JP4359409B2 - Metal composite and method for producing the same - Google Patents

Metal composite and method for producing the same Download PDF

Info

Publication number
JP4359409B2
JP4359409B2 JP2001238075A JP2001238075A JP4359409B2 JP 4359409 B2 JP4359409 B2 JP 4359409B2 JP 2001238075 A JP2001238075 A JP 2001238075A JP 2001238075 A JP2001238075 A JP 2001238075A JP 4359409 B2 JP4359409 B2 JP 4359409B2
Authority
JP
Japan
Prior art keywords
metal composite
aluminum alloy
metal
aluminum
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001238075A
Other languages
Japanese (ja)
Other versions
JP2003049252A (en
Inventor
棟一 栗林
正道 田岡
信幸 鈴木
Original Assignee
棟一 栗林
正道 田岡
株式会社エー・エム・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 棟一 栗林, 正道 田岡, 株式会社エー・エム・テクノロジー filed Critical 棟一 栗林
Priority to JP2001238075A priority Critical patent/JP4359409B2/en
Publication of JP2003049252A publication Critical patent/JP2003049252A/en
Application granted granted Critical
Publication of JP4359409B2 publication Critical patent/JP4359409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム又はアルミニウム合金(以下、これらをアルミニウム合金と総称する。)をマトリックスとする金属複合体に関する。
【0002】
【従来の技術】
耐摩耗性が優れかつ軽量な複合材料として、アルミナ、炭化珪素、炭化チタニウム等のセラミックスの繊維、ウィスカー又は粒子に適宜の賦形剤を加え、所望の形状に成形した予備成形体に、溶湯鍛造によってアルミニウム合金の溶湯を含浸させたアルミニウムマトリックスの複合材料は知られている。
【0003】
このアルミニウムマトリックスの複合材料は、マトリックス金属のアルミニウム合金が軟質であるため、耐熱性、耐摩耗性に限界があり、特に高温時の耐摩耗性に限界があり、ブレーキ用摺動材料や、高温雰囲気で使用されるベアリング材などでは、その要求特性を満足させることはできなかった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、ブレーキ用摺動材料に要求される性能、特に、硬さ、耐熱性、耐摩耗性、適度な摩擦係数、摩擦係数の安定性等の性能に優れ、かつ、高温ベアリングに要求される性能、特に硬さ、耐熱性、耐摩耗性、非常に小さい摩擦係数等の性能に優れた金属複合体を提供することにある。
【0005】
本発明の他の目的は、上記の金属複合体の好適な製造法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、(1)炭化珪素粒子と(2)金属チタン粉末とで形成され、金属チタン粉末の体積率が0.5〜15%であり、体積率が45〜75%である予備成形体に、アルミニウム又はアルミニウム合金を含浸させてなる金属複合体に関する。
【0007】
本発明は、また、(1)炭化珪素粒子と(2)金属チタン粉末とで形成され、金属チタン粉末の体積率が0.5〜15%であり、体積率が45〜75%である予備成形体に、溶湯鍛造によりアルミニウム又はアルミニウム合金を含浸させることを特徴とする金属複合体の製造方法に関する。
【0008】
化珪素粒子の好ましい粒径は50〜250μmである。
【0009】
本発明の金属複合体に用いられる予備成形体の体積率Vf[(1)炭化珪素粒子と(2)金属チタン粉末の体積率の合計]は45〜75%とする。体積率Vfが45%未満であると最終製品の金属複合体の耐熱性、耐摩耗性が十分でなく、例えば、ブレーキローターや、高温雰囲気下で使用されるベアリングなどでは、要求される性能を確保できない傾向がある。また、75%を超えると、金属複合体の靱性が低下する傾向がある。また、予備成形体の作り易さの点からは体積率Vfは50%を超え75%以下が好ましい。
【0010】
本発明の金属複合体に用いられる予備成形体を構成する金属チタン粉末は、体積率で0.5〜15%とする。アルミニウム合金を含浸させるとAl−Ti金属間化合物が一部形成され、耐熱性及び硬度が高くなり、適度な摩擦係数、摩擦係数の安定性を確保することができる。金属チタン粉末の体積率が0.5%未満では材料の耐熱性が不十分で、15%を超えるとアルミニウム合金のほとんどがAl−Ti金属間化合物になってしまい、金属複合体の靱性の低下が著しくなる。金属チタン粉末の体積率は、金属チタン粉末の分散の均一性の点からは、5%を超え15%以下が好ましい。
【0011】
このような予備成形体にアルミニウム合金を含浸させるのに好適な方法は、アルミニウム合金溶湯に高圧をかけ凝固させる溶湯鍛造法である。
【0012】
本発明の金属複合体の製造方法において、予備成形体は、(1)炭化珪素粒子に(2)金属チタン粉末を混合し、水、PVA(ポリビニルアルコール)等のバインダー、シリカゾルなどの賦形剤を適宜混合し、成形用型を用いて所定形状に加圧等により成形し、必要に応じ乾燥することにより、多孔質の成形体として得られる。バインダーの使用量は予備成形体材料に対して1〜3体積%使用することが好ましい。
【0013】
予備成形体への含浸に用いられるアルミニウム合金としては、Al純金属、Al−Mg合金、Al−Mn合金等を用いることができる。
【0014】
このようにして得られた予備成形体を溶湯鍛造用の所定の金型内に配置し、アルミニウム合金溶湯を注いで、高圧を溶湯に与えて、本発明の金属複合体を得る。
【0015】
得られた金属複合体は、550℃以上の熱処理を施すと、さらに硬度や強度が向上する。熱処理の条件としては、アルミニウム合金(アルミニウム又はアルミニウム合金)の融点より低く、アルミニウム合金(アルミニウム又はアルミニウム合金)の融点より100℃低い温度以上の温度範囲が望ましく、また、熱処理時間としては、大きさ形状によって異なるが、好ましくは0.5〜24時間、より好ましくは3〜24時間である。
【0016】
以上のようにして得られた金属複合体は、溶湯鍛造の過程でもAl−Tiの金属間化合物を生成するが、より金属間化合物の生成を促進するには、熱処理の工程が必要である。
【0017】
本発明の金属複合体を製造する工程図の一例を図1に示す。図1(a)に示すように、予め予熱されている溶湯鍛造用の金型2に、(1)炭化珪素粒子と(2)金属チタン粉末とで形成された予備成形体1を所定の位置に装着する。次いでアルミニウム合金の溶湯を注入する。上記予備成形体1及び金型2は予熱しておくことが好ましく、この予熱によりアルミニウム合金の流動性がよくなり、予備成形体1への含浸もスムーズになる。アルミニウム合金の溶湯自体の温度は、予備成形体1への含浸を容易にするため、その融点より50〜450℃高い温度とすることが好ましい。次いで、図1(b)に示すように、金型2にパンチ3をセットし、圧力を加える。圧力は、溶湯が予備成形体に十分含浸され、かつ、結晶微細化の効果が得られるように10〜100MPaとすることが好ましく、この圧力は溶湯が完全に凝固するまで印加することが好ましい。次いで図1(c)又は(d)に示すように、アルミニウム合金を予備成形体に含浸させた金属複合体4と凝固した溶湯5とが一体的に結合した鍛造素材が得られ、金型2の底部に配置されている図1(a)及び(b)に示されるようなノックアウトピン6により金型2から取り出される。この鍛造素材の金属複合体4は、HB200程度の硬度であるが、このままでは、ブレーキ用摺動材料や耐熱ベアリング材としての所望のレベルではない。次いで取り出された鍛造素材は図1(e)に示されるように切削加工してブレーキローター7としたり、図1(f)に示すように切削加工してベアリング8に加工される。
【0018】
このようにして得られた金属複合体を更に熱処理することにより、Al−Tiの金属間化合物の反応を促進させる。これにより金属複合体の硬度や耐熱性が高くなり、ブレーキ用摺動材料や耐熱ベアリングとしての必要かつ適度な摩擦係数、摩擦係数の安定化が確保される。
【0019】
【実施例】
以下、本発明の実施例及びその比較例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0020】
実施例1
前記した図1に示す製造法において、炭化珪素粒子(平均粒径120μm)及び金属チタン粉末(平均粒径20μm)を混合し、有機バインダーPVAを加えて、炭化珪素の体積率52%、金属チタ粉末の体積率が8%、PVAの体積率が2%の予備成形体(体積率60%)を得た。このものをアルゴン中で800℃に予備加熱後、金型内に設置し、800℃のAl−0.5重量%Mg合金溶湯を注ぎ、加圧力100MPaを加えて、金属複合体を得た。
このようにして得た金属複合体をディスク状に加工してブレーキローターを、丸棒状に加工してベアリングを作製した。その後、600℃にして5時間熱処理をした所、硬さはHBで420になった。
【0021】
このブレーキローターを実車に装着して、急坂をブレーキをかけながら下りると、その表面温度が560℃になり、表面の硬度はHBで425であり、安定していた。また、この時の摩擦係数は0.38〜0.42で変化はなく、さらにローターの表面に変化は観測されなかった。
【0022】
次に直径3mm、長さ15mmの丸棒状のベアリングを耐熱鋼ハロステイBで作られたケースに入れ、480℃の熱風軸流ファンの雰囲気にて同ファンのベアリングとして1週間使用した。使用後のベアリング表面の硬度はHVで450であった。また、このものの表面の摩擦係数は0.004であり、使用前後における変化はなかった。
【0023】
実施例2
金属チタン粉末の体積率を13%になるようにした以外は実施例1と同様にして体積率65%の予備成形体を作製し、実施例1と同様にしてブレーキローターを作製した。
ブレーキローターの硬度はHBで460であり、このブレーキローターを実車に装着して、急坂をブレーキをかけながら下りると、その表面温度が600℃になり、表面の硬度はHBで460〜480であり、安定していた。また、この時の摩擦係数は0.38〜0.42で変化はなく、さらにローターの表面に変化は観測されなかった。
【0024】
比較例1
実施例1と同様に炭化珪素粒子を使用し、金属チタン粉末を使用しなかった以外は同様の方法で金属複合体を得た。このものをブレーキローターとして使用したところ、510℃で軟化して変形し、以後ローターとしては、使用不可であった。このものの硬度は、使用前後において、HBで140と変化がなかった。
【0025】
【発明の効果】
本発明により硬度、耐熱性、耐摩耗性、適度な摩擦係数を要求される部材に適する金属複合体が得られた。
【図面の簡単な説明】
【図1】本発明の製造法の工程を示す断面図。
【符号の説明】
1 予備成形体
2 金型
3 パンチ
4 金属複合体
5 凝固した溶湯
6 ノックアウトピン
7 ブレーキローター
8 ベアリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal composite having aluminum or an aluminum alloy (hereinafter collectively referred to as an aluminum alloy) as a matrix.
[0002]
[Prior art]
As a composite material with excellent wear resistance and light weight, molten forging into a preform molded into a desired shape by adding an appropriate excipient to fibers, whiskers or particles of ceramics such as alumina, silicon carbide, titanium carbide, etc. Aluminum matrix composites impregnated with molten aluminum alloy are known.
[0003]
This aluminum matrix composite material has limited heat resistance and wear resistance due to the softness of the aluminum alloy of the matrix metal. Especially, it has limited wear resistance at high temperatures. The bearing material used in the atmosphere could not satisfy the required characteristics.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to provide excellent performance such as hardness, heat resistance, wear resistance, moderate friction coefficient, stability of friction coefficient, etc. required for sliding materials for brakes, and for high temperature bearings. It is an object of the present invention to provide a metal composite having excellent performance such as required performance, particularly hardness, heat resistance, wear resistance, and a very small coefficient of friction.
[0005]
Another object of the present invention is to provide a suitable method for producing the above metal composite.
[0006]
[Means for Solving the Problems]
The present invention (1) is formed in silicon carbide particles (2) and the metallic titanium powder, the volume ratio of the titanium metal powder Ri from 0.5 to 15% der, volume ratio Ru 45-75% der preliminary The present invention relates to a metal composite obtained by impregnating a molded body with aluminum or an aluminum alloy.
[0007]
The present invention is also formed by the (1) silicon carbide particles (2) metallic titanium powder, the volume ratio of the titanium metal powder Ri from 0.5 to 15% der, volume rate of 45 to 75% The present invention relates to a method for producing a metal composite, wherein a preform is impregnated with aluminum or an aluminum alloy by molten metal forging.
[0008]
The preferred particle size of the coal of the silicon particles is 50 to 250 [mu] m.
[0009]
The volume fraction Vf [(1) silicon carbide particles and (2) volume fraction of metal titanium powder] of the preform used in the metal composite of the present invention is 45 to 75% . When the volume ratio Vf is less than 45 %, the final product metal composite has insufficient heat resistance and wear resistance. For example, the required performance is required for a brake rotor or a bearing used in a high temperature atmosphere. There is a tendency that it cannot be secured. On the other hand, if it exceeds 75%, the toughness of the metal composite tends to decrease. From the viewpoint of ease of making the preform, the volume ratio Vf is preferably more than 50% and 75% or less.
[0010]
The titanium metal powder constituting the preform used in the metal composite of the present invention is 0.5 to 15% by volume. When the aluminum alloy is impregnated, a part of the Al—Ti intermetallic compound is formed, heat resistance and hardness are increased, and an appropriate friction coefficient and stability of the friction coefficient can be ensured. If the volume fraction of the metal titanium powder is less than 0.5%, the heat resistance of the material is insufficient, and if it exceeds 15%, most of the aluminum alloy becomes an Al-Ti intermetallic compound and the toughness of the metal composite decreases. Becomes remarkable. The volume ratio of the metal titanium powder is preferably more than 5% and 15% or less from the viewpoint of the uniformity of dispersion of the metal titanium powder.
[0011]
A suitable method for impregnating such a preform with an aluminum alloy is a molten metal forging method in which a high pressure is applied to the molten aluminum alloy to solidify it.
[0012]
In the method for producing a metal composite of the present invention, the preform includes (1) silicon carbide particles mixed with (2) metal titanium powder, water, a binder such as PVA (polyvinyl alcohol), and an excipient such as silica sol. Are appropriately mixed, formed into a predetermined shape by pressing or the like using a molding die, and dried as necessary to obtain a porous molded body. It is preferable to use 1-3 volume% of binders with respect to the preform material.
[0013]
As the aluminum alloy used for impregnation of the preform, Al pure metal, Al—Mg alloy, Al—Mn alloy, or the like can be used.
[0014]
The preform thus obtained is placed in a predetermined mold for forging a molten metal, and a molten aluminum alloy is poured into the molten metal to give a high pressure to the metal composite of the present invention.
[0015]
When the obtained metal composite is subjected to a heat treatment at 550 ° C. or higher, the hardness and strength are further improved. As a condition for the heat treatment, a temperature range that is lower than the melting point of the aluminum alloy (aluminum or aluminum alloy) and lower than the melting point of the aluminum alloy (aluminum or aluminum alloy) by 100 ° C. or higher is desirable. Although it varies depending on the shape, it is preferably 0.5 to 24 hours, more preferably 3 to 24 hours.
[0016]
The metal composite obtained as described above produces an Al—Ti intermetallic compound even in the process of molten metal forging, but a heat treatment step is required to further promote the production of the intermetallic compound.
[0017]
An example of a process chart for producing the metal composite of the present invention is shown in FIG. As shown in FIG. 1 (a), a preform 1 made of (1) silicon carbide particles and (2) titanium metal powder is placed in a predetermined position on a pre-heated mold 2 for forging a molten metal. Attach to. Next, a molten aluminum alloy is poured. The preform 1 and the mold 2 are preferably preheated. This preheating improves the fluidity of the aluminum alloy, and the impregnation of the preform 1 is smooth. The temperature of the molten aluminum alloy itself is preferably 50 to 450 ° C. higher than its melting point in order to facilitate the impregnation of the preform 1. Next, as shown in FIG. 1B, the punch 3 is set on the mold 2 and pressure is applied. The pressure is preferably 10 to 100 MPa so that the molten metal is sufficiently impregnated into the preform and the effect of crystal refining is obtained, and this pressure is preferably applied until the molten metal is completely solidified. Next, as shown in FIG. 1 (c) or (d), a forging material is obtained in which a metal composite 4 in which a preform is impregnated with an aluminum alloy and a solidified molten metal 5 are integrally bonded to each other. It is taken out from the mold 2 by a knockout pin 6 as shown in FIGS. 1 (a) and 1 (b) arranged at the bottom of the mold. This forged metal composite 4 has a hardness of about HB200, but this is not the desired level as a sliding material for a brake or a heat-resistant bearing material. Next, the forged material taken out is cut into a brake rotor 7 as shown in FIG. 1E, or cut into a bearing 8 as shown in FIG.
[0018]
The metal composite thus obtained is further heat-treated to promote the reaction of the Al—Ti intermetallic compound. This increases the hardness and heat resistance of the metal composite, and ensures the necessary and appropriate friction coefficient and stabilization of the friction coefficient as a sliding material for a brake and a heat-resistant bearing.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention and comparative examples thereof, but the present invention is not limited to these examples.
[0020]
Example 1
In the manufacturing method shown in FIG. 1, silicon carbide particles (average particle size 120 μm) and metal titanium powder (average particle size 20 μm) are mixed, and an organic binder PVA is added to form a silicon carbide volume fraction of 52%. A preform with a volume fraction of 8% powder and a volume fraction of PVA of 2% (volume ratio 60%) was obtained. This was preheated to 800 ° C. in argon, then placed in a mold, poured with an Al-0.5 wt% Mg alloy melt at 800 ° C., and a pressure of 100 MPa was applied to obtain a metal composite.
The metal composite thus obtained was processed into a disk shape, and the brake rotor was processed into a round bar shape to produce a bearing. Then, when it heat-processed at 600 degreeC for 5 hours, hardness became 420 by HB.
[0021]
When this brake rotor was mounted on an actual vehicle and descended while braking a steep slope, the surface temperature became 560 ° C., and the surface hardness was 425 in HB, which was stable. In addition, the friction coefficient at this time was 0.38 to 0.42, no change, and no change was observed on the surface of the rotor.
[0022]
Next, a round bar bearing having a diameter of 3 mm and a length of 15 mm was put in a case made of heat-resistant steel halostay B, and used as a bearing of the same fan in a hot air axial fan atmosphere at 480 ° C. for one week. The hardness of the bearing surface after use was 450 in HV. Moreover, the friction coefficient of the surface of this thing was 0.004, and there was no change before and behind use.
[0023]
Example 2
A preform with a volume ratio of 65% was prepared in the same manner as in Example 1 except that the volume ratio of the metal titanium powder was 13%, and a brake rotor was manufactured in the same manner as in Example 1.
The hardness of the brake rotor is 460 in HB. When this brake rotor is mounted on an actual vehicle and descending while braking a steep slope, the surface temperature becomes 600 ° C., and the surface hardness is 460 to 480 in HB. It was stable. In addition, the friction coefficient at this time was 0.38 to 0.42, no change, and no change was observed on the surface of the rotor.
[0024]
Comparative Example 1
A metal composite was obtained in the same manner as in Example 1 except that silicon carbide particles were used and no metal titanium powder was used. When this was used as a brake rotor, it softened and deformed at 510 ° C. and thereafter could not be used as a rotor. The hardness of this product did not change as 140 in HB before and after use.
[0025]
【The invention's effect】
According to the present invention, a metal composite suitable for a member requiring hardness, heat resistance, wear resistance, and an appropriate friction coefficient was obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a process of a production method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Preliminary body 2 Mold 3 Punch 4 Metal composite 5 Solidified molten metal 6 Knockout pin 7 Brake rotor 8 Bearing

Claims (3)

(1)炭化珪素粒子と(2)金属チタン粉末とで形成され、金属チタン粉末の体積率が0.5〜15%であり、体積率が45〜75%である予備成形体に、アルミニウム又はアルミニウム合金を含浸させてなる金属複合体。(1) is formed in silicon carbide particles (2) and the metallic titanium powder, Ri volume ratio of from 0.5 to 15% der titanium metal powder, the preform volume ratio of Ru 45-75% der, A metal composite impregnated with aluminum or an aluminum alloy. (1)炭化珪素粒子と(2)金属チタン粉末とで形成され、金属チタン粉末の体積率が0.5〜15%であり、体積率が45〜75%である予備成形体に、溶湯鍛造によりアルミニウム又はアルミニウム合金を含浸させることを特徴とする金属複合体の製造方法。(1) it is formed in silicon carbide particles (2) and the metallic titanium powder, the volume ratio of the titanium metal powder Ri from 0.5 to 15% der, the preform volume fraction is 45 to 75% melt A method for producing a metal composite comprising impregnating aluminum or an aluminum alloy by forging. 予備成形体に溶湯鍛造によりアルミニウム又はアルミニウム合金を含浸させて得られた金属複合体を、アルミニウム又はアルミニウム合金の融点より低く、アルミニウム又はアルミニウム合金の融点より100℃低い温度以上の温度範囲で、0.5〜24時間熱処理する工程を設けた請求項記載の金属複合体の製造方法。A metal composite obtained by impregnating a preform with aluminum or an aluminum alloy by melt forging is 0 in a temperature range not lower than the melting point of aluminum or aluminum alloy and not lower than 100 ° C. below the melting point of aluminum or aluminum alloy. The method for producing a metal composite according to claim 2, further comprising a step of heat-treating for 5 to 24 hours.
JP2001238075A 2001-08-06 2001-08-06 Metal composite and method for producing the same Expired - Lifetime JP4359409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238075A JP4359409B2 (en) 2001-08-06 2001-08-06 Metal composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238075A JP4359409B2 (en) 2001-08-06 2001-08-06 Metal composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003049252A JP2003049252A (en) 2003-02-21
JP4359409B2 true JP4359409B2 (en) 2009-11-04

Family

ID=19069055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238075A Expired - Lifetime JP4359409B2 (en) 2001-08-06 2001-08-06 Metal composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP4359409B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190024708A1 (en) * 2017-07-20 2019-01-24 GM Global Technology Operations LLC Bearing with lightweight backing substrate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4002294B2 (en) * 2004-07-06 2007-10-31 三菱商事株式会社 Carbon fiber Ti-Al composite material and method for producing the same.
WO2006027879A1 (en) * 2004-09-06 2006-03-16 Mitsubishi Corporation CARBON FIBER Ti-Al COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE SAME
US10670095B2 (en) 2007-08-22 2020-06-02 Tech M3, Inc. Brake disk and method of making same
US8893863B2 (en) 2007-08-22 2014-11-25 Tech M3, Inc. Reduction of particulate emissions from vehicle braking systems
WO2008103759A1 (en) 2007-02-20 2008-08-28 Tech M3, Inc. Composite brake disks and methods for coating
WO2014145231A2 (en) 2013-03-15 2014-09-18 Tech M3, Inc. Braking systems incorporating wear and corrosion resistant rotors
WO2014145227A1 (en) 2013-03-15 2014-09-18 Tech M3, Inc. Wear resistant braking systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190024708A1 (en) * 2017-07-20 2019-01-24 GM Global Technology Operations LLC Bearing with lightweight backing substrate
US10495141B2 (en) * 2017-07-20 2019-12-03 GM Global Technology Operations LLC Bearing with lightweight backing substrate

Also Published As

Publication number Publication date
JP2003049252A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
JP2017533829A (en) Ceramic preform and method
JP4359409B2 (en) Metal composite and method for producing the same
JP4429505B2 (en) Method for producing low volume fraction metal-based preform
JP2006063400A (en) Aluminum-based composite material
JP2002536538A (en) Method for producing Al2O3 / titanium aluminide composite material member
KR100682278B1 (en) Friction material and manufacturing method of the same
EP0380973B1 (en) Reinforced materials
JP2007016286A (en) Metal matrix composite and its manufacturing method
JPH109294A (en) Roller brake for motorcycle and its manufacture
JP3618106B2 (en) Composite material and method for producing the same
JPH02310329A (en) Manufacture of particle dispersion composite
JPH06145841A (en) Composite member
JP4384830B2 (en) Monolithic heterogeneous composite material
JP3775893B2 (en) Preform and manufacturing method thereof
JPH0578708A (en) Production of aluminum-based grain composite alloy
JP2001214247A (en) Sliding material for brake composed of metal composite, producing method therefor, brake rotor and brake drum
JP2000046078A (en) Backing plate for brake pad and manufacture of backing plate
JPH08291834A (en) Friction material
JP3962779B2 (en) Method for producing preform for fiber reinforced composite material and method for producing fiber reinforced composite material
JPH08269591A (en) Aluminum alloy powder molding partially containing ceramic particles and its production
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof
JPH06145921A (en) Production of high heat resisting strength aluminum alloy
JPH08284990A (en) Metallic friction material
JP4294882B2 (en) Metal-ceramic composite material and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4359409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term