JP4408691B2 - Manufacturing method of water absorbent resin - Google Patents

Manufacturing method of water absorbent resin Download PDF

Info

Publication number
JP4408691B2
JP4408691B2 JP2003417506A JP2003417506A JP4408691B2 JP 4408691 B2 JP4408691 B2 JP 4408691B2 JP 2003417506 A JP2003417506 A JP 2003417506A JP 2003417506 A JP2003417506 A JP 2003417506A JP 4408691 B2 JP4408691 B2 JP 4408691B2
Authority
JP
Japan
Prior art keywords
water
absorbent resin
crosslinking
polymerization
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003417506A
Other languages
Japanese (ja)
Other versions
JP2005179384A (en
Inventor
誠 岡本
勉 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003417506A priority Critical patent/JP4408691B2/en
Publication of JP2005179384A publication Critical patent/JP2005179384A/en
Application granted granted Critical
Publication of JP4408691B2 publication Critical patent/JP4408691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は不飽和カルボン酸アンモニウムを主成分とする吸水性樹脂の製造方法に関する。更に詳しくは、高い加圧下吸水性能を持ち、且つ、残存モノマーが少ない吸水性樹脂の製造方法に関するものである。   The present invention relates to a method for producing a water-absorbent resin mainly composed of unsaturated ammonium carboxylate. More specifically, the present invention relates to a method for producing a water-absorbent resin having a high water absorption performance under pressure and a small amount of residual monomer.

近年、大量の水を吸ってゲル化する合成高分子である吸水性樹脂が開発され、紙おむつ、生理用品の吸収帯等の衛生材料、或いは農芸用分野、土木分野における保水剤、脱水剤等に幅広く利用されている。   In recent years, a water-absorbing resin, which is a synthetic polymer that gels by absorbing a large amount of water, has been developed and used as a sanitary material such as disposable diapers and absorbent bands for sanitary products, or as a water retention agent and dehydrating agent in the agricultural and civil engineering fields. Widely used.

このような吸水性樹脂としては、例えば、デンプン−アクリロニトリルグラフト重合体の加水分解物(特許文献1)、デンプン−アクリル酸グラフト重合体の中和物(特許文献2)、酢酸ビニル−アクリル酸エステル共重合体のケン化物(特許文献3)、アクリロニトリル共重合体もしくはアクリルアミド共重合体の加水分解物(特許文献4)、または逆相懸濁重合によって得られた自己架橋型ポリアクリル酸ナトリウム(特許文献5)、ポリアクリル酸部分中和物架橋体(特許文献6)等、多くが知られている。近年これらの吸水性樹脂に対して、その衛生材料等への用途からの要求から、高加圧下吸水倍率等の高い加圧下吸水性能が求められている。かかる要求を満足させるため、通常の吸水性樹脂の製造法では、重合、乾燥後に表面近傍の架橋が行われている。   Examples of such a water-absorbing resin include a hydrolyzate of starch-acrylonitrile graft polymer (Patent Document 1), a neutralized product of starch-acrylic acid graft polymer (Patent Document 2), and vinyl acetate-acrylic acid ester. Saponified copolymer (Patent Document 3), hydrolyzate of acrylonitrile copolymer or acrylamide copolymer (Patent Document 4), or self-crosslinked sodium polyacrylate obtained by reverse phase suspension polymerization (Patent Document 3) Many are known, such as a literature 5) and a polyacrylic acid partial neutralized product cross-linked product (Patent Literature 6). In recent years, high water absorption performance under high pressure such as high water absorption under high pressure has been demanded for these water-absorbing resins due to the demands from sanitary materials. In order to satisfy such a requirement, in the usual method for producing a water-absorbent resin, cross-linking in the vicinity of the surface is performed after polymerization and drying.

吸水性樹脂の表面近傍の処理方法として、従来多くが提案されている。例えば、多価アルコールを用いる方法(特許文献7,8)、アルキレンカーボネートを用いる方法(特許文献9)、グリオキサールを用いる方法(特許文献10)、多価金属を用いる方法(特許文献10〜13)、シランカップリング剤を用いる方法(特許文献14〜16)、水と親水性有機溶剤の混合溶媒中で吸水性樹脂を分散させて架橋する方法(特許文献17)、特定量の水を共存させて吸水性樹脂を架橋する方法(特許文献18,19)、無機粉末と水を共存させ架橋する方法(特許文献20)、電磁放射線を照射する方法(特許文献21)等が知られている。   Many conventional methods have been proposed as methods for treating the vicinity of the surface of a water-absorbent resin. For example, a method using a polyhydric alcohol (Patent Documents 7 and 8), a method using an alkylene carbonate (Patent Document 9), a method using glyoxal (Patent Document 10), a method using a polyvalent metal (Patent Documents 10 to 13) , A method using a silane coupling agent (Patent Documents 14 to 16), a method in which a water-absorbing resin is dispersed in a mixed solvent of water and a hydrophilic organic solvent (Patent Document 17), and a specific amount of water is allowed to coexist. There are known methods for crosslinking a water-absorbent resin (Patent Documents 18 and 19), a method for crosslinking by coexisting inorganic powder and water (Patent Document 20), a method for irradiating electromagnetic radiation (Patent Document 21), and the like.

しかしながら、これらの吸水性樹脂は、残存モノマーが500〜3000ppm程度残存するという欠点を有していた。   However, these water-absorbing resins have the disadvantage that the residual monomer remains in the range of about 500 to 3000 ppm.

一方、吸水性樹脂や水溶性樹脂の残存モノマー低減方法についても、多くが提案されている。例えば、a)重合条件の変更や放射線で重合率を上げる方法(特許文献22〜25)、b)重合後にアミン類や亜硫酸塩などの添加剤を加えて処理する方法(特許文献26〜29)、 c)残存モノマーを有機溶剤等で抽出する方法(特許文献30)、d)残存モノマーを微生物で分解する方法(特許文献31)、e)高温で残存モノマーを揮発させる方法(特許文献32)、f)特定の中和方法で得られた単量体や重金属の少ない単量体を用いる技術(特許文献33,34)、g)用いる酸基含有単量体のアンモニウム塩およびアルカリ金属塩への中和量を規定した方法(特許文献35)等が知られている。   On the other hand, many methods for reducing residual monomers in water-absorbing resins and water-soluble resins have been proposed. For example, a) a method of changing polymerization conditions or increasing the polymerization rate by radiation (Patent Documents 22 to 25), b) a method of adding an additive such as amines or sulfites after the polymerization (Patent Documents 26 to 29) C) a method of extracting the residual monomer with an organic solvent or the like (Patent Document 30), d) a method of decomposing the residual monomer with a microorganism (Patent Document 31), e) a method of volatilizing the residual monomer at a high temperature (Patent Document 32) F) Technology using a monomer obtained by a specific neutralization method or a monomer with less heavy metal (Patent Documents 33 and 34), g) To the ammonium salt and alkali metal salt of the acid group-containing monomer used There is known a method (Patent Document 35) that defines the neutralization amount.

しかし、a)の方法は、その低減効果が不十分で、しかも過酷な重合や後処理条件による吸水性樹脂の諸物性の低下が見られた。b)やc)の方法は、用いる添加剤や有機溶剤等が吸水性樹脂に残存し、安全性に問題があった。d)の方法は、微生物を用いるため安全性に問題があった。e)の方法は、不飽和カルボン酸は揮発しないため殆ど効果がなかった。f)の方法は、安全上は特に問題ないが、効果が不十分であった。g)の方法は、確かに残存モノマーの低減については充分な効果が見られたが、吸水性樹脂の加圧下吸水性能についての記述がなく、実用的な吸水性樹脂の製造方法としては不十分であった。   However, the method a) has an insufficient reduction effect, and various physical properties of the water-absorbent resin are deteriorated due to severe polymerization and post-treatment conditions. In the methods b) and c), the additives and organic solvents used remain in the water-absorbent resin, which has a problem in safety. The method d) has a safety problem because it uses microorganisms. The method e) had little effect because the unsaturated carboxylic acid did not volatilize. The method f) has no particular problem for safety, but the effect is insufficient. Although the method of g) did indeed have a sufficient effect for reducing the residual monomer, there was no description of the water absorption performance of the water absorbent resin under pressure, and it was insufficient as a practical method for producing a water absorbent resin. Met.

つまり、従来の技術では、吸水性樹脂に高い加圧下吸水性能を持たせるため、該吸水性樹脂の製造法の中で、重合、乾燥後に表面近傍を架橋処理する工程が必要となるが、その時、高い加圧下吸水倍率を維持したまま、同時に残存モノマーを低減できる表面近傍の架橋法というものがなかった。
特公昭49-43395号公報 特開昭51-125468号公報 特開昭52-14689号公報 特公昭53-15959号公報 特開昭53-46389号公報 特開昭55-84304号公報 特開昭58-180233号公報 特開昭61-16903号公報 DE-4020780C号公報 特開昭52-17393号公報 特開昭51-136588号公報 特開昭61-257235号公報 特開昭62-7745号公報 特開昭61-211305号公報 特開昭61-252212号公報 特開昭61-264006号公報 特開昭57-44627号公報 特開昭58-117222号公報 特開昭59-62665号公報 USP-4587308号公報 特開昭63-43930号公報 特開昭50-96689号公報 特開昭56-72005号公報 特開昭63-43930号公報 特開昭63-260906号公報 特開昭50-40689号公報 特開昭55-135110号公報 特開昭64-62317号公報 DE−3724707号公報 特開平1-292003号公報 特公昭60-29523号公報 特開昭54-119588号公報 特開平2-209906号公報 特開平3-31306号公報 特開平6-122708号公報
That is, in the conventional technology, in order to give the water absorbent resin high water absorption performance under pressure, in the method for producing the water absorbent resin, a step of crosslinking the surface vicinity after polymerization and drying is required. However, there was no cross-linking method in the vicinity of the surface that could reduce the residual monomer at the same time while maintaining a high water absorption capacity under high pressure.
Japanese Patent Publication No.49-43395 JP 51-125468 JP 52-14689 A Japanese Patent Publication No. 53-15959 JP-A-53-46389 Japanese Patent Laid-Open No. 55-84304 JP 58-180233 A JP 61-16903 A DE-4020780C publication JP 52-17393 A JP-A-51-136588 JP-A-61-257235 JP 62-7745 JP-A-61-211305 JP-A-61-252212 JP-A-61-264006 JP 57-44627 A JP 58-117222 A JP 59-62665 A USP-4587308 Publication JP 63-43930 A Japanese Patent Laid-Open No. 50-96689 JP 56-72005 JP 63-43930 A Japanese Unexamined Patent Publication No. 63-260906 JP 50-40689 A Japanese Unexamined Patent Publication No. 55-135110 JP-A 64-62317 DE-3724707 JP-A-1-292003 Japanese Patent Publication No. 60-29523 Japanese Patent Laid-Open No. 54-119588 JP-A-2-209906 JP-A-3-31306 JP-A-6-122708

従って、本発明の目的は、十分に高い加圧下吸水倍率等の優れた物性を示し、十分に実用的であり、且つ、残存モノマーが少なく、安全性の高い吸水性樹脂の製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method for producing a water-absorbent resin that exhibits excellent physical properties such as a sufficiently high water absorption capacity under pressure, is sufficiently practical, has little residual monomer, and is highly safe. That is.

本発明者は、上記の目的を達成すべく鋭意検討を行った結果、不飽和カルボン酸及び/またはその塩を主成分とする単量体水溶液を重合して得られたゲル状重合体を乾燥後、架橋剤と混合し、加熱処理により表面架橋を行うに当たって、ある特定のパラメーターで表される条件において表面架橋することにより上記問題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor dried a gel-like polymer obtained by polymerizing an aqueous monomer solution mainly containing an unsaturated carboxylic acid and / or a salt thereof. Later, when mixing with a crosslinking agent and performing surface crosslinking by heat treatment, it was found that the above problems can be solved by surface crosslinking under conditions represented by certain parameters, and the present invention was completed.

即ち、本発明は、次の(1)〜(5)である。
(1)(メタ)アクリル酸アンモニウム塩が50を越え、100モル%以下、(メタ)アクリル酸アルカリ金属塩が0以上50モル%未満、(メタ)アクリル酸が0以上50モル%未満、その他の単量体が0以上50モル%未満からなる不飽和カルボン酸塩を主成分とする単量体水溶液を重合して得られたゲル状重合体を乾燥後、架橋剤と混合し、下記数式1を満たす条件で加熱処理しながら表面架橋することを特徴とする、吸水性樹脂の製造方法。
420≦(T−100)2×t≦1500 (1)
(ただし、数式1においてT(℃)は表面架橋温度、t(時間)は表面架橋時間である。)
)架橋剤として多価アルコール化合物、多価グリシジル化合物、多価アミン化合物、アルキレンカーボネートからなる1種または2種以上の架橋剤を用いて表面架橋する(1)記載の吸水性樹脂の製造方法。
)前記架橋剤と混合し、加熱処理することが、多価アルコール化合物、多価グリシジル化合物、多価アミン化合物、アルキレンカーボネートからなる1種または2種以上の架橋剤を吸水性樹脂表面近傍に加え加熱処理することである(1)または(2)に記載の吸水性樹脂の製造方法。
)数式(1)に代えて下記数式2を満たす条件で加熱処理しながら表面架橋することを特徴とする、(1)〜(3)のいずれかに記載の吸水性樹脂の製造方法。
700≦(T−100)2×t≦1000 (2)
(ただし、数式2においてT(℃)は表面架橋温度、t(時間)は表面架橋時間である。)
)前記架橋温度が、100℃を越え、150℃未満であることを特徴とする(1)〜(4)のいずれかに記載の吸水性樹脂の製造方法。
That is, this invention is following (1)-(5).
(1) (Meth) acrylic acid ammonium salt exceeds 50, 100 mol% or less, (meth) acrylic acid alkali metal salt is 0 or more and less than 50 mol%, (meth) acrylic acid is 0 or more and less than 50 mol%, others After drying a gel polymer obtained by polymerizing an aqueous monomer solution mainly composed of an unsaturated carboxylate consisting of 0 to less than 50 mol% of the monomer, the mixture is mixed with a crosslinking agent, and the following formula A method for producing a water-absorbent resin, characterized in that surface crosslinking is carried out under heat treatment under conditions satisfying 1.
420 ≦ (T−100) 2 × t ≦ 1500 (1)
(In Formula 1, T (° C.) is the surface crosslinking temperature, and t (time) is the surface crosslinking time.)
( 2 ) Production of water-absorbent resin according to (1), wherein surface crosslinking is performed using one or two or more kinds of crosslinking agents comprising a polyhydric alcohol compound, a polyvalent glycidyl compound, a polyvalent amine compound, and an alkylene carbonate as a crosslinking agent. Method.
( 3 ) Mixing with the cross-linking agent and heat-treating one or two or more cross-linking agents comprising a polyhydric alcohol compound, a polyvalent glycidyl compound, a polyvalent amine compound, and an alkylene carbonate in the vicinity of the water-absorbent resin surface The method for producing a water-absorbent resin according to (1) or (2) , which is a heat treatment in addition to.
( 4 ) The method for producing a water-absorbent resin according to any one of (1) to (3) , wherein surface crosslinking is performed while performing heat treatment under conditions satisfying the following mathematical formula 2 instead of the mathematical formula (1).
700 ≦ (T−100) 2 × t ≦ 1000 (2)
(In Formula 2, T (° C.) is the surface crosslinking temperature, and t (time) is the surface crosslinking time.)
( 5 ) The method for producing a water-absorbent resin according to any one of (1) to (4) , wherein the crosslinking temperature is higher than 100 ° C and lower than 150 ° C.

本発明の製造方法によれば、高い加圧下吸水倍率を得るため、該吸水性樹脂の製造法の中で、重合、乾燥後に表面近傍を架橋処理する工程において、同時に残存モノマーを低減できるので、得られる吸水性樹脂は、高い加圧下吸水性能を有し、十分に実用的であり、且つ安全性に優れたものであり、衛生材料、食料品、土木、農業等の幅広い分野に利用できる。特に、その中でも衛生材料の用途に対し、その高い加圧下吸水性能から最適である。   According to the production method of the present invention, in order to obtain a high water absorption capacity under pressure, in the production method of the water absorbent resin, in the step of cross-linking the vicinity of the surface after polymerization and drying, the residual monomer can be reduced at the same time. The obtained water-absorbing resin has a high water absorption performance under high pressure, is sufficiently practical and has excellent safety, and can be used in a wide range of fields such as sanitary materials, foodstuffs, civil engineering, and agriculture. In particular, it is most suitable for hygiene materials because of its high water absorption performance under pressure.

以下、本発明を更に詳しく説明する。     Hereinafter, the present invention will be described in more detail.

本発明では先ず、不飽和カルボン酸及び/またはその塩を主成分とする単量体(以下単量体と略す)水溶液を通常の方法によってラジカル重合することで、ゲル状重合体を得ることが必須である。本発明に用いられる単量体としては、残存モノマー量を少なくすることができる点で、特にアンモニウム塩が好ましく、したがって、単量体として少なくともアンモニウム塩を含むことが好ましい。そして、その使用量としては、不飽和カルボン酸のアンモニウム塩が、好ましくは50を越え、100モル%以下、より好ましくは70〜100モル%、更に好ましくは90〜100モル%である。   In the present invention, first, a gel polymer can be obtained by radical polymerization of an aqueous monomer (hereinafter abbreviated as monomer) aqueous solution containing an unsaturated carboxylic acid and / or a salt thereof as a main component by an ordinary method. It is essential. As the monomer used in the present invention, an ammonium salt is particularly preferable from the viewpoint that the amount of residual monomer can be reduced. Therefore, it is preferable to include at least an ammonium salt as the monomer. The amount of the unsaturated carboxylic acid ammonium salt is preferably more than 50 and 100 mol% or less, more preferably 70 to 100 mol%, still more preferably 90 to 100 mol%.

本発明において用いられる不飽和カルボン酸及び/またはその塩を主成分とする単量
体としては、重合によって吸水性樹脂に成りうる単量体が、特に制限なく、用いられる。このような不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸、イタコン酸等が挙げられる。これらの中では、アクリル酸、メタクリル酸が好ましく、アクリル酸がより好ましい。
As the monomer mainly composed of unsaturated carboxylic acid and / or a salt thereof used in the present invention, a monomer that can be converted into a water-absorbing resin by polymerization is used without particular limitation. Examples of such unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid and the like. In these, acrylic acid and methacrylic acid are preferable and acrylic acid is more preferable.

本発明では、単量体の主成分として、不飽和カルボン酸及び/またはその塩を主成分
とするものを使用するものであるが、その他の親水性単量体及び/または疎水性単量体を併用しても良い。
In the present invention, a monomer having an unsaturated carboxylic acid and / or a salt thereof as a main component is used as the main component of the monomer, but other hydrophilic monomers and / or hydrophobic monomers are used. May be used in combination.

併用できる親水性単量体としては、例えば、アクリルアミド、メタクリルアミド、N−エチル(メタ)アクリルアミド、N―n−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル (メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ビニルピリジン、N−ビニルピロリドン、N−アクリロイルピペリジン、N−アクリロイルピロリジン等のノニオン性の親水性単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル (メタ)アクリレート、N,N−ジメチルアミノプロピル (メタ)アクリルアミド及びその四級塩等のカチオン性の親水性単量体等を挙げることができ、これらの群から選ばれる少なくとも1種或いは2種以上を使用することができる。これらの、併用できる親水性単量体の中でも、メトキシポリエチレングリコール(メタ)アクリレート、N,N,−ジメチルアミノエチル(メタ)アクリレート及びその四級塩、アクリルアミドが好ましい。   Examples of hydrophilic monomers that can be used in combination include acrylamide, methacrylamide, N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) ) Acrylamide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, polyethylene glycol mono (meth) acrylate, vinylpyridine, N-vinylpyrrolidone, N-acryloylpiperidine, Nonionic hydrophilic monomers such as N-acryloylpyrrolidine; N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N- It can be mentioned cationic hydrophilic monomers such as methyl amino propyl (meth) acrylamide and their quaternary salts and the like, may be used or at least one or two kinds selected from these groups. Among these hydrophilic monomers that can be used in combination, methoxypolyethylene glycol (meth) acrylate, N, N, -dimethylaminoethyl (meth) acrylate and its quaternary salt, and acrylamide are preferred.

また、併用できる疎水性単量体としては、スチレン、塩化ビニル、ブタジエン、イソブテン、エチレン、プロピレン、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート等が挙げられる。これら酸基を持たない単量体を用いる場合は、全単量体中で0〜50モル%未満、好ましくは0〜30モル%、より好ましくは0〜10モル%の範囲で使用するのがよい。特に、疎水性単量体を用いる場合は、吸水性樹脂の吸水性能を実用的な範囲から落とさない程度に使用するのが望ましい。   Examples of hydrophobic monomers that can be used in combination include styrene, vinyl chloride, butadiene, isobutene, ethylene, propylene, stearyl (meth) acrylate, lauryl (meth) acrylate, and the like. When these monomers having no acid group are used, they are used in the range of 0 to less than 50 mol%, preferably 0 to 30 mol%, more preferably 0 to 10 mol% in all monomers. Good. In particular, when a hydrophobic monomer is used, it is desirable to use it to such an extent that the water absorption performance of the water absorbent resin does not fall from the practical range.

また、得られる吸水性樹脂の吸水倍率や吸水速度の観点から、単量体中の不飽和カルボン酸の一部、又は全量を中和して塩とするか、最初から不飽和カルボン酸塩を使用するのが望ましい。その際、中和率は50〜100モル%、好ましくは70〜100モル%、より好ましくは90〜100モル%である。   In addition, from the viewpoint of water absorption rate and water absorption speed of the water-absorbing resin obtained, a part or all of the unsaturated carboxylic acid in the monomer is neutralized to form a salt, or an unsaturated carboxylate is used from the beginning. It is desirable to use it. At that time, the neutralization rate is 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 90 to 100 mol%.

不飽和カルボン酸の一部、又は全量を中和する場合に用いられる塩基性物質としては、アルカリ金属の炭酸(水素)塩や水酸化物、アンモニア、各種アミノ酸、有機アミン等が挙げられるが、諸物性の観点から水酸化ナトリウム及びまたは、水酸化カリウム、及びまたはアンモニアが好ましく、アンモニアが特に好ましい。また、アンモニア前駆体として単量体に尿素を加えて重合してもよい。   Examples of the basic substance used when neutralizing a part or the whole of the unsaturated carboxylic acid include alkali metal carbonate (hydrogen) salt, hydroxide, ammonia, various amino acids, organic amines, etc. From the viewpoint of various physical properties, sodium hydroxide and / or potassium hydroxide and / or ammonia are preferable, and ammonia is particularly preferable. Further, urea may be added to the monomer as an ammonia precursor for polymerization.

また、単量体に不飽和カルボン酸塩を用いる場合、不飽和カルボン酸のアルカリ金属塩及びまたはアンモニウム塩が好ましく、アンモニウム塩がより好ましい。   Moreover, when using unsaturated carboxylate for a monomer, the alkali metal salt and / or ammonium salt of unsaturated carboxylic acid are preferable, and ammonium salt is more preferable.

本発明では、重合中及びまたは重合後に、更に後中和することも制限はないが、後中和に水酸化ナトリウム等の強塩基を用いる場合は、架橋点の加水分解に注意を要し、吸水性樹脂の吸水性能を実用的な範囲から落とさない程度に使用するのが望ましい。   In the present invention, there is no restriction on further post-neutralization during and / or after the polymerization. However, when a strong base such as sodium hydroxide is used for the post-neutralization, attention must be paid to hydrolysis at the crosslinking point, It is desirable to use the water-absorbing resin so that the water-absorbing performance of the water-absorbing resin does not fall from the practical range.

本発明に用いられる不飽和カルボン酸及び/またはその塩は、アンモニウム塩の割合が50を越え100モル%以下、好ましくは70〜100モル%、より好ましくは70〜100モル%、更に好ましくは90〜100モル%である。また、アルカリ金属塩の割合は0〜50モル%未満、より好ましくは0〜20モル%である。かかる範囲において、諸物性に優れ、残存モノマーが少ない吸水性樹脂を得ることができる。尚、極少量の多価金属塩による中和は、本発明の趣旨を変更するものではない。   The unsaturated carboxylic acid and / or salt thereof used in the present invention has an ammonium salt ratio exceeding 50 and not more than 100 mol%, preferably 70 to 100 mol%, more preferably 70 to 100 mol%, and still more preferably 90. ~ 100 mol%. The proportion of the alkali metal salt is 0 to less than 50 mol%, more preferably 0 to 20 mol%. Within such a range, it is possible to obtain a water-absorbent resin that is excellent in various physical properties and has few residual monomers. The neutralization with a very small amount of polyvalent metal salt does not change the gist of the present invention.

本発明では、上記した単量体を重合し、且つ、架橋して吸水性樹脂を得る。用いられる架橋方法としては特に制限がなく、例えば、本発明の単量体を重合させることで水溶性樹脂を得た後、更に重合中や重合後に架橋剤を添加して後架橋する方法、ラジカル重合開始剤によるラジカル架橋、電子線等による放射線架橋、光による光架橋等も挙げられるが、性能の優れた吸水性樹脂を高い生産性で製造するには、予め所定量の架橋剤を単量体に添加して重合を行い、重合と同時に及び/または重合後に架橋反応させることが望ましい。   In the present invention, the above monomer is polymerized and crosslinked to obtain a water-absorbing resin. The crosslinking method used is not particularly limited. For example, a method in which a water-soluble resin is obtained by polymerizing the monomer of the present invention, and then a crosslinking agent is added during or after polymerization, followed by crosslinking. Examples include radical crosslinking with a polymerization initiator, radiation crosslinking with an electron beam, photocrosslinking with light, etc. In order to produce a water-absorbing resin with excellent performance with high productivity, a predetermined amount of a crosslinking agent is used in advance. It is desirable to carry out the polymerization by adding to the body and to carry out a crosslinking reaction simultaneously with and / or after the polymerization.

予め所定量の架橋剤を単量体に添加して重合を行い、重合と同時に及びまたは重合後に架橋反応させる方法に用いられる架橋剤としては、N,N',−メチレンビスアクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、(ポリ)エチレングリコール(β−アクリロイルオキシプロピオネート)、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)エチレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン等が挙げられる。また、その使用量は単量体に対して、通常、0.005〜5モル%、より好ましくは0.01〜1モル%である。尚、これらの架橋剤の中でも、得られる吸水性樹脂の耐久性、吸水性能、そして製造時の、含水ゲルの取り扱いの容易さ等から、分子内に2個以上の重合性の不飽和基を有する重合性架橋剤を用いることが望ましい。   As a crosslinking agent used in a method in which a predetermined amount of a crosslinking agent is added to a monomer in advance to perform polymerization, and a crosslinking reaction is performed simultaneously with and / or after polymerization, N, N ′,-methylenebisacrylamide, (poly) Ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, (poly) ethylene glycol (β-acryloyloxypropionate) ), Poly (meth) allyloxyalkane, (poly) ethylene glycol diglycidyl ether, (poly) ethylene glycol, glycerin, pentaerythritol, ethylenediamine, polyethyleneimine, and the like. Moreover, the amount of its use is 0.005-5 mol% normally with respect to a monomer, More preferably, it is 0.01-1 mol%. Among these crosslinking agents, two or more polymerizable unsaturated groups are contained in the molecule because of the durability of the water-absorbing resin obtained, the water absorption performance, and the ease of handling of the hydrogel during production. It is desirable to use a polymerizable crosslinking agent.

本発明では、上記した単量体を用いて重合する際、バルク重合や沈殿重合を行うことも可能であるが、得られる吸水性樹脂の性能や重合反応の制御の容易さ等から、単量体を溶液として重合することが望ましい。重合溶媒としては、単量体が溶解する液体ならば特に制限はなく、水、メタノール、エタノール、アセトン、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられるが、水または水溶性有機溶媒と水との混合液が望ましい。尚、単量体の溶液に対する濃度は、特に制限はなく、飽和濃度を超え、スラリー状態でも構わないが、通常、20重量%〜飽和濃度の範囲であり、より好ましくは25〜50重量%である。
単量体濃度が低すぎると、生産性が悪くなるので好ましくなく、単量体濃度が高すぎると重合反応前の一部低分子ポリマー化の影響等で、得られる吸水性樹脂の諸物性の低下を引き起こすため好ましくない。
In the present invention, when polymerizing using the above-mentioned monomers, bulk polymerization or precipitation polymerization can also be performed, but from the viewpoint of the performance of the water-absorbing resin obtained and ease of control of the polymerization reaction, etc. It is desirable to polymerize the body as a solution. The polymerization solvent is not particularly limited as long as it is a liquid in which the monomer is dissolved, and examples thereof include water, methanol, ethanol, acetone, dimethylformamide, dimethyl sulfoxide, etc., but water or a mixed liquid of a water-soluble organic solvent and water. Is desirable. The concentration of the monomer in the solution is not particularly limited and may exceed the saturation concentration and may be in a slurry state, but is usually in the range of 20% by weight to the saturation concentration, more preferably 25 to 50% by weight. is there.
If the monomer concentration is too low, productivity will be unfavorable, and if the monomer concentration is too high, various physical properties of the resulting water-absorbent resin will be affected due to the influence of partial low-molecular polymerization before the polymerization reaction, etc. It is not preferable because it causes a decrease.

また、重合の際、次亜燐酸塩、チオール類、チオール酸類等の水溶性連鎖移動剤や、澱粉、セルロース、ポリビニルアルコール、ポリアクリル酸、ポリアクリル酸塩架橋体等の親水性高分子を単量体に加えて重合を行ってもよい。それらの使用量は、通常、前者は5重量部以下、後者は50重量部以下である。   In the polymerization, water-soluble chain transfer agents such as hypophosphites, thiols, and thiolic acids, and hydrophilic polymers such as starch, cellulose, polyvinyl alcohol, polyacrylic acid, and cross-linked polyacrylate are used. Polymerization may be performed in addition to the monomer. The amount used is usually 5 parts by weight or less for the former and 50 parts by weight or less for the latter.

本発明における単量体の重合方法は、特に制限するものではないが、例えば、ラジカル重合開始剤による重合、放射線重合、電子線重合、光増感剤による紫外線重合等を挙げることができるが、得られる吸水性樹脂の諸物性をよくするためには、ラジカル重合開始剤による重合が望ましい。かかるラジカル重合法としては、特に限定するものではないが、例えば型枠の中で行う注型重合、ベルトコンベアー上での重合、含水ゲル状重合体を細分化しながら行う重合、各種水溶液重合、逆相懸濁重合、逆相乳化重合等の公知の重合法を挙げることができるが、逆相懸濁重合や水溶液重合が特に望ましい。尚、これらの重合方法は、連続式、回分式、いずれであってもよい。   The method for polymerizing the monomer in the present invention is not particularly limited, and examples thereof include polymerization with a radical polymerization initiator, radiation polymerization, electron beam polymerization, and ultraviolet polymerization with a photosensitizer. In order to improve various properties of the water-absorbing resin obtained, polymerization with a radical polymerization initiator is desirable. The radical polymerization method is not particularly limited. For example, cast polymerization performed in a mold, polymerization on a belt conveyor, polymerization performed while subdividing a hydrogel polymer, various aqueous solution polymerizations, reverse polymerization Although known polymerization methods such as phase suspension polymerization and reverse phase emulsion polymerization can be mentioned, reverse phase suspension polymerization and aqueous solution polymerization are particularly desirable. These polymerization methods may be either continuous or batch.

単量体の重合条件は、特に制限されるものではなく、通常の条件で行われる。圧力については、減圧、常圧、加圧の何れであってもよい。また、温度については、初期温度は、通常、0〜40℃、好ましくは10〜30℃がよい。また、重合中の温度は重合熱によるピーク温度を除けば、通常、50〜100℃、好ましくは70〜90℃がよい。また、重合終了後のエージング温度は、通常50〜120℃、好ましくは70〜100℃がよい。   The polymerization conditions for the monomer are not particularly limited, and are performed under normal conditions. The pressure may be any of reduced pressure, normal pressure, and increased pressure. Moreover, about temperature, initial temperature is 0-40 degreeC normally, Preferably 10-30 degreeC is good. The temperature during the polymerization is usually 50 to 100 ° C., preferably 70 to 90 ° C., excluding the peak temperature due to the heat of polymerization. The aging temperature after completion of the polymerization is usually 50 to 120 ° C, preferably 70 to 100 ° C.

重合に用いられるラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の有機過酸化物;過酸化水素;2,2'−アゾビス(2−アミジノプロパン)二塩酸塩等のアゾ化合物;その他、亜塩素酸塩、次亜塩素酸塩、過マンガン酸塩等の公知の開始剤が挙げられるが、これらの中でも、過硫酸塩、過酸化水素、アゾ化合物よりなる群から選ばれる少なくとも1種或いは2種以上が好ましい。また、酸化性ラジカル重合開始剤を用いる場合、亜硫酸塩やL−アスコルビン酸等の還元剤を併用することができるし、アゾ系重合開始剤を用いる場合は紫外線を併用してもよい。尚、これらラジカル重合開始剤は重合系に一括添加してもよいし、逐次添加してもよいが、その使用量は単量体に対して、通常、0.001〜2モル%、好ましくは0.01〜1モル%である。   Examples of radical polymerization initiators used for polymerization include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; organic peroxides such as t-butyl hydroperoxide and cumene hydroperoxide; hydrogen peroxide Azo compounds such as 2,2′-azobis (2-amidinopropane) dihydrochloride; and other known initiators such as chlorite, hypochlorite, permanganate, etc. Among these, at least one or two or more selected from the group consisting of persulfate, hydrogen peroxide, and azo compounds is preferable. Moreover, when using an oxidizing radical polymerization initiator, reducing agents, such as a sulfite and L-ascorbic acid, can be used together, and when using an azo polymerization initiator, you may use an ultraviolet-ray together. These radical polymerization initiators may be added to the polymerization system all at once or sequentially, but the amount used is usually 0.001 to 2 mol%, preferably 0.01 to 1 mol%.

本発明においては、上記手順に従って得られたゲル状重合体を加熱処理する。   In the present invention, the gel polymer obtained according to the above procedure is heat-treated.

加熱処理温度は、通常、100〜300℃、好ましくは100〜260℃、より好ましくは100〜200℃の範囲である。加熱処理温度が高すぎる場合、吸水性樹脂の、諸物性の低下等の悪影響が出る場合がある。加熱時間は、通常、1分から10時間、好ましくは10分から5時間である。また、本発明の目的をより達成するため、加熱処理の際の重合体は、表面積の大きな形状、例えば、フィルム状、ひも状、粒子状等が望ましい。   The heat treatment temperature is usually in the range of 100 to 300 ° C, preferably 100 to 260 ° C, more preferably 100 to 200 ° C. If the heat treatment temperature is too high, the water-absorbent resin may have adverse effects such as deterioration of various physical properties. The heating time is usually 1 minute to 10 hours, preferably 10 minutes to 5 hours. In order to further achieve the object of the present invention, the polymer used in the heat treatment preferably has a large surface area, for example, a film shape, a string shape, a particle shape, or the like.

加熱処理の際、重合体の状態については、特に制限されるものではないが、例えば、重合後のゲル状重合体、有機溶媒中の分散体、乾燥状態の重合体等が挙げられる。また、加熱処理の際、架橋体の固形分は一定に保ってもよいし、溶媒を揮発させることで固形分を上昇させてもよい。   In the heat treatment, the state of the polymer is not particularly limited, and examples thereof include a gel polymer after polymerization, a dispersion in an organic solvent, and a polymer in a dry state. Further, during the heat treatment, the solid content of the crosslinked body may be kept constant, or the solid content may be increased by volatilizing the solvent.

本発明における、加熱処理を行う時期は、特に制限されるものではなく、例えば、乾燥工程、表面架橋工程、乾燥後の再加熱工程、造粒工程、添加剤を加える工程等が挙げられるが、乾燥工程での加熱処理を行うことが望ましい。尚、乾燥方法としては、特に制限はないが、熱風乾燥、赤外線乾燥、共沸脱水等の公知の乾燥法が挙げられる。また、特に表面架橋工程での加熱処理については後述する。   In the present invention, the time for performing the heat treatment is not particularly limited, and examples thereof include a drying step, a surface crosslinking step, a reheating step after drying, a granulation step, and a step of adding an additive. It is desirable to perform heat treatment in the drying process. The drying method is not particularly limited, and examples thereof include known drying methods such as hot air drying, infrared drying, azeotropic dehydration, and the like. In particular, the heat treatment in the surface crosslinking step will be described later.

また、重合後や乾燥後の吸水性樹脂に対して、界面活性剤、無機粉末、亜硫酸水素塩等の添加剤を加えてもよいし、粉砕や造粒を行って粒度を調整してもよい。例えば、粉末状の吸水性樹脂の場合、平均粒径10〜2000μm、より好ましくは100〜1000μm、更に好ましくは150〜850μm程度に調整される。   Further, an additive such as a surfactant, inorganic powder, or bisulfite may be added to the water-absorbent resin after polymerization or after drying, and the particle size may be adjusted by pulverization or granulation. . For example, in the case of a powdery water absorbent resin, the average particle size is adjusted to 10 to 2000 μm, more preferably 100 to 1000 μm, and still more preferably about 150 to 850 μm.

本発明においては、得られる吸水性樹脂の諸物性向上や残存モノマー低減のため、上記方法で得られたゲル状重合体の乾燥物を表面架橋処理することが必須である。本発明で表面近傍の架橋には、放射線等による架橋を用いてもよいが、通常、表面近傍に架橋剤を添加して行われる。用いられる架橋剤は特に制限はなく、公知の架橋剤が用いられ、例えば(ポリ)エチレングリコール、(ポリ)プロピレングリコール、(ポリ)グリセリン、1,6−ヘキサンジオール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、ペンタエリスリトール、ソルビトール等の各種多価アルコール類;(ポリ)エチレングリコールジグリシジルエーテル等の各種多価エポキシ化合物;エチレンジアミン、ポリエチレンイミン等の各種多価アミン化合物;2,2−ビスヒドロキシメチルブタノール−トリス(3−(1−アジリジニル)プロピオネート)等の各種多価アジリジン化合物;1,3−ジオキソラン−2−オン等の各種アルキレンカーボネート化合物;グリオキサール、グルタルアルデヒド等の各種多価アルデヒド化合物;2,4−トリレンジイソシアネート等の各種多価イソシアネート化合物1,2−エチレンビスオキサゾリン等の各種多価オキサゾリン化合物;エピクロロヒドリン等の各種ハロエポキシ化合物;アルミニウム、鉄、ジルコニウム等の水酸化物及び塩化物等の各種多価金属塩;その他ゲル状重合体の乾燥物中に存在するカルボン酸基或いはその塩と架橋反応を起こし得る、複数の官能基含有の化合物を挙げることができる。   In the present invention, in order to improve various physical properties of the obtained water-absorbent resin and to reduce the residual monomer, it is essential to subject the dried gel polymer obtained by the above method to surface crosslinking treatment. In the present invention, the crosslinking in the vicinity of the surface may be performed by crosslinking with radiation or the like, but is usually performed by adding a crosslinking agent in the vicinity of the surface. The crosslinking agent used is not particularly limited, and known crosslinking agents are used. For example, (poly) ethylene glycol, (poly) propylene glycol, (poly) glycerin, 1,6-hexanediol, trimethylolpropane, diethanolamine, triethanolamine, Various polyhydric alcohols such as ethanolamine, polyoxypropylene, pentaerythritol and sorbitol; Various polyhydric epoxy compounds such as (poly) ethylene glycol diglycidyl ether; Various polyvalent amine compounds such as ethylenediamine and polyethyleneimine; -Various polyaziridine compounds such as bishydroxymethylbutanol-tris (3- (1-aziridinyl) propionate); Various alkylene carbonate compounds such as 1,3-dioxolan-2-one; Various types such as glyoxal and glutaraldehyde Polyvalent aldehyde compounds; various polyvalent isocyanate compounds such as 2,4-tolylene diisocyanate; various polyvalent oxazoline compounds such as 1,2-ethylenebisoxazoline; various haloepoxy compounds such as epichlorohydrin; aluminum, iron, zirconium, etc. Various polyvalent metal salts such as hydroxides and chlorides of the above; other compounds containing a plurality of functional groups capable of causing a crosslinking reaction with carboxylic acid groups or salts thereof present in the dried product of the gel polymer Can do.

本発明においては、これらの架橋剤の中から、多価アルコール類、多価グリシジル化合物類、多価アミン類、アルキレンカーボネートからなる群より選ばれる少なくとも1種または2種以上を架橋剤として用いることが、より好ましく、高温での加熱処理に適した多価アルコールが最も好ましい。   In the present invention, among these crosslinking agents, at least one or two or more selected from the group consisting of polyhydric alcohols, polyvalent glycidyl compounds, polyvalent amines, and alkylene carbonates are used as the crosslinking agent. However, polyhydric alcohol suitable for heat treatment at high temperature is most preferable.

本発明において、使用される架橋剤の使用量は特に制限されるものではないが、吸水性樹脂の固形分100重量部に対して、通常、0.01〜20重量部、好ましくは0.05〜10重量部の範囲である。   In the present invention, the amount of the crosslinking agent used is not particularly limited, but is usually 0.01 to 20 parts by weight, preferably 0.05 to 10 parts by weight, based on 100 parts by weight of the solid content of the water absorbent resin. Range.

吸水性樹脂の表面近傍に架橋剤を添加する方法は、公知の方法が用いられ、吸水性樹脂に直接架橋剤を添加する方法、架橋剤を溶液或いは分散液として吸水性樹脂に添加する方法、溶媒に分散させた吸水性樹脂に架橋剤を添加する方法等が挙げられる。溶液或いは分散液にする溶媒としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、アセトン、テトラヒドロフラン等の親水性有機溶媒及びまたは水を用いることが好ましい。尚、その使用量は吸水性樹脂の固形分100重量部に対して、通常、0〜30重量部、好ましくは0〜10重量部の範囲である。   As a method of adding a crosslinking agent near the surface of the water absorbent resin, a known method is used, a method of adding a crosslinking agent directly to the water absorbent resin, a method of adding the crosslinking agent to the water absorbent resin as a solution or dispersion, Examples thereof include a method of adding a crosslinking agent to the water-absorbent resin dispersed in a solvent. As the solvent for the solution or dispersion, it is preferable to use a hydrophilic organic solvent such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, acetone, tetrahydrofuran, and water. In addition, the usage-amount is 0-30 weight part normally with respect to 100 weight part of solid content of a water absorbing resin, Preferably it is the range of 0-10 weight part.

本発明において、得られる吸水性樹脂の諸物性向上や残存モノマー低減のため、吸水性樹脂と架橋剤とを混合した後、加熱処理を行う際、水が存在することが好ましい。よって、乾燥した吸水性樹脂を用いる場合、水も添加することが望ましい。その際、水の添加は架橋剤の添加と同時に行っても、別途行ってもどちらでもよいが、その使用量は吸水性樹脂の固形分100重量部に対して、通常、20重量部以下、好ましくは0.5〜10重量部の範囲である。   In the present invention, in order to improve various physical properties of the obtained water-absorbent resin and reduce the residual monomer, it is preferable that water is present when the water-absorbent resin and the crosslinking agent are mixed and then heat-treated. Therefore, when using a dried water absorbent resin, it is desirable to add water. At that time, the addition of water may be performed simultaneously with the addition of the crosslinking agent or may be performed separately, but the amount used is usually 20 parts by weight or less with respect to 100 parts by weight of the solid content of the water absorbent resin. Preferably it is the range of 0.5-10 weight part.

本発明においては、上記手法に従って、吸水性樹脂と架橋剤とを混合した後、表面架橋のための加熱処理が必須である。   In the present invention, the heat treatment for surface cross-linking is essential after mixing the water-absorbent resin and the cross-linking agent according to the above-described method.

加熱処理温度は、100℃を越え150℃未満、好ましくは110〜145℃、より好ましくは120〜140℃の範囲である。100℃未満では、均一で強固な表面架橋が達成されにくく、しかも、表面架橋時の残存モノマー低減効果が少なく、加えた架橋剤の残存量も多くなる。一方150℃以上では、加熱処理に多大なエネルギーを必要とするだめでなく、吸水性樹脂の熱劣化が顕著となり、可溶分の増加や加圧下吸水倍率等の諸物性の低下を引き起こすので好ましくない。尚、加熱時間については設定加熱温度に対応して、上記数式1でのパラメーター範囲を満足させるように適当な架橋時間が決定される。このパラメーターの範囲で表面架橋処理を実施する限り、残存モノマーを十分に低減でき、しかも加圧下吸水倍率の高い吸水性樹脂を製造することができる。   The heat treatment temperature is in the range of more than 100 ° C. and less than 150 ° C., preferably 110 to 145 ° C., more preferably 120 to 140 ° C. If it is less than 100 ° C., uniform and strong surface cross-linking is difficult to achieve, and the residual monomer reducing effect at the time of surface cross-linking is small, and the residual amount of the added cross-linking agent is also large. On the other hand, at 150 ° C. or higher, heat treatment does not require a great deal of energy, and the water-absorbent resin is prone to thermal degradation, which causes an increase in soluble content and a decrease in physical properties such as water absorption capacity under pressure. Absent. As for the heating time, an appropriate crosslinking time is determined in accordance with the set heating temperature so as to satisfy the parameter range in Equation 1. As long as the surface cross-linking treatment is performed within this parameter range, the residual monomer can be sufficiently reduced, and a water-absorbing resin having a high water absorption capacity under pressure can be produced.

加熱処理を行う方法としては公知の手段が用いられ、(1)吸水性樹脂に直接架橋剤を添加した後、そのまま加熱処理する方法、(2)溶媒に分散させた吸水性樹脂に架橋剤を添加した後、分散させたまま加熱処理する方法、(3)分散媒から濾過して加熱処理する方法等が挙げられるが、これらの方法の中では、加熱処理の容易さから(1)の方法が好ましい。尚、加熱処理装置については特に制限はなく、熱風乾燥機、流動層乾燥機、ナウター式乾燥機等の公知の装置が用いられる。   As a method for performing the heat treatment, known means are used. (1) A method in which a crosslinking agent is directly added to the water-absorbent resin and then heat-treated as it is, and (2) a crosslinking agent is added to the water-absorbent resin dispersed in a solvent. Examples of the method include a method of heat-treating while being dispersed after the addition, and a method of (3) filtering and heat-treating from the dispersion medium. Among these methods, the method of (1) is easy because of heat treatment. Is preferred. In addition, there is no restriction | limiting in particular about heat processing apparatus, Well-known apparatuses, such as a hot air dryer, a fluidized bed dryer, and a Nauter type dryer, are used.

以下、実施例によって本発明を更に詳しく説明するが、本発明の範囲が必ずしもこれらの実施例によって限定されるものではない。尚、実施例に記載の諸物性は下記の試験方法によって測定した値を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, the scope of the present invention is not necessarily limited by these Examples. In addition, the various physical properties described in the examples indicate values measured by the following test methods.

(1)ティーバッグ法吸水倍率
吸水性樹脂0.5gを不織布製のティーバッグ式袋(95×70mm)に均一に入れ、0.9重量%塩化ナトリウム水溶液500g中に浸漬した。1時間後にティーバッグ式袋を引き上げ、10分間水切りを行った後、ティーバッグ式袋の重量を測定し、以下の式で吸水倍率を算出した。
(1) Tea bag method water absorption capacity 0.5 g of water-absorbing resin was uniformly placed in a non-woven tea bag bag (95 × 70 mm) and immersed in 500 g of a 0.9 wt% sodium chloride aqueous solution. After 1 hour, the tea bag-type bag was pulled up, drained for 10 minutes, the weight of the tea bag-type bag was measured, and the water absorption capacity was calculated by the following formula.


ティーバッグ法吸水倍率(g/g)
=((吸水後のティーバッグの重量)−(吸水前のティーバッグの重量))/(吸水性樹脂の重量)

Tea bag method water absorption (g / g)
= ((Weight of tea bag after water absorption)-(weight of tea bag before water absorption)) / (weight of water absorbent resin)

(2)加圧下吸水倍率
内径25mm、外径35mm、高さ30mmのアクリル樹脂製の円筒であって、該円筒の底部分をナイロン400メッシュによってふさがれた専用容器に、吸水性樹脂0.16gを底のメッシュ上に均一に仕込み、外径24.5mmの所定重量(278.33g)を持った、円柱状分銅型重りを上からゆっくりとはめ込むことで、0.8psiの垂直下方向への加圧下条件を設定し、該専用容器を内径120mm高さ28mmのSUS製シャーレの中に入った0.9重量%塩化ナトリウム水溶液60gに静かに浸漬した。1時間後に専用容器を引き上げ、専用容器側面の水分をふき取り、専用容器底面の水分を所定の濾紙上に3秒間静置することで水切りを行った後、専用容器重量を重りごと測定し、以下の式で加圧下吸水倍率を算出した。
(2) Water absorption capacity under pressure 0.16g of water-absorbing resin is placed in a special container made of acrylic resin with an inner diameter of 25mm, an outer diameter of 35mm, and a height of 30mm. The bottom of the cylinder is sealed with nylon 400 mesh. By loading a cylindrical weight with a predetermined weight (278.33 g) with an outer diameter of 24.5 mm evenly onto the bottom mesh, and slowly inserting from the top, 0.8 psi vertical downward pressure is applied. The special container was gently immersed in 60 g of a 0.9 wt% sodium chloride aqueous solution in a SUS petri dish having an inner diameter of 120 mm and a height of 28 mm. After 1 hour, pull up the dedicated container, wipe off the moisture on the side of the dedicated container, drain the water by leaving the moisture on the bottom of the dedicated container on the filter paper for 3 seconds, and then measure the weight of the dedicated container together with the weight. The water absorption capacity under pressure was calculated by the following formula.


0.8psi加圧下吸水倍率(g/g)=((吸水後の専用容器+重りの重量)−
(吸水前の専用容器+重りの重量))/(吸水性樹脂の重量)

0.8 psi water absorption capacity under pressure (g / g) = ((dedicated container after water absorption + weight of weight)-
(Special container before water absorption + weight of weight) / (weight of water-absorbing resin)

(3)残存モノマ−
吸水性樹脂0.16gを0.9重量%塩化ナトリウム水溶液40gに分散させた後、室温で2時
間スターラー撹拌した。その後、分散液をフィルター処理して得られた処理液中の残存モ
ノマー量を、高速液体クロマトグラフィーを用いて測定し、処理した吸水性樹脂当たりの
値に換算して残存モノマー量(重量ppm/SAP)とした。(SAP:高吸水性樹脂)
(3) Residual monomer
After dispersing 0.16 g of water-absorbing resin in 40 g of 0.9% by weight sodium chloride aqueous solution,
Stirred for a while. Thereafter, the residual liquid in the treatment liquid obtained by filtering the dispersion liquid is treated.
The amount of the monomer was measured using high performance liquid chromatography, and was measured per treated water absorbent resin.
The amount of residual monomer (weight ppm / SAP) was converted into a value. (SAP: super absorbent polymer)

表面架橋前吸水性樹脂の製造例
特級試薬のアクリル酸と、同じく特級試薬の28重量%のアンモニア水と蒸留水を用いて
氷冷下、40重量%アクリル酸アンモニウム水溶液(pH=7.0)を調製した。該40重量%アク
リル酸アンモニウム水溶液中に存在する重合禁止剤を除去するため、該40重量%アクリル
酸アンモニウム水溶液を活性炭で処理し、重合禁止剤フリーの40重量%アクリル酸アンモ
ニウム水溶液を得た。
Example of production of water-absorbing resin before surface crosslinking Using acrylic acid as a special grade reagent and 28% by weight ammonia water and distilled water as special grade reagent.
A 40 wt% aqueous solution of ammonium acrylate (pH = 7.0) was prepared under ice cooling. In order to remove the polymerization inhibitor present in the 40 wt% ammonium acrylate aqueous solution, the 40 wt% acrylic
Ammonium acid aqueous solution is treated with activated carbon, polymerization inhibitor-free 40% by weight acrylic acid ammonium
An aqueous nium solution was obtained.

該40重量%アクリル酸アンモニウム水溶液100gと、N,N'−メチレンビスアクリルア
ミド0.09モル%を500mlセパラブルフラスコに仕込み、窒素ガスのバブリングで30分間脱気後、スターラー撹拌しながら35℃の温度でL−アスコルビン酸0.001モル%、過硫酸アンモニウム0.07モル%を添加した。約1〜2分後から内温の上昇が観測され、重合が開始された。重合進行と同時に液の粘性が上がり、スターラー撹拌が不能となる直前に、撹拌を停止し、バブリングしていた窒素ガスを気相部置換に切り替え、重合を継続した。やがて、重合ピーク温度92℃を迎え、内温が下がり始めた時点で、セパラブルフラスコをウオーターバスに漬けて、70℃でのエージングを2時間実施した。
100 g of the 40 wt% ammonium acrylate aqueous solution and N, N′-methylenebisacryla
0.09 mol% of imide was charged into a 500 ml separable flask, degassed by bubbling with nitrogen gas for 30 minutes, and then 0.001 mol% of L-ascorbic acid and 0.07 mol% of ammonium persulfate were added at 35 ° C. with stirring with a stirrer. After about 1 to 2 minutes, an increase in the internal temperature was observed, and polymerization was started. Immediately before the progress of the polymerization, the viscosity of the liquid increased and stirring with the stirrer became impossible. Stirring was stopped, and the bubbling nitrogen gas was switched to gas phase substitution to continue the polymerization. Eventually, when the polymerization peak temperature reached 92 ° C. and the internal temperature began to drop, the separable flask was immersed in a water bath, and aging at 70 ° C. was performed for 2 hours.

こうして得られた含水ゲル重合体を取り出し、約5mm程度に細分化した後、100℃での真空乾燥を2時間実施し、得られた乾燥物をドライアイス冷却下、市販の解砕機で解砕し、更に100℃での真空乾燥を2時間実施した後、得られた乾燥物を850μm以下に分級することで吸水性樹脂を得た。得られた吸水性樹脂の残存モノマーは187重量ppm/SAPであった。   The water-containing gel polymer thus obtained was taken out and subdivided to about 5 mm, then vacuum-dried at 100 ° C. for 2 hours, and the resulting dried product was crushed with a commercially available crusher under cooling with dry ice. Further, after vacuum drying at 100 ° C. for 2 hours, the obtained dried product was classified to 850 μm or less to obtain a water absorbent resin. The residual monomer of the obtained water absorbent resin was 187 ppm by weight / SAP.

実施例1
上記製造例で得られた表面架橋前吸水性樹脂100重量部に対し、架橋剤としてグリセリン1重量部、イソプロパノール30重量部、蒸留水3重量部を添加し、十分に混合した後、イナートオーブンを用いて、120℃、2時間、加熱処理(表面架橋処理)を実施した。結果を表1に示す。
Example 1
After adding 1 part by weight of glycerin, 30 parts by weight of isopropanol and 3 parts by weight of distilled water as a cross-linking agent to 100 parts by weight of the water-absorbing resin before surface cross-linking obtained in the above production example, and thoroughly mixing the inert oven Then, heat treatment (surface crosslinking treatment) was performed at 120 ° C. for 2 hours. The results are shown in Table 1.

実施例2
加熱処理(表面架橋処理条件)を150℃、0.33時間とする以外は実施例1と同様に加熱処理(表面架橋処理)を実施した。結果を表1に示す。
Example 2
The heat treatment (surface cross-linking treatment) was carried out in the same manner as in Example 1 except that the heat treatment (surface cross-linking treatment conditions) was 150 ° C. and 0.33 hours. The results are shown in Table 1.

比較例1
加熱処理(表面架橋処理条件)を110℃、3時間とする以外は実施例1と同様に加熱処理(表面架橋処理)を実施した。結果を表1に示す。
比較例2
加熱処理(表面架橋処理条件)を120℃、1時間とする以外は実施例1と同様に加熱処理(表面架橋処理)を実施した。結果を表1に示す。
Comparative Example 1
The heat treatment (surface cross-linking treatment) was carried out in the same manner as in Example 1 except that the heat treatment (surface cross-linking treatment conditions) was 110 ° C. for 3 hours. The results are shown in Table 1.
Comparative Example 2
The heat treatment (surface cross-linking treatment) was performed in the same manner as in Example 1 except that the heat treatment (surface cross-linking treatment conditions) was 120 ° C. for 1 hour. The results are shown in Table 1.

比較例3
加熱処理(表面架橋処理条件)を150℃、1時間とする以外は実施例1と同様に加熱処理(表面架橋処理)を実施した。結果を表1に示す。
Comparative Example 3
A heat treatment (surface cross-linking treatment) was performed in the same manner as in Example 1 except that the heat treatment (surface cross-linking treatment conditions) was 150 ° C. for 1 hour. The results are shown in Table 1.

表1の結果から明らかなように、本発明の吸水性樹脂の製造法では、残存モノマーが少なく、且つ高い加圧下吸水倍率を有する吸水性樹脂を簡便に得ることが出来る。   As is apparent from the results in Table 1, in the method for producing a water-absorbing resin of the present invention, a water-absorbing resin having a small amount of residual monomer and having a high water absorption capacity under pressure can be easily obtained.

Figure 0004408691
Figure 0004408691

本発明の吸水性樹脂の製造方法は、衛生材料等の高い加圧下吸水性能及び安全性が求められる分野で好適に利用できる。   The method for producing a water-absorbent resin of the present invention can be suitably used in fields where high water absorption performance under pressure and safety such as sanitary materials are required.

Claims (5)

(メタ)アクリル酸アンモニウム塩が50を越え、100モル%以下、(メタ)アクリル酸アルカリ金属塩が0以上50モル%未満、(メタ)アクリル酸が0以上50モル%未満、その他の単量体が0以上50モル%未満からなる不飽和カルボン酸塩を主成分とする単量体水溶液を重合して得られたゲル状重合体を乾燥後、架橋剤と混合し、下記数式1を満たす条件で加熱処理しながら表面架橋することを特徴とする、吸水性樹脂の製造方法。
420≦(T−100)2×t≦1500 (1)
(ただし、数式1においてT(℃)は表面架橋温度、t(時間)は表面架橋時間である。)
(Meth) acrylic acid ammonium salt exceeds 50, 100 mol% or less, (meth) acrylic acid alkali metal salt is 0 or more and less than 50 mol%, (meth) acrylic acid is 0 or more and less than 50 mol%, other single amount A gel polymer obtained by polymerizing an aqueous monomer solution mainly composed of an unsaturated carboxylate having a body of 0 or more and less than 50 mol% is dried and then mixed with a crosslinking agent to satisfy the following formula 1. A method for producing a water-absorbent resin, characterized in that surface crosslinking is carried out while heat-treating under conditions.
420 ≦ (T−100) 2 × t ≦ 1500 (1)
(In Formula 1, T (° C.) is the surface crosslinking temperature, and t (time) is the surface crosslinking time.)
架橋剤として多価アルコール化合物、多価グリシジル化合物、多価アミン化合物、アルキレンカーボネートからなる1種または2種以上の架橋剤を用いて表面架橋する請求項1記載の吸水性樹脂の製造方法。 The method for producing a water-absorbent resin according to claim 1, wherein the surface crosslinking is performed using one or two or more kinds of crosslinking agents comprising a polyhydric alcohol compound, a polyvalent glycidyl compound, a polyvalent amine compound, and an alkylene carbonate as a crosslinking agent. 前記架橋剤と混合し、加熱処理することが、多価アルコール化合物、多価グリシジル化合物、多価アミン化合物、アルキレンカーボネートからなる1種または2種以上の架橋剤を吸水性樹脂表面近傍に加え加熱処理することである請求項1または2に記載の吸水性樹脂の製造方法。 Mixing with the cross-linking agent and heat treatment can be performed by adding one or more cross-linking agents composed of a polyhydric alcohol compound, a polyvalent glycidyl compound, a polyvalent amine compound, and an alkylene carbonate to the vicinity of the water-absorbent resin surface. method for producing a water-absorbent resin according to claim 1 or 2 is to process. 数式(1)に代えて下記数式2を満たす条件で加熱処理しながら表面架橋することを特徴とする、請求項1〜3のいずれかに記載の吸水性樹脂の製造方法。
700≦(T−100)2×t≦1000 (2)
(ただし、数式2においてT(℃)は表面架橋温度、t(時間)は表面架橋時間である。)
The method for producing a water-absorbent resin according to any one of claims 1 to 3 , wherein surface crosslinking is performed while heat treatment is performed under conditions satisfying the following mathematical formula 2 instead of the mathematical formula (1).
700 ≦ (T−100) 2 × t ≦ 1000 (2)
(In Formula 2, T (° C.) is the surface crosslinking temperature, and t (time) is the surface crosslinking time.)
架橋温度が、100℃を越え、150℃未満であることを特徴とする請求項1〜4のいずれかに記載の吸水性樹脂の製造方法。 The method for producing a water-absorbent resin according to any one of claims 1 to 4 , wherein the crosslinking temperature is higher than 100 ° C and lower than 150 ° C.
JP2003417506A 2003-12-16 2003-12-16 Manufacturing method of water absorbent resin Expired - Fee Related JP4408691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417506A JP4408691B2 (en) 2003-12-16 2003-12-16 Manufacturing method of water absorbent resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417506A JP4408691B2 (en) 2003-12-16 2003-12-16 Manufacturing method of water absorbent resin

Publications (2)

Publication Number Publication Date
JP2005179384A JP2005179384A (en) 2005-07-07
JP4408691B2 true JP4408691B2 (en) 2010-02-03

Family

ID=34779982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417506A Expired - Fee Related JP4408691B2 (en) 2003-12-16 2003-12-16 Manufacturing method of water absorbent resin

Country Status (1)

Country Link
JP (1) JP4408691B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5179044B2 (en) * 2006-11-09 2013-04-10 旭化成ケミカルズ株式会社 Thin superabsorbent composite with excellent dry feeling and production method thereof
JP2012031278A (en) * 2010-07-30 2012-02-16 San-Dia Polymer Ltd Absorbent resin particle, absorber comprising the same, and absorbent article
CN102599759A (en) * 2012-02-24 2012-07-25 义乌聚创冷热科技有限公司 Cold-hot dual-purpose pad and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639485B2 (en) * 1989-06-27 1994-05-25 東亞合成化学工業株式会社 Water absorbent resin manufacturing method
JPH0674331B2 (en) * 1992-01-28 1994-09-21 三洋化成工業株式会社 Process for producing modified super absorbent resin and resin
JPH08157531A (en) * 1994-12-07 1996-06-18 Nippon Synthetic Chem Ind Co Ltd:The Production of highly water-absorbing resin
JP3103754B2 (en) * 1995-10-31 2000-10-30 三洋化成工業株式会社 Modified water-absorbing resin particles and method for producing the same
JP3877195B2 (en) * 1997-04-14 2007-02-07 株式会社日本触媒 Pressure-resistant water-absorbing resin, disposable diaper using the same, water-absorbing resin and production method thereof
JPH11349625A (en) * 1998-06-10 1999-12-21 Sanyo Chem Ind Ltd Preparation of water absorbent and water absorbent
JP2000212372A (en) * 1999-01-28 2000-08-02 Kao Corp Water absorptive resin
JP2001302810A (en) * 2000-04-21 2001-10-31 Toagosei Co Ltd Method for continuously producing highly water- absorbing resin

Also Published As

Publication number Publication date
JP2005179384A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP0878488B1 (en) Method for production of hydrophilic resin
JP5349723B2 (en) Method for producing water absorbent resin
EP1002806B1 (en) Production process for hydrophilic polymer
JP2877255B2 (en) Manufacturing method of water absorbent resin with excellent durability
JP2000026510A (en) Production of resin and water-absorbing resin
US20090169891A1 (en) Water Absorbing Resin Particle Agglomerates and Manufacturing Method of the Same
JP3357093B2 (en) Method for producing water absorbent resin
JP4476822B2 (en) Ammonium salt-containing water-absorbent resin and method for producing the same
JP3259143B2 (en) Method for producing water absorbent resin
JP3349768B2 (en) Method and composition for producing acrylate polymer
JP3913867B2 (en) Water absorbing agent and method for producing the same
JPH0826085B2 (en) Method for producing water-absorbent resin having excellent durability
JP4694140B2 (en) Method for producing water absorbent resin
JP4408691B2 (en) Manufacturing method of water absorbent resin
JP3251647B2 (en) Water-absorbing resin and method for producing the same
JP4565636B2 (en) Manufacturing method of water absorption resin with high absorption capacity under high pressure
JP4242467B2 (en) Method for producing water absorbent resin
JP3439234B2 (en) Hydrophilic resin and method for producing the same
JPH11302306A (en) Production of water absorbing resin
JP3544372B2 (en) Acrylate-based polymer and sanitary material using the same
KR0165136B1 (en) Method for production of hydrophilic resin
JP3187370B2 (en) Manufacturing method of water absorbent resin with excellent durability
JPH11199603A (en) Production of water absorbing resin
JP2001310914A (en) Production method of water absorbing resin
JPH06329716A (en) Method of posttreatment of water-absorbing resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees