JP4441714B2 - Multi-axis vertical take-off and landing aircraft - Google Patents

Multi-axis vertical take-off and landing aircraft Download PDF

Info

Publication number
JP4441714B2
JP4441714B2 JP19221099A JP19221099A JP4441714B2 JP 4441714 B2 JP4441714 B2 JP 4441714B2 JP 19221099 A JP19221099 A JP 19221099A JP 19221099 A JP19221099 A JP 19221099A JP 4441714 B2 JP4441714 B2 JP 4441714B2
Authority
JP
Japan
Prior art keywords
rotor
gear
axis
vertical take
landing aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19221099A
Other languages
Japanese (ja)
Other versions
JP2000344197A (en
Inventor
幹男 中村
Original Assignee
幹男 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 幹男 中村 filed Critical 幹男 中村
Priority to JP19221099A priority Critical patent/JP4441714B2/en
Publication of JP2000344197A publication Critical patent/JP2000344197A/en
Application granted granted Critical
Publication of JP4441714B2 publication Critical patent/JP4441714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gear Transmission (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、一本の動力伝達回転軸から複数の可変ピッチ回転翼を同時に回転させることができる多軸型垂直離着陸機に関するものである。
【0002】
【従来の技術】
従来は、一本の動力伝達軸へ複数の従動回転軸を取り付けるには多数のカサ歯車などを利用していた。
【0003】
【発明が解決しようとする課題】
本発明と同じ機能を従来の技術で行うには、図10のように多数のカサ歯車を使用しなければできなかった。この理由は、動力伝達回転軸から従動回転軸までの距離、従動回転軸の軸方向、回転方向、回転速度、従動回転軸どうしの反トルクの相殺などの機能を組み入れると多数のカサ歯車を使用することになる。又、カサ歯車を支えるベアリングや、カサ歯車に回転を伝える回転軸など構成部品が多数必要であり、さらに、これらの部品などを支える全体としての構成部品の数が多く構造上複雑すぎる。ゆえにコストアップ、重量増加、加工、組み立て精度など多くの問題があり多軸型垂直離着陸機に利用するには信頼性が大変劣るものである。また、従来の多軸型垂直離着陸機の場合、それぞれのローター回転半径が重複しないようにすると回転軸間の距離が長くなってしまい、機体が大型化してしまうという問題がある。一方、それぞれのローターの回転半径が重複するような配置の場合、特に2枚ずつの回転翼を有するローター4軸を互いに交差する位置に配置しようとすると、各回転翼同士の干渉が問題となってしまう。本発明は、上述の問題を解決するためになされたものである。
【0004】
【課題を解決するための手段】
上記の課題を解決するため本発明による多軸型垂直離着陸機では、1基のエンジンと、該エンジンから伸びる単一の動力伝達軸に対し、四角形のフレームの頂点位置にそれぞれ配置され、各々が2枚ずつの可変ピッチ回転翼を備えたローター4軸が、ネジ歯車(5)及びネジ歯車(6)からなるギヤユニットによりそれぞれ連結された多軸型垂直離着陸機であって、前記ローターのうち前部及び後部の左右2軸ずつは回転翼が互いに交差する位置に配置され、前部2軸と後部2軸のローターは回転翼が交差しないよう配置されており、さらに回転翼を保護するため前記すべての回転翼回転範囲の周囲に配置された回転翼防護具を装備したことを特徴とする。
【0005】
【作用】
本発明による多軸型垂直離着陸機においては、左右2軸ずつのローターを回転翼が互いに交差する位置に配置し、前後のローター同士は回転半径が重複しないように配置しているため、前後の回転翼同士の干渉を防止して、なおかつ機体を小型化できる。また、このギヤユニットの構造によって、ネジ歯車軸の取り出し方向の設定自由度の拡大、高速回転の設定自由度の拡大、ネジ歯車軸が互いに逆転するために反トルクの相殺などネジ歯車三個でできるギヤメカニズムである。したがって、構成部品が少なく単純な構造になり、コストダウン、重量減量などの利点が増すものである。
【0006】
【発明の実施の形態】
以下、本発明の実施例について説明する。
【0007】
【第1の実施の形態】
図5、図7、のようにネジ歯車(5)の両側へ噛み合うようにネジ歯車(6)を角度をつけ組みつける。そしてこのネジ歯車の他端へ2枚の可変ピッチ回転翼(17)を備えた右前部ローター(FR)及び左前部ローター(FL)が配置される。これらのローターにはサーボ(9)が備えられており、その動作によって各回転翼(17)のピッチ角をそれぞれ変えることができる。図2よりこれらのギヤユニット(F)、ギヤユニット(R)を前後に配置して連結具(2)で連結している。さらにギヤユニット(F)、ギヤユニット(R)のネジ歯車(5)を動力伝達回転軸(1)で連結する。連結具(2)にはエンジン(18)が設置されており回転出力を減速歯車(19)を介して動力伝達回転軸(1)を回転させるようになっている。本発明の多軸型垂直離着陸機の基本全体構造は以上のような構造であり一本の動力伝達軸(1)で右前部ローター(FR)、左前部ローター(FL)、右後部ローター(RR)及び左後部ローター(RL)を同時に回転させるものである。
【0008】
さらに細部について説明をすれば、フレーム板(7)二枚にそれぞれ固定されたベアリング(8)にネジ歯車(5)を組み付け、このネジ歯車(5)の両側へ噛み合うようにネジ歯車(6)を図5のように角度を付けネジ歯車軸保持具(4)を介してフレーム板(7)に組み付ける。この時ネジ歯車(6)の軸の他端に装備してある右前部ローター(FR)、左前部ローター(FL)が接触しないように回転翼(17)の配置を90度ずらせて交差させておく。右前部ローター(FR)、左前部ローター(FL)の各回転翼(17)は、サーボ保持具(22)を介してフレーム板(7)に取り付けられた各サーボ(9)の動作によりサーボリンク(10)、Lリンク(11)、操作棒(12)、ピッチコントロールヘッド(13)、ピッチ調整リンク(14)、回転翼保持具(15)を介してピッチ角を変えることができる。
【0009】
以上の構造、機能のギヤメカニズムの物を一つのギヤユニットとして、このギヤユニット前側を(R)、後ろ側を(R)として図2のように前後に配置し連結具(2)で連結する。ギヤユニット(F)及び(R)のネジ歯車(5)を動力伝達回転軸(1)で連結する。この動力伝達回転軸(1)は、ネジ歯車の特性により発生するスラスト荷重を相殺する役目も持っている。したがって、ギヤユニット(F)及び(R)の歯筋方向は互いに反対方向であり、ギヤユニット(F)及び(R)ともスラスト荷重が動力伝達回転軸(1)を互いに引き合うようにして相殺する。連結具(2)にはエンジン(18)が取り付けられており、減速歯車(19)を介して動力伝達回転軸(1)を回転させるようになっている。他に燃料タンク、電装品を収納した箱(20)と、脚(21)が取り付けてある。
【0010】
本発明は以上のような構造でこれを使用するときは、エンジン(18)の回転出力を上げ減速歯車(19)を介して動力伝達回転軸(1)を回転させることによって、連結されているギヤユニット(F)、ギヤユニット(R)のネジ歯車(5)を回転させる。これにより右前部ローター(FR)、左前部ローター(FL)、右後部ローター(RR)及び左後部ローター(RL)がすべて同時に回転させられ揚力が発生し上昇を始める。右前部ローター(FR)、左前部ローター(FL)、右後部ローター(RR)及び左後部ローター(RL)の各回転翼のピッチ角を各サーボ(9)で操作することによって上昇、下降、空中静止、前後移動、左右移動、旋回の行動がとれるものである。
【0011】
例えば、前進移動させるには、図1の右前部ローター(FR)及び左前部ローター(FL)の各回転翼のピッチ角を下げる操作をすれば揚力が減少して機首下げになる。同時に右後部ローター(RR)及び左後部ローター(RL)の各回転翼のピッチ角を上げる操作をすれば揚力が増して尻上げになり全体として前傾姿勢になり前進移動する。この逆の操作をすれば後傾姿勢になり後退移動することができる。左右移動についても同様に右側2軸のローターと左側2軸のローターの各回転翼のピッチ角を操作すればよい。以上のようにピッチ角を操作するだけで機体の姿勢をコントロールし飛行することができる。さらに、機体の重心位置や、図9に示すようなローター軸より外側位置での荷物の上げ下ろし、人の昇降による大きな重心変動にも素早く対応することができる。
【0012】
【第2の実施の形態】
第1の実施形態のギヤユニット(F)、ギヤユニット(R)を前後に配置し、図8のように角度をつけた連結具(2a)で連結する。したがって、水平面に対して前側のギヤユニット(F)が前傾になり右前部ローター(FR)及び左前部ローター(FL)も前傾姿勢になる。後ろ側のギヤユニット(R)が後傾になり右後部ローター(RR)及び左後部ローター(RL)は後傾姿勢になる。左右方向についてはギヤユニット(F)、ギヤユニット(R)の中で互いに外側方向へ傾くように角度を付けて組み込まれているので、右前部ローター(FR)及び右後部ローター(RR)は右外側方向へ傾き、左前部ローター(FL)及び左後部ローター(RL)は左外側方向へ傾くようになる。以上のように前後方向に角度がついているためにギヤユニット(F)、ギヤユニット(R)のネジ歯車(5)へ回転動力を伝える動力伝達回転軸(1a)に自在継ぎ手(23)を設け、角度がついていても回転させることができるようにして連結する。角度付連結具(2a)にはエンジン(18)が設置されており、減速歯車(19)を介して自在継ぎ手(23)付き動力伝達回転軸(1a)を回転させるようになっている。他に燃料タンク、電装品を収納した箱(20)と、脚(21)が取り付けてある。
【0013】
第2の実施の形態は以上のような構造で、これを使用するときはエンジン(18)の回転出力を上げ、減速歯車(19)を介して自在継ぎ手(23)付き動力伝達回転軸(1a)を回転させることによって連結されている前後のネジ歯車(5)を回転させる。これにより各傾きの付いた右前部ローター(FR)、左前部ローター(FL)、右後部ローター(RR)及び左後部ローター(RL)がすべて同時に回転させられ揚力が発生し上昇を始める。右前部ローター(FR)、左前部ローター(FL)、右後部ローター(RR)及び左後部ローター(RL)の各回転翼のピッチ角を各サーボ(9)で操作することによって、機体を傾けずに上昇、下降、空中静止、前後移動、左右移動、旋回の行動が取れるものである。
【0014】
例えば、前進移動させるには右前部ローター(FR)及び左前部ローター(FL)の各回転翼のピッチ角を上げる操作をすれば揚力が増して、ギヤユニット(F)が前傾しているので前方へ惹かれるようになる。この逆の操作をすれば後退移動することができる。左右移動についても同様に右側2軸のローターまたは左側2軸のローターの各回転翼のピッチ角を操作すれば、機体を傾けずに移動飛行することができる。
【0015】
【第3の実施の形態】
第1の実施の形態の構造の物を、図9のように右前部ローター(FR)、左前部ローター(FL)、右後部ローター(RR)及び左後部ローター(RL)のすべての回転翼回転範囲の周囲に、回転翼が障害物に接触し破壊されないように保護具(25)を装備して、連結具(2)を右前部ローター(FR)及び左前部ローター(FL)の回転範囲よりも前方へ延長し昇降(24)を設置する。第3の実施の形態は以上のような構造のもので、これを使用するにはエンジン(18)の回転出力を上げ空中浮揚させた状態で前方より高層建造物(26)などへ、接近、もしくは窓(27)へ直接横付けさせることができ、昇降口(24)より荷物の上げ下ろし、人の乗り降りができる。この時機体には大きな重心変動が発生し不安定になる。したがって可変ピッチ回転翼のピッチ角を瞬時に操作する必要がある。例えば、荷物を降ろした瞬間には機体の前方が軽くなって浮き上がり、機体全体としては後傾姿勢になる。この瞬間に右前部ローター(FR)及び左前部ローター(FL)の回転翼のピッチ角を下げ、右後部ローター(RR)及び左後部ローター(RL)の回転翼のピッチ角を上げる操作を行い水平姿勢を保つことができるものである。
【0016】
【発明の効果】
上記実施例の説明から明らかなように、本発明による多軸型垂直離着陸機においては、左右2軸ずつのローター回転翼が互いに交差する位置に配置され、前後のローター同士は回転半径が重複しないように配置されているため、前後の回転翼同士の干渉を防止して、なおかつ機体を小型化できる。また、4軸のローターをそれぞれ個別に操作できるため、機体上で重心変動があったときでもその影響を瞬時に打ち消して安定した飛行を持続できる。さらに、本発明の多軸型垂直離着陸機は、一本の炉動力伝達回転軸とネジ歯車の単純な組合わせで、同時に多軸回転させることができ、さらに、単純な下辺ピッチ回転翼との組合わせでできる多軸型垂直離着陸機である。航空機においては、単純なメカニズムであることは理想であり、さらに高層建造物などへ、接近もしくは直接横付けできることは、活動の場が今まで以上に広がるものである。一例として、高層ビル火災時の迅速な消火活動、救助活動など空中から行うことができるものである。
【0017】
【図面の簡単な説明】
【図1】本発明の平面図
【図2】本発明の側面図
【図3】本発明の正面図
【図4】本発明のギヤユニットの平面図であり説明の都合上回転翼の一部を省略してある。
【図5】本発明のギヤユニットの正面図であり説明の都合上回転翼の一部を省略してある。
【図6】本発明のギヤユニットの側面図であり説明の都合上回転翼の一部を省略してある。
【図7】本発明のギヤユニットの簡略参考斜視図
【図8】本発明の側面図
【図9】本発明の斜視図
【図10】従来の技術で行った場合の簡略参考斜視図
【0018】
【符号の説明】
F−前側のギヤユニット R−後ろ側のギヤユニット
FR−右前部ローター FL−左前部ローター
RR−右後部ローター RL−左後部ローター
1−動力伝達回転軸 1a−自在継ぎ手付き動力伝達回転軸
2−連結具 2a−角度付連結具
3−連結具固定バンド 4−ネジ歯車軸保持具
5−ネジ歯車 6−ネジ歯車
7−フレーム板 8−ベアリング
9−サーボ 10−サーボリンク
11−Lリンク 12−操作棒
13−ピッチコントロールヘッド 14−ピッチ調整リンク
15−回転翼保持具 16−右回転翼
17−左回転翼 18−エンジン
19−減速歯車 20−収納箱
21−脚 22−サーボ保持具
23−自在継ぎ手 24−昇降口
25−回転翼保護具 26−高層建造物
27−高層建造物窓
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-axis vertical take-off and landing aircraft that can simultaneously rotate a plurality of variable pitch rotary blades from a single power transmission rotary shaft.
[0002]
[Prior art]
Conventionally, a large number of bevel gears have been used to attach a plurality of driven rotating shafts to a single power transmission shaft.
[0003]
[Problems to be solved by the invention]
In order to perform the same function as that of the present invention with the prior art, it was necessary to use a large number of bevel gears as shown in FIG. The reason for this is that a large number of bevel gears are used when functions such as the distance from the power transmission rotating shaft to the driven rotating shaft, the axial direction of the driven rotating shaft, the rotating direction, the rotational speed, and the counter torque cancellation of the driven rotating shafts are incorporated. Will do. In addition, a large number of components such as a bearing that supports the bevel gear and a rotating shaft that transmits rotation to the bevel gear are necessary, and the number of components as a whole that support these components is too large and structurally complicated. Therefore, there are many problems such as cost increase, weight increase, processing, and assembly accuracy, and the reliability is very inferior when used for a multi-axis vertical take-off and landing aircraft. Further, in the case of a conventional multi-axis type vertical take-off and landing aircraft, there is a problem that the distance between the rotary shafts becomes long and the body becomes large if the respective rotor rotation radii do not overlap. On the other hand, in the case of an arrangement in which the rotation radii of the respective rotors overlap, particularly when the rotor 4 axes having two rotor blades are arranged at positions intersecting each other, interference between the rotor blades becomes a problem. End up. The present invention has been made to solve the above-described problems.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, in the multi-axis vertical take-off and landing aircraft according to the present invention, one engine and a single power transmission shaft extending from the engine are respectively arranged at the vertex positions of a rectangular frame, A multi-axis vertical take-off and landing aircraft in which rotors 4 shafts each having two variable pitch rotors are connected by a gear unit comprising a screw gear (5) and a screw gear (6), The front and rear two left and right axes are arranged at positions where the rotor blades intersect each other, and the front two-axis and rear two-axis rotors are arranged so that the rotor blades do not intersect, and in order to protect the rotor blades It is equipped with a rotary blade protective device arranged around all the rotary blade rotation ranges.
[0005]
[Action]
In the multi-axis vertical take-off and landing aircraft according to the present invention, the left and right two-axis rotors are arranged at positions where the rotor blades intersect each other, and the front and rear rotors are arranged so that the rotation radii do not overlap. It is possible to prevent interference between the rotor blades and to reduce the size of the airframe. In addition, this gear unit structure increases the degree of freedom in setting the screw gear shaft in the take-out direction, increases the degree of freedom in setting the high-speed rotation, and counteracts the counter-torque because the screw gear shafts reverse each other. It is a possible gear mechanism. Therefore, the number of components is reduced and the structure becomes simple, and the advantages such as cost reduction and weight loss increase.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
[0007]
[First Embodiment]
As shown in FIGS. 5 and 7, the screw gear (6) is assembled at an angle so as to mesh with both sides of the screw gear (5). A right front rotor (FR) and a left front rotor (FL) having two variable pitch rotor blades (17) are disposed at the other end of the screw gear . These rotors are provided with a servo (9), and the pitch angle of each rotor blade (17) can be changed by its operation. As shown in FIG. 2, these gear units (F) and gear units (R) are arranged in the front-rear direction and connected by a connector (2). Further, the gear unit (F) and the screw gear (5) of the gear unit (R) are connected by the power transmission rotating shaft (1). The connector (2) is provided with an engine (18) for rotating the power transmission rotary shaft (1) through a reduction gear (19) for rotation output. The basic overall structure of the multi-axis type vertical take-off and landing aircraft according to the present invention is as described above, and the right front rotor (FR), the left front rotor (FL), and the right rear rotor (RR ) with one power transmission shaft (1). ) And the left rear rotor (RL) are rotated simultaneously.
[0008]
More specifically, the screw gear (5) is assembled to the bearings (8) fixed to the two frame plates (7), and the screw gear (6) is engaged with both sides of the screw gear (5). Is assembled to the frame plate (7) through the screw gear shaft holder (4) at an angle as shown in FIG. At this time, the arrangement of the rotor blades (17) is shifted by 90 degrees so that the right front rotor (FR) and the left front rotor (FL) provided at the other end of the shaft of the screw gear (6) do not contact each other. deep. The rotor blades (17) of the right front rotor (FR) and the left front rotor (FL) are servo-linked by the operation of each servo (9) attached to the frame plate (7) via the servo holder (22). (10) The pitch angle can be changed via the L link (11), the operating rod (12), the pitch control head (13), the pitch adjustment link (14), and the rotary blade holder (15).
[0009]
The gear mechanism having the above structure and function is used as one gear unit, and the front side of this gear unit is (R) and the rear side is (R). . The screw gears (5) of the gear units (F) and (R) are connected by the power transmission rotating shaft (1). The power transmission rotating shaft (1) also has a role of canceling out the thrust load generated by the characteristics of the screw gear. Therefore, the tooth trace directions of the gear units (F) and (R) are opposite to each other, and the thrust loads of the gear units (F) and (R) cancel each other as the power transmission rotating shaft (1) is attracted to each other. . An engine (18) is attached to the connector (2), and the power transmission rotating shaft (1) is rotated via a reduction gear (19). In addition, a box (20) containing a fuel tank and electrical components, and a leg (21) are attached.
[0010]
When the present invention is used in the structure as described above, it is connected by increasing the rotational output of the engine (18) and rotating the power transmission rotating shaft (1) via the reduction gear (19). The screw gear (5) of the gear unit (F) and the gear unit (R) is rotated. As a result, the right front rotor (FR), the left front rotor (FL), the right rear rotor (RR), and the left rear rotor (RL) are all rotated simultaneously, generating lift and starting to rise. The pitch angle of each rotor blade of the right front rotor (FR), left front rotor (FL), right rear rotor (RR) and left rear rotor (RL) is raised, lowered, and airborne by operating each servo (9). It can take actions of stationary, back and forth movement, left and right movement, and turning.
[0011]
For example, in order to move forward, if the operation of lowering the pitch angle of each rotor blade of the right front rotor (FR) and left front rotor (FL) in FIG. 1 is performed, the lift is reduced and the nose is lowered. At the same time, if the pitch angle of the rotor blades of the right rear rotor (RR) and the left rear rotor (RL) is increased, the lift increases and the heel is lifted up to move forward and move forward. If this operation is reversed, it will be in a backward tilted posture and can be moved backward. Similarly, for the left-right movement, the pitch angle of each rotor blade of the right two-axis rotor and the left two-axis rotor may be manipulated. As described above, it is possible to fly by controlling the attitude of the aircraft simply by manipulating the pitch angle. Furthermore, it is possible to quickly cope with large center of gravity fluctuations caused by the lifting and lowering of a person by raising and lowering the load at the position of the center of gravity of the fuselage and the position outside the rotor shaft as shown in FIG.
[0012]
[Second Embodiment]
The gear unit (F) and the gear unit (R) of the first embodiment are arranged at the front and rear, and are connected by an angled connector (2a) as shown in FIG. Accordingly, the front gear unit (F) is inclined forward with respect to the horizontal plane, and the right front rotor (FR) and the left front rotor (FL) are also inclined forward. The rear gear unit (R) is tilted backward, and the right rear rotor (RR) and the left rear rotor (RL) are tilted backward. Since the right and left rotors (FR) and the right rear rotor (RR) are mounted on the right and left sides of the gear unit (F) and the gear unit (R) at an angle so as to incline toward each other. The left front rotor (FL) and the left rear rotor (RL) are inclined in the left outer direction. As described above, since the angle is provided in the front-rear direction, a universal joint (23) is provided on the power transmission rotating shaft (1a) for transmitting rotational power to the screw gear (5) of the gear unit (F) and the gear unit (R). , It is connected so that it can be rotated even at an angle. The angled coupler (2a) is provided with an engine (18), and a power transmission rotating shaft (1a) with a universal joint (23) is rotated via a reduction gear (19). In addition, a box (20) containing a fuel tank and electrical components, and a leg (21) are attached.
[0013]
The second embodiment is structured as described above. When this is used, the rotational output of the engine (18) is increased, and the power transmission rotary shaft (1a) with a universal joint (23) is provided via the reduction gear (19). ) To rotate the connected front and rear screw gears (5). As a result, the right front rotor (FR), left front rotor (FL), right rear rotor (RR), and left rear rotor (RL) with various inclinations are all rotated simultaneously, generating lift and starting to rise. By operating the pitch angle of each rotor blade of the right front rotor (FR), left front rotor (FL), right rear rotor (RR) and left rear rotor (RL) with each servo (9), the machine body is not tilted. In addition, it can move up, down, stand still in the air, move back and forth, move left and right, and turn.
[0014]
For example, if the pitch angle of each rotor blade of the right front rotor (FR) and the left front rotor (FL) is increased to move forward, the lift increases and the gear unit (F) tilts forward. Be drawn to the front. If this operation is reversed, it can move backward. Similarly, in the case of left-right movement, if the pitch angle of each rotor blade of the right two-axis rotor or the left two-axis rotor is manipulated , the aircraft can move and fly without tilting the aircraft.
[0015]
[Third Embodiment]
As shown in FIG. 9 , all the rotating blade rotations of the right front rotor (FR), the left front rotor (FL), the right rear rotor (RR), and the left rear rotor (RL) as shown in FIG. Around the range, equipped with a protector (25) so that the rotor blades do not touch the obstacles and are destroyed, connect the connector (2) from the rotation range of the right front rotor (FR) and the left front rotor (FL). also installed an extended hatch to the front (24). The third embodiment has the structure as described above, and in order to use this, the engine (18) is rotated and lifted in the air, approaching a high-rise building (26) from the front, Or it can be made to lie directly to the window (27), and the luggage can be lifted and lowered from the elevator opening (24), and people can get on and off. At this time, the airframe becomes unstable due to large fluctuations in the center of gravity. Therefore, it is necessary to instantaneously manipulate the pitch angle of the variable pitch rotor blade. For example, the moment the cargo is unloaded, the front of the aircraft becomes lighter and floats up, and the aircraft as a whole is tilted backward. At this moment, the pitch angle of the rotor blades of the right front rotor (FR) and the left front rotor (FL) is lowered and the pitch angle of the rotor blades of the right rear rotor (RR) and the left rear rotor (RL) is increased to perform horizontal operation. The posture can be maintained.
[0016]
【The invention's effect】
As is clear from the description of the above embodiment, in the multi-axis vertical take-off and landing aircraft according to the present invention , the rotor rotor blades of the left and right axes are arranged at positions where they intersect each other, and the rotation radii between the front and rear rotors do not overlap. Therefore, it is possible to prevent the front and rear rotor blades from interfering with each other and to reduce the size of the airframe. In addition, since each of the four-axis rotors can be individually operated, even if there is a change in the center of gravity on the aircraft, the influence can be canceled instantaneously and a stable flight can be maintained. Furthermore, the multi-axis type vertical take-off and landing aircraft of the present invention can be simultaneously rotated by a simple combination of a single reactor power transmission rotating shaft and a screw gear, and further, with a simple lower pitch rotating blade. A multi-axis vertical take-off and landing aircraft that can be combined. In an aircraft, a simple mechanism is ideal, and being able to approach or directly lay on a high-rise building or the like expands the field of activity more than ever. As an example, it can be performed from the air, such as quick fire extinguishing activities and rescue activities in the event of a high-rise building fire.
[0017]
[Brief description of the drawings]
FIG. 1 is a plan view of the present invention, FIG. 2 is a side view of the present invention, FIG. 3 is a front view of the present invention, and FIG. 4 is a plan view of the gear unit of the present invention. Is omitted.
FIG. 5 is a front view of the gear unit of the present invention, and a part of the rotor blade is omitted for convenience of explanation.
FIG. 6 is a side view of the gear unit of the present invention, and a part of the rotor blade is omitted for convenience of explanation.
7 is a simplified reference perspective view of the gear unit of the present invention. FIG. 8 is a side view of the present invention. FIG. 9 is a perspective view of the present invention. ]
[Explanation of symbols]
F-front gear unit R-rear gear unit FR- right front rotor FL- left front rotor RR- right rear rotor RL- left rear rotor 1-power transmission rotary shaft 1a-power transmission rotary shaft 2 with universal joint Connector 2a-Angled connector 3-Connector fixing band 4-Screw gear shaft holder 5-Screw gear 6-Screw gear 7-Frame plate 8-Bearing 9-Servo 10-Servo link 11-L link 12-Operation Rod 13-Pitch control head 14- Pitch adjustment link 15-Rotating blade holder 16- Right rotating blade 17- Left rotating blade 18-Engine 19-Reduction gear 20-Storage box 21-Leg 22-Servo holder 23-Free joint 24-Elevator 25-Rotary blade protector 26-High-rise building 27-High-rise building window

Claims (1)

1基のエンジンを備え、該エンジンから伸びる単一の動力伝達回転軸に対し、四角形のフレームの頂点位置にそれぞれ配置され、各々が2枚ずつの可変ピッチ回転翼を備えたローター4軸が、ネジ歯車(5)及びネジ歯車(6)からなるギヤユニットによりそれぞれ連結された多軸型垂直離着陸機であって、前記ローターのうち前部及び後部の左右2軸ずつは回転翼が互いに交差する位置に配置され、前部2軸と後部2軸のローターは回転翼が交差しないよう配置されており、さらに回転翼を保護するため前記すべての回転翼回転範囲の周囲に配置された回転翼防護具を装備したことを特徴とする多軸型垂直離着陸機。 A rotor 4 shaft that includes one engine and is arranged at the apex position of a rectangular frame with respect to a single power transmission rotating shaft extending from the engine, each having two variable pitch rotating blades, A multi-axis vertical take-off and landing aircraft connected respectively by a gear unit comprising a screw gear (5) and a screw gear (6) , wherein the rotor blades intersect each other on the left and right two axes of the front and rear of the rotor. The rotors of the front 2-axis and the rear 2-axis are arranged so that the rotor blades do not cross each other, and the rotor blade protection arranged around all the rotor blade rotation ranges to protect the rotor blades. Multi-axis vertical take-off and landing aircraft characterized by the equipment.
JP19221099A 1999-06-02 1999-06-02 Multi-axis vertical take-off and landing aircraft Expired - Fee Related JP4441714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19221099A JP4441714B2 (en) 1999-06-02 1999-06-02 Multi-axis vertical take-off and landing aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19221099A JP4441714B2 (en) 1999-06-02 1999-06-02 Multi-axis vertical take-off and landing aircraft

Publications (2)

Publication Number Publication Date
JP2000344197A JP2000344197A (en) 2000-12-12
JP4441714B2 true JP4441714B2 (en) 2010-03-31

Family

ID=16287507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19221099A Expired - Fee Related JP4441714B2 (en) 1999-06-02 1999-06-02 Multi-axis vertical take-off and landing aircraft

Country Status (1)

Country Link
JP (1) JP4441714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150314864A1 (en) * 2014-05-02 2015-11-05 Gyula Cserfoi Overlapping Synchronized Twin Blades

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389711B1 (en) 2012-12-18 2014-04-28 한국과학기술원 Multi-rotor
KR101884902B1 (en) * 2017-01-12 2018-08-02 삼성중공업 주식회사 Unmanned aero vehicle
CN107600415B (en) * 2017-09-19 2023-09-29 四川建筑职业技术学院 Tilting type high-mobility unmanned aerial vehicle adopting cross-pitch-variable rotor wing structure
CN110203383B (en) * 2019-06-24 2024-04-16 南京航空航天大学 Modularized cross type column unmanned helicopter and working method thereof
US11465738B2 (en) 2020-01-28 2022-10-11 Overair, Inc. Fail-operational VTOL aircraft
US11738862B2 (en) 2020-01-28 2023-08-29 Overair, Inc. Fail-operational vtol aircraft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150314864A1 (en) * 2014-05-02 2015-11-05 Gyula Cserfoi Overlapping Synchronized Twin Blades

Also Published As

Publication number Publication date
JP2000344197A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
US20220234725A1 (en) Apparatus and method for balancing aircraft with robotic arms
US10351234B1 (en) Vertical takeoff and landing vehicle
US6719244B1 (en) VTOL aircraft control using opposed tilting of its dual propellers or fans
KR100668234B1 (en) A vertical take-off and landing airplane
US20020104922A1 (en) Vertical takeoff and landing aircraft with multiple rotors
JP4441826B2 (en) Aircraft with ring-shaped wing structure
EP2610173B1 (en) Fixed-pitch coaxial contra-rotating helicopter
WO2018090790A1 (en) Rotor control mechanism and dual-rotor blade unmanned aerial vehicle
US20090159740A1 (en) Coaxial rotor aircraft
JP4441714B2 (en) Multi-axis vertical take-off and landing aircraft
KR20180083183A (en) Unmanned aero vehicle
JP3368377B2 (en) aircraft
US11822348B2 (en) Flight vehicle and method of controlling flight vehicle
JP6818337B2 (en) Articulated robot arm and UAV
JP2004017722A (en) Vtol aircraft
US4912999A (en) System for pivotably supporting and transmitting power through a helicopter transmission and rotor
JP3386380B2 (en) Coaxial twin rotor helicopter
US3366347A (en) Lifting device employing aerodynamic lift
EP0960812A1 (en) Vertical/short take-off and landing (V/STOL) air vehicle capable of providing high speed horizontal flight
DE10256916A1 (en) Helicopter has upper and lower propellers that has active wing sections formed with optimum dimensions, that can be shifted and inclined with respect to cab, and that rotate in different speeds for easy maneuverability
JP3075658B2 (en) Master-slave manipulator slave arm
JP3852023B2 (en) Multi-axis vertical take-off and landing aircraft and control method thereof
JP2632667B2 (en) Helicopter with rotor protection frame
WO2002034620A1 (en) Unpiloted rotor-driven aircraft
EP3912908A1 (en) Multi-rotor aircraft and method of controlling same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19990806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4441714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees