JP4427110B2 - Press forming method of thin steel sheet for processing - Google Patents

Press forming method of thin steel sheet for processing Download PDF

Info

Publication number
JP4427110B2
JP4427110B2 JP24975498A JP24975498A JP4427110B2 JP 4427110 B2 JP4427110 B2 JP 4427110B2 JP 24975498 A JP24975498 A JP 24975498A JP 24975498 A JP24975498 A JP 24975498A JP 4427110 B2 JP4427110 B2 JP 4427110B2
Authority
JP
Japan
Prior art keywords
steel sheet
heat treatment
strength
iron
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24975498A
Other languages
Japanese (ja)
Other versions
JP2000080439A (en
Inventor
裕一 谷口
武志 西脇
力 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24975498A priority Critical patent/JP4427110B2/en
Publication of JP2000080439A publication Critical patent/JP2000080439A/en
Application granted granted Critical
Publication of JP4427110B2 publication Critical patent/JP4427110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のボディー等の構造用部品などのように、構造上の強度が必要とされる箇所に適用される薄鋼板であって、部分的な短時間熱処理により成形性が向上する加工用薄鋼板のプレス成形方法に関するものである。
【0002】
【従来の技術】
構造用部品の軽量化、高強度化を図るために、通常、高強度鋼板の成形が試みられる。しかし、高強度鋼板は、降伏応力が高く延性に乏しいためプレス成形性に難があり、成形性を改善する検討が行われている。例えば、プレス前に軟質で、その後の電着塗装時の焼付過程で硬化する焼付硬化鋼板や、成形完了後に、高エネルギー密度のビームの照射を行い、硬化させる方法がある。
【0003】
焼付硬化鋼板は焼付後の降伏応力を高めるが、変形強度自体は高々5%程度しか上昇せず、強度の絶対量が不足する。
また成形完了後に、高エネルギー密度のビームの照射を行い、硬化させる方法としては、例えば、特開昭61−99629号公報のように成形後にレーザー照射する方法が開示されている。しかしながら、この場合3次元的に照射するため、処理設備が経済的に高価なものとなる上、鋼の変態による熱歪みによる精度の狂いが非常に大きなものとなる。
【0004】
そこで、鋼板の状態で強度が必要な部分だけ強化し、成形性が必要なところは軟質にする方法が考えだされた。例えば、特開昭60−238424号公報は、鋼板に部分的にレーザー照射して焼入組織にし、硬質部と軟質部を両方存在させ、成形は軟質部で行い、硬質部で強度を持たせる方法が開示されている。しかしながら、硬質化の鋼の変態を利用するため、変態歪みによる鋼板の変形は避けられない。また、変態硬質部と軟質部の硬度差が著しく、変形能に差がありすぎるため、その境界から、破断することが多く、必ずしも成形性の向上を図ることはできなかった。また、特開平9−87737号公報にはアークまたはレーザーを部分的に高張力鋼板に照射して溶融し、鋼板の軟質化を図る方法が開示されている。しかしながら、この方法も鋼を変態させるため、変態歪みの影響を避けることはできない。鋼の変態を利用しない方法としては、例えば、特開平9−143554号公報が開示されている。鋼板に塑性歪みを加えておき、部分的に800℃以上の熱処理をすることにより、回復または再結晶をおこさせ、軟質化する方法である。しかしながら、この方法も800℃以上に加熱するため、鋼板の熱歪みの問題があり、また、塑性歪みを利用するため、硬質部の延性が著しく劣化する欠点があり、必ずしも高強度のプレス成形体を得るための問題解決とはなっていない。
【0005】
また、テーラードブランク(例えばApplication of Laser-Beam-Welded Sheet Metal, SAE Technical Paper Series, 890853,1989)のように、一枚板に軟質部と硬質部を造り分けるのではなく、レーザー溶接等の手段で、接合し一枚板に仕上げる方法がある。しかしながら、この方法においても接合部が溶接により硬化するのは避けられず、成形上の障害となる。また溶接により接合するため、材料を細かく接合する事は難しい。
【0006】
このように、高強度の構造用部品を製造するにあたっては、未だ最適な方法が得られていない。そこで、高強度鋼板を、軟鋼板のように容易にプレス成形等の加工成形ができる鋼板のプレス成形方法が強く求められていた。
【0007】
【発明が解決しようとする課題】
本発明者らは、上記のような問題点を解決するべく、薄鋼板からなる各種成形材料、成形性を向上させる熱処理、最適成形法など鋭意研究を行った。
【0008】
【課題を解決するための手段】
本発明者らは、短時間熱処理に限定すれば、例えば0.1〜7.0mmの薄鋼板で熱伝導を極力押さえ、局所的な熱処理が可能な事を見い出し、また特定の組織、成分をもつ鋼を用いれば、その短時間熱処理の範囲で鋼の材質を著しく変えられる事を見出した。さらに局所的な熱処理を成形時の変形が必要な部分に施すと驚くほど成形性が向上する事を新たに発見した。本発明は、この成形性向上を目的とする短時間熱処理に最適な材料を追求し、成し遂げたものである。その要旨は、
(1)質量比で
C:0.0005%〜0.25%
Si:0.01%〜3.0%
Mn:0.01%〜3.0%
P:0.002%〜0.20%
S:0.001%〜0.03%
N:0.0002%〜0.02%
およびMo,Al,Ni,Cu,Nb,Ti,V,Cr,Bの1種または2種以上を質量%で、K/Y≧0.77、
K={TS(MPa) −(280+390*C+98*Si+65*Mn+882*P+207*Al+980*Ti+2000*Nb+980*V+200*Mo+38*Ni+55*Cu+22*Cr)}、
Y={30*√Si+40*√Mn+80*√Mo+4*√Ni+35*√Nb+40*√Ti+55*√V+40*√Cr+70*√P+500*√B}、
の範囲で含有し、
残部Fe及び不可避的不純物からなり、さらに、ミクロ組織のうち、 鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm 以上含まれる結晶粒、 ベイナイト、 マルテンサイト、の1種または2種以上の合計の割合が、占積率で7%以上である鋼板を、成形前にAc1変態点以下の温度で30sec以内の熱処理を施し、前記鋼板の引張強度において、強度が5%以上低下した軟質部を形成し、その後に成形することを特徴とする成形性向上熱処理能に優れた加工用薄鋼板のプレス成形方法。
(2)前記熱処理を局部的に行い、前記軟質部が、鋼板面内で二次元的に1mm 以上の単位でパターン化されていることを特徴とする(1)に記載の加工用薄鋼板のプレス成形方法
である。
【0009】
ここで成形性向上熱処理能とは、鋼板のAcl変態点以下の熱処理温度で30sec 以内の短時間熱処理により鋼板の引張り強さが変化する能力のことをいう。この熱処理に限定すれば、0.1〜7.0mmの薄鋼板で熱歪みを極力少なく抑える事ができ、また変態歪みも生じ難い。さらに熱伝導も抑えられるので、約1mmの分解能で熱処理を施す事ができる。また、この熱処理により引張り強さが変化する変化量としては、5%以上引張り強さが変化することが、望ましい。この鋼板を用いて局部的に熱処理を行うと鋼板全体の強度はほとんど変化することなく、成形性が著しく向上する。たとえば、変形が必要である部分に局部的に熱処理を行うと、変形が必要である部分の強度が下がり変形が容易に生じ、成形性が向上する。
【0010】
【発明の実施の形態】
本研究者らは、高強度鋼板の成形性を向上させるAcl変態点以下の温度で30sec 以内の局部熱処理で強度が大きく変わる鋼板組織、鋼板成分について鋭意研究を行ったところ、鋼の鉄炭化物、鉄窒化物、および鉄炭窒化物の大きさを制御してやれば、Acl変態点以下の温度で30sec 以内の熱処理で即座に鉄炭化物、鉄窒化物、および鉄炭窒化物を溶解または粗大化し、鋼板の強度を下げられ、これを成形前に実施することにより該鋼板のプレス成形性が向上する事を見出した。
【0011】
またマルテンサイトも同様な効果がある事を見出した。さらに鋼板の強度の変化量は、鉄炭化物、鉄窒化物、および鉄炭窒化物を微細に含む組織、ベイナイト組織、マルテンサイト組織の割合に影響され、占積率で7%以上の分率がある時、その効果が大きい事を見出した。
さらに、鋼板の強度の低下量が鋼板の化学成分にも大きく依存し、
K/Y≧0.77、
K={TS(MPa) −(280+390*C+98*Si+65*Mn+882*P+207*Al+980*Ti+2000*Nb+980*V+200*Mo+38*Ni+55*Cu+22*Cr)}、
Y={30*√Si+40*√Mn+80*√Mo+4*√Ni+35*√Nb+40*√Ti+55*√V+40*√Cr+70*√P+500*√B}、
の範囲に限定する事によって鋼板の強度の低下量を大きくできる事を見出した。
【0012】
また、該鋼板の製造法についても鋭意研究を行い、最適な製造法を見出した。
以下に本発明を詳細に説明する。
まず、以下に鋼の組織を限定する理由について述べる。
成形性向上熱処理としてAcl変態点以下の温度で30sec 以内の局部熱処理を行い、高強度鋼板を部分的に軟化させる。そのため、低温短時間で強度が変わる必要があるので、鋼の中で移動速度の早いC,Nの拡散現象を利用するのが最も適しており、鉄炭化物または鉄窒化物または鉄炭窒化物および、ベイナイト、マルテンサイトを利用するのが最も有効である。
【0013】
鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒があると鋼は析出強度により高強度化する事ができる。一方この鉄炭化物または鉄窒化物または鉄炭窒化物は、短時間熱処理により溶解、粗大化して容易に低強度化する事ができる。
ベイナイトまたはマルテンサイトは鋼を変態強化により高強度化する事ができる。一方ベイナイトまたはマルテンサイトは短時間熱処理により容易に焼き戻されて、粗大な炭化物が析出し、低強度化する事ができる。鋼板を局部的に低強度化するためには、短時間熱処理で強度の変化する組織を占積率で一定割合以上含有する事が必要である。すなわち、鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織が鋼全体の割合の中で一定割合以上ある事が必要である。鉄炭化物または鉄窒化物または鉄炭窒化物が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織は、鋼の他の組織(例えば、微細な鉄窒化物を含まないフェライトやパーライト等)に比べ、強度が高いので鋼板の強度に対する寄与度が大きく、合計の体積割合が、おおむね7%以上あれば、短時間熱処理したときに鋼板の強度を5%以上変化させる事ができる。鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織の強度および短時間熱処理により強度の変化する軟化量は、これらの組織中に含まれる炭素量、窒素量により異なり、炭素量、窒素量が多い場合には、これら組織の体積割合が7%以下のときでも、鋼板の強度は5%以上変化させる事ができる。しかしながら、通常薄鋼板として使用される炭素量(wt%C≦0.25)、窒素量(wt%N≦0.02)範囲では、鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織が占積率で合計7%以上のとき、鋼板の強度は5%以上変化させる事ができるので、7%を下限とする。
【0014】
また、鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織の体積割合が増えれば増えるほど、鋼板の強度を変化させることが容易になるので、上限は規定しないが、加工法は劣化していくので、加工部品に応じて体積割合を調整しておく事が望ましい。
【0015】
ここで言う鉄炭化物とはセメンタイト、ε炭化物、χ炭化物、鉄−炭素コンプレックスなどの鉄炭素化合物、鉄窒化物とはFe4 N,Fe162 、鉄−窒素コンプレックスなどの鉄窒素化合物、鉄炭窒化物とは鉄炭化合物や鉄窒化物が混合した形態や、鉄炭化合物の一部のCがNに置き換わったもの、鉄窒化物の一部のNがCに置き換わったもの等を指す。
【0016】
図1に鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織の合計の占積率と鋼板強度の低下比の関係を示す。鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒の割合は、顕微鏡視野内の結晶粒ごとの鉄炭化物または鉄窒化物または鉄炭窒化物の個数を数え、10個/μm2 以上含まれる結晶粒個数および平均結晶粒径を測定する事により占積率を算出した。また、ベイナイト、マルテンサイトの占積率も顕微鏡視野内の個数および平均サイズを測定する事により算出した。強度測定は、JIS5号引張試験片を作成し、400℃で30秒の熱処理を行った後、室温まで冷却し、その後室温で引張試験を行った。この時の引張試験強度の低下量(ΔTS)を熱処理前のTSで割った値を強度低下比として示した。鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織の合計の占積率が7%以上のとき、鋼板強度の低下比が著しいことが分かる。
【0017】
次に鋼の成分を限定する理由について述べる。
Cは、本発明である鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織を得るために、必須の元素である。含有量が多くなると、上記組織を得やすくなるが、溶接性は劣化する。従って0.25%以下とする。また、0.0005%未満では、鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイト組織を得るための合金コストが増大し、製造コストが飛躍的に上がり経済的でなくなるので、0.0005%を下限とする。
【0018】
Siは、0.010%未満では、熱処理の際、強度を上昇させる効果が少ないので、0.010%を下限とする。好ましくは、0.200%以上である。3.00%を超えると加工性は劣化するので、3.00%を上限とする。
Mnは、強度確保のために使用されるが、0.01%未満では、製造コストが飛躍的に上がり経済的でなくなるので、0.01%を下限とし、3.00%を超えると加工性は劣化するので、3.00%を上限とする。
【0019】
Pは、0.002%未満では、熱処理の際、強度を上昇させる効果が少ないので、0.002%を下限とする。好ましくは、0.02%以上である。0.20%を超えると靱性が著しく悪化して脆化するので、0.20%を上限とする。
Sは、0.001%未満では製造コストが飛躍的に上がり経済的でなくなるので、0.001%を下限とし、0.03%を超えると熱間圧延時に赤熱脆性を起こし、表面で割れる、いわゆる、熱間脆性を起こすため、0.03%を上限とする。
【0020】
Nは、0.0002%未満では製造コストが飛躍的に上がり経済的でなくなるので、0.0002%を下限とし、0.02%を超えると加工性が劣化してくるので、0.02%を上限とする。
また、本発明ではC,Si,Mn,Mo,Ni,Al,Cu,Nb,Ti,V,Cr,P,Bを次式の範囲で含有させると効果が著しい。
K/Y≧0.77、
K={TS(MPa) −(280+390*C+98*Si+65*Mn+882*P+207*Al+980*Ti+2000*Nb+980*V+200*Mo+38*Ni+55*Cu+22*Cr)}、
Y={30*√Si+40*√Mn+80*√Mo+4*√Ni+35*√Nb+40*√Ti+55*√V+40*√Cr+70*√P+500*√B}、
TS(MPa)は鋼の引張強度(MPa)である。
【0021】
本発明鋼板の使用にあたっては、成形性向上熱処理として、Acl以下の温度で、かつ30秒以内の熱処理をされる。
上式のK値はAcl以下の温度で熱処理を行う事から、おもに規定されるものであり、上式のY値は30秒以内の時間内で熱処理を行う事から、おもに規定されるものである。
【0022】
まず、上式のK値について説明する。C,Si,Mn,P,Al,Ti,Nb,V,Mo,Ni,Cu,Crは鋼を強化する元素である。これらの元素は、固溶強化、析出強化、変態強化など、様々な硬化メカニズムにより直接的または間接的に作用し、鋼を強化する。本発明ではAcl変態点以下の温度で熱処理により鋼の強度を軟化させ低強度にする。軟化量は熱処理時間が増加するにつれて増加するが、どんなに長時間熱処理しても鋼が軟化しない強度分があることが判明した。この軟化しない強度分は鋼の成分に大きく依存し、 MPa単位で、(280+390*C+98*Si+65*Mn+882*P+207*Al+980*Ti+2000*Nb+980*V+200*Mo+38*Ni+55*Cu+22*Cr)で表せる事が分かった。この軟化しない強度分は、成分によって異なり、単位質量あたり、Nbが最も効果が大きく、ついでTi,Pの順となる。この効果の寄与度が、請求項2に示した式の第一項の元素の前に付与された係数である。すなわち、この係数が、Cの場合390、Siの場合98、Mnの場合65、Pの場合882、Alの場合207、Tiの場合980、Nbの場合2000、Vの場合980、Moの場合200、Niの場合38、Cuの場合55、Crの場合22である事が判明した。
【0023】
従って、Acl変態点以下の温度の熱処理で強度が変化しうる鋼の強度分としては
{TS(MPa)−(280+390*C+98*Si+65*Mn+882*P+207*Al+980*Ti+2000*Nb+980*V+200*Mo+38*Ni+55*Cu+22*Cr)}
で表され、この値をKとして定義している。
【0024】
次に上式のY値について説明する。Si,Mn,Mo,Ni,Nb,Ti,V,Cr,P,Bは鋼の軟化速度に影響を及ぼす元素であり、鉄炭化物、鉄窒化物、鉄炭窒化物の溶解、粗大化やベイナイト組織、マルテンサイト組織の軟化を遅らせる元素である。そのため、これらの元素が一定量以上含まれると短時間熱処理により鋼を軟化させる事ができない。この効果は、鋼の成分、含有量に大きく依存し、
{30*√Si+40*√Mn+80*√Mo+4*√Ni+35*√Nb+40*√Ti+55*√V+40*√Cr+70*√P+500*√B}
に比例する事が分かった。この値をYとして定義している。
【0025】
この効果代は、成分によって異なり、単位質量あたり、Bが最も効果が大きく、ついでMo,Pの順となる。この効果の寄与度が、請求項2に示した式の第二項の元素の前に付与された係数である。すなわち、この係数が、Siの場合30、Mnの場合40、Moの場合80、Niの場合4、Nbの場合35、Tiの場合40、Vの場合55、Crの場合40、Pの場合70、Bの場合500である事が判明した。
【0026】
また、この効果は、含有元素の濃度の平方根に比例する事が明らかとなった。このメカニズムは明かではないが、これらの元素とC,N、転位、空孔との相互作用により、鉄炭化物、鉄窒化物、鉄炭窒化物の溶解、粗大化を遅らせたり、ベイナイトやマルテンサイトからの炭化物の析出や転位の回復を抑制し、ベイナイトやマルテンサイトの軟化を遅らせる為と本発明者らは考えている。
【0027】
また、さらに本発明の重要な点は、鋼の組織を限定し、鋼の強度のうち軟化しない強度分と鋼の軟化を遅らせる元素量を上手くバランスさせることにより、成形性向上熱処理にすぐれた鋼板を実現したことである。すなわち、K値とY値の比が0.77以上となるとき、短時間熱処理で鋼の強度を5%変化させる事に成功した。
【0028】
この事を式で表現した場合、
K/Y≧0.77、
K={TS(MPa) −(280+390*C+98*Si+65*Mn+882*P+207*Al+980*Ti+2000*Nb+980*V+200*Mo+38*Ni+55*Cu+22*Cr)}、
Y={30*√Si+40*√Mn+80*√Mo+4*√Ni+35*√Nb+40*√Ti+55*√V+40*√Cr+70*√P+500*√B}、
の範囲であるとき、成形性向上熱処理に優れた鋼板とする事ができる。図2に上記説明の概念図を示す。
【0029】
また、種々の濃度の鋼を用い、短時間熱処理を行ったときの鋼板の強度の低下比を図3に示す。
強度測定は、JIS5号引張試験片を作成し、400℃で30秒の熱処理を行った後、室温まで冷却し、その後室温で引張試験を行った。この時の引張試験強度の低下量(ΔTS)を熱処理前のTSで割った値を強度低下比として示した。
【0030】
図3より、K/Yが0.77を下回ると、効果が殆ど認められず、0.77%以上で5%以上の鋼板の強度低下が得られることが分かる。
本発明の成形性向上熱処理能に優れた加工用鋼板とは、上記組織、組成を満たすものならば、熱延鋼板、冷延鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板のいづれでもかまわず、発明の効果を享受できる。
【0031】
亜鉛めっき鋼板の場合、亜鉛めっき層の劣化を防ぐため、550℃以下の温度で成形性向上熱処理を施すことが好ましいが、本発明鋼板を用いれば、十分可能である。
また、板厚も限定されるものではないが、0.4〜6mmで特に有効である。
本発明鋼板をプレス成形するにあたっては、鋼板を部品形状に合わせてブランキングを行い、成形前にプレスで加工の厳しいところに局部的に成形性向上熱処理を施す。熱処理は部分的であるが、鋼板全体の成形性は著しく向上し、複雑な形状の高強度プレス成形体を得る事ができる。
【0032】
また本発明では成形前でなく、事前に部品に合わせたパターンで成形性向上熱処理を施して鋼板を部分的に軟化させ、鋼板面内に二次元的に1mm2 以上の単位でパターン化された軟質部と硬質部を作ることができる。これが本発明の第三発明である部分軟化した鋼板のプレス成形方法である。このとき、成形性向上のために、軟質部は硬質部に比べ鋼の引張強度で5%以上低強度にすることが好ましい。あらかじめ部品形状にあわせて必要部位を軟質化しておくと、部品形状に鋼板を切り出した後、個別に成形性向上熱処理をする必要がないので、部品の部分熱処理製造工程を減らす事ができ、特殊なプレス製造設備が要らず、通常設備で複雑な形状の高強度プレス成形体を得る事ができる。
【0033】
図4にパターン例を示す。本発明の部分軟化加工用薄鋼板はこのパターン例に限定されることなく部品形状に合わせたパターン化をする事ができる。
【0034】
【実施例】
以下に、本発明を実施例に基づいて具体的に説明する。
表1に示す成分の鋼を溶製し、常法に従い連続鋳造でスラブとした。そして、加熱炉中で1200℃まで加熱し、880℃の仕上げ温度で、熱間圧延を行い、500℃の温度で巻取り、ついで、酸洗を施し熱延鋼板とした。
【0035】
更に、60%の圧下率で冷間圧延を行った後、830℃×60秒の再結晶焼鈍を行い、700℃まで徐冷し、その後100℃/sec の冷却速度、250℃の温度まで冷却し、1.2mmの冷延鋼板となした。このとき得られた鋼の組織を表1に併記する。また、一部は電気亜鉛めっきを施し、鋼板の表層に亜鉛層を付与した。
【0036】
得られた冷延鋼板をJIS5号引張試験片に加工し、機械的特性値(熱処理なし)の評価を行った。また、別途、JIS5号引張試験片を作成し、450℃×10sec の熱処理を行い、機械的特性値(熱処理あり)の評価を行った。
また、別途、該鋼板を90φ〜120φの円盤に打ち抜き、25℃に保たれた50φの円筒ポンチ、内径54φのダイスを用い深絞り成形を行った。しわ押さえ圧を変え、深絞り成形が可能な限界絞り比を求めた。一部の円盤はフランジ相当部を短時間熱処理する目的で、450℃に加熱された内径60φのダイスで円盤の周辺部を挟み込んで軟質化し、図5に示すような局部的に材料強度の変化した円盤を作成した。その後、熱処理無しの円盤と同様に、25℃に保たれた50φの円筒ポンチ、内径54φのダイスを用い深絞り成形を行った。
【0037】
以上の結果を表1に併記する。
表1から明らかなように、本発明鋼板を用いれば、短時間熱処理で材料強度を5%以上軟質にする事ができ、成形性向上熱処理を行ったとき、成形性を向上させる事ができる。
【0038】
【表1】

Figure 0004427110
【0039】
【表2】
Figure 0004427110

【図面の簡単な説明】
【図1】鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm2 以上含まれる結晶粒、ベイナイト、マルテンサイトの合計の体積分率と鋼板強度の低下比(ΔTS/TS)の関係を説明する概念図である。
【図2】鋼板強度、K値、Y値、熱処理により可能な強度の低下量の関係を説明する概念図である。
【図3】K値、Y値の比(K/Y)と400℃×30sec の熱処理による鋼板の強度低下比(ΔTS/TS)を示す図である。
【図4】部分軟化鋼板の軟質部硬質部のパターン例を示す図である。
【図5】円盤状鋼板を局部加熱する装置と局部加熱された円盤を示す図である。
【符号の説明】
1…部分軟化鋼板
2…ブランク(切り板)
3…プレス部品
4…側面から見た450℃に加熱したダイス
5…側面から見た円盤状の鋼板
6…上から見た円盤の未加熱部
7…上から見た円盤の加熱部
A…軟質部
B…硬質部[0001]
BACKGROUND OF THE INVENTION
The present invention is a thin steel plate applied to a place where structural strength is required, such as a structural part such as a body of an automobile, and has a formability improved by partial short-time heat treatment. The present invention relates to a press forming method for a thin steel sheet.
[0002]
[Prior art]
In order to reduce the weight and the strength of structural parts, it is usually attempted to form a high-strength steel sheet. However, high-strength steel sheets have high yield stress and poor ductility, so that press formability is difficult, and studies are being made to improve formability. For example, there are a bake-hardened steel sheet that is soft before pressing and hardens in a baking process during subsequent electrodeposition coating, and a method of curing by irradiation with a beam of high energy density after completion of forming.
[0003]
The bake hardened steel sheet increases the yield stress after bake, but the deformation strength itself increases only at most by about 5%, and the absolute amount of strength is insufficient.
Further, as a method of irradiating and curing a high energy density beam after completion of molding, for example, a method of irradiating a laser after molding as disclosed in JP-A-61-99629 is disclosed. However, in this case, since the irradiation is performed three-dimensionally, the processing equipment becomes economically expensive, and the accuracy error due to thermal distortion due to the transformation of steel becomes very large.
[0004]
In view of this, a method has been devised in which only a portion requiring strength in the state of a steel plate is reinforced and softened where formability is required. For example, Japanese Patent Application Laid-Open No. 60-238424 discloses that a steel sheet is partially irradiated with a laser to form a hardened structure, both hard and soft parts are present, forming is performed in the soft part, and the hard part has strength. A method is disclosed. However, since the transformation of hardened steel is used, deformation of the steel plate due to transformation strain is inevitable. In addition, the hardness difference between the transformation hard part and the soft part is remarkably large, and there is an excessive difference in deformability. Therefore, breakage often occurs from the boundary, and it was not always possible to improve the moldability. Japanese Patent Application Laid-Open No. 9-87737 discloses a method in which a high-tensile steel sheet is partially irradiated with an arc or laser and melted to soften the steel sheet. However, since this method also transforms steel, the influence of transformation strain cannot be avoided. As a method not utilizing the transformation of steel, for example, Japanese Patent Laid-Open No. 9-143554 is disclosed. In this method, plastic strain is applied to the steel sheet, and then partially heat-treated at 800 ° C. to recover or recrystallize and soften. However, since this method is also heated to 800 ° C. or higher, there is a problem of thermal strain of the steel sheet, and since plastic strain is used, there is a defect that the ductility of the hard part is remarkably deteriorated. It is not a solution to the problem.
[0005]
In addition, as in tailored blanks (for example, Application of Laser-Beam-Welded Sheet Metal, SAE Technical Paper Series, 890853, 1989), instead of making a soft part and a hard part separately on a single plate, means such as laser welding Then, there is a method of joining and finishing to a single plate. However, even in this method, it is inevitable that the joint is hardened by welding, which becomes an obstacle in molding. Moreover, since it joins by welding, it is difficult to join materials finely.
[0006]
Thus, an optimal method has not yet been obtained in manufacturing a high-strength structural component. Therefore, there has been a strong demand for a press forming method for a high strength steel plate that can be easily formed by press forming or the like like a mild steel plate.
[0007]
[Problems to be solved by the invention]
In order to solve the problems as described above, the present inventors have conducted intensive studies such as various forming materials made of thin steel sheets, heat treatment for improving formability, and optimum forming methods.
[0008]
[Means for Solving the Problems]
The present inventors have found that, if limited to short-time heat treatment, for example, a thin steel plate of 0.1 to 7.0 mm suppresses heat conduction as much as possible, and finds that local heat treatment is possible, and that a specific structure and component are selected. It was found that the steel material can be remarkably changed within the range of the short-time heat treatment. Furthermore, it has been newly discovered that when local heat treatment is applied to a portion that requires deformation during molding, the moldability is surprisingly improved. The present invention has been achieved by pursuing an optimum material for short-time heat treatment for the purpose of improving the moldability. The gist is
(1) C: 0.0005% to 0.25% by mass ratio
Si: 0.01% to 3.0%
Mn: 0.01% to 3.0%
P: 0.002% to 0.20%
S: 0.001% to 0.03%
N: 0.0002% to 0.02%
And one or more of Mo, Al, Ni, Cu, Nb, Ti, V, Cr, B in mass%, K / Y ≧ 0.77,
K = {TS (MPa)-(280 + 390 * C + 98 * Si + 65 * Mn + 882 * P + 207 * Al + 980 * Ti + 2000 * Nb + 980 * V + 200 * Mo + 38 * Ni + 55 * Cu + 22 * Cr)}
Y = {30 * √Si + 40 * √Mn + 80 * √Mo + 4 * √Ni + 35 * √Nb + 40 * √Ti + 55 * √V + 40 * √Cr + 70 * √P + 500 * √B},
In the range of
The balance is composed of Fe and inevitable impurities , and the crystal grain contains a ratio of one or more of iron carbide, iron nitride, and iron carbonitride in a microstructure of 10 pieces / μm 2 or more. A steel sheet in which the total proportion of one or more of bainite and martensite is 7% or more in space factor is subjected to a heat treatment within 30 sec at a temperature below the Ac1 transformation point before forming, A press forming method of a thin steel sheet for processing excellent in formability-improving heat treatment capability, wherein a soft part having a strength reduced by 5% or more is formed and then formed.
(2) The thin steel plate for processing according to (1), wherein the heat treatment is performed locally, and the soft portion is two-dimensionally patterned in a unit of 1 mm 2 or more in the steel plate surface. Press forming method ,
It is.
[0009]
Here, the formability-enhancing heat treatment ability refers to the ability to change the tensile strength of a steel sheet by a short time heat treatment within 30 seconds at a heat treatment temperature below the Acl transformation point of the steel sheet. If limited to this heat treatment, thermal strain can be suppressed as much as possible with a thin steel plate of 0.1 to 7.0 mm, and transformation strain hardly occurs. Furthermore, since heat conduction is suppressed, heat treatment can be performed with a resolution of about 1 mm. Further, as the amount of change in tensile strength due to this heat treatment, it is desirable that the tensile strength change by 5% or more. When heat treatment is locally performed using this steel plate, the formability is remarkably improved without substantially changing the strength of the whole steel plate. For example, when a heat treatment is locally applied to a portion that needs to be deformed, the strength of the portion that needs to be deformed is lowered, and deformation easily occurs, thereby improving the moldability.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors conducted extensive research on the steel sheet structure and steel plate composition, whose strength changes greatly by local heat treatment within 30 seconds at temperatures below the Acl transformation point, which improves the formability of high-strength steel sheets. If the size of the iron nitride and iron carbonitride is controlled, the iron carbide, iron nitride, and iron carbonitride are immediately dissolved or coarsened by heat treatment within 30 seconds at a temperature below the Acl transformation point, and the steel plate reduced in strength, press formability of the steel sheet was found that you improved by implementing prior to shaping it.
[0011]
We also found that martensite has a similar effect. Furthermore, the amount of change in strength of the steel sheet is affected by the ratio of iron carbide, iron nitride, and iron carbonitride containing fine structure, bainite structure, and martensite structure, with a space factor of 7% or more. At one point, I found that the effect was great.
In addition, the amount of strength reduction of the steel sheet depends greatly on the chemical composition of the steel sheet,
K / Y ≧ 0.77,
K = {TS (MPa)-(280 + 390 * C + 98 * Si + 65 * Mn + 882 * P + 207 * Al + 980 * Ti + 2000 * Nb + 980 * V + 200 * Mo + 38 * Ni + 55 * Cu + 22 * Cr)}
Y = {30 * √Si + 40 * √Mn + 80 * √Mo + 4 * √Ni + 35 * √Nb + 40 * √Ti + 55 * √V + 40 * √Cr + 70 * √P + 500 * √B},
It was found that the amount of decrease in the strength of the steel sheet can be increased by limiting to the above range.
[0012]
Moreover, earnestly researched about the manufacturing method of this steel plate, and found the optimal manufacturing method.
The present invention is described in detail below.
First, the reason for limiting the steel structure will be described below.
As a heat treatment for improving the formability, a local heat treatment is performed within 30 seconds at a temperature below the Acl transformation point to partially soften the high-strength steel sheet. For this reason, since it is necessary to change the strength at a low temperature in a short time, it is most suitable to use the diffusion phenomenon of C and N, which has a high moving speed, in the steel, iron carbide, iron nitride, iron carbonitride and It is most effective to use bainite and martensite.
[0013]
If there are crystal grains containing a total ratio of one or more of iron carbide, iron nitride, and iron carbonitride of 10 / μm 2 or more, the steel can be strengthened by precipitation strength. On the other hand, this iron carbide, iron nitride or iron carbonitride can be easily reduced in strength by melting and coarsening by a short heat treatment.
Bainite or martensite can increase the strength of steel by transformation strengthening. On the other hand, bainite or martensite can be easily tempered by short-time heat treatment to precipitate coarse carbides and reduce the strength. In order to locally reduce the strength of the steel sheet, it is necessary to contain a structure whose strength changes by short-time heat treatment at a certain rate or more in terms of space factor. That is, the crystal grain, bainite, martensite structure in which the total ratio of one or more of iron carbide, iron nitride, and iron carbonitride is 10 / μm 2 or more is constant in the ratio of the whole steel. There must be more than a proportion. Iron carbide or iron nitride or Tetsusumi nitride 10 / [mu] m 2 or more Included grain, bainite, martensite structure, other structure of the steel (e.g., ferrite, pearlite, etc. containing no fine iron nitride ), The contribution to the strength of the steel sheet is large, and if the total volume ratio is approximately 7% or more, the strength of the steel sheet can be changed by 5% or more when heat-treated for a short time. Iron carbide, iron nitride, one or the total proportion of the two or more ten Tetsusumi nitride / [mu] m 2 or more Included grain, bainite, change in the intensity to the intensity and the rapid thermal annealing of the martensitic structure The amount of softening varies depending on the amount of carbon and nitrogen contained in these structures. When the amount of carbon and nitrogen is large, the strength of the steel sheet is 5% or more even when the volume ratio of these structures is 7% or less. It can be changed. However, in the range of carbon (wt% C ≦ 0.25) and nitrogen (wt% N ≦ 0.02) normally used as a thin steel plate, one of iron carbide, iron nitride, iron carbonitride or When the crystal grains, bainite, and martensite structures containing two or more total ratios of 10 pieces / μm 2 or more are in a space factor of 7% or more in total, the strength of the steel sheet can be changed by 5% or more. 7% is the lower limit.
[0014]
In addition, as the volume ratio of crystal grains, bainite, and martensite structure including one or more of iron carbide, iron nitride, and iron carbonitride is 10 / μm 2 or more increases, Since it becomes easy to change the strength of the steel sheet, an upper limit is not specified, but the processing method deteriorates, so it is desirable to adjust the volume ratio according to the processed part.
[0015]
The term “iron carbide” as used herein refers to iron-carbon compounds such as cementite, ε carbide, χ carbide, iron-carbon complex, and iron nitride refers to iron-nitrogen compounds such as Fe 4 N, Fe 16 N 2 , iron-nitrogen complex, iron Carbonitride refers to a form in which iron and carbon compounds or iron nitrides are mixed, one in which some C in the iron and carbon compounds are replaced with N, one in which some N in iron nitrides are replaced with C, etc. .
[0016]
Iron carbide, iron nitride 1, one or the total proportion of the two or more are 10 / [mu] m 2 or more Included grain, bainite, the total space factor of martensite structure steel sheet Tetsusumi nitride The relationship of strength reduction ratio is shown. The proportion of crystal grains containing 10 or more μm 2 of the total of one or more of iron carbide, iron nitride, and iron carbonitride is iron carbide or iron nitride for each crystal grain in the microscope field of view. The space factor was calculated by counting the number of products or iron carbonitrides and measuring the number of crystal grains contained in 10 / μm 2 or more and the average crystal grain size. The space factor of bainite and martensite was also calculated by measuring the number and average size in the microscope field. For the strength measurement, a JIS No. 5 tensile test piece was prepared, heat-treated at 400 ° C. for 30 seconds, cooled to room temperature, and then subjected to a tensile test at room temperature. A value obtained by dividing the amount of decrease in tensile test strength (ΔTS) at this time by TS before heat treatment was shown as the strength decrease ratio. The total space factor of the crystal grains, bainite and martensite structure including one or more of iron carbide, iron nitride and iron carbonitride is 10% / μm 2 or more is 7% or more. It can be seen that the reduction ratio of the steel sheet strength is remarkable.
[0017]
Next, the reason for limiting the components of steel will be described.
C is for obtaining crystal grains, bainite, and martensite structure in which the total proportion of one or more of iron carbide, iron nitride, and iron carbonitride according to the present invention is 10 / μm 2 or more. It is an essential element. When the content is increased, the structure becomes easy to obtain, but the weldability deteriorates. Therefore, it is 0.25% or less. Further, if it is less than 0.0005%, crystal grains, bainite, and martensite structures containing a total ratio of one or more of iron carbide, iron nitride, and iron carbonitride of 10 pieces / μm 2 or more are obtained. Therefore, the alloy cost is increased, the manufacturing cost is drastically increased, and it is not economical, so 0.0005% is made the lower limit.
[0018]
If Si is less than 0.010%, the effect of increasing the strength during heat treatment is small, so 0.010% is made the lower limit. Preferably, it is 0.200% or more. If it exceeds 3.00%, workability deteriorates, so 3.00% is made the upper limit.
Mn is used for securing the strength. However, if it is less than 0.01%, the manufacturing cost is drastically increased and it is not economical. Deteriorates, so 3.00% is made the upper limit.
[0019]
If P is less than 0.002%, the effect of increasing the strength during heat treatment is small, so 0.002% is set as the lower limit. Preferably, it is 0.02% or more. If it exceeds 0.20%, the toughness is remarkably deteriorated and brittle, so 0.20% is made the upper limit.
If S is less than 0.001%, the production cost is drastically increased and it is not economical, so 0.001% is the lower limit, and if it exceeds 0.03%, red hot brittleness occurs during hot rolling, and the surface cracks. In order to cause so-called hot brittleness, the upper limit is made 0.03%.
[0020]
If N is less than 0.0002%, the manufacturing cost will increase dramatically and it will not be economical, so 0.0002% is the lower limit, and if it exceeds 0.02%, the workability deteriorates, so 0.02% Is the upper limit.
In the present invention, when C, Si, Mn, Mo, Ni, Al, Cu, Nb, Ti, V, Cr, P, and B are contained in the range of the following formula, the effect is remarkable.
K / Y ≧ 0.77,
K = {TS (MPa)-(280 + 390 * C + 98 * Si + 65 * Mn + 882 * P + 207 * Al + 980 * Ti + 2000 * Nb + 980 * V + 200 * Mo + 38 * Ni + 55 * Cu + 22 * Cr)}
Y = {30 * √Si + 40 * √Mn + 80 * √Mo + 4 * √Ni + 35 * √Nb + 40 * √Ti + 55 * √V + 40 * √Cr + 70 * √P + 500 * √B},
TS (MPa) is the tensile strength (MPa) of steel.
[0021]
In using the steel sheet of the present invention, as a heat treatment for improving the formability, a heat treatment is performed at a temperature of Acl or lower and within 30 seconds.
The K value in the above equation is mainly defined because heat treatment is performed at a temperature below Acl, and the Y value in the above equation is mainly defined because heat treatment is performed within 30 seconds. is there.
[0022]
First, the K value in the above equation will be described. C, Si, Mn, P, Al, Ti, Nb, V, Mo, Ni, Cu, and Cr are elements that strengthen steel. These elements act directly or indirectly by various hardening mechanisms such as solid solution strengthening, precipitation strengthening, transformation strengthening, and strengthen steel. In the present invention, the strength of the steel is softened by heat treatment at a temperature not higher than the Acl transformation point, and the strength is lowered. Although the amount of softening increases as the heat treatment time increases, it has been found that there is a strength that the steel does not soften no matter how long the heat treatment is. It can be seen that the strength that does not soften greatly depends on the steel composition and can be expressed in units of MPa (280 + 390 * C + 98 * Si + 65 * Mn + 882 * P + 207 * Al + 980 * Ti + 2000 * Nb + 980 * V + 200 * Mo + 38 * Ni + 55 * Cu + 22 * Cr). It was. The strength not to be softened varies depending on the component, and Nb is most effective per unit mass , and then becomes Ti and P in this order. The contribution of this effect is a coefficient given before the element of the first term of the formula shown in claim 2. That is, the coefficient is 390 for C, 98 for Si, 65 for Mn, 882 for P, 882 for Al, 980 for Ti, 980 for Ti, 2000 for Nb, 980 for V, 200 for Mo. It was found that Ni was 38, Cu was 55, and Cr was 22.
[0023]
Accordingly, the strength of the steel whose strength can be changed by heat treatment at a temperature below the Acl transformation point is {TS (MPa) − (280 + 390 * C + 98 * Si + 65 * Mn + 882 * P + 207 * Al + 980 * Ti + 2000 * Nb + 980 * V + 200 * Mo + 38 * Ni + 55 * Cu + 22 * Cr)}
This value is defined as K.
[0024]
Next, the Y value of the above equation will be described. Si, Mn, Mo, Ni, Nb, Ti, V, Cr, P, and B are elements that affect the softening rate of steel. Dissolution, coarsening, and bainite of iron carbide, iron nitride, and iron carbonitride It is an element that delays softening of the structure and martensite structure. Therefore, if these elements are contained in a certain amount or more, the steel cannot be softened by short-time heat treatment. This effect largely depends on the composition and content of steel,
{30 * √Si + 40 * √Mn + 80 * √Mo + 4 * √Ni + 35 * √Nb + 40 * √Ti + 55 * √V + 40 * √Cr + 70 * √P + 500 * √B}
It turns out that it is proportional to. This value is defined as Y.
[0025]
The effect cost varies depending on the component, and B is the most effective per unit mass , followed by Mo and P. The contribution of this effect is a coefficient given before the element of the second term of the formula shown in claim 2. That is, this coefficient is 30 for Si, 40 for Mn, 80 for Mo, 4 for Ni, 35 for Nb, 40 for Ti, 55 for V, 40 for Cr, 70 for P. , B was found to be 500.
[0026]
In addition, it has been clarified that this effect is proportional to the square root of the concentration of the contained element. Although this mechanism is not clear, the interaction of these elements with C, N, dislocations, and vacancies delays the dissolution and coarsening of iron carbide, iron nitride, and iron carbonitride, and also includes bainite and martensite. The present inventors consider that the precipitation of carbides and the recovery of dislocations are suppressed, and the softening of bainite and martensite is delayed.
[0027]
Further, an important point of the present invention is that the steel structure is excellent in formability-improving heat treatment by limiting the structure of the steel and well balancing the strength of the steel that is not softened and the amount of the element that delays the softening of the steel. Is achieved. That is, when the ratio between the K value and the Y value is 0.77 or more, the steel strength was successfully changed by 5% by short-time heat treatment.
[0028]
If this is expressed in an expression,
K / Y ≧ 0.77,
K = {TS (MPa)-(280 + 390 * C + 98 * Si + 65 * Mn + 882 * P + 207 * Al + 980 * Ti + 2000 * Nb + 980 * V + 200 * Mo + 38 * Ni + 55 * Cu + 22 * Cr)}
Y = {30 * √Si + 40 * √Mn + 80 * √Mo + 4 * √Ni + 35 * √Nb + 40 * √Ti + 55 * √V + 40 * √Cr + 70 * √P + 500 * √B},
When it is within the range, a steel sheet excellent in heat treatment for improving formability can be obtained. FIG. 2 shows a conceptual diagram of the above description.
[0029]
In addition, FIG. 3 shows the strength reduction ratio of the steel sheet when heat treatment is performed for a short time using various concentrations of steel.
For the strength measurement, a JIS No. 5 tensile test piece was prepared, heat-treated at 400 ° C. for 30 seconds, cooled to room temperature, and then subjected to a tensile test at room temperature. A value obtained by dividing the amount of decrease in tensile test strength (ΔTS) at this time by TS before heat treatment was shown as the strength decrease ratio.
[0030]
FIG. 3 shows that when K / Y is less than 0.77, almost no effect is observed, and a strength decrease of 5% or more is obtained at 0.77% or more.
The processing steel sheet excellent in formability improvement heat treatment ability of the present invention is a hot-rolled steel sheet, cold-rolled steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, electrogalvanized so long as it satisfies the above structure and composition. Any of steel plates can be used, and the effects of the invention can be enjoyed.
[0031]
In the case of a galvanized steel sheet, it is preferable to perform heat treatment for improving formability at a temperature of 550 ° C. or lower in order to prevent deterioration of the galvanized layer, but it is sufficiently possible to use the steel sheet of the present invention.
Further, the plate thickness is not limited, but is particularly effective at 0.4 to 6 mm.
In press-forming the steel sheet of the present invention, blanking is performed in accordance with the shape of the steel sheet, and a heat treatment for improving formability is locally performed at places where processing is severe with a press before forming. Although the heat treatment is partial, the formability of the entire steel sheet is remarkably improved, and a high-strength press-formed body having a complicated shape can be obtained.
[0032]
Further, in the present invention, the steel sheet is partially softened by performing a heat treatment for improving the formability in a pattern matched to the parts in advance, not before forming, and is two-dimensionally patterned in units of 1 mm 2 or more in the steel sheet surface. Soft part and hard part can be made. This is the third invention with a portion softened steel sheet press-forming method of the present invention. At this time, in order to improve formability, it is preferable that the soft portion has a lower tensile strength of steel by 5% or more than the hard portion. If the necessary parts are softened according to the part shape in advance, it is not necessary to perform heat treatment to improve the formability separately after cutting the steel sheet into the part shape, so the part heat treatment manufacturing process of the part can be reduced and special Therefore, a high-strength press-molded body having a complicated shape can be obtained with ordinary equipment.
[0033]
FIG. 4 shows an example pattern. The thin steel plate for partial softening according to the present invention is not limited to this pattern example, and can be patterned according to the part shape.
[0034]
【Example】
The present invention will be specifically described below based on examples.
Steels having the components shown in Table 1 were melted and slabs were obtained by continuous casting according to a conventional method. And it heated to 1200 degreeC in the heating furnace, it hot-rolled with the finishing temperature of 880 degreeC, wound up at the temperature of 500 degreeC, and then pickled and made the hot rolled steel sheet.
[0035]
Further, after cold rolling at a rolling reduction of 60%, recrystallization annealing is performed at 830 ° C. for 60 seconds, and the product is gradually cooled to 700 ° C., and then cooled to a temperature of 100 ° C./sec and a temperature of 250 ° C. Thus, a 1.2 mm cold-rolled steel sheet was obtained. The steel structure obtained at this time is also shown in Table 1. Moreover, a part was electrogalvanized and the zinc layer was provided to the surface layer of the steel plate.
[0036]
The obtained cold-rolled steel sheet was processed into a JIS No. 5 tensile test piece, and the mechanical property value (no heat treatment) was evaluated. Separately, a JIS No. 5 tensile test piece was prepared, subjected to heat treatment at 450 ° C. for 10 seconds, and evaluated for mechanical property values (with heat treatment).
Separately, the steel sheet was punched into a 90φ-120φ disk, and deep drawing was performed using a 50φ cylindrical punch maintained at 25 ° C. and a die having an inner diameter of 54φ. The limit drawing ratio capable of deep drawing was determined by changing the wrinkle pressure. Some discs are softened by sandwiching the periphery of the disc with a die with an inner diameter of 60φ heated to 450 ° C for the purpose of heat-treating the flange equivalent part for a short time, and the change in material strength locally as shown in Fig. 5 Created a disc. Thereafter, similarly to the disk without heat treatment, deep drawing was performed using a 50φ cylindrical punch maintained at 25 ° C. and a die having an inner diameter of 54φ.
[0037]
The above results are also shown in Table 1.
As is apparent from Table 1, when the steel sheet of the present invention is used, the material strength can be made soft by 5% or more by short-time heat treatment, and formability can be improved when heat treatment for improving formability is performed.
[0038]
[Table 1]
Figure 0004427110
[0039]
[Table 2]
Figure 0004427110

[Brief description of the drawings]
FIG. 1 shows the total volume fraction of steel grains, bainite, martensite, and steel sheets containing a total of 10 or more μm 2 of one or more of iron carbide, iron nitride, and iron carbonitride. It is a conceptual diagram explaining the relationship of intensity | strength fall ratio ((DELTA) TS / TS).
FIG. 2 is a conceptual diagram illustrating the relationship between steel plate strength, K value, Y value, and the amount of strength reduction that can be achieved by heat treatment.
FIG. 3 is a graph showing a ratio of K value and Y value (K / Y) and a strength reduction ratio (ΔTS / TS) of a steel sheet by heat treatment at 400 ° C. × 30 sec.
FIG. 4 is a diagram showing a pattern example of a soft part hard part of a partially softened steel sheet.
FIG. 5 is a diagram showing an apparatus for locally heating a disk-shaped steel plate and a locally heated disk.
[Explanation of symbols]
1 ... Partially softened steel plate 2 ... Blank (cut plate)
3 ... Pressed part 4 ... Dies heated to 450.degree. C. seen from the side..Disk-like steel plate 6 seen from the side..Unheated part 7 of the disk seen from above..Heating part A of the disk seen from above .... soft Part B ... Hard part

Claims (2)

質量比で
C:0.0005%〜0.25%
Si:0.01%〜3.0%
Mn:0.01%〜3.0%
P:0.002%〜0.20%
S:0.001%〜0.03%
N:0.0002%〜0.02%
及びMo,Al,Ni,Cu,Nb,Ti,V,Cr,Bの1種または2種以上を質量%で、K/Y≧0.77、
K={TS(MPa) −(280+390*C+98*Si+65*Mn+882*P+207*Al+980*Ti+2000*Nb+980*V+200*Mo+38*Ni+55*Cu+22*Cr)}、
Y={30*√Si+40*√Mn+80*√Mo+4*√Ni+35*√Nb+40*√Ti+55*√V+40*√Cr+70*√P+500*√B}、
の範囲で含有し、
残部Fe及び不可避的不純物からなり、さらに、ミクロ組織のうち、 鉄炭化物、鉄窒化物、鉄炭窒化物の1種または2種以上の合計の割合が10個/μm 以上含まれる結晶粒、 ベイナイト、 マルテンサイト、の1種または2種以上の合計の割合が、占積率で7%以上である鋼板を、成形前にAc1変態点以下の温度で30sec以内の熱処理を施し、前記鋼板の引張強度において、強度が5%以上低下した軟質部を形成し、その後に成形することを特徴とする成形性向上熱処理能に優れた加工用薄鋼板のプレス成形方法。
C: 0.0005% to 0.25% by mass ratio
Si: 0.01% to 3.0%
Mn: 0.01% to 3.0%
P: 0.002% to 0.20%
S: 0.001% to 0.03%
N: 0.0002% to 0.02%
And one or more of Mo, Al, Ni, Cu, Nb, Ti, V, Cr, B in mass%, K / Y ≧ 0.77,
K = {TS (MPa)-(280 + 390 * C + 98 * Si + 65 * Mn + 882 * P + 207 * Al + 980 * Ti + 2000 * Nb + 980 * V + 200 * Mo + 38 * Ni + 55 * Cu + 22 * Cr)}
Y = {30 * √Si + 40 * √Mn + 80 * √Mo + 4 * √Ni + 35 * √Nb + 40 * √Ti + 55 * √V + 40 * √Cr + 70 * √P + 500 * √B},
In the range of
The balance is composed of Fe and inevitable impurities , and the crystal grain contains a ratio of one or more of iron carbide, iron nitride, and iron carbonitride in a microstructure of 10 pieces / μm 2 or more. A steel sheet in which the total proportion of one or more of bainite and martensite is 7% or more in space factor is subjected to a heat treatment within 30 sec at a temperature below the Ac1 transformation point before forming, A press forming method of a thin steel sheet for processing excellent in formability-improving heat treatment capability, wherein a soft part having a strength reduced by 5% or more is formed and then formed.
前記熱処理を局部的に行い、前記軟質部が、鋼板面内で二次元的に1mm以上の単位でパターン化されていることを特徴とする請求項1に記載の加工用薄鋼板のプレス成形方法。 2. The press forming of a thin steel sheet for processing according to claim 1, wherein the heat treatment is locally performed, and the soft portion is patterned in a unit of 1 mm 2 or more two-dimensionally in a steel plate surface. Method.
JP24975498A 1998-09-03 1998-09-03 Press forming method of thin steel sheet for processing Expired - Fee Related JP4427110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24975498A JP4427110B2 (en) 1998-09-03 1998-09-03 Press forming method of thin steel sheet for processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24975498A JP4427110B2 (en) 1998-09-03 1998-09-03 Press forming method of thin steel sheet for processing

Publications (2)

Publication Number Publication Date
JP2000080439A JP2000080439A (en) 2000-03-21
JP4427110B2 true JP4427110B2 (en) 2010-03-03

Family

ID=17197736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24975498A Expired - Fee Related JP4427110B2 (en) 1998-09-03 1998-09-03 Press forming method of thin steel sheet for processing

Country Status (1)

Country Link
JP (1) JP4427110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372162A (en) * 2013-08-16 2015-02-25 上海重型机器厂有限公司 Heat treatment method for thin-wall steel plate with large size

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851579B1 (en) * 2003-02-26 2005-04-01 Pechiney Rhenalu METHOD OF PADDING WITH ALLOY PARTS A1-Mg
JP5148896B2 (en) * 2007-02-27 2013-02-20 株式会社神戸製鋼所 Aluminum alloy blank with excellent press forming
JP5237573B2 (en) * 2007-03-30 2013-07-17 株式会社神戸製鋼所 Aluminum alloy sheet, sheet, and method for producing molded member
KR101271888B1 (en) 2010-12-23 2013-06-05 주식회사 포스코 Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same
KR20150031834A (en) 2013-09-17 2015-03-25 현대자동차주식회사 Method for heat treatment to improve formability of high tensile steel
CN104498689B (en) * 2014-12-22 2016-08-31 武汉科技大学 A kind of low molybdenum high strength steel and preparation method thereof
KR101673342B1 (en) * 2015-10-02 2016-11-16 현대자동차 주식회사 Method for hot stamping and hot stamping steel
KR20190078233A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Laser hardening low carbon steel sheet and manufacturing the same
JP7116009B2 (en) * 2019-05-29 2022-08-09 トヨタ自動車株式会社 Press molding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372162A (en) * 2013-08-16 2015-02-25 上海重型机器厂有限公司 Heat treatment method for thin-wall steel plate with large size
CN104372162B (en) * 2013-08-16 2016-08-24 上海重型机器厂有限公司 The heat treatment method of large size, thin walled steel plate

Also Published As

Publication number Publication date
JP2000080439A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US20220282348A1 (en) Method for manufacturing a high strength steel product and steel product thereby obtained
JP5398701B2 (en) Process for producing cold-rolled annealed steel sheet having extremely high strength and board produced thereby
JP3990726B2 (en) High strength duplex steel sheet with excellent toughness and weldability
JP5283504B2 (en) Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
EP3653736B1 (en) Hot-rolled steel strip and manufacturing method
WO2013133166A1 (en) Steel sheet for hot pressing use, press-molded article, and method for producing press-molded article
WO2013133165A1 (en) Steel sheet for hot pressing use, press-molded article, and method for producing press-molded article
WO2013133137A1 (en) Process for producing press-formed product and press-formed product
WO2018033960A1 (en) Hot press-formed member
WO2015037060A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
KR20130014520A (en) Steel, flat steel product, steel component and method for producing a steel component
CN112585284A (en) Sheet metal formed part made of steel and having high tensile strength, and method for producing same
CN113840936B (en) Hot stamp-molded body
EP1375694B1 (en) Hot-rolled steel strip and method for manufacturing the same
WO2015037059A1 (en) Method for manufacturing press-molded article, and press-molded article
CN111417738A (en) Cold-rolled and heat-treated steel sheet and method for producing same
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
JP4427110B2 (en) Press forming method of thin steel sheet for processing
JPH10195591A (en) High strength hot rolled steel sheet for thermal hardening excellent in stretch-flanging property and its production
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JP3993703B2 (en) Manufacturing method of thin steel sheet for processing
KR102209555B1 (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
CN111575602A (en) 1500 MPa-grade hot-formed steel plate for wheel and production method thereof
KR101726139B1 (en) Hot press forming parts having superior ductility and impact toughness and method for manufacturing the same
JP2000178684A (en) Manufacture of steel sheet excellent in heat treatment hardenability and high strength press formed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees