JP4440065B2 - Potential measuring apparatus and image forming apparatus - Google Patents

Potential measuring apparatus and image forming apparatus Download PDF

Info

Publication number
JP4440065B2
JP4440065B2 JP2004297017A JP2004297017A JP4440065B2 JP 4440065 B2 JP4440065 B2 JP 4440065B2 JP 2004297017 A JP2004297017 A JP 2004297017A JP 2004297017 A JP2004297017 A JP 2004297017A JP 4440065 B2 JP4440065 B2 JP 4440065B2
Authority
JP
Japan
Prior art keywords
substrate
detection electrode
detection
insulator
potential measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004297017A
Other languages
Japanese (ja)
Other versions
JP2006105939A5 (en
JP2006105939A (en
Inventor
義貴 財津
好克 市村
隆志 牛島
篤史 香取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004297017A priority Critical patent/JP4440065B2/en
Priority to US11/178,649 priority patent/US7049804B2/en
Priority to US11/385,392 priority patent/US7741850B2/en
Publication of JP2006105939A publication Critical patent/JP2006105939A/en
Publication of JP2006105939A5 publication Critical patent/JP2006105939A5/ja
Application granted granted Critical
Publication of JP4440065B2 publication Critical patent/JP4440065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)

Description

本発明は、非接触型の電位測定装置及び該電位測定装置を有する画像形成装置に関するものである。 The present invention relates to a non-contact type potential measuring device and an image forming apparatus having the potential measuring device.

従来、例えば感光ドラムを有し電子写真方式によって画像形成を行う画像形成装置においては、常に安定した画質を得るために、どの様な環境下でも感光ドラム表面の電位分布が適当に(典型的には均一に)なるように感光ドラム表面を帯電しておく必要がある。このため、感光ドラム表面の電位を電位測定装置を用いて測定し、その結果を利用して感光ドラム表面の電位を均一に保つ様にフィードバック制御を行っている。 Conventionally, for example, in an image forming apparatus having a photosensitive drum and forming an image by electrophotography, the potential distribution on the surface of the photosensitive drum is appropriately (typically) in any environment in order to always obtain stable image quality. It is necessary to charge the surface of the photosensitive drum so as to be uniform. For this reason, the potential on the surface of the photosensitive drum is measured using a potential measuring device, and feedback control is performed using the result to keep the potential on the surface of the photosensitive drum uniform.

この様な目的で用いられる電位測定装置に対して、従来からしばしば要求されている機能の一つとして、電位測定装置自身が感光ドラム表面の電位分布を変化させないように、感光ドラム表面に接触することなく測定対象物の電位を測定する機能が挙げられる。こうした機能を備えた電位測定装置の方式としては、機械式交流電界誘導型と呼ばれる方式が従来から用いられている。 One of the functions often required for the potential measuring device used for such a purpose has been to contact the surface of the photosensitive drum so that the potential measuring device itself does not change the potential distribution on the surface of the photosensitive drum. The function of measuring the electric potential of a measurement object without mentioning is mentioned. As a method of a potential measuring device having such a function, a method called a mechanical AC electric field induction type has been conventionally used.

機械式交流電界誘導型の電位測定装置による電位測定の原理を以下に説明する。測定対象表面と電位測定装置に内蔵される検知電極との間に生じる電界によって、検知電極には測定対象表面の電位に比例した電気量Qの電荷が誘起される。QとVの関係は
Q=CV・・・(1)
という式で表される。ここで、Cは検知電極と測定対象表面との間の静電容量である。式(1)より、検知電極に誘起される電気量Qを測定して測定対象表面の電位を得られる。
The principle of potential measurement using a mechanical AC electric field induction type potential measuring device will be described below. Due to the electric field generated between the surface of the measurement object and the detection electrode built in the potential measuring device, an electric charge Q of an electric quantity proportional to the potential of the surface of the measurement object is induced in the detection electrode. The relationship between Q and V
Q = CV (1)
It is expressed by the formula. Here, C is a capacitance between the detection electrode and the measurement target surface. From equation (1), the electric quantity Q induced in the detection electrode can be measured to obtain the potential of the surface to be measured.

しかしながら、検知電極に誘起される電気量Qを高速かつ正確に直接測定することは困難であるので、実用的な方法として、検知電極と測定対象表面との間の静電容量Cの大きさを周期的に変化させ、検知電極で発生する交流電流信号を測定して測定対象表面の電位を得る方法が従来からしばしば用いられている。 However, since it is difficult to directly and accurately measure the quantity of electricity Q induced in the detection electrode, as a practical method, the capacitance C between the detection electrode and the surface to be measured is set as a practical method. A method of obtaining a potential on the surface of a measurement object by measuring an alternating current signal generated at a detection electrode by periodically changing the current is often used.

上記方法によって測定対象表面の電位を得られることを以下に示す。静電容量Cが時刻tの関数であるとすると、検知電極で発生する交流電流信号iは、検知電極に誘起される電気量の時間微分値であることと、(1)式から
i=dQ/dt=d(CV)/dt・・・(2)
という式で表される。ここで、測定対象表面の電位Vの変化速度が静電容量Cの変化速度に対して十分遅い場合には、Vは微小時間dtにおいて一定であるとみなせるので、(2)式は
i=V・dC/dt・・・(3)
という式で表される。(3)式より、検知電極で発生する交流電流信号iの大きさは測定対象表面の電位Vの1次の関数であるので、交流電流信号の振幅を測定することで測定対象表面の電位を得ることが可能である。
It will be shown below that the potential of the surface to be measured can be obtained by the above method. Assuming that the capacitance C is a function of time t, the alternating current signal i generated at the detection electrode is a time differential value of the amount of electricity induced in the detection electrode, and from equation (1)
i = dQ / dt = d (CV) / dt (2)
It is expressed by the formula. Here, when the change rate of the potential V of the surface to be measured is sufficiently slow with respect to the change rate of the capacitance C, V can be regarded as being constant in the minute time dt.
i = V · dC / dt (3)
It is expressed by the formula. From the equation (3), the magnitude of the alternating current signal i generated at the detection electrode is a linear function of the potential V of the surface to be measured, so the potential of the surface of the measuring object can be determined by measuring the amplitude of the alternating current signal. It is possible to obtain.

検知電極と測定対象表面との間の静電容量Cを周期的に変化させる方法としては、(イ)検知電極の実効的露出面積を周期的に変化させる方法、(ロ)検知電極と測定対象表面との間の比誘電率を変化させる方法、(ハ)検知電極と測定対象表面との間の距離を変化させる方法の3通りがあげられる。その理由は、静電容量Cが近似的に
C=A・S/x・・・(4)
という式で表されることによる。ここで、Aは検知電極と測定対象表面間の物質の誘電率などに係る比例定数、Sは検知電極の面積、xは検知電極と測定対象表面との間の距離である。
As a method of periodically changing the capacitance C between the detection electrode and the measurement target surface, (a) a method of periodically changing the effective exposed area of the detection electrode, and (b) the detection electrode and the measurement target. There are three methods: a method of changing the relative permittivity between the surface and (c) a method of changing the distance between the detection electrode and the surface to be measured. The reason is that the capacitance C is approximately
C = A ・ S / x (4)
Because it is expressed by the formula. Here, A is a proportional constant related to the dielectric constant of the substance between the detection electrode and the measurement target surface, S is the area of the detection electrode, and x is the distance between the detection electrode and the measurement target surface.

上記の様な従来技術の状況において、近年の画像形成装置における感光ドラムの小径化、ドラム周りの高密度化により、電位測定装置も小型化、薄型化が求められている。従来の機械式交流電界誘導型の電位測定装置では、電位測定装置内部の殆どが片持ち梁などやこれらを振動させる駆動機構等の組み立て部品によって占められている。したがって、電位測定装置の小型化には、これら駆動機構の小型化が必須である。 In the state of the prior art as described above, the potential measuring device is required to be reduced in size and thickness as the diameter of the photosensitive drum in the recent image forming apparatus is reduced and the density around the drum is increased. In a conventional mechanical AC electric field induction type potential measuring device, most of the inside of the potential measuring device is occupied by cantilever beams or assembly parts such as a drive mechanism that vibrates them. Therefore, miniaturization of these drive mechanisms is essential for miniaturization of the potential measuring device.

しかし、駆動機構を小型化すると検知電極の面積S或いは測定対象表面と検知電極との間の距離xの変化量が小さくなる。ここで、機械式交流電界誘導型の電位測定装置から出力信号として取り出される電流の大きさは、前述の(3)式及び(4)式より、
i=V・d(A・S/x)/dt・・・(5)
という式で表されるので、駆動装置を小型化しようとすると、(5)式の括弧内の時間微分値が小さくなる。その結果として、出力信号である電流信号iが外部からの雑音の影響を受けやすくなるので測定精度の点で不利となる。また、従来の機械式交流電界誘導型の電位測定装置は、それぞれの個別部品を組み立てた構造をしており、電位測定装置の小型化及び低コスト化に課題が残る。
However, when the drive mechanism is downsized, the amount of change in the area S of the detection electrode or the distance x between the surface to be measured and the detection electrode is reduced. Here, the magnitude of the current extracted as an output signal from the mechanical AC electric field induction type potential measuring device is based on the above-described equations (3) and (4).
i = V ・ d (A ・ S / x) / dt (5)
Therefore, when trying to reduce the size of the drive device, the time differential value in parentheses in equation (5) becomes small. As a result, the current signal i which is an output signal is easily affected by external noise, which is disadvantageous in terms of measurement accuracy. Further, the conventional mechanical AC electric field induction type potential measuring device has a structure in which individual components are assembled, and there remains a problem in miniaturization and cost reduction of the potential measuring device.

そこで近年、MEMS(微小電気機械機構)技術による小型な電位測定装置が提案されている(特許文献1参照)。MEMS技術とは、大規模集積回路などの半導体微小加工技術を応用して微小な機械機構或いは電気素子を作製する技術であり、微小な機械機構などを電気素子と一体化して大量に作製することで測定装置の大幅な小型化や低コスト化を図ることが可能である。
米国特許第6,177,800号
Therefore, in recent years, a small potential measuring device based on MEMS (micro electro mechanical mechanism) technology has been proposed (see Patent Document 1). The MEMS technology is a technology for manufacturing a micro mechanical mechanism or an electrical element by applying a semiconductor micromachining technology such as a large-scale integrated circuit. The micro mechanical mechanism or the like is integrated with an electrical element and manufactured in large quantities. Thus, it is possible to greatly reduce the size and cost of the measuring device.
US Pat. No. 6,177,800

MEMS技術を用いて電位測定装置を作製する利点の一つには、電位測定装置の構成要素である駆動機構を小型化した微小駆動機構と、検知電極と、検知電極で発生する信号を処理する信号処理手段とを基板上に一体形成することで、電位測定装置の大幅な小型化や低コスト化を図れるという点がある。信号処理などのための電子回路を上記基板上に構成するために、基板の主材料として意図的にキャリア濃度を高めた半導体を用いることが多い。 One of the advantages of manufacturing a potential measuring device using MEMS technology is that the driving mechanism that is a component of the potential measuring device is miniaturized, a sensing electrode, and a signal generated by the sensing electrode is processed. By integrally forming the signal processing means on the substrate, there is a point that the potential measuring device can be greatly reduced in size and cost. In order to construct an electronic circuit for signal processing on the substrate, a semiconductor whose carrier concentration is intentionally increased is often used as the main material of the substrate.

しかし、キャリア濃度の高い半導体は抵抗率が低いことが知られており、基板の材料に低抵抗率の材料を用いると、基板と、基板上に絶縁性薄膜を介して形成された検知電極や電気配線などとの間に無視できない寄生容量が発生する。この結果、或る検知電極或いは電気配線で発生した交流信号の大部分が寄生容量を介して他の検知電極或いは電気配線などに流入する現象が生じる。この現象は、全ての検知電極及び電気配線の間で同様に発生するため、例えば検知電極で発生する交流信号と駆動機構を駆動させる制御信号とが混信してしまい、正確な電位測定値を得ることに対して支障になる。 However, it is known that a semiconductor with a high carrier concentration has a low resistivity. When a low resistivity material is used as the material of the substrate, the substrate, a sensing electrode formed on the substrate via an insulating thin film, Parasitic capacitance that cannot be ignored occurs between the electrical wiring and the like. As a result, a phenomenon occurs in which most of the AC signal generated at a certain detection electrode or electrical wiring flows into another detection electrode or electrical wiring via a parasitic capacitance. Since this phenomenon occurs in the same way between all the detection electrodes and the electrical wiring, for example, an AC signal generated at the detection electrode and a control signal for driving the drive mechanism are mixed, and an accurate potential measurement value is obtained. It will be an obstacle.

或る検知電極或いは電気配線から他の検知電極或いは電気配線までの間における周波数fの交流信号の伝わり難さ、すなわちインピーダンスZの絶対値|Z|は、或る検知電極と基板との間の寄生容量をC、他の或る検知電極と基板との間の寄生容量をC’、基板の抵抗率をρと置くと次の様になる。 The difficulty in transmitting an AC signal having a frequency f between a certain sensing electrode or electrical wiring and another sensing electrode or electrical wiring, that is, the absolute value | Z | of the impedance Z is determined between the certain sensing electrode and the substrate. When the parasitic capacitance is C h , the parasitic capacitance between another sensing electrode and the substrate is C h ′, and the resistivity of the substrate is ρ, the following is obtained.

Figure 0004440065
という式で表される(a:比例定数)。(6)式より、各検知電極或いは電気配線間における交流信号の混信を低減させるためには、各検知電極或いは電気配線間のインピーダンスの絶対値|Z|を増大させる必要がある。すなわち、検知電極間の部分における基板の抵抗率ρを増大させること及び検知電極と基板との間の寄生容量Cを減少させることのうち少なくとも一方を行う必要がある。
Figure 0004440065
(A: proportionality constant). From equation (6), it is necessary to increase the absolute value | Z | of the impedance between each detection electrode or electrical wiring in order to reduce the interference of the AC signal between each detection electrode or electrical wiring. That is, it is necessary to perform at least one of reducing the parasitic capacitance C h between and detection electrode and the substrate can increase the resistivity of the substrate ρ in the portion between the sensing electrodes.

以上より、例えば、駆動機構と検知電極、検知電極で発生する信号を処理する信号処理手段が基板上に一体形成された電位測定装置を作製するためには、基板の材料として抵抗率の低い半導体材料などを用いながら各検知電極間のインピーダンスを増大させるための工夫が必要である。 From the above, for example, in order to produce a potential measuring device in which a drive mechanism, a detection electrode, and a signal processing means for processing a signal generated by the detection electrode are integrally formed on a substrate, a semiconductor having a low resistivity as a material of the substrate It is necessary to devise to increase the impedance between the detection electrodes while using a material or the like.

上記課題に鑑み、本発明の電位測定装置は、半導体または導体を主材料とした基板上に絶縁体を介して配置される複数の検知電極と、測定対象と検知電極間の結合容量を変調する容量変調手段と、前記検知電極にて検出された信号に基づいて測定対象の電位を検出する検出手段を有し、前記基板の少なくとも一部分に、検知電極間の電気抵抗率が増大するように固体からなる絶縁体部が形成され、前記絶縁体部が形成される前記基板の部分には、複数の検知電極の間にあたる前記揺動板内部の部分であって前記検知電極の下部にあたる部分には伸びていない部分(図4に示す絶縁体部115などを参照)を含むことを特徴とする。容量変調手段としては、ねじりバネにより揺動可能に支持された揺動板を測定対象に対して揺動させて揺動板上に設けられた検知電極と測定対象との距離を変調する構成のものや、測定対象と固定基板上の検知電極の間で開口を持つシャッタを移動させて測定対象に対する検知電極の露出面積を変調する構成のものなどがある。 In view of the above-described problems, the potential measuring device of the present invention modulates a plurality of detection electrodes disposed via an insulator on a substrate mainly made of a semiconductor or a conductor, and a coupling capacitance between the measurement target and the detection electrodes. It has a capacitance modulation means and a detection means for detecting the potential of the object to be measured based on the signal detected by the detection electrode, and at least a part of the substrate is solid so as to increase the electrical resistivity between the detection electrodes. An insulator portion is formed, and the portion of the substrate on which the insulator portion is formed is a portion inside the swing plate between a plurality of detection electrodes and a portion below the detection electrodes. It includes a portion that does not extend (see the insulator 115 shown in FIG. 4 and the like) . The capacity modulation means is configured to modulate the distance between the detection electrode provided on the swing plate and the measurement target by swinging the swing plate supported by the torsion spring so as to be swingable with respect to the measurement target. And a configuration in which the exposure area of the detection electrode with respect to the measurement target is modulated by moving a shutter having an opening between the measurement target and the detection electrode on the fixed substrate.

また、上記課題に鑑み、本発明の電位測定方法は、半導体または導体を主材料とした基板上に絶縁体を介して配置される複数の検知電極を用い、測定対象と検知電極間の結合容量を変調して検知電極にて検出される信号に基づいて測定対象の電位を検出する際に、さらに前記基板の一部分に、検知電極間の電気的なインピーダンスを増大するように絶縁体部を設けることを特徴とする。 Further, in view of the above problems, the potential measuring method of the present invention uses a plurality of detection electrodes arranged via an insulator on a substrate mainly made of a semiconductor or a conductor, and a coupling capacitance between the measurement target and the detection electrodes. when detecting the potential of the measurement object based on the signals detected by the modulation to the sensing electrode, and further a portion of the substrate, an insulating body so as to increase the electrical impedance between the sensing electrodes It is characterized by that.

また、上記課題に鑑み、本発明の画像形成装置は、上記の電位測定装置と画像形成手段を備え、電位測定装置の検知電極が形成された面が画像形成手段の電位測定の対象となる面と対向して配置され、画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする。 In view of the above problems, an image forming apparatus according to the present invention includes the above-described potential measuring device and an image forming unit, and a surface on which a detection electrode of the potential measuring device is formed is a target of potential measurement of the image forming unit. The image forming means controls image formation using the signal detection result of the potential measuring device.

上記の本発明の構成により、抵抗率の比較的低い半導体或いは導体を主材料とした検知電極支持用基板を用いた電位測定装置ないし方法において、前記絶縁体部の存在により各検知電極間で交流信号が混信する現象を防止ないし軽減することができる。これにより、抵抗率の比較的低い半導体或いは導体を主材料とした検知電極支持用基板を用いても、比較的正確な電位測定信号を得ることが可能となる。 According to the above-described configuration of the present invention, in the potential measuring apparatus or method using the detection electrode supporting substrate mainly made of a semiconductor or a conductor having a relatively low resistivity, an alternating current is generated between the detection electrodes due to the presence of the insulator portion. It is possible to prevent or reduce the phenomenon of signal interference. As a result, it is possible to obtain a relatively accurate potential measurement signal even when a detection electrode supporting substrate whose main material is a semiconductor or conductor having a relatively low resistivity is used.

本発明の実施の形態を説明する前に、本発明の原理を説明する。本発明では、駆動機構として揺動体装置、シャッタ装置などを用いた電位測定装置等において、比較的抵抗率の低い半導体や導体を主材料として作製された構成に各検知電極間のインピーダンスを増大させる構造を持たせることにより、各検知電極間で交流信号が混信するという課題を解決する。各検知電極間のインピーダンスを増大させる方針としては、検知電極と抵抗率の低い基板との間の寄生容量を減少させること及び基板の抵抗率を増大させることのうち少なくとも一方を行っている。 Before describing the embodiment of the present invention, the principle of the present invention will be described. In the present invention, in a potential measurement device using an oscillator device, a shutter device, or the like as a drive mechanism, the impedance between the detection electrodes is increased to a configuration made mainly of a semiconductor or conductor having a relatively low resistivity. By providing the structure, the problem of alternating current signal interference between the detection electrodes is solved. As a policy for increasing the impedance between the detection electrodes, at least one of reducing the parasitic capacitance between the detection electrode and the low resistivity substrate and increasing the resistivity of the substrate is performed.

検知電極と基板との間の寄生容量Cは、検知電極と基板との間の比誘電率をk、検知電極と基板とが正対する面積をS、検知電極と基板との間の距離をdと置くと、近似的に
Ch=ε0・kh・Sh/dh・・・(7)
という式で表される(ε0:真空の誘電率)。(7)式より、寄生容量Cを減少させるには、(1)検知電極と揺動板との間の絶縁体の比誘電率kを減少させる、(2)検知電極と基板とが正対する面積Sを減少させる、(3)検知電極と基板との間の距離dを増大させる、といった手段を取ればよいことがわかる。本発明では、(2)または(3)の手段を用いることで検知電極と基板との間の寄生容量Cを減少させている。
Parasitic capacitance C h between the detection electrode and the substrate, the dielectric constant k h between the detection electrode and the substrate, and the detection electrode and the substrate to directly face area between the S h, detection electrode and the substrate When you place the distance and d h, approximately
C h = ε 0 · k h · S h / d h (7)
0 : dielectric constant of vacuum). (7) from the equation, in order to reduce the parasitic capacitance C h, (1) reducing the relative dielectric constant k h of the insulator between the sensing electrode and the oscillating plate, (2) and the sensing electrode and the substrate directly facing reducing the area S h, (3) increasing the distance d h between the detection electrode and the substrate, such as it can be seen that it take the means. In the present invention, thereby reducing the parasitic capacitance C h between the detection electrode and the substrate by using a means (2) or (3).

また、基板の抵抗率ρは基板を作製する材料によって決定されるが、本発明では基板を作成する材料として、キャリア濃度の比較的高い半導体など、すなわち抵抗率の比較的低い材料を用いることを前提としているので、基板全体の抵抗率を直接的に増大させる手段は取れない。しかし、基板の構造を工夫することにより、各検知電極から寄生容量Cを介して基板に漏洩した交流信号が基板内で受ける抵抗Rを増大させることは可能である。 Further, the resistivity ρ of the substrate is determined by the material for producing the substrate. In the present invention, however, a semiconductor having a relatively high carrier concentration, that is, a material having a relatively low resistivity is used as the material for producing the substrate. As a premise, no means for directly increasing the resistivity of the entire substrate can be taken. However, by devising the structure of the substrate, an AC signal leaks to the substrate through the parasitic capacitance C h from the sensing electrodes is possible to increase the resistance R to receive in the substrate.

基板に漏洩した交流信号が基板内で受ける抵抗Rは、基板内の或る検知電極の直下にあたる部分から他の或る検知電極の直下にあたる部分までの電気信号が通る経路の長さをLs、その経路の断面積をSsと置くと、
R=ρ・Ls/Ss・・・(8)
という式で表される。(8)式より、各検知電極から寄生容量を介して基板に漏洩した交流信号が基板内で受ける抵抗Rを増大させるには、基板内の或る検知電極の直下にあたる部分から他の或る検知電極の直下にあたる部分までの電気信号が通る経路をPとすると、(1)Pの或る部分を絶縁体部に置き換えることにより経路Pの抵抗率を局所的に増大させる、(2)経路Pの長さLsを増大させる、(3)経路Pの断面積Ssを減少させる、といった手段を取ればよいことがわかる。したがって、本発明はこれらの手段を取るのである。
Resistor R AC signal leaks to the substrate is subjected in the substrate, the length of the path through which electrical signals from the portion corresponding to just below the certain detection electrodes in the substrate to the portion corresponding to just below the other one sensing electrode L s If we put the cross-sectional area of the path as S s ,
R = ρ · L s / S s (8)
It is expressed by the formula. From equation (8), in order to increase the resistance R received in the substrate by the AC signal leaked from each detection electrode to the substrate via the parasitic capacitance, the resistance R is directly changed from a portion of the substrate directly below a certain detection electrode. Assuming that the path through which the electrical signal to the part directly below the detection electrode passes is P, (1) the resistance of path P is locally increased by replacing a certain part of P with an insulator part. (2) path It can be seen that measures such as increasing the length L s of P and (3) decreasing the cross-sectional area S s of the path P may be taken. Therefore, the present invention takes these measures.

以上の原理に基づいて構成された本発明の電位測定装置の実施例を以下に説明する。
まず、図2から図12までの揺動体装置を用いた電位測定装置の実施例の前提となる構成、動作を説明する。この動作は、これらの実施例と本質的に同じである。
An embodiment of the potential measuring apparatus of the present invention configured based on the above principle will be described below.
First, the configuration and operation that are the premise of the embodiment of the potential measuring device using the oscillator device of FIGS. 2 to 12 will be described. This operation is essentially the same as these embodiments.

揺動体装置を用いた電位測定装置の構造の俯瞰図を図1(a)に、破線部A−A’
における断面図を図1(b)示す。揺動体装置100は、揺動体110、信号検出手段120、駆動装置200、揺動体の回転1自由度以外を拘束するねじりバネ101及び102、ねじりバネ101及び102の揺動体の反対側に位置する端の変位自由度を拘束して固定端を与える非絶縁性材料の支持部材103を有する。揺動体110は、揺動板111とその上面に形成された絶縁体膜112を含む。信号検出手段120は、揺動体110の上面に配置された検知電極121及び122、検知電極で発生する信号を処理する信号処理手段123、検知電極と信号処理手段とを接続する信号線124及び125からなる。信号処理手段123は、非絶縁性材料の支持部材103に作り込むことができる。ここで、揺動体装置100は、検知電極121と検知電極122との間のインピーダンスを増大させる様な構造を有している(具体的な構造例は以下の実施例を参照)。駆動装置200は、磁力、静電、圧電など様々な駆動方法が適用可能であるが、以下の図2から図12までの実施例では電磁コイルと永久磁石を用いた磁力による駆動方法を一例として用いる。すなわち、電磁コイル201に交流電流を流すことで周期的に変化する磁場を形成し、電磁コイル201に対向する揺動板111の表面に配置された永久磁石202に自身の中心を軸とするトルクを発生させることにより、ねじりバネ101及び102を軸として揺動体110を図1(c)の矢印で示す回転方向に揺動させる。
An overhead view of the structure of the potential measuring device using the oscillator device is shown in FIG.
FIG. 1B shows a cross-sectional view at. The oscillating body device 100 is located on the opposite side of the oscillating body of the oscillating body 110, the signal detecting means 120, the driving device 200, the torsion springs 101 and 102 that restrain the oscillating body except for one degree of freedom of rotation. A support member 103 made of a non-insulating material that restricts the degree of freedom of displacement of the end and provides a fixed end is provided. The oscillating body 110 includes an oscillating plate 111 and an insulator film 112 formed on the upper surface thereof. The signal detection unit 120 includes detection electrodes 121 and 122 disposed on the upper surface of the oscillator 110, a signal processing unit 123 that processes a signal generated at the detection electrode, and signal lines 124 and 125 that connect the detection electrode and the signal processing unit. Consists of. The signal processing means 123 can be built in the support member 103 made of a non-insulating material. Here, the oscillator device 100 has a structure that increases the impedance between the detection electrode 121 and the detection electrode 122 (refer to the following examples for specific structural examples). Various driving methods such as magnetic force, electrostatic force, and piezoelectricity can be applied to the driving device 200. In the following embodiments shown in FIGS. 2 to 12, the driving method using magnetic force using an electromagnetic coil and a permanent magnet is taken as an example. Use. That is, a magnetic field that changes periodically by passing an alternating current through the electromagnetic coil 201 is formed, and a torque around the center of the permanent magnet 202 disposed on the surface of the swing plate 111 that faces the electromagnetic coil 201. As a result, the oscillating body 110 is oscillated around the torsion springs 101 and 102 in the rotational direction indicated by the arrow in FIG.

図1(c)のように測定対象物300の表面と検知電極121及び122とが対向するように揺動体装置100が設置された状態で駆動装置200を用いて揺動体110を周期的に揺動させると、測定対象物300の表面と検知電極121及び122との間の距離x1及びx2が周期的かつ互いに逆相で変化するので、検知電極121及び122からは互いに逆相で測定対象物300の表面の電位に比例した振幅を持つ交流電流信号が発生する。これらの信号が信号線124及び125を介して信号処理手段123に伝わり、信号処理手段123で交流電圧信号への変換及び差動増幅、検波、整流されることにより、測定対象物300の表面の電位に比例した大きさの直流電圧信号が得られる。 As shown in FIG. 1C, the oscillating body 110 is periodically oscillated using the driving apparatus 200 in a state where the oscillating body apparatus 100 is installed so that the surface of the measurement object 300 and the detection electrodes 121 and 122 face each other. When moved, the distances x1 and x2 between the surface of the measurement object 300 and the detection electrodes 121 and 122 change periodically and in opposite phases to each other. An alternating current signal having an amplitude proportional to the surface potential of 300 is generated. These signals are transmitted to the signal processing unit 123 via the signal lines 124 and 125, and are converted into an AC voltage signal, differential amplification, detection, and rectification by the signal processing unit 123, so that the surface of the measurement object 300 is detected. A DC voltage signal having a magnitude proportional to the potential is obtained.

図2の実施例1を説明する。実施例1は、各検知電極の下部に絶縁体部を形成することにより検知電極と揺動板との間の容量を減少させた電位測定装置に関わる。図1(a)の破線部A−A’
と同じ個所における断面図を図2に示す。揺動板111において、検知電極121及び122の下部にあたる部分に、絶縁体膜112に接して、揺動体111の厚さ方向全体にわたって絶縁体部115及び116を形成することにより、検知電極121或いは122と揺動板111自身の表面とが正対する面積がほぼ0になる。したがって、(7)式よりこれらの間に発生する寄生容量を、絶縁体膜112のみを介する場合と比べて、大幅に減少させることができる。さらに、本実施例では、検知電極121と検知電極122との間の電気的な経路がほぼ断たれるので、(8)式の抵抗値が非常に大きくなる。これらにより検知電極121と検知電極122との間の(6)式のインピーダンスを大幅に増大させることができる。こうして、検知電極121及び122間で交流信号が混信する現象を防止ないし軽減でき、抵抗率の比較的低い半導体或いは導体の揺動板111を用いても、比較的正確な電位測定信号が得られる。なお、本実施例では、検知電極121及び122の下部に絶縁体部115及び116が形成されるので、製造可能であるなら絶縁体膜112を省略した構成とすることもできる。
Example 1 of FIG. 2 will be described. The first embodiment relates to a potential measuring apparatus in which the capacitance between the detection electrode and the swing plate is reduced by forming an insulator portion below each detection electrode. Dashed line AA ′ in FIG.
FIG. 2 shows a cross-sectional view at the same location as FIG. In the oscillating plate 111, the insulating portions 115 and 116 are formed over the entire thickness direction of the oscillating body 111 in contact with the insulator film 112 at portions corresponding to the lower portions of the detecting electrodes 121 and 122. The area where 122 and the surface of the swing plate 111 itself face each other is almost zero. Therefore, the parasitic capacitance generated between them can be significantly reduced from the expression (7) as compared with the case where only the insulator film 112 is interposed. Furthermore, in the present embodiment, the electrical path between the detection electrode 121 and the detection electrode 122 is almost cut off, so that the resistance value of the equation (8) becomes very large. Thus, the impedance of the expression (6) between the detection electrode 121 and the detection electrode 122 can be greatly increased. In this way, the phenomenon of alternating current signal interference between the sensing electrodes 121 and 122 can be prevented or reduced, and a relatively accurate potential measurement signal can be obtained even when the semiconductor or conductor rocking plate 111 having a relatively low resistivity is used. . In this embodiment, since the insulator portions 115 and 116 are formed below the detection electrodes 121 and 122, the insulator film 112 can be omitted if it can be manufactured.

実施例1のように絶縁体部を揺動板の厚さ方向全体にわたって形成することが困難な場合は、図3のように、揺動板111の検知電極121及び122を配置する側の表面から揺動板の厚さに満たない深さまで絶縁体部115及び116を形成することによっても、検知電極121と検知電極122との間のインピーダンスを増大させられる。検知電極121或いは122と揺動板111自身の表面とが対向して隔たる距離が絶縁体膜112の厚さに比べて大きくなるので、(7)式よりこれらの間に発生する寄生容量が減少するからである。絶縁体部115及び116を深く形成すればする程、検知電極121と検知電極122との間のインピーダンスを増大させることができる。実施例でも、検知電極121及び122間で交流信号が混信する現象を防止ないし軽減でき、比較的正確な電位測定信号が得られる。ここでも、検知電極121及び122の下部に絶縁体部115及び116が形成されるので、製造的に可能であるなら絶縁体膜112を省略することもできる。 When it is difficult to form the insulator portion over the entire thickness direction of the swing plate as in the first embodiment, the surface on the side where the detection electrodes 121 and 122 of the swing plate 111 are arranged as shown in FIG. Also, the impedance between the detection electrode 121 and the detection electrode 122 can be increased by forming the insulator portions 115 and 116 to a depth less than the thickness of the swing plate. Since the distance that the detection electrode 121 or 122 and the surface of the swing plate 111 are opposed to each other is larger than the thickness of the insulator film 112, the parasitic capacitance generated between them is calculated from the equation (7). This is because it decreases. As the insulator portions 115 and 116 are formed deeper, the impedance between the detection electrode 121 and the detection electrode 122 can be increased. Also in the second embodiment, a phenomenon in which an AC signal interferes between the detection electrodes 121 and 122 can be prevented or reduced, and a relatively accurate potential measurement signal can be obtained. Again, since the insulator portions 115 and 116 are formed below the detection electrodes 121 and 122, the insulator film 112 can be omitted if possible in terms of manufacturing.

実施例3は、揺動板のうち各検知電極の間の部分に絶縁体部を形成することにより揺動板の抵抗値を増大させた電位測定装置に関わる。この上面図を図4(a)に、破線部B−B’における断面図を図4(b)に示す。揺動板111において、検知電極121と検知電極122の間にあたる部分に揺動体111の厚さ方向全体にわたって絶縁体部115を設け、そして永久磁石202を絶縁体膜112を介して揺動板111の裏面に設けた(永久磁石202も導電性を持つので、ここを介する電気的な経路を断つためにこうする必要がある)ことにより、検知電極121の直下から検知電極122の直下までの電気的な経路長がねじりバネ101及び102を経由する分だけ長くなるので、(8)式より検知電極121の直下から検知電極122の直下までの間の抵抗値を、絶縁体部115を形成しない場合と比べて、増大させることができる。これにより検知電極121と122との間のインピーダンスを増大させることができ、検知電極121及び122間で交流信号が混信する現象を防止ないし軽減でき、比較的正確な電位測定信号が得られる。 Example 3 relates to a potential measuring device in which the resistance value of the swing plate is increased by forming an insulator portion in the portion between the detection electrodes of the swing plate. This top view is shown in FIG. 4A, and a cross-sectional view taken along the broken line B-B ′ is shown in FIG. In the oscillating plate 111, an insulating portion 115 is provided over the entire thickness direction of the oscillating body 111 at a portion between the detection electrode 121 and the detecting electrode 122, and the permanent magnet 202 is interposed through the insulating film 112. (The permanent magnet 202 is also conductive, so it is necessary to cut the electrical path through the permanent magnet 202), so that the electricity from directly below the detection electrode 121 to directly below the detection electrode 122 Since the typical path length is increased by the amount passing through the torsion springs 101 and 102, the resistance value between the position immediately below the detection electrode 121 and the position immediately below the detection electrode 122 is not formed from the equation (8). Compared to the case, it can be increased. As a result, the impedance between the detection electrodes 121 and 122 can be increased, and the phenomenon of alternating current signal interference between the detection electrodes 121 and 122 can be prevented or reduced, and a relatively accurate potential measurement signal can be obtained.

実施例3において、絶縁体部を揺動板の厚さ方向全体にわたって形成することが困難である場合は、図5(a)のように、揺動板111の検知電極121及び122を配置する側の表面から、もしくは図5(b)のようにその反対側の表面から、揺動板111の厚さに満たない深さまで絶縁体部115を形成することによっても、検知電極121と検知電極122との間のインピーダンスを増大させることができる。絶縁体部115を形成することによりこの部分における低抵抗領域の幅が狭くなるので、(8)式より揺動板111内における検知電極121の直下から検知電極122の直下までの間の抵抗値が増大するからである。絶縁体部115をより深く形成すると、検知電極121と検知電極122との間のインピーダンスをより増大させることができる。ここでも、永久磁石202を絶縁体膜112を介して揺動板111の裏面に設けている。 In the third embodiment, when it is difficult to form the insulator portion over the entire thickness direction of the swing plate, the detection electrodes 121 and 122 of the swing plate 111 are arranged as shown in FIG. The detection electrode 121 and the detection electrode can also be formed by forming the insulator 115 from the surface on the side or from the surface on the opposite side to the depth less than the thickness of the swing plate 111 as shown in FIG. The impedance between the two can be increased. Since the width of the low resistance region in this portion is narrowed by forming the insulator portion 115, the resistance value between the position immediately below the detection electrode 121 and the position immediately below the detection electrode 122 in the swing plate 111 from the equation (8). This is because of the increase. When the insulator 115 is formed deeper, the impedance between the detection electrode 121 and the detection electrode 122 can be further increased. Also here, the permanent magnet 202 is provided on the back surface of the swing plate 111 via the insulator film 112.

実施例5では、実施例3の構造において、図6のように、揺動板111の検知電極121及び122を配置する側の表面とその反対側の表面の両方から、揺動板111の厚さに満たない深さまで絶縁体部115及び116を形成している。このことにより、この部分における低抵抗領域の幅が狭くなるので、(8)式より揺動板111内における検知電極121の直下から検知電極122の直下までの間の抵抗値を増大させることができる。これによっても検知電極121と検知電極122との間のインピーダンスを増大させることができる。絶縁体部115及び116の間の低抵抗領域がより狭くなるように形成すると、検知電極121と検知電極122との間のインピーダンスをより増大させることができる。ここでも、永久磁石202を絶縁体膜112を介して揺動板111の裏面に設けている。 In Example 5, in the structure of Example 3, as shown in FIG. 6, the thickness of the swing plate 111 is measured from both the surface on the side where the detection electrodes 121 and 122 of the swing plate 111 are arranged and the surface on the opposite side. The insulator portions 115 and 116 are formed to a depth less than this. As a result, the width of the low resistance region in this portion is narrowed, so that the resistance value between the position immediately below the detection electrode 121 and the position immediately below the detection electrode 122 in the swing plate 111 can be increased from the equation (8). it can. This can also increase the impedance between the detection electrode 121 and the detection electrode 122. If the low resistance region between the insulator portions 115 and 116 is formed to be narrower, the impedance between the detection electrode 121 and the detection electrode 122 can be further increased. Also here, the permanent magnet 202 is provided on the back surface of the swing plate 111 via the insulator film 112.

実施例6では、実施例3の構造において、図7のように、揺動板111の検知電極121及び122を配置する側の表面とその反対側の表面の両方から絶縁体部115、絶縁体部116及び絶縁体部117を互い違いに形成している。これにより、この部分における低抵抗領域を狭く、かつ長くすることができるので、(8)式より揺動板111内における検知電極121の直下から検知電極122の直下までの間の抵抗値をさらに増大させることができる。絶縁体部をより深く形成する、もしくは互い違いに形成する絶縁体部の数を増加させると、検知電極121と検知電極122との間のインピーダンスをより増大させられる。ここでも、永久磁石202を絶縁体膜112を介して揺動板111の裏面に設けている。 In the sixth embodiment, in the structure of the third embodiment, as shown in FIG. 7, the insulator 115 and the insulator are formed from both the surface on the side where the detection electrodes 121 and 122 of the swing plate 111 are arranged and the surface on the opposite side. The portions 116 and the insulator portions 117 are formed alternately. As a result, the low resistance region in this portion can be narrowed and lengthened, so that the resistance value between the position immediately below the detection electrode 121 and the position immediately below the detection electrode 122 in the swing plate 111 is further increased from the equation (8). Can be increased. When the number of insulator portions formed deeper or alternately is increased, the impedance between the detection electrode 121 and the detection electrode 122 can be further increased. Also here, the permanent magnet 202 is provided on the back surface of the swing plate 111 via the insulator film 112.

実施例7では、図8または図9に示すごとく、揺動板111の上面からみて絶縁体部115及び116が検知電極121及び122の各々を取り囲むように揺動板111の厚さ方向全体にわたって形成されている。このことにより、検知電極121の直下から検知電極122の直下までの電気的な経路を絶縁することができるので、検知電極121と検知電極122との間のインピーダンスを大幅に増大させることができる。ここでも、上記した理由で、永久磁石202を絶縁体膜112を介して揺動板111の裏面に設けている。 In the seventh embodiment, as shown in FIG. 8 or FIG. 9, the insulator 115 and 116 surround each of the detection electrodes 121 and 122 as viewed from the upper surface of the swing plate 111 over the entire thickness direction of the swing plate 111. Is formed. As a result, the electrical path from directly below the detection electrode 121 to directly below the detection electrode 122 can be insulated, so that the impedance between the detection electrode 121 and the detection electrode 122 can be greatly increased. Again, for the reasons described above, the permanent magnet 202 is provided on the back surface of the swinging plate 111 via the insulator film 112.

実施例7において、絶縁体部115及び116を揺動板111の厚さ方向全体にわたって形成することが困難である場合は、図10に示すごとく、実施例4から6と同様に絶縁体部115及び116、または絶縁体部115から118を揺動板111の厚さに満たない深さまで形成してもよい。このことにより、検知電極121の直下から検知電極122の直下までの電気的な経路を狭くかつ長くすることができるので、(8)式より検知電極121の直下から検知電極122の直下までの抵抗値を増大させることができる。ここでも、上記した理由で、永久磁石202を絶縁体膜112を介して揺動板111の裏面に設けている。これにより、検知電極121と検知電極122との間のインピーダンスを増大させることができる。実施例4と同様に揺動板111の検知電極121及び122が配置されている側から絶縁体部115及び116を形成した例の断面図を図10 (a)に、実施例5と同様に揺動板111の両面から絶縁体部115から118を形成した例の断面図を図10 (b)に示す。 In the seventh embodiment, when it is difficult to form the insulator portions 115 and 116 over the entire thickness direction of the swing plate 111, as shown in FIG. 10, the insulator portion 115 is the same as in the fourth to sixth embodiments. And 116, or the insulators 115 to 118 may be formed to a depth less than the thickness of the swing plate 111. As a result, the electrical path from directly below the detection electrode 121 to directly below the detection electrode 122 can be narrowed and lengthened. Therefore, the resistance from directly below the detection electrode 121 to directly below the detection electrode 122 from the equation (8). The value can be increased. Again, for the reasons described above, the permanent magnet 202 is provided on the back surface of the swinging plate 111 via the insulator film 112. Thereby, the impedance between the detection electrode 121 and the detection electrode 122 can be increased. As in the fourth embodiment, a sectional view of an example in which the insulator portions 115 and 116 are formed from the side where the detection electrodes 121 and 122 of the swing plate 111 are arranged is shown in FIG. FIG. 10B shows a cross-sectional view of an example in which the insulator portions 115 to 118 are formed from both surfaces of the swing plate 111.

実施例9では、図11(a)のように揺動板111、ねじりバネ101及び102、支持部材103にわたって絶縁体部115を形成している。このことにより、検知電極121の直下からねじりバネ101及び102、支持部材103を経由して検知電極122に到達する電気的な経路の抵抗値を増大することができる。こうして、検知電極121と検知電極122との間のインピーダンスを増大させることができる。揺動板111、ねじりバネ101及び102、支持部材103の各々において、絶縁体部の形態を実施例4から6のいずれかの形態から選んで形成することもできる。本実施例では、揺動板111、ねじりバネ101及び102、支持部材103の各部において、図11(b)から図11(d)に示すごとく絶縁体部115を厚さ方向全体にわたって形成することにより、検知電極121の直下から検知電極122に到達する電気的な経路の抵抗値を大幅に増大させている。ここでも、上記した理由で、永久磁石202を絶縁体膜112を介して揺動板111の裏面に設けている。 In the ninth embodiment, as shown in FIG. 11A, the insulator 115 is formed across the swing plate 111, the torsion springs 101 and 102, and the support member 103. As a result, the resistance value of the electrical path that reaches the detection electrode 122 from directly below the detection electrode 121 via the torsion springs 101 and 102 and the support member 103 can be increased. Thus, the impedance between the detection electrode 121 and the detection electrode 122 can be increased. In each of the swing plate 111, the torsion springs 101 and 102, and the support member 103, the form of the insulator portion can be selected from any of the forms of the fourth to sixth embodiments. In this embodiment, in each part of the swing plate 111, the torsion springs 101 and 102, and the support member 103, the insulator 115 is formed over the entire thickness direction as shown in FIGS. 11 (b) to 11 (d). As a result, the resistance value of the electrical path that reaches the detection electrode 122 from directly below the detection electrode 121 is significantly increased. Again, for the reasons described above, the permanent magnet 202 is provided on the back surface of the swinging plate 111 via the insulator film 112.

実施例10では、揺動板111と検知電極121及び122との間の寄生容量を減少させる手段と、揺動板111、ねじりバネ101及び102、支持部材103の内部における検知電極121の直下から検知電極122の直下までの電気的な経路の抵抗値を増大させる手段とを共に実施している。このことにより、それぞれの手段を単独で実施した場合と比較して、検知電極121及び122間のインピーダンスをより増大させることができる。本実施例では、絶縁体部の形態を組み合わせて図12のように揺動板111の内部に絶縁体部115から118を形成することにより、検知電極121及び122と揺動板111との間の寄生容量の減少と、揺動板111内における検知電極121の直下から検知電極122の直下までの抵抗値の増大とを同時に実現している。 In the tenth embodiment, the means for reducing the parasitic capacitance between the swing plate 111 and the detection electrodes 121 and 122, the swing plate 111, the torsion springs 101 and 102, and the support member 103 from directly below the detection electrode 121. Together with means for increasing the resistance value of the electrical path to the position immediately below the detection electrode 122. Thereby, compared with the case where each means is implemented independently, the impedance between the detection electrodes 121 and 122 can be increased more. In the present embodiment, the insulator portions 115 to 118 are formed inside the swing plate 111 as shown in FIG. 12 by combining the forms of the insulator portions, so that the gap between the detection electrodes 121 and 122 and the swing plate 111 is increased. The reduction of the parasitic capacitance and the increase of the resistance value immediately below the detection electrode 121 to immediately below the detection electrode 122 in the swing plate 111 are realized at the same time.

これまでの実施例は揺動体装置を用いた電位測定装置であったが、本発明は、複数の検知電極が絶縁体を介して半導体または導体の基板上に設けられ、測定対象と検知電極間の結合容量を変調する容量変調手段と、検知電極にて検出された信号に基づいて測定対象の電位を検出する検出手段を備える電位測定装置であれば、どの様なタイプのものにでも適用できる。実施例11は、複数の検知電極が絶縁体を介して設けられた半導体または導体を主材料とする基板が固定されていて、容量変調手段として、基板に対して平行に往復振動するシャッタを用いる電位測定装置に関わる。 Although the embodiments so far have been the potential measuring device using the oscillator device, the present invention provides a plurality of detection electrodes provided on a semiconductor or conductor substrate via an insulator, and between the measurement object and the detection electrodes. Any type of potential measuring device can be applied as long as the potential measuring device includes a capacitance modulating means for modulating the coupling capacitance of the sensor and a detecting means for detecting the potential of the measurement object based on the signal detected by the sensing electrode. . In Example 11, a substrate mainly composed of a semiconductor or a conductor in which a plurality of detection electrodes are provided via an insulator is fixed, and a shutter that reciprocally vibrates in parallel with the substrate is used as a capacity modulation unit. Involved in potential measurement equipment.

図13と図14を用いて、本実施例に係る電位測定装置を説明する。図13において、325は、ライン状ないし短冊状の開口部326を有するシャッタであり、シャッタ325は、絶縁膜312を介して基板311上に間隔を隔てて平行に配置された2つの検知電極321及び322に対応して、基板311上に間隔を置いて配されている。シャッタ325は、例えば、これと一体の移動電極と固定側の電極間に交流の電圧を印加することでこれら電極間に発生する静電力により、図13の矢印方向に往復運動させられる。この往復運動により、検知電極321及び322の測定対象物に対する露出程度が逆位相で変調される様子が、図14(a)と(b)に示されている。こうして、検知電極321及び322に逆位相で電荷が誘起される。検知電極321及び322からの信号の処理、測定対象物の電位の検出については、上記実施例と同じである。 The potential measuring apparatus according to the present embodiment will be described with reference to FIGS. In FIG. 13, reference numeral 325 denotes a shutter having a line-shaped or strip-shaped opening 326, and the shutter 325 has two detection electrodes 321 arranged in parallel on the substrate 311 with an interval therebetween via an insulating film 312. And 322 on the substrate 311 at intervals. The shutter 325 is reciprocated in the direction of the arrow in FIG. 13 by an electrostatic force generated between the electrodes by applying an AC voltage between the movable electrode integrated with the shutter 325 and the fixed electrode, for example. FIGS. 14A and 14B show how the reciprocal motion modulates the degree of exposure of the detection electrodes 321 and 322 with respect to the measurement object in the opposite phase. Thus, charges are induced in the detection electrodes 321 and 322 in the opposite phase. The processing of signals from the detection electrodes 321 and 322 and the detection of the potential of the measurement object are the same as in the above embodiment.

本実施例では、基板311のうち検知電極321及び322の間の部分に基板311の厚さ方向全体にわたって絶縁体部315を形成することにより、基板311の抵抗値を増大させている。検知電極321と検知電極322との間のインピーダンスを増大させることができる理由は、実施例9(図11)のところで述べたものとほぼ同じである。本実施例のタイプの電位測定装置の基板に絶縁体部を形成する態様についても、上記実施例1乃至10で説明した態様等を単独で或いは適宜組み合わせて採用できる。 In this embodiment, the resistance value of the substrate 311 is increased by forming the insulator portion 315 over the entire thickness direction of the substrate 311 in the portion between the detection electrodes 321 and 322 of the substrate 311. The reason why the impedance between the detection electrode 321 and the detection electrode 322 can be increased is almost the same as that described in the ninth embodiment (FIG. 11). Also with respect to the aspect of forming the insulator portion on the substrate of the potential measuring device of the type of this embodiment, the aspects described in the above Examples 1 to 10 can be used alone or in appropriate combination.

図15は実施例12の画像形成装置を説明する図である。図15は、本発明による電位測定装置を用いた電子写真現像装置の感光ドラム周辺の模式図である。感光ドラム2108の周辺に、帯電器2102、電位センサ2101、露光機2105、トナー供給機2106が設置されている。帯電器2102で、ドラム2108の表面を帯電し、露光機2105を用いて感光ドラム2108表面を露光することで潜像が得られる。この潜像にトナー供給機2106によりトナーを付着させ、トナー像を得る。そして、このトナー像を転写物送りローラー2107と感光ドラム2108で挟まれた転写物2109に転写し、転写物上のトナーを固着させる。これらの工程を経て画像形成が達成される。 FIG. 15 illustrates an image forming apparatus according to the twelfth embodiment. FIG. 15 is a schematic view around the photosensitive drum of the electrophotographic developing apparatus using the potential measuring apparatus according to the present invention. A charger 2102, a potential sensor 2101, an exposure device 2105, and a toner supply device 2106 are installed around the photosensitive drum 2108. A latent image is obtained by charging the surface of the drum 2108 with the charger 2102 and exposing the surface of the photosensitive drum 2108 with the exposure device 2105. Toner is attached to the latent image by a toner supplier 2106 to obtain a toner image. The toner image is transferred to a transfer material 2109 sandwiched between the transfer material feed roller 2107 and the photosensitive drum 2108, and the toner on the transfer material is fixed. Image formation is achieved through these steps.

この構成において、ドラム2108の帯電状態を、上記実施例で説明したような本発明の高性能の電位測定装置2101で測定し、信号処理装置2103で信号を処理し、高電圧発生器2104にフィードバックをかけて帯電器2102を制御することで、安定したドラム帯電が実現され、安定した画像形成が実現される。 In this configuration, the charged state of the drum 2108 is measured by the high-performance potential measuring device 2101 of the present invention as described in the above embodiment, the signal is processed by the signal processing device 2103, and fed back to the high voltage generator 2104. By controlling the charger 2102 over time, stable drum charging is realized, and stable image formation is realized.

揺動体装置を用いた電位測定装置の俯瞰図(a)、破線部A−A’における断面図(b)、電位測定方法を示す断面図(c)である。It is the bird's-eye view (a) of the potential measuring device using the oscillator device, the sectional view (b) at the broken line portion A-A ′, and the sectional view (c) showing the potential measuring method. 本発明の実施例1についての図1(a)の破線部A−A’と同じ個所における断面図である。It is sectional drawing in the same location as the broken-line part A-A 'of Fig.1 (a) about Example 1 of this invention. 本発明の実施例2についての図1(a)の破線部A−A’と同じ個所における断面図である。It is sectional drawing in the same location as the broken-line part A-A 'of Fig.1 (a) about Example 2 of this invention. 本発明の実施例3についての上面図(a)と破線部B−B’における断面図(b)である。It is the top view (a) about Example 3 of this invention, and sectional drawing (b) in broken-line part B-B '. 本発明の実施例4についての図4(a)の破線部B−B’と同じ個所における断面図であって、検知電極が配置されている面から絶縁体部を形成した例(a)とその反対側の面から絶縁体部を形成した例(b)を示す図である。It is sectional drawing in the same location as the broken-line part BB 'of Fig.4 (a) about Example 4 of this invention, Comprising: The example (a) which formed the insulator part from the surface where the detection electrode is arrange | positioned, It is a figure which shows the example (b) which formed the insulator part from the surface on the opposite side. 本発明の実施例5について図4(a)の破線部B−B’と同じ個所における断面図である。It is sectional drawing in the same location as the broken line part B-B 'of Fig.4 (a) about Example 5 of this invention. 本発明の実施例6について図4(a)の破線部B−B’と同じ個所における断面図である。It is sectional drawing in the same location as the broken-line part B-B 'of Fig.4 (a) about Example 6 of this invention. 本発明の実施例7について検知電極の周囲を絶縁体部で囲んだ例の上面図(a)と破線部C−C’における断面図(b)である。FIG. 10A is a top view of an example in which the periphery of a detection electrode is surrounded by an insulator portion in Example 7 of the present invention, and FIG. 本発明の実施例7について検知電極の周囲を絶縁体部と揺動板の端部で囲んだ例の上面図(a)と破線部D−D’における断面図(b)である。FIG. 10 is a top view (a) of an example in which the periphery of the detection electrode is surrounded by the end of the insulator and the swing plate and a sectional view (b) taken along a broken line D-D ′ in Example 7 of the present invention. 本発明の実施例8について図8(a)の破線部C−C’と同じ個所における断面図であって、検知電極が配置されている面から絶縁体部を形成した例(a)とその面と反対側の面の両方から絶縁体部を形成した例(b)を示す図である。It is sectional drawing in the same location as the broken-line part CC 'of Fig.8 (a) about Example 8 of this invention, Comprising: Example (a) which formed the insulator part from the surface where the detection electrode is arrange | positioned, and its It is a figure which shows the example (b) which formed the insulator part from both the surface on the opposite side. 本発明の実施例9について上面図(a)、破線部I−I’ における断面図(b)、破線部II−II’ における断面図(c)、破線部III−III’ における断面図(d)である。Example 9 of the present invention is a top view (a), a sectional view (b) at a broken line portion II ′, a sectional view (c) at a broken line portion II-II ′, and a sectional view at a broken line portion III-III ′ (d) ). 本発明の実施例10について上面図(a)と破線部E−E’における断面図(b)である。It is sectional drawing (b) in the top view (a) and broken-line part E-E 'about Example 10 of this invention. シャッタを用いた電位測定装置の本発明の実施例11を説明する斜視図である。It is a perspective view explaining Example 11 of this invention of the electric potential measuring apparatus using a shutter. 本発明の実施例11の動作を説明する断面図である。It is sectional drawing explaining operation | movement of Example 11 of this invention. 本発明の実施例12の画像形成装置を説明する図である。It is a figure explaining the image forming apparatus of Example 12 of this invention.

符号の説明Explanation of symbols

111、311・・・・・・基板(揺動板)
112、312・・・・・・絶縁体(絶縁体薄膜)
115、116、117、118、315・・・・・・絶縁体部
121、122、321、322・・・・・・検知電極
120・・・・・・検出手段
200、201、202、325、326・・・・・・容量変調手段
300、2108・・・・・・測定対象物(感光ドラム)
111, 311... Substrate (swing plate)
112, 312, ... Insulator (insulator thin film)
115, 116, 117, 118, 315... Insulator part 121, 122, 321, 322... Sensing electrode 120. 326... Capacity modulation means 300, 2108... Measurement object (photosensitive drum)

Claims (7)

半導体または導体を主材料とした基板上に絶縁体を介して配置される複数の検知電極と、測定対象と検知電極間の結合容量を変調する容量変調手段と、前記検知電極にて検出された信号に基づいて測定対象の電位を検出する検出手段を有し、前記基板の少なくとも一部分に、検知電極間の電気抵抗率が増大するように固体からなる絶縁体部が形成され、前記絶縁体部が形成される前記基板の部分には、複数の検知電極の間にあたる前記基板内部の部分であって前記検知電極の下部にあたる部分には伸びていない部分を含むことを特徴とする電位測定装置。 A plurality of sensing electrodes arranged via an insulator on a substrate mainly made of a semiconductor or a conductor, capacitance modulation means for modulating the coupling capacitance between the measurement object and the sensing electrodes, and detected by the sensing electrodes A detecting unit configured to detect a potential of a measurement target based on a signal, and an insulating unit made of a solid is formed on at least a part of the substrate so as to increase an electrical resistivity between the detection electrodes, and the insulating unit The portion of the substrate on which is formed includes a portion inside the substrate between a plurality of detection electrodes and not extending to a portion below the detection electrodes. 前記基板のうち、前記検知電極の下部にあたる部分と、複数の検知電極の間にあたる前記基板内部の部分であって前記検知電極の下部にあたる部分には伸びていない部分との両方に前記絶縁体部が形成されている請求項1に記載の電位測定装置。 Of the substrate, both the portion corresponding to the lower portion of the detection electrode and the portion inside the substrate corresponding to a plurality of detection electrodes and not extending to the portion corresponding to the lower portion of the detection electrode The potential measuring device according to claim 1, wherein: 前記絶縁体部が前記基板の厚さ方向全体にわたって形成されている請求項に記載の電位測定装置。 The potential measuring apparatus according to claim 1 , wherein the insulator portion is formed over the entire thickness direction of the substrate. 前記絶縁体部が前記基板の厚さに満たない深さにわたって形成されている請求項1または2に記載の電位測定装置。 The potential measuring device according to claim 1, wherein the insulator portion is formed over a depth less than a thickness of the substrate. 半導体または導体を主材料とした揺動板上に絶縁体を介して配置される複数の検知電極と、測定対象と検知電極間の結合容量を変調する容量変調手段と、前記検知電極にて検出された信号に基づいて測定対象の電位を検出する検出手段を有し、前記揺動板の少なくとも一部分に、検知電極間の電気抵抗率が増大するように固体からなる絶縁体部が形成されていることを特徴とする電位測定装置。 A plurality of sensing electrodes arranged on an oscillating plate made of a semiconductor or a conductor as a main material via an insulator, capacitance modulation means for modulating the coupling capacitance between the measurement object and the sensing electrode, and detection by the sensing electrode And a detecting means for detecting the potential of the measurement object based on the received signal, and an insulator portion made of a solid is formed on at least a part of the swing plate so as to increase the electrical resistivity between the detection electrodes. An electric potential measuring device. 前記絶縁体部が形成される前記揺動板の部分には、複数の検知電極の間にあたる前記揺動板内部の部分であって前記検知電極の下部にあたる部分には伸びていない部分を含む請求項5に記載の電位測定装置。 The portion of the swing plate where the insulator portion is formed includes a portion inside the swing plate that is between a plurality of detection electrodes and a portion that does not extend to a portion that is below the detection electrode. Item 6. The potential measuring device according to Item 5. 請求項1乃至6のいずれかに記載の電位測定装置と画像形成手段を備え、電位測定装置の検知電極が形成された面が画像形成手段の電位測定の対象となる面と対向して配置され、画像形成手段が電位測定装置の信号検出結果を用いて画像形成の制御を行うことを特徴とする画像形成装置。 7. The electric potential measuring device according to claim 1 and an image forming unit, wherein the surface on which the detection electrode of the electric potential measuring device is formed is arranged to face the surface of the image forming unit that is a potential measurement target. An image forming apparatus, wherein the image forming means controls image formation using a signal detection result of the potential measuring device.
JP2004297017A 2004-07-12 2004-10-08 Potential measuring apparatus and image forming apparatus Expired - Fee Related JP4440065B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004297017A JP4440065B2 (en) 2004-10-08 2004-10-08 Potential measuring apparatus and image forming apparatus
US11/178,649 US7049804B2 (en) 2004-07-12 2005-07-11 Electric potential measuring apparatus, and image forming apparatus
US11/385,392 US7741850B2 (en) 2004-07-12 2006-03-21 Electric potential measuring apparatus, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297017A JP4440065B2 (en) 2004-10-08 2004-10-08 Potential measuring apparatus and image forming apparatus

Publications (3)

Publication Number Publication Date
JP2006105939A JP2006105939A (en) 2006-04-20
JP2006105939A5 JP2006105939A5 (en) 2007-03-08
JP4440065B2 true JP4440065B2 (en) 2010-03-24

Family

ID=36375841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297017A Expired - Fee Related JP4440065B2 (en) 2004-07-12 2004-10-08 Potential measuring apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4440065B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6249780B2 (en) * 2014-01-07 2017-12-20 キヤノン株式会社 Image forming apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211669A (en) * 1982-06-03 1983-12-09 Canon Inc Calibration of surface potential meter
JP3536563B2 (en) * 1996-12-20 2004-06-14 アイシン精機株式会社 Semiconductor micromachine
US6177800B1 (en) * 1998-11-10 2001-01-23 Xerox Corporation Method and apparatus for using shuttered windows in a micro-electro-mechanical system
JP2003004683A (en) * 2001-06-15 2003-01-08 Denso Corp Capacitance-type humidity sensor
JP4501320B2 (en) * 2001-07-16 2010-07-14 株式会社デンソー Capacitive humidity sensor
AU2002335243A1 (en) * 2002-10-10 2004-05-04 Fujitsu Media Devices Limited Micro moving element comprising torsion bar
JP2004239808A (en) * 2003-02-07 2004-08-26 Sony Corp Surface potential sensor

Also Published As

Publication number Publication date
JP2006105939A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US7576546B2 (en) Electric potential measuring device and image forming apparatus
US7460803B2 (en) Electric potential measuring device using oscillating device, image forming apparatus, and electric potential measuring method
US7741850B2 (en) Electric potential measuring apparatus, and image forming apparatus
US20040189312A1 (en) Electric potential sensor, and image forming apparatus
EP1756598B1 (en) Electric potential measuring instrument and image forming apparatus
US7372278B2 (en) Electric potential measuring apparatus electrostatic capacitance measuring apparatus, electric potential measuring method, electrostatic capacitance measuring method, and image forming apparatus
JP4886495B2 (en) Potential measuring apparatus and image forming apparatus
JP4440065B2 (en) Potential measuring apparatus and image forming apparatus
JP4273049B2 (en) Potential measuring apparatus and image forming apparatus
JP2006003130A (en) Electric potential measuring apparatus and image forming apparatus
JP2006105941A (en) Oscillating body apparatus, potential measuring apparatus using same, and image forming apparatus
JP2007298450A (en) Electric potential measuring apparatus and image forming apparatus
JP2006214764A (en) Potential measurement apparatus and image forming apparatus
JP2006105940A (en) Potential measuring apparatus, and image forming apparatus using same
JP2007078448A (en) Electric potential measuring apparatus and image formation apparatus
JP2006337168A (en) Potential measuring device
JP2007298451A (en) Potential measuring instrument, and image forming device equipped with potential measuring instrument

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees