JP4357761B2 - Optical coordinate input device - Google Patents

Optical coordinate input device Download PDF

Info

Publication number
JP4357761B2
JP4357761B2 JP2001084061A JP2001084061A JP4357761B2 JP 4357761 B2 JP4357761 B2 JP 4357761B2 JP 2001084061 A JP2001084061 A JP 2001084061A JP 2001084061 A JP2001084061 A JP 2001084061A JP 4357761 B2 JP4357761 B2 JP 4357761B2
Authority
JP
Japan
Prior art keywords
coordinate
information
input device
angle
angle detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001084061A
Other languages
Japanese (ja)
Other versions
JP2002287886A (en
Inventor
正良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001084061A priority Critical patent/JP4357761B2/en
Publication of JP2002287886A publication Critical patent/JP2002287886A/en
Application granted granted Critical
Publication of JP4357761B2 publication Critical patent/JP4357761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、本発明はパーソナルコンピュータ、アミューズメント用入力装置、携帯端末等における画面上のカーソル等の移動指示やストロークデータの入力を行うための2次元座標領域へ入力可能な座標入力装置に関するものである。
【0002】
【従来の技術】
従来、光ビームを走査することにより座標を検出する方法としては、たとえば特開平10−31546号公報に開示された方法がある。図11に示すごとくこの従来方法によれば、入力したい座標に対応した目標位置を指示するスタイラスペン50の球形51の反射部からの走査ビームの反射戻り光を座標位置が既知の2つの位置P1(x1,y1)、P2(x2,y2)検出部により角度検出を行い、三角測量の原理によりペン先の座標位置S(x,y)を検出する。
【0003】
【発明が解決しようとする課題】
図11に示す従来方法では座標指示部材としてのペンが限定されてしまい指定されたペン以外での座標入力が困難になる。また、ペン先形状も限定され入力時のカーソル等が見にくくなるなど、ユーザビリティーに問題が残る。さらに、入力装置を寝かせたスタイルでの入力の際の手つき等があった場合に誤動作するなどの問題も残る。
【0004】
本発明は、このような従来の事情に鑑みてなされたもので、高精度かつ手つき等の問題に対応した柔軟な操作環境のもとでの座標入力装置を提供することをその課題としている。
【0005】
【課題を解決するための手段】
請求項1に記載の光学式座標入力装置は、
走査ビームを表示面に照射する光ビーム走査手段と、前記表示面の任意の位置を座標指示部材で指示すると前記光ビーム走査手段が照射した走査ビームが当該座標指示部材を含む操作部位に反射されて生じる反射光を検出してその反射光の入射角度情報とその受光光量情報とを得る角度検出手段と、
前記角度検出手段の位置情報と前記入射角度情報とにより前記操作部位の一連の位置情報を算出する演算手段と、該演算手段による計測範囲内の一連の位置情報と前記受光光量情報とを記憶する記憶手段と、該記憶手段に記憶された前記一連の位置情報と前記受光光量情報とから、前記角度検出部に最も近い位置を前記座標指示部材の位置として判定する判定手段とを備え、該判定手段により特定された座標指示部材の位置情報を基に目標位置の座標を算出して座標データとして次段へ出力することを特徴とする。
請求項2に記載の光学式座標入力装置は、前記角度検出手段は、所定の間隔をおいて設置されかつ入射角度を受光素子上の光強度位置変化に変換する光学系を有する二つの角度検出部からなり、前記記憶手段は前記二つの角度検出部のそれぞれの位置情報を記憶し、前記二つの角度検出部の位置情報と前記二つの角度検出部からの入射角度情報とにより前記目標位置の座標を算出することを特徴とする。
請求項3に記載の光学式座標入力装置は、前記光ビーム走査手段は、照射角度を検出する角度検出部を有し、前記角度検出手段は前記光ビーム走査手段と一定間隔隔てて設置されかつ入射角度情報を受光素子上の光強度位置変化に変換する光学系を有する一つの角度検出部からなり、前記記憶手段は前記光ビーム走査手段と前記角度検出手段のそれぞれの位置情報を記憶し、前記記憶手段に記憶されている各位置情報と前記角度検出手段により得られた入射角度情報と前記角度検出により検出された照射角度情報とにより前記目標位置の座標を算出することを特徴とする。
請求項4に記載の光学式座標入力装置は、計測対象となる表示領域の表示面の座標系上の既知の複数の座標位置に補正用のマーカを表示する手段を有し、前記マーカをそれぞれ個別に指示し、その情報から前記角度検出手段の表示座標系での座標位置を算出する手段と、その結果により前記角度検出手段の座標位置情報を補正する手段とを有することを特徴とする。
請求項5に記載の光学式座標入力装置は、前記計測範囲内の一連の位置情報を記憶する記憶手段に記憶された位置情報のうち少なくとも一つの座標成分の最大値若しくは最小値の情報を基に前記記憶手段の一連の位置情報から前記座標指示部材の位置を判定することを特徴とする。
請求項6に記載の光学式座標入力装置は、前記座標指示部材の前記走査ビームが照射される部位を含む所定の範囲に所定の反射係数を有する拡散反射面が設けられていることを特徴とする。
請求項7に記載の光学式座標入力装置は、前記角度検出手段が、所定の焦点距離を有する一つないしは複数のレンズからなる光学系と、その焦点面上に設置された入射位置の判定が可能な受光素子とからなることを特徴とする。
請求項8に記載の光学式座標入力装置は、前記照射角度検出部が、等速回転する反射素子と所定の位置での少なくとも一つの走査ビーム検出部と時間を計測するタイマー部とからなり、前記走査ビーム検出部からの出力信号と前記タイマー部からの時間情報とから前記走査ビームの出射角度を計測することを特徴とする。
請求項9に記載の光学式座標入力装置は、少なくとも一つの前記座標指示部材に所定の動作を指示するための操作部と、該操作部の動作に連動して所定の無線信号を発生する送信部とを設け、該送信部からの信号を受信して所定の信号を次段の入力装置へ出力する手段を有することを特徴とする。
請求項10に記載の光学式座標入力装置は、前記計測範囲内の一連の位置情報を記憶する記憶手段に記憶された位置情報から前記座標指示部材の位置を判定する際に、前記座標指示部材の形状情報から座標指示部材の種類を判定する判定手段を有することを特徴とする。
請求項11に記載の光学式座標入力装置は、前記座標判定部にて指示座標を判定する際に、前記角度検出手段への受光光量情報に基づき前記座標指示部材の種類を判定する判定手段を有することを特徴とする。
【0027】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を詳述する。
[実施例1]
図1は本発明に係る光学式座標入力装置の概略構成図、図2、図3、図4及び図9はそれぞれ本実施形態の動作原理を示す図である。
【0028】
本発明に係る座標入力装置1は、図1に示すように液晶デバイス(LCD)やCRT等の情報表示部2に操作者の座標指示部材3を保持した手を含む操作部位と対向する位置に設置される。本座標入力装置1は、コリメートレンズ付きの発光素子(LD)もしくはLED光源8とミラーをモーター等の回転素子に設置してなる走査素子10及びコントローラ9からなる光ビーム走査手段11と、角度検出手段4、5(各々検出部4a、5aと演算部4b、5bとからなる)、各種演算と各ユニットを制御する中央演算処理部6、及び演算結果等を記憶する記憶手段7を有し、座標指示部材3を保持した手を含む操作部位の二次元形状を三角測量の原理を用いて計測するシステムからなる。
【0029】
以下に本発明の座標入力装置の動作について説明する。
【0030】
本発明では、情報表示面2の表面近傍の平行な平面内に概略平行な光ビームを前記走査素子10の回転に伴って放射状に照射する。操作者が座標指示部材3(例えばスタイラスペン)を保持して表示面2の所望の座標を指示すると、前記走査ビームが前記座標指示部材3を保持した手を含む操作部位をスキャンする。照射された光ビームスポットでは拡散反射光が生じ、2次光源を形成する。角度検出部4a、5aは図2に示すように、シリンドリカルレンズ15aとその焦点距離位置にある位置検出素子15b(たとえばPSDやCCDなどの光強度を入射スポット位置情報に変換する受光素子である)から構成され、前記2次光源が十分に小さく、2次光源からの拡散反射光が十分に前記角度検出部から平行光とみなせる場合、前記角度検出部の入射スポット16のレンズ光軸点(光軸と受光素子との交点)からの距離情報δから入射角度αは次式から求めることができる。
【0031】
δ=f・tan(π/2-α)
ただし、ここでは表示画面の直交する2辺をX及びY軸とし(以後表示座標系という)、入射角度はX軸とのなす角度とする。また、説明を簡単化するために本実施例では角度検出部のレンズ15aの光軸はY軸に平行とする。実際には、表示範囲内を効率よく検出することを考えると前記光軸は表示面の重心に向けるのが望ましいが、その際はあらかじめ光軸とX軸との角度を考慮して、入射角を算出すればよい。同様にして、もう一方の角度検出部への入射角度βも求める。
【0032】
次に各入射角度が求まる(演算部4b、5bで行う)と、図3に示すように前記表示座標上での角度検出部の位置をP1、P2とし、前記2次光源の位置をS1、S1から線分P1P2に垂線を引いた際の交点をMとすると、幾何学的関係から次式が成り立つ。
【0033】
|S1M|=L1・tanα=(L-L1)tanβ
ただし、|S1M|は線分S1M の大きさを表し、LはP1及びP2間の距離(L= |P1P2|)、L1はP1及びM間の距離(L= |P1M|)とする。
よって、中央演算処理部6により、上記関係からL1について解くことにより、次式が成り立つ。
【0034】
L1=L・tanβ/(tanα+tanβ)
|S1M|= L tanαtanβ/(tanα+tanβ)
上記の結果と、各角度検出部の座標から、2次光源の座標位置S1を算出する。
【0035】
本発明では、一回転の走査で計測される前記2次光源の位置情報20を記憶する記憶手段7を有し、ここに中央演算処理部6で演算された上記位置情報20を記憶する。座標指示部材3は操作者から最も離れている点にあることに注目し、次の走査に入るまでに上記位置情報の比較を行い、図4に示すように本実施例の場合、操作者と対向するように本座標入力装置1を設置していることから、角度検出部に最も近い点21(上記位置情報ではy座標の最小値採用、もしくは別の方法として前記点とその近傍点とから重心位置を算出してそれを採用)を判定することにより、座標指示部材位置を特定し、その座標を入力指示座標として採用する。本発明によれば、高精度かつ手つき等の問題に対応した柔軟な操作環境のもとでの座標入力が可能となる。
【0036】
さらに別の判定方法としては、図9に示すように前記座標指示部材3の前記走査ビームが照射される部位を含む所定の範囲に手の皮膚よりも大きな反射係数を有する拡散反射面(例えば指示部材3の表示面側最下部近傍の表面41に反射膜を塗布後、面を荒らす(粗面化)処理を施したもの)を設置し、前記角度検出部で受光光量(計測される電流値で代表することも可能)の計測も行う。さらに上記2次光源位置の座標計算結果と対応付けた形で、位置情報と同時に記憶手段7へ別パラメータとして前記受光光量も記憶する。そして、中央検算処理部6にて、受光光量の最大値及びその近傍値40(40a、40b)を検出して、対応する座標値を基にそれらの座標情報から例えば重心位置を算出して座標指示部材3の座標値と判定してその座標を入力指示座標として採用してもよい。このとき、さらに上記座標指示部材以外の部材、例えば指などで操作する際に、前記受光光量情報からそれが前記座標指示部材なのか、それとも指などの他の部材なのかを判定してもよい。その結果から、例えばグラフィックの加工編集等の操作をするアプリケーションを操作中のときなどに、前記指示部材のときはストロークデータの入力モードに、指等の他の部材のときはアプリケーションのメニューなどのファイル操作モードに切り換えるよう次段の情報機器に指示を行うことも可能である。
【0037】
さらに、操作者の手及び座標指示部材以外を誤検知するのを回避するため、角度検出部での受光光量情報から、所定の受光光量以上の計測点のみ座標指示データとして採用するようにして装置の信頼性を高めることも可能である。要するに、それ以下の計測点は破棄するか、或いは表示面の特定位置の値に書き換えるようにする。つまり、誤動作を防止することが可能で、信頼性の高い座標入力装置を提供することが可能である。
[実施例2]
本実施例について、図5はその概略構成を、図6は回転計測の動作原理を示す。
【0038】
本実施例では、前述の実施例の角度検出手段の一方を走査ビーム手段で置き換えた構成としている。すなわち、本実施例では、走査用ミラーを等速角速度で回転させ、一回転するうち所定の回転角度で走査ビームを受光する受光素子25を設けて、前記受光素子25からの信号をトリガーにタイマー26からの時間情報(例えば、クロック信号のパルス数など)と角度検出手段4での計測データとを同期させる。
【0039】
走査ビームの照射角βは図6に示すように回転角と反射角の関係から次式より求めることが可能である。
【0040】
β=2・ω・Δt+θ0
ただし、θ0はトリガー用受光素子25に走査ビームが入射した際の走査ビームの照射角、ωは回転角速度、Δtは計測時の経過時間(受光素子25に入射してからの経過時間)とする。
【0041】
この照射角と走査ビーム手段の座標データを前記実施例の一方の角度検出手段の各データとすることにより、前記手法と同様に入力指示座標を算出することができる。
【0042】
図7は座標補正方法の原理を示している。
【0043】
本発明では、例えば表示画面上に各軸に平行な長方形の座標が既知の各頂点D1、D2、D3、D4の4つの座標点を十字や○、□などの記号で表示、それらの点を座標指示部材で順番に指示する。角度検出部の座標位置P1及びP2は設計上概略わかっているため、その情報と得られる角度情報からどの点を指示したかは簡単に判別できるため、指示する順番は操作者が任意に指定可能である。例えば、D1とD2を指示した際の角度情報の差分からα1、同じくD1とD3を指示した際のそれをα2とすると正弦定理より、点D1とD2を通り三角形P1D1D2に外接する円30及び点D1とD3を通り三角形P1D1D3に外接する円31のそれぞれの半径r1、r2は次式により求められる。
【0044】
1=|D1D2|/2sinα12=|D1D3|/2sinα2
さらに、図形上の特徴から円30の中心点C1の座標のうち、y座標値はD1、及びD2の中点M1のy座標である。また、x座標は次式の関係から算出される。
【0045】
|C1M1|=√(r1 2―|M1D2|2)
(点C1のx座標)=(M1のx座標)−|C1M1
同様に、円31の中心点C2の座標も次式から算出される。
【0046】
(点C1のx座標)=(D1、及びD3の中点M1のx座標)
(点C1のy座標)=(M2のy座標)−|C1M2
ただし、|C1M2|=√(r2 2―|M2D3|2)
ここで、直線C1 C2と直線 P1 D1との交点をAとし、直線P1 D1上の方向ベクトル(単位ベクトル)をv1とすると
1⊥(ベクトルC1 C2 ) 及び |v1|=1
の関係から、v1の成分が求められる。
【0047】
これにより、直線D1A上の任意の点をQとし、座標原点をOとすると、ベクトルOQは下記のように記述できる。
【0048】
OQ=O D1+t・v1 ただし、tは任意の実数
ここで、点A=Qの時のtの値をt0とすると、t0は次式より求めることができる。
【0049】
O D1+t0・v1 = O C1+k・C1 C2 ただし、kは実数
よって、補正すべき座標点P1は図形上の特徴から次式から算出される。
【0050】
O P1=O D1+2・t0・v1
同様に点D1とD3を指示した際の角度情報の差分及び、同じくD3とD4を指示した際の角度差分から点P2の正確な座標が算出でき、これらの結果で初期設定された座標値P1 、P2を書き換えることにより、以後の座標入力を正確に行うことが可能である。また、さらに上記結果及び各点での角度測定値から、角度検出部の光軸と表示座標系とのなす角の補正を行うことも可能である。
【0051】
これにより、たとえば生産時の組み付け誤差やユーザへの運搬の際などに発生する各ユニットのずれなどによる、座標読み取りエラーを回避でき、信頼性の高い座標入力装置を提供できる。
[実施例3]
本実施例について、図8にその概略構成を示す。
【0052】
本実施例では、座標指示部材3に走査ビームとは波長の異なる光を搬送波とする送信部35と所定の信号を生成するための手段(図示せず)と送信指示を操作するボタン34とが配置されていて、前記ボタン操作により所定の信号に変調された信号を前記搬送波に重畳して送信する送信部35から、所定の信号を送信し、所定の位置に前記送信部35からの信号を受信して所定の信号を生成する受信部36を配置し、信号の受信を受けて前記中央演算処理部6にて、所定の信号に変換後、次段の入力装置へ出力する。
【0053】
例えば、本座標入力装置をマウスとして用いることを考えると、マウスボタンのクリック動作を本機能で実現することにより、PC等のGUI操作の為の入力装置として用いることが可能になる。なお、上記走査ビームとは波長の異なる光を搬送波とするほかに、電波もしくは超音波を搬送波に用いてもよい。
【0054】
図10は前述の座標指示部材の位置判定手段の概念を示している。
【0055】
本発明では、前記計測範囲内の一連の位置情報を記憶する手段に保持された位置情報から前記座標指示部材の位置を判定する際に、同図(a)に示すような指に比べ細いスタイラスペン3の検出結果と、同図(b)の指の検出結果とを比べ、例えばX方向の検出幅45,46を比較して座標指示部材の種類を判定することにより、それがスタイラスペンなのか、それとも指などの他の部材なのかを判定する。その結果から、例えば前述の例のようにグラフィックアプリケーションを操作中の時などに、前記スタイラスペンのときはストロークデータの入力モードに、指のときはメニューなどのファイル操作モードに切り換えるよう次段の情報機器に指示を行うことも可能である。
【0056】
なお、本発明は上記実施例に限らず、その他本発明の精神に逸脱することなく種々の変形が可能である。例えば、角度検出部の光学系として単純にスリットを所定の距離に設けて、スリット光の入射位置を検出して、その入射位置情報と受光素子とスリットとの距離情報から入射角度を算出してもよい。また、照射角度の検出も直接回転素子にロータリーエンコーダを接続して、エンコーダからの検出値から照射角度を算出してもよい。
【0057】
【発明の効果】
以上詳細に述べたように、請求項1に記載の発明によれば、高精度かつ手つき等の問題に対応した柔軟な操作環境のもとでの座標入力装置を提供することが可能である。
【0058】
請求項2に記載の発明によれば、高精度かつ手つき等の問題に対応した柔軟な操作環境のもとでの座標入力装置を提供することが可能である。
【0059】
請求項3に記載の発明によれば、高精度かつ手つき等の問題に対応した柔軟な操作環境のもとでの座標入力装置を提供することが可能である。
【0060】
請求項4に記載の発明によれば、生産時の組み付け誤差やユーザへの運搬の際などに発生する各ユニットのずれなどによる、座標読み取りエラーを回避でき、信頼性の高い座標入力装置を提供することが可能である。
【0061】
請求項5に記載の発明によれば、高精度かつ手つき等の問題に対応した柔軟な操作環境のもとでの座標入力装置を提供することが可能である。
【0062】
請求項6に記載の発明によれば、高精度かつ手つき等の問題に対応した柔軟な操作環境を提供するとともに高速な座標入力を可能とする座標入力装置を提供することが可能である。
【0063】
請求項7に記載の発明によれば、簡単な構成により高精度の角度検出機能を実現することが可能である。
【0064】
請求項8に記載の発明によれば、簡単な構成により高精度の角度検出機能を実現することが可能である。
【0065】
請求項9に記載の発明によれば、座標入力と同時に他の操作指示を次段へ通知することが可能で情報機器のグラフィカルユーザーインターフェイス(GUI)の操作を本装置により行うことが可能になる。
【0066】
請求項10に記載の発明によれば、座標指示部材の種類を容易に判定可能で、その結果を用いて次段の情報機器装置のユーザーインターフェイスを適切に切り替えることにより操作性を向上することが可能になる。
【0067】
請求項11に記載の発明によれば、座標指示部材の種類を容易に判定可能で、その結果を用いて次段の情報機器装置のユーザーインターフェイスを適切に切り替えることにより操作性を向上することが可能になる。
【図面の簡単な説明】
【図1】本発明に係る光学式座標入力装置の概略構成図である。
【図2】本発明一実施例の座標入力装置の動作原理を示す図である。
【図3】本発明一実施例の座標入力装置の動作原理を示す図である。
【図4】本発明一実施例の座標入力装置の動作原理を示す図である。
【図5】本発明に係る光学式座標入力装置の他の実施例の概略構成図である。
【図6】他の実施例の回転計測の動作原理を示す図である。
【図7】座標補正方法の原理を示す図である。
【図8】本発明のその他の実施例の概略構成図である。
【図9】本発明一実施例の座標入力装置の動作原理を示す図である。
【図10】座標指示部材の位置判定手段の概念を示す図である。
【図11】従来例の構成を説明するための図である。
【符号の説明】
1 光学式座標入力装置
2 表示装置
3 座標指示部材
4,5 角度検出手段
6 中央演算処理手段
7 記憶手段
11 走査ビーム手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coordinate input device capable of inputting into a two-dimensional coordinate area for inputting a movement instruction of a cursor on a screen or a stroke data in a personal computer, an amusement input device, a portable terminal, etc. is there.
[0002]
[Prior art]
Conventionally, as a method for detecting coordinates by scanning a light beam, for example, there is a method disclosed in Japanese Patent Laid-Open No. 10-31546. As shown in FIG. 11, according to this conventional method, the reflected return light of the scanning beam from the reflection part of the sphere 51 of the stylus pen 50 that indicates the target position corresponding to the coordinates to be input is two positions P1 whose coordinate positions are known. Angle detection is performed by the (x1, y1), P2 (x2, y2) detection unit, and the coordinate position S (x, y) of the pen tip is detected based on the principle of triangulation.
[0003]
[Problems to be solved by the invention]
In the conventional method shown in FIG. 11, a pen as a coordinate indicating member is limited, and it becomes difficult to input coordinates other than the designated pen. In addition, the pen tip shape is limited, and it is difficult to see the cursor at the time of input. Furthermore, there still remains a problem such as malfunction when there is a hand when inputting in a style in which the input device is laid down.
[0004]
The present invention has been made in view of such conventional circumstances, and an object of the present invention is to provide a coordinate input apparatus under a flexible operation environment that can cope with problems such as high accuracy and handling.
[0005]
[Means for Solving the Problems]
The optical coordinate input device according to claim 1,
A light beam scanning means for irradiating the scanned beam on the display surface, the scanning beam the light beam scanning means and to instruct a coordinate pointing member is irradiated with an arbitrary position of the display surface is reflected to the operation site comprising the coordinate pointing member the incident angle information of the reflected light and an angle detection means for obtaining a received light amount information detected by the reflected light caused Te,
Storing a calculating means for calculating a set of position information of the operation portion position information by said incident angle information of the angle detecting means and a series of position information and the received light amount information in the measurement range by said calculation means storage means, from said series of position information stored in the storage means and the received light quantity information, and a determination means for determining a position closest to the angle detector as a position of the coordinate pointing member, the determination The coordinates of the target position are calculated based on the position information of the coordinate indicating member specified by the means and output to the next stage as coordinate data.
The optical coordinate input device according to claim 2, wherein the angle detection means includes two optical systems having an optical system that is installed at a predetermined interval and converts an incident angle into a light intensity position change on a light receiving element. The storage means stores position information of each of the two angle detectors, and the position information of the target position is determined by the position information of the two angle detectors and the incident angle information from the two angle detectors. Coordinates are calculated.
The optical coordinate input device according to claim 3, wherein the light beam scanning unit includes an angle detection unit that detects an irradiation angle, and the angle detection unit is installed at a predetermined interval from the light beam scanning unit, and It consists of one angle detection unit having an optical system that converts incident angle information into a light intensity position change on the light receiving element, and the storage means stores position information of each of the light beam scanning means and the angle detection means, The coordinates of the target position are calculated from each position information stored in the storage means, incident angle information obtained by the angle detection means, and irradiation angle information detected by the angle detection.
The optical coordinate input device according to claim 4, further comprising means for displaying correction markers at a plurality of known coordinate positions on a coordinate system of a display surface of a display area to be measured, It has means for individually instructing and calculating the coordinate position in the display coordinate system of the angle detection means from the information, and means for correcting the coordinate position information of the angle detection means based on the result.
The optical coordinate input device according to claim 5 is based on information on a maximum value or a minimum value of at least one coordinate component among the position information stored in the storage means for storing a series of position information within the measurement range. And determining the position of the coordinate indicating member from a series of position information of the storage means.
The optical coordinate input device according to claim 6, wherein a diffuse reflection surface having a predetermined reflection coefficient is provided in a predetermined range including a portion irradiated with the scanning beam of the coordinate indicating member. To do.
The optical coordinate input device according to claim 7, wherein the angle detection unit determines an optical system including one or a plurality of lenses having a predetermined focal length and an incident position installed on the focal plane. It is characterized by comprising a light receiving element capable of.
The optical coordinate input device according to claim 8, wherein the irradiation angle detection unit includes a reflection element that rotates at a constant speed, at least one scanning beam detection unit at a predetermined position, and a timer unit that measures time, The emission angle of the scanning beam is measured from an output signal from the scanning beam detection unit and time information from the timer unit.
The optical coordinate input device according to claim 9, wherein an operation unit for instructing a predetermined operation to at least one of the coordinate indicating members, and a transmission for generating a predetermined radio signal in conjunction with the operation of the operation unit And a means for receiving a signal from the transmitter and outputting a predetermined signal to an input device at the next stage.
The optical coordinate input device according to claim 10, wherein when the position of the coordinate indicating member is determined from position information stored in a storage unit that stores a series of position information within the measurement range, the coordinate indicating member And determining means for determining the type of the coordinate indicating member from the shape information.
The optical coordinate input device according to claim 11, comprising: a determination unit that determines a type of the coordinate instruction member based on received light quantity information to the angle detection unit when the coordinate determination unit determines the instruction coordinate. It is characterized by having.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Example 1]
FIG. 1 is a schematic configuration diagram of an optical coordinate input apparatus according to the present invention, and FIGS. 2, 3, 4, and 9 are diagrams showing the operation principle of this embodiment.
[0028]
As shown in FIG. 1, the coordinate input device 1 according to the present invention is located at a position facing an operation part including a hand holding an operator's coordinate indicating member 3 on an information display unit 2 such as a liquid crystal device (LCD) or a CRT. Installed. The coordinate input apparatus 1 includes a light emitting element (LD) with a collimating lens or an LED light source 8 and a light beam scanning means 11 comprising a scanning element 10 and a controller 9 each having a mirror mounted on a rotating element such as a motor, and angle detection. Means 4 and 5 (each comprising detection units 4a and 5a and calculation units 4b and 5b), a central calculation processing unit 6 for controlling various calculations and units, and a storage means 7 for storing calculation results and the like, It consists of a system that measures the two-dimensional shape of the operation part including the hand holding the coordinate indicating member 3 using the principle of triangulation.
[0029]
The operation of the coordinate input device of the present invention will be described below.
[0030]
In the present invention, a substantially parallel light beam is irradiated radially in accordance with the rotation of the scanning element 10 in a parallel plane near the surface of the information display surface 2. When the operator holds a coordinate indicating member 3 (for example, a stylus pen) and indicates a desired coordinate on the display surface 2, the scanning beam scans an operation site including a hand holding the coordinate indicating member 3. Diffused reflected light is generated in the irradiated light beam spot to form a secondary light source. As shown in FIG. 2, the angle detection units 4a and 5a are a cylindrical lens 15a and a position detection element 15b at the focal length position (for example, a light receiving element that converts light intensity such as PSD or CCD into incident spot position information). When the secondary light source is sufficiently small and the diffusely reflected light from the secondary light source can be sufficiently regarded as parallel light from the angle detection unit, the lens optical axis point (light) of the incident spot 16 of the angle detection unit The incident angle α can be obtained from the following equation from the distance information δ from the intersection of the axis and the light receiving element.
[0031]
δ = f · tan (π / 2-α)
However, here, two orthogonal sides of the display screen are set as the X and Y axes (hereinafter referred to as a display coordinate system), and the incident angle is an angle formed with the X axis. In addition, in order to simplify the explanation, in this embodiment, the optical axis of the lens 15a of the angle detection unit is parallel to the Y axis. Actually, considering the efficient detection within the display range, the optical axis is preferably directed to the center of gravity of the display surface, but in that case, the angle of incidence is taken into account in consideration of the angle between the optical axis and the X axis in advance. May be calculated. Similarly, the incident angle β to the other angle detection unit is also obtained.
[0032]
Next, when each incident angle is obtained (performed by the calculation units 4b and 5b), the position of the angle detection unit on the display coordinates is P 1 and P 2 as shown in FIG. 3, and the position of the secondary light source is When the intersection point when a perpendicular line is drawn from S 1 and S 1 to the line segment P 1 P 2 is defined as M, the following equation is established from the geometric relationship.
[0033]
| S 1 M | = L 1・ tanα = (LL 1 ) tanβ
Where | S 1 M | represents the size of the line segment S 1 M, L is the distance between P 1 and P 2 (L = | P 1 P 2 |), and L 1 is the distance between P 1 and M (L = | P 1 M |).
Therefore, the following equation is established by solving for L 1 from the above relationship by the central processing unit 6.
[0034]
L 1 = L · tanβ / (tanα + tanβ)
| S 1 M | = L tanαtanβ / (tanα + tanβ)
Result of the above, from the angle detector coordinates, calculates a coordinate position S 1 of the secondary light sources.
[0035]
In this invention, it has the memory | storage means 7 which memorize | stores the positional information 20 of the said secondary light source measured by scanning of 1 rotation, and memorize | stores the said positional information 20 calculated by the central processing part 6 here. Focusing on the fact that the coordinate indicating member 3 is at the point farthest from the operator, the position information is compared before the next scanning is started. In the case of this embodiment, as shown in FIG. Since the present coordinate input device 1 is installed so as to face each other, the point 21 closest to the angle detection unit (in the above position information, the minimum value of the y coordinate is adopted, or alternatively, the point and its neighboring points are used. By calculating the center of gravity position and adopting it, the coordinate indicating member position is specified, and the coordinates are adopted as the input instruction coordinates. According to the present invention, it is possible to input coordinates under a flexible operation environment that is highly accurate and handles problems such as handling.
[0036]
As another determination method, as shown in FIG. 9, a diffuse reflection surface (for example, an instruction) having a reflection coefficient larger than that of the hand skin in a predetermined range including the portion irradiated with the scanning beam of the coordinate indicating member 3. A reflection film is applied to the surface 41 in the vicinity of the lowermost display surface side of the member 3 and then the surface is roughened (roughening), and the received light amount (measured current value) is measured by the angle detection unit. Measurement can also be performed. Further, the received light quantity is stored as another parameter in the storage means 7 simultaneously with the position information in a form associated with the coordinate calculation result of the secondary light source position. Then, the central verification processing unit 6 detects the maximum value of the received light amount and its vicinity value 40 (40a, 40b), and calculates, for example, the position of the center of gravity from the coordinate information based on the corresponding coordinate values to obtain the coordinates. The coordinate value of the indication member 3 may be determined and the coordinate may be adopted as the input indication coordinate. At this time, when further operating with a member other than the coordinate indicating member, for example, a finger, it may be determined from the received light quantity information whether it is the coordinate indicating member or another member such as a finger. . From the result, for example, when operating an application that performs operations such as graphic processing editing, the stroke data input mode is used for the pointing member, and the application menu is used for another member such as a finger. It is also possible to instruct the next-stage information device to switch to the file operation mode.
[0037]
Further, in order to avoid erroneous detection of anything other than the operator's hand and the coordinate indicating member, only the measurement points that are equal to or greater than the predetermined received light amount are adopted as the coordinate indicating data from the received light amount information at the angle detection unit. It is also possible to improve the reliability of the system. In short, the measurement points below that are discarded or rewritten to a value at a specific position on the display surface. That is, it is possible to prevent malfunction and provide a highly reliable coordinate input device.
[Example 2]
FIG. 5 shows a schematic configuration of this embodiment, and FIG. 6 shows an operation principle of rotation measurement.
[0038]
In this embodiment, one of the angle detection means of the above-described embodiments is replaced with a scanning beam means. That is, in this embodiment, the scanning mirror is rotated at a constant angular velocity, and a light receiving element 25 for receiving the scanning beam at a predetermined rotation angle is provided during one rotation, and a timer is triggered by a signal from the light receiving element 25 as a trigger. The time information from 26 (for example, the number of pulses of the clock signal, etc.) and the measurement data in the angle detection means 4 are synchronized.
[0039]
The irradiation angle β of the scanning beam can be obtained from the relationship between the rotation angle and the reflection angle as shown in FIG.
[0040]
β = 2 · ω · Δt + θ 0
However, θ 0 is an irradiation angle of the scanning beam when the scanning beam is incident on the trigger light receiving element 25, ω is a rotation angular velocity, Δt is an elapsed time at the time of measurement (elapsed time after being incident on the light receiving element 25), and To do.
[0041]
By using the irradiation angle and the coordinate data of the scanning beam means as the data of one of the angle detection means in the embodiment, the input instruction coordinates can be calculated in the same manner as in the above method.
[0042]
FIG. 7 shows the principle of the coordinate correction method.
[0043]
In the present invention, for example, four coordinate points of vertices D 1 , D 2 , D 3 , D 4 whose rectangular coordinates parallel to each axis are known are displayed on the display screen with symbols such as crosses, ○, □, These points are instructed in turn with a coordinate indicating member. Since the coordinate positions P 1 and P 2 of the angle detection unit are roughly known by design, it is possible to easily determine which point is designated from the information and the obtained angle information. Can be specified. For example, α 1 from the difference in angle information when D 1 and D 2 are specified, and α 2 when D 1 and D 3 are specified are also triangles that pass through points D 1 and D 2 from the sine theorem. The radii r 1 and r 2 of the circle 30 circumscribing P 1 D 1 D 2 and the circle 31 passing through the points D 1 and D 3 and circumscribing the triangle P 1 D 1 D 3 are obtained by the following equations.
[0044]
r 1 = | D 1 D 2 | / 2sin α 1 r 2 = | D 1 D 3 | / 2 sin α 2
Further, among the coordinates of the center point C 1 of the circle 30 from the feature on the figure, the y coordinate value is the y coordinate of the midpoint M 1 of D 1 and D 2 . The x coordinate is calculated from the relationship of the following equation.
[0045]
| C 1 M 1 | = √ (r 1 2 ― | M 1 D 2 | 2 )
(X coordinate of point C 1 ) = (x coordinate of M 1 ) − | C 1 M 1 |
Similarly, the coordinate center point C 2 of the circle 31 is also calculated from the following equation.
[0046]
(X-coordinate of the point C 1) = (D 1, and the x-coordinate of the midpoint M 1 of D 3)
(Y coordinate of point C 1 ) = (y coordinate of M 2 ) − | C 1 M 2 |
However, | C 1 M 2 | = √ (r 2 2- | M 2 D 3 | 2 )
Here, the point of intersection between the straight line C 1 C 2 and the straight line P 1 D 1 is A, the direction vector of the straight line P 1 D 1 (unit vector) v 1 to the v 1 ⊥ (vector C 1 C 2) and | V 1 | = 1
From this relationship, the component of v 1 is obtained.
[0047]
Thus, if an arbitrary point on the straight line D 1 A is Q and the coordinate origin is O, the vector OQ can be described as follows.
[0048]
OQ = OD 1 + t · v 1 However, t here any real number, the value of t when the point A = Q and t 0, t 0 can be obtained from the following equation.
[0049]
OD 1 + t 0 · v 1 = OC 1 + k · C 1 C 2 However, k is a real number, and the coordinate point P 1 to be corrected is calculated from the feature on the figure by the following equation.
[0050]
OP 1 = OD 1 +2 ・ t 0・ v 1
Similarly, the exact coordinates of point P 2 can be calculated from the difference in angle information when points D 1 and D 3 are specified, and the angle difference when points D 3 and D 4 are also specified. By rewriting the coordinate values P 1 and P 2 thus obtained, the subsequent coordinate input can be performed accurately. Furthermore, it is also possible to correct the angle formed by the optical axis of the angle detection unit and the display coordinate system from the above result and the angle measurement value at each point.
[0051]
As a result, coordinate reading errors due to, for example, assembly errors during production or misalignment of units occurring during transportation to the user can be avoided, and a highly reliable coordinate input device can be provided.
[Example 3]
FIG. 8 shows a schematic configuration of this embodiment.
[0052]
In this embodiment, the coordinate indicating member 3 includes a transmitting unit 35 using light having a wavelength different from that of the scanning beam as a carrier wave, means (not shown) for generating a predetermined signal, and a button 34 for operating the transmitting instruction. The transmission unit 35 is arranged to transmit a signal modulated by the button operation into a predetermined signal superimposed on the carrier wave, and transmits the predetermined signal, and the signal from the transmission unit 35 is transmitted to a predetermined position. A receiving unit 36 for receiving and generating a predetermined signal is arranged. Upon receiving the signal, the central processing unit 6 converts the signal into a predetermined signal, and then outputs the signal to the next stage input device.
[0053]
For example, considering that this coordinate input device is used as a mouse, it is possible to use it as an input device for GUI operation of a PC or the like by realizing a mouse button click operation with this function. In addition to the light having a wavelength different from that of the scanning beam, a radio wave or an ultrasonic wave may be used for the carrier wave.
[0054]
FIG. 10 shows the concept of the position determining means of the coordinate indicating member described above.
[0055]
In the present invention, when determining the position of the coordinate indicating member from the position information held in the means for storing a series of position information within the measurement range, the stylus is thinner than a finger as shown in FIG. By comparing the detection result of the pen 3 with the detection result of the finger in FIG. 5B, for example, by comparing the detection widths 45 and 46 in the X direction to determine the type of the coordinate indicating member, this is a stylus pen. Or another member such as a finger. Based on the result, for example, when the graphic application is being operated as in the above example, the next step is to switch to the stroke data input mode for the stylus pen and to the file operation mode such as the menu for the finger. It is also possible to give instructions to information equipment.
[0056]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, as an optical system of the angle detection unit, simply provide a slit at a predetermined distance, detect the incident position of the slit light, and calculate the incident angle from the incident position information and the distance information between the light receiving element and the slit. Also good. Alternatively, the irradiation angle may be detected by directly connecting a rotary encoder to the rotating element and calculating the irradiation angle from the detection value from the encoder.
[0057]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, it is possible to provide a coordinate input device under a flexible operation environment that is highly accurate and can cope with problems such as handling.
[0058]
According to the second aspect of the present invention, it is possible to provide a coordinate input device under a flexible operation environment that can cope with problems such as high accuracy and handling.
[0059]
According to the third aspect of the present invention, it is possible to provide a coordinate input device under a flexible operation environment that can cope with problems such as high accuracy and handling.
[0060]
According to the invention described in claim 4, a coordinate input device that can avoid a coordinate reading error due to an assembly error during production or a displacement of each unit that occurs during transportation to a user, and the like is provided. Is possible.
[0061]
According to the fifth aspect of the present invention, it is possible to provide a coordinate input device under a flexible operation environment that can cope with problems such as high accuracy and handling.
[0062]
According to the sixth aspect of the present invention, it is possible to provide a coordinate input device that can provide a flexible operation environment that can cope with problems such as high accuracy and handling, and that enables high-speed coordinate input.
[0063]
According to the seventh aspect of the invention, it is possible to realize a highly accurate angle detection function with a simple configuration.
[0064]
According to the invention described in claim 8, it is possible to realize a highly accurate angle detection function with a simple configuration.
[0065]
According to the ninth aspect of the present invention, it is possible to notify another operation instruction to the next stage simultaneously with the coordinate input, and it is possible to operate the graphical user interface (GUI) of the information device by this apparatus. .
[0066]
According to the tenth aspect of the present invention, the type of the coordinate indicating member can be easily determined, and the operability can be improved by appropriately switching the user interface of the information equipment apparatus at the next stage using the result. It becomes possible.
[0067]
According to the eleventh aspect of the present invention, the type of the coordinate indicating member can be easily determined, and the operability can be improved by appropriately switching the user interface of the information equipment device at the next stage using the result. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an optical coordinate input device according to the present invention.
FIG. 2 is a diagram illustrating an operation principle of a coordinate input device according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating an operation principle of a coordinate input device according to an embodiment of the present invention.
FIG. 4 is a diagram illustrating an operation principle of a coordinate input device according to an embodiment of the present invention.
FIG. 5 is a schematic configuration diagram of another embodiment of the optical coordinate input device according to the present invention.
FIG. 6 is a diagram illustrating an operation principle of rotation measurement according to another embodiment.
FIG. 7 is a diagram illustrating the principle of a coordinate correction method.
FIG. 8 is a schematic configuration diagram of another embodiment of the present invention.
FIG. 9 is a diagram illustrating an operation principle of a coordinate input device according to an embodiment of the present invention.
FIG. 10 is a diagram illustrating a concept of a position determination unit of a coordinate indicating member.
FIG. 11 is a diagram for explaining a configuration of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical coordinate input device 2 Display device 3 Coordinate instruction | indication member 4, 5 Angle detection means 6 Central processing means 7 Storage means 11 Scanning beam means

Claims (11)

走査ビームを表示面に照射する光ビーム走査手段と、 前記表示面の任意の位置を座標指示部材で指示すると前記光ビーム走査手段が照射した走査ビームが当該座標指示部材を含む操作部位に反射されて生じる反射光を検出してその反射光の入射角度情報とその受光光量情報とを得る角度検出手段と、
前記角度検出手段の位置情報と前記入射角度情報とにより前記操作部位の一連の位置情報を算出する演算手段と、該演算手段による計測範囲内の一連の位置情報と前記受光光量情報とを記憶する記憶手段と、該記憶手段に記憶された前記一連の位置情報と前記受光光量情報とから、前記角度検出部に最も近い位置を前記座標指示部材の位置として判定する判定手段とを備え、該判定手段により特定された座標指示部材の位置情報を基に目標位置の座標を算出して座標データとして次段へ出力することを特徴とする光学式座標入力装置。
A light beam scanning means for irradiating the scanned beam on the display surface, the scanning beam the light beam scanning means and to instruct a coordinate pointing member is irradiated with an arbitrary position of the display surface is reflected to the operation site comprising the coordinate pointing member the incident angle information of the reflected light and an angle detection means for obtaining a received light amount information detected by the reflected light caused Te,
Memory and calculation means for calculating a more series of positional information of the operation part on the position information and the incident angle information of the angle detecting means and a series of position information and the received light amount information in the measurement range by said calculation means Storage means, and determination means for determining, as the position of the coordinate indicating member, the position closest to the angle detection unit from the series of position information and the received light quantity information stored in the storage means, An optical coordinate input device characterized in that the coordinates of a target position are calculated based on the position information of the coordinate indicating member specified by the determination means and output as coordinate data to the next stage.
前記角度検出手段は、所定の間隔をおいて設置されかつ入射角度を受光素子上の光強度位置変化に変換する光学系を有する二つの角度検出部からなり、前記記憶手段は前記二つの角度検出部のそれぞれの位置情報を記憶し、前記二つの角度検出部の位置情報と前記二つの角度検出部からの入射角度情報とにより前記目標位置の座標を算出することを特徴とする請求項1に記載の光学式座標入力装置。 The angle detection means includes two angle detection units that are installed at a predetermined interval and have an optical system that converts an incident angle into a light intensity position change on a light receiving element, and the storage means detects the two angle detection means. The position information of each part is stored, and the coordinates of the target position are calculated from the position information of the two angle detectors and the incident angle information from the two angle detectors. The optical coordinate input device described. 前記光ビーム走査手段は、照射角度を検出する角度検出部を有し、前記角度検出手段は前記光ビーム走査手段と一定間隔隔てて設置されかつ入射角度情報を受光素子上の光強度位置変化に変換する光学系を有する一つの角度検出部からなり、前記記憶手段は前記光ビーム走査手段と前記角度検出手段のそれぞれの位置情報を記憶し、前記記憶手段に記憶されている各位置情報と前記角度検出手段により得られた入射角度情報と前記角度検出により検出された照射角度情報とにより前記目標位置の座標を算出することを特徴とする請求項1に記載の光学式座標入力装置。 The light beam scanning unit includes an angle detection unit that detects an irradiation angle, and the angle detection unit is installed at a predetermined interval from the light beam scanning unit, and the incident angle information is used to change the light intensity position on the light receiving element. It comprises an angle detection unit having an optical system for conversion, and the storage means stores position information of the light beam scanning means and the angle detection means, and each position information stored in the storage means and the position information 2. The optical coordinate input device according to claim 1, wherein the coordinates of the target position are calculated based on the incident angle information obtained by the angle detection means and the irradiation angle information detected by the angle detection. 計測対象となる表示領域の表示面の座標系上の既知の複数の座標位置に補正用のマーカを表示する手段を有し、前記マーカをそれぞれ個別に指示し、その情報から前記角度検出手段の表示座標系での座標位置を算出する手段と、その結果により前記角度検出手段の座標位置情報を補正する手段とを有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の光学式座標入力装置。 Means for displaying correction markers at a plurality of known coordinate positions on the coordinate system of the display surface of the display area to be measured, individually indicating the markers, and from the information, the angle detection means The means for calculating a coordinate position in a display coordinate system, and means for correcting the coordinate position information of the angle detection means based on the result, 4. Optical coordinate input device. 前記計測範囲内の一連の位置情報を記憶する記憶手段に記憶された位置情報のうち少なくとも一つの座標成分の最大値若しくは最小値の情報を基に前記記憶手段の一連の位置情報から前記座標指示部材の位置を判定することを特徴とする請求項1ないし請求項4のいずれか1項に記載の光学式座標入力装置。 Based on the information on the maximum value or the minimum value of at least one coordinate component among the position information stored in the storage means for storing a series of position information within the measurement range, the coordinate indication is performed from the series of position information in the storage means. The optical coordinate input device according to claim 1, wherein the position of the member is determined. 前記座標指示部材の前記走査ビームが照射される部位を含む所定の範囲に所定の反射係数を有する拡散反射面が設けられていることを特徴とする請求項1ないし請求項4のいずれか1項に記載の光学式座標入力装置。 5. The diffuse reflection surface having a predetermined reflection coefficient is provided in a predetermined range including a portion irradiated with the scanning beam of the coordinate indicating member. The optical coordinate input device described in 1. 前記角度検出手段が、所定の焦点距離を有する一つないしは複数のレンズからなる光学系と、その焦点面上に設置された入射位置の判定が可能な受光素子とからなることを特徴とする請求項1ないし請求項6のいずれか1項に記載の光学式座標入力装置。 The angle detection means includes an optical system composed of one or a plurality of lenses having a predetermined focal length, and a light receiving element installed on the focal plane and capable of determining an incident position. The optical coordinate input device according to any one of claims 1 to 6. 前記照射角度検出部が、等速回転する反射素子と所定の位置での少なくとも一つの走査ビーム検出部と時間を計測するタイマー部とからなり、前記走査ビーム検出部からの出力信号と前記タイマー部からの時間情報とから前記走査ビームの出射角度を計測することを特徴とする請求項3に記載の光学式座標入力装置。 The irradiation angle detection unit includes a reflection element that rotates at a constant speed, at least one scanning beam detection unit at a predetermined position, and a timer unit that measures time, and an output signal from the scanning beam detection unit and the timer unit The optical coordinate input device according to claim 3, wherein an emission angle of the scanning beam is measured from time information from the optical information. 少なくとも一つの前記座標指示部材に所定の動作を指示するための操作部と、該操作部の動作に連動して所定の無線信号を発生する送信部とを設け、該送信部からの信号を受信して所定の信号を次段の入力装置へ出力する手段を有することを特徴とする請求項1ないし請求項8のいずれか1項に記載の光学式座標入力装置。 An operation unit for instructing at least one of the coordinate indicating members to perform a predetermined operation, and a transmission unit that generates a predetermined radio signal in conjunction with the operation of the operation unit are provided, and receives a signal from the transmission unit 9. The optical coordinate input device according to claim 1, further comprising means for outputting a predetermined signal to an input device at the next stage. 前記計測範囲内の一連の位置情報を記憶する記憶手段に記憶された位置情報から前記座標指示部材の位置を判定する際に、前記座標指示部材の形状情報から座標指示部材の種類を判定する判定手段を有することを特徴とする請求項1ないし請求項9のいずれか1項に記載の光学式座標入力装置。 Determination of determining the type of the coordinate indicating member from the shape information of the coordinate indicating member when determining the position of the coordinate indicating member from the position information stored in the storage means for storing a series of position information within the measurement range The optical coordinate input device according to claim 1, further comprising: means. 前記座標判定部にて指示座標を判定する際に、前記角度検出手段への受光光量情報に基づき前記座標指示部材の種類を判定する判定手段を有することを特徴とする請求項6に記載の光学式座標入力装置。 The optical system according to claim 6, further comprising: a determination unit that determines a type of the coordinate instruction member based on received light amount information to the angle detection unit when the instruction coordinate is determined by the coordinate determination unit. Formula coordinate input device.
JP2001084061A 2001-03-23 2001-03-23 Optical coordinate input device Expired - Fee Related JP4357761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001084061A JP4357761B2 (en) 2001-03-23 2001-03-23 Optical coordinate input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001084061A JP4357761B2 (en) 2001-03-23 2001-03-23 Optical coordinate input device

Publications (2)

Publication Number Publication Date
JP2002287886A JP2002287886A (en) 2002-10-04
JP4357761B2 true JP4357761B2 (en) 2009-11-04

Family

ID=18939790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001084061A Expired - Fee Related JP4357761B2 (en) 2001-03-23 2001-03-23 Optical coordinate input device

Country Status (1)

Country Link
JP (1) JP4357761B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629967B2 (en) 2003-02-14 2009-12-08 Next Holdings Limited Touch screen signal processing
US8508508B2 (en) 2003-02-14 2013-08-13 Next Holdings Limited Touch screen signal processing with single-point calibration
US8456447B2 (en) 2003-02-14 2013-06-04 Next Holdings Limited Touch screen signal processing
AU2004211738B2 (en) * 2003-02-14 2007-04-19 Next Holdings Limited Touch screen signal processing
US7538759B2 (en) 2004-05-07 2009-05-26 Next Holdings Limited Touch panel display system with illumination and detection provided from a single edge
EP2135155B1 (en) 2007-04-11 2013-09-18 Next Holdings, Inc. Touch screen system with hover and click input methods
US8432377B2 (en) 2007-08-30 2013-04-30 Next Holdings Limited Optical touchscreen with improved illumination
AU2008280952A1 (en) 2007-08-30 2009-03-19 Next Holdings Ltd Low profile touch panel systems
US8405636B2 (en) 2008-01-07 2013-03-26 Next Holdings Limited Optical position sensing system and optical position sensor assembly
JP5533407B2 (en) * 2010-08-04 2014-06-25 セイコーエプソン株式会社 Optical position detection device and device with position detection function
JP5533408B2 (en) * 2010-08-04 2014-06-25 セイコーエプソン株式会社 Optical position detection device and device with position detection function

Also Published As

Publication number Publication date
JP2002287886A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
JP5544032B2 (en) Method and laser measurement system for controlling a laser tracker using a gesture
US10302413B2 (en) Six degree-of-freedom laser tracker that cooperates with a remote sensor
US8537371B2 (en) Method and apparatus for using gestures to control a laser tracker
JP4357761B2 (en) Optical coordinate input device
JP2020518820A (en) Triangulation scanner that projects a flat shape and uncoded spot
JP2016516196A (en) Structured optical scanner correction tracked in 6 degrees of freedom
JP2004170412A (en) Method and system for calibrating measuring system
JP7357124B2 (en) Targets, survey methods and programs
JP2019020209A (en) Surveying system
EP3739290B1 (en) Laser scanner with target detection
JP2019113507A (en) Measurement apparatus, measurement control device, measurement control method and measurement control processing program
JP2004199714A (en) Optical scanning touch panel
JP3846981B2 (en) Information display device with optical position detector
JPH0694417A (en) Pointing device for spot light and measuring device for three-dimensional position
JP2004110184A (en) Optical coordinate input system
JP2002244807A (en) Optical coordinate output device
JP2017139012A (en) Input device, aerial image interaction system, and input method
JP4256555B2 (en) Coordinate input / detection device, electronic blackboard system, coordinate position detection method, and storage medium
JP4067861B2 (en) Optical coordinate input device and optical coordinate input method
JPH01145517A (en) Position detector for moving object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees