force of 0.4 to 1 A second core having a residual magnetic flux density of 0.30 to 0.45 Tesla and a second magnetoelectric conversion element for converting the magnitude of the magnetic field passing through the second core into an electric quantity are provided in the same case. Forming a low step surface and a high step surface of the component housing chamber in the case, wherein the first core and the first magnetoelectric conversion element, the second core and the second magnetoelectric conversion element are formed on the respective step surfaces. Is a current sensor that is arranged at a predetermined interval in the current direction of the detected current. 請求項1記載の電流センサであって、
前記ケースには、前記第1コアと前記第2コアの中心を貫通する貫通孔が設けられ、この貫通孔内に検出電流が通電される電流検出体が固定されていることを特徴とする電流センサ。
The current sensor according to claim 1,
The case is provided with a through-hole penetrating the center of the first core and the second core, and a current detector to which a detection current is passed is fixed in the through-hole. Sensor.
JP2004301643A 2004-10-15 2004-10-15 Current sensor Expired - Fee Related JP4459011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301643A JP4459011B2 (en) 2004-10-15 2004-10-15 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301643A JP4459011B2 (en) 2004-10-15 2004-10-15 Current sensor

Publications (2)

Publication Number Publication Date
JP2006112957A JP2006112957A (en) 2006-04-27
JP4459011B2 true JP4459011B2 (en) 2010-04-28

Family

ID=36381578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301643A Expired - Fee Related JP4459011B2 (en) 2004-10-15 2004-10-15 Current sensor

Country Status (1)

Country Link
JP (1) JP4459011B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113430A (en) * 2017-12-25 2019-07-11 長野日本無線株式会社 Current detector
JP7099483B2 (en) * 2020-02-21 2022-07-12 Tdk株式会社 Current sensor

Also Published As

Publication number Publication date
JP2006112957A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US20200350831A1 (en) Coreless current sensor for high current power module
JP4835868B2 (en) Current sensor
EP2546660A1 (en) Electrical current sensor with grounded magnetic core
JP4424412B2 (en) Current sensor
US7626376B2 (en) Electric current detector having magnetic detector
US6876189B2 (en) Current sensor
JP5143765B2 (en) Current sensor
JP2008151743A (en) Current sensor and method for forming the same
JP5598559B2 (en) Current sensor
WO2009151011A1 (en) Current sensor
KR20120062721A (en) Magnetic field sensor and method for producing a magnetic field sensor
JP6384677B2 (en) Current sensor
JP5516947B2 (en) Current sensor
JP2006046922A (en) Current sensor
JP2005321206A (en) Current detection device
JP5547234B2 (en) Current sensor
JP2008145352A (en) Current sensor and current detecting method
JP2016148620A (en) Current sensor
JP2010112936A (en) Current sensor and magnetic detection method
JP4459011B2 (en) Current sensor
JP2009204415A (en) Current sensor and watt-hour meter
JP2004077184A (en) Current detecting sensor
JP5704352B2 (en) Current sensor
JP5666192B2 (en) Current sensor
CN108196108B (en) Fluxgate current sensor and method of assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

R150 Certificate of patent or registration of utility model

Ref document number: 4459011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees