JP4349773B2 - Battery charging method and backup power supply apparatus for implementing the charging method - Google Patents

Battery charging method and backup power supply apparatus for implementing the charging method Download PDF

Info

Publication number
JP4349773B2
JP4349773B2 JP2002109925A JP2002109925A JP4349773B2 JP 4349773 B2 JP4349773 B2 JP 4349773B2 JP 2002109925 A JP2002109925 A JP 2002109925A JP 2002109925 A JP2002109925 A JP 2002109925A JP 4349773 B2 JP4349773 B2 JP 4349773B2
Authority
JP
Japan
Prior art keywords
battery
current value
converter
charging
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002109925A
Other languages
Japanese (ja)
Other versions
JP2003309933A (en
Inventor
芳秀 高橋
昌弘 濱荻
節 田邉
隆雄 後藤
玲彦 叶田
峰弘 根本
史一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Computer Peripherals Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Peripherals Co Ltd, Hitachi Ltd filed Critical Hitachi Computer Peripherals Co Ltd
Priority to JP2002109925A priority Critical patent/JP4349773B2/en
Publication of JP2003309933A publication Critical patent/JP2003309933A/en
Application granted granted Critical
Publication of JP4349773B2 publication Critical patent/JP4349773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、電源装置における無停電を行うためのバッテリへのバッテリ充電方法及び、該充電方法を実施するバックアップ電源装置に係り、特にAC/DC変換部に負荷を与えずに好適にバッテリ充電を行うことができるバッテリ充電方法及び該充電方法を実施するバックアップ電源装置に関する。
【0002】
【従来の技術】
一般にコンピュータシステムにおける周辺装置は、定電源を確保するための電源装置と停電時に対応するための無停電装置(UPS)が接続されている。この従来技術による電源システムは、図2に示す如く、交流電源200から電流Iin及び電圧Vinから成る電力を入力としてバッテリ充電を行う無停電装置500と、該無停電装置500からの交流電圧を直流電圧に変換して負荷装置300に出力する電源装置100とから構成され、前記無停電装置500は、入力電圧VinをAC/DC変換部1により直流電圧に変換し、電圧VをDC/AC変換部2により交流に戻してから次段の電源装置100に供給すると共に電流Iを充放電回路3を介してバッテリ4に充電するものであり、電源装置100は、無停電装置500からの交流電圧をAC/DC変換部101により直流に変換し、更にDC/DC変換部102により所定電圧の直流電流を負荷装置300に供給する様に構成され、充放電回路3がAC/DC変換部1の出力から指定されたワット数の電力をバッテリ4に充電する様に構成されている。
【0003】
【発明が解決しようとする課題】
この様に構成された電源システムは、負荷装置300の必要とする電力によって電流値が変化するため、AC/DC変換部及びDC/DC変換部の容量を、負荷装置の必要とする電流に応じて大容量に設計する必要があると言う不具合があった。例えば負荷装置が複数の磁気ディスク装置が接続された場合は、磁気ディスク装置の電源投入時の起動電流や装置立ち上がり時の突入電流が大きく、これら起動電流等に対応することができる大容量に設計しなければならなかった。
【0004】
更に従来システムは、バッテリの充電特性をワット数で指定しているため、入力電圧が変動した場合や負荷装置の電力が変動した場合は、充電電流も変化し、例えば充電電流が微少な場合は充電時間が冗長になりバッテリの回復が遅くなり、逆に充電電流が過大な場合は過充電になり、危険な状態になると言う不具合が有った。
【0005】
更に従来システムは、例えばバッテリの消耗が多く、急速に充電しなければならない場合でも、指定されたワット数で充電を行うために充電時間が冗長になると言う不具合があった。
【0006】
本発明の目的は、前述の従来技術による不具合を除去することであり、バッテリへの充電電流をバッテリの消耗度合いに応じて一定に保つことができるバッテリ充電方法及び該充電方法を実施するバックアップ電源装置を提供することである。
【0007】
【課題を解決するための手段】
前記目的を達成するために本発明は、交流電圧を直流電圧に変換するAC/DC変換部と、該AC/DC変換部から出力された直流電圧を所定値の電圧に変換し、負荷容量が変化する負荷装置に出力するDC/DC変換部と、前記AC/DC変換部から電流を取り込んで充電を行うニッケル水素電池からなるバッテリとを備えるバックアップ電源装置のバッテリ充電方法であって、
前記AC/DC変換部の限界電流値と、バッテリに対する急速充電モード時のバッテリ充電電流値又は低速充電モード時のバッテリ充電電流値とを設定し、
前記DC/DC変換部の電流値を検出し、前記限界電流値からDC/DC変換部からの電流値を減算したバッテリ充電可能な充電可能電流値と前記設定されたバッテリ充電電流値を比較し、
前記バッテリ充電可能な充電可能電流値又はバッテリ充電電流値のうちの低電流値に応じて半導体素子のスイッチング制御を行い、
前記AC/DC変換部の限界電流値は、前記負荷装置の最大容量に前記バッテリに対する低速充電モード時のバッテリ充電電流値を加算した値以上に設定して、急速充電モード時に前記急速充電モード時のバッテリ充電電流値と前記充電可能電流値を比較して前記急速充電モード時のバッテリ充電電流値の方が低い場合には前記急速充電モード時のバッテリ充電電流値によって、前記充電可能電流値の方が低い場合には前記充電可能電流値によって、また、低速充電モード時には前記低速充電モード時のバッテリ充電電流値によって、バッテリ充電を行うことを第1の特徴とする。
【0008】
更に本発明は、交流電圧を直流電圧に変換するAC/DC変換部と、該AC/DC変換部から出力された直流電圧を所定値の電圧に変換し、負荷容量が変化する負荷装置に出力するDC/DC変換部と、前記AC/DC変換部から電流を取り込んで充電を行うニッケル水素電池からなるバッテリとを備えるバックアップ電源装置であって、
前記AC/DC変換部の限界電流値を設定する第1の設定回路と、
バッテリに対する急速充電モード時のバッテリ充電電流値又は低速充電モード時のバッテリ充電電流値を設定する第2の設定回路と、
前記DC/DC変換部からの電流値を検出する電流検出回路と、
前記限界電流値からDC/DC変換部からの電流値を減算したバッテリ充電可能な充電可能電流値と前記設定されたバッテリ充電電流値を比較する比較回路と
前記バッテリ充電可能な充電可能電流値又はバッテリ充電電流値のうちの低電流値に応じて半導体素子のスイッチング制御を行い、バッテリ充電を行うバッテリ充電回路とを備え、
前記AC/DC変換部の限界電流値は、前記負荷装置の最大容量に前記バッテリに対する低速充電モード時のバッテリ充電電流値を加算した値以上に設定され、急速充電モード時に前記急速充電モード時のバッテリ充電電流値と前記充電可能電流値を比較して前記急速充電モード時のバッテリ充電電流値の方が低い場合には前記急速充電モード時のバッテリ充電電流値によって、前記充電可能電流値の方が低い場合には前記充電可能電流値によって、また、低速充電モード時には前記低速充電モード時のバッテリ充電電流値によって、バッテリ充電を一定電流値によって行うことを第2の特徴とする。
【0009】
【発明実施の形態】
以下、本発明の一実施形態によるバッテリ充電方法及びバックアップ電源装置を図面を参照して詳細に説明する。図1は本実施形態によるバッテリ充電方法を適用したバックアップ電源装置の主な回路構成を示す図である。
【0010】
まず本実施形態によるバックアップ電源装置は、交流電源と負荷装置間に配置され、ニッケル水素電池をバッテリとして使用するものであって、該バッテリの放電量に伴い、バッテリの充電量が小さい場合は所定の大電流によって充電を行う急速充電モード(例えば、容量が3Ahのバッテリの場合、6Aによる急速充電)と、バッテリの充電量が大きい場合は所定の小電流によって充電を行う低速充電モード(例えば、容量が3Ahのバッテリの場合、0.6Aによる低速充電)とを持ち、図1に示す如く、従来と同等のAC/DC変換部101とDC/DC変換部102と、前記DC/DC変換部102の出力電流値を入力部にて電圧値として検出する電流検出部5と、該電流検出部5の両端から延びる線路間に挿入されるコンデンサ210と、該線路の一方の線路に設けられるダイオード211及びMOSFET213から成る並列回路と、該並列回路の出力及び前記線路の他方間に挿入されるダイオード212と、チョークコイル214と、バッテリ209と、該バッテリ209に供給される電流値を電圧値として検出する検出回部206とを備え、前記コンデンサ210/ダイオード212/MOSFET213/チョークコイル214が降圧回路を構成し、前記MOSFET213が後述する指令信号によってオン/オフ制御されることによってバッテリ209への充電が行われる様に構成されている。尚、本実施形態においてはニッケル水素電池をバッテリとして使用する例を説明するが、本発明はこれに限定されるものではない。
【0011】
このMOSFET213をオン/オフする回路構成は、電流値を電圧値に変換して制御を行うものであって、前記AC/DC変換部101の限界電流値を電圧値bとして予め設定するための設定回路220と、前記電流検出部5及び設定回路220の両出力abを入力として限界値bから検出値aを減算する減算器201と、該減算器201の出力cと後述するスライスレベルhを入力とし、掛け算を行う掛け算器202と、バッテリ209への充電すべき電流値を急速又は低速モードに応じた電圧値eとして設定するための充電電流値設定回路204と、該設定回路204から指定された電圧値eと前記掛け算器202の出力dとを比較して低レベルの値fを出力する比較器203と、該比較器203の出力fと前記バッテリ電流検出部206からの出力gを入力として減算することによりスライスレベルhを出力する減算器208と、所定の三角波信号iを出力する三角波発生回路205と、前記スライスレベルhと前記三角波発生回路205からの三角波信号iを入力とし、前記スライスレベルhによって指定された幅のパルス信号jを出力することによってMOSFET213を駆動するパルス発生器207とを備える。尚、前記モードの切替は、バッテリ209の電圧値を図示しない回路によって検出し、充電量に応じて切り換えるものである。
【0012】
<急速充電モードの動作説明>
この回路は、まず、AC/DC変換器101の能力である出力電流の限界値を電圧bとして設定回路220により設定すると共に、バッテリ209に充電すべき電流値を設定回路204により電圧eとして指定し、前記限界値の電圧bから実際にDC/DC変換部102に供給している電流検出回路5からの電圧値aを減算器201により減算し、現在、AC/DC変換部の能力からDC/DC変換部に供給している電流値を引いた値、即ち、バッテリ充電可能な電流に相当する電圧cを出力する。ここで、例えば、AC/DC変換部の限界が15A(設定回路220の出力bが15V)、電流検出回路5により検出した電流が5A(出力aが5V)、バッテリの消耗が多く急速充電モードで6Aでの充電が充電電流値設定回路204により6Vとして設定され、減算器201は差分10Vを出力した場合(掛け算器202の動作は後述)、比較器203には出力dの10Vと設定回路204の出力eの6Vが入力され、比較器203から低い値である6Vが出力fとして出力される。
【0013】
ここでバッテリ電流検出回路206の出力gが6V、即ち適正な場合は減算器208の出力は0となり、現在のスライスレベルhが維持され、6Aによるバッテリ充電が保持され、バッテリ電流検出回路206の出力gが8V、即ち過大な場合は減算器208によりg−f(8V−6V)=2Vがスライスレベルhとして出力され、パルス発生器207からの三角波信号iのパルス幅を狭めた出力jによりMOSFET213を駆動することによって、バッテリ209へ供給する電流値を6Aに下げる様に動作し、逆にバッテリ電流検出回路206の出力gが4V、即ち少ない場合は減算器208によりg−f(4V−6V)=−2Vがスライスレベルhとして出力され、パルス発生器207からの三角波信号iのパルス幅を広めた出力jによりMOSFET213を駆動することによって、バッテリ209へ供給する電流値を6Aに上げる様に動作する。
【0014】
従って本実施形態によるバックアップ電源装置は、急速充電モードの場合、充電電流設定回路204によって指定した急速充電電流を6Aに維持しながらバッテリ充電を行うことができる。また本実施形態は、負荷装置の必要とする電力が増大した場合、その増大を電流検出回路5により検出し、バッテリ充電に使用できる電流値を減算器201から出力cとして出力し、6Vを下回る場合は比較器203の出力が当該下回った電流値に相当する電圧値を出力するため、MOSFET213による充電電流値を下げることによって、負荷が増大した場合であってもAC/DC変換部の能力の範囲内且つ急速にバッテリ充電を行うことができる。逆に負荷が減収した場合においては比較器203から6Vが出力されるため、バッテリ209の過充電を防止することもできる。
【0015】
尚、前述の掛け算器202は、前述した様に減算器201の出力cと後述するスライスレベルhを入力とし、掛け算を行うことによって、入力電圧とバッテリ電圧の比率を示すパラメータであるデューティを検出して電流値の補正を行うものである。例えば、バッテリ電流検出器206で検出した電流値が2A、AC/DC変換器101の出力電圧が48V、バッテリ電圧が30Vのとき、実際には、バッテリ209に対して[2A×(出力電圧/バッテリ電圧)=2A×(48V/30V)]=3.2Aまで充電することができ、この補正を行うものである。
【0016】
<低速充電モードの動作説明>
このモード時の回路は、前述の設定回路220による限界値の電圧bによる設定、設定回路204による充電すべき電流値の電圧eによる設定、充電電流値設定回路204による低速充電モードによる0.6Vの設定が成されているものとする。ここで、本回路は、前記限界値の電圧bから実際にDC/DC変換部102に供給している電流検出回路5からの電圧値aを減算器201により減算し、現在、AC/DC変換部の能力からDC/DC変換部に供給している電流値を引いた値、即ち、バッテリ充電可能な電流に相当する電圧cを出力する。ここで、例えば、AC/DC変換部の限界が15A(設定回路220の出力bが15V)、電流検出回路5により検出した電流が5A(出力aが5V)、バッテリの消耗が少ない低速充電モードで0.6Aでの充電が充電電流値設定回路204により0.6Vとして設定されていた場合、減算器201は差分10Vを出力し(掛け算器202の動作は除く)、比較器203には出力dの10Vと設定回路204の出力eの0.6Vが入力され、比較器203から低い値である0.6Vが出力fとして出力される。
【0017】
ここでバッテリ電流検出回路206の出力gが0.6V、即ち適正な場合は減算器208の出力は0となり、現在のスライスレベルhが維持され、0.6Aによるバッテリ充電が保持され、バッテリ電流検出回路206の出力gが8V、即ち過大な場合は減算器208によりg−f(8V−0.6V)=7.4Vがスライスレベルhとして出力され、パルス発生器207からの三角波信号iのパルス幅を狭めた出力jによりMOSFET213を駆動することによって、バッテリ209へ供給する電流値を0.6Vに下げる様に動作し、逆にバッテリ電流検出回路206の出力gが0.2V、即ち少ない場合は減算器208によりg−f(0.2−0.6V)=−0.4Vがスライスレベルhとして出力され、パルス発生器207からの三角波信号iのパルス幅を広めた出力jによりMOSFET213を駆動することによって、バッテリ209へ供給する電流値を0.6Vに上げる様に動作する。
【0018】
従って本実施形態によるバックアップ電源装置は、低速充電モードの場合、充電電流設定回路204によって指定した低速充電電流を0.6Aに維持しながらバッテリ充電を行うことができる。
【0019】
この様に本実施形態によるバックアップ電源装置は、予めAC/DC変換器の限界電流値の設定、急速又は低速充電モードによる充電電流の設定を行い、各モードにより指定された一定電流値によってバッテリ充電を行うことができ、このため急速充電モード時には短時間にバッテリ充電を行うことにより過充電を防止することができ、低速充電モード時には少ない充電電流によりバッテリ充電を行うことによりAC/DC変換部に影響がない範囲でバッテリ充電を行うことができる。
【0020】
更に本実施形態によるバックアップ電源装置は、予めAC/DC変換器の限界電流値を設定すると共に負荷装置に供給しているDC/DC変換部の供給電流を検出し、両者の差分の範囲内でバッテリ充電を行うため、AC/DC変換部の容量を必要最低限に抑えることができる。
【0021】
具体的に説明すると、高速充電モードの場合、従来技術においてはAC/DC変換部の負荷が通常5Aで周期的に13A必要となるとき、AC/DC変換部は13Aに充電用電流値6Aを加え、更にマージンを考慮した20A以上の大容量にしなければならなかったが、本実施形態においては、AC/DC変換部1の電流限界値を設定し、この限界値からDC/DC変換部に供給されている検出電流値減算した値(出力c)の範囲内で、モードにより設定された充電電流値により充電を行うため、即ち、従来の如く設定されたワット数に従った電流値を設定しないため、大容量のAC/DC変換部を不必要とすることができる。
【0022】
またDC/DC変換部負荷が5A→13A(20s間)→5Aと変化するとき、バックアップ電源の取り込み電流は6A→2A(20s間)→6Aとなるため、AC/DC変換部は11A→15A→11Aと従来に比べて低容量にすることができる。
【0023】
尚、前記実施形態においては、電流値を一旦電圧値に変換してバッテリへの充電電流をモードに応じて一定値に保つ例を説明したが本発明は、これに限られるものではなく、電流値そのものを検出して制御する様に構成しても良い。
【0024】
【発明の効果】
以上述べた如く本発明によれば、AC/DC変換部の限界電流値bとバッテリに対する急速充電モード又は低速充電モード時のバッテリ充電電流値eとを設定し、DC/DC変換器の電流値aを検出し、前記限界電流値bからDC/DC変換器の電流値aを減算したバッテリ充電可能な充電可能電流値cと前記モードにより設定されたバッテリ充電電流値eを比較し、両電流値のうちの低電流値によってバッテリ充電を行うことによって、バッテリへの充電電流をバッテリの消耗度合いに応じて一定に保つことができると共にAC/DC変換部の容量を小容量とすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態によるバックアップ電源装置の主な回路構成を示す図。
【図2】従来技術による電源システムを説明するための図。
【符号の説明】
101:AC/DC変換部、102:DC/DC変換部、200:交流電源、300:負荷装置、5:電流検出部、201:減算器、202:掛け算器、203:比較器、204:充電電流設定回路、205:三角波発生回路、207:パルス発生回路、208:減算器、209:バッテリ、220:AC/DC変換部の限界電流設定回路。
[0001]
[Industrial application fields]
The present invention relates to a battery charging method for a battery for performing uninterruptible power in a power supply device, and a backup power supply device that implements the charging method, and in particular, charging a battery suitably without applying a load to an AC / DC converter. The present invention relates to a battery charging method that can be performed and a backup power supply apparatus that implements the charging method.
[0002]
[Prior art]
Generally, a peripheral device in a computer system is connected to a power supply device for securing a constant power supply and an uninterruptible device (UPS) for responding to a power failure. As shown in FIG. 2, the power supply system according to this prior art includes an uninterruptible device 500 for charging a battery using an electric power composed of an electric current Iin and a voltage Vin from an AC power source 200, and an alternating voltage from the uninterruptible device 500 as a direct current. The uninterruptible device 500 converts the input voltage Vin into a DC voltage by the AC / DC converter 1 and converts the voltage V 1 into DC / AC. is intended to charge the electric current I 2 to the battery 4 via the charging and discharging circuit 3 is supplied by the converter 2 from the back to the AC to the next stage of the power supply device 100, the power supply device 100, from the uninterruptible device 500 An AC voltage is converted into a direct current by the AC / DC converter 101, and a DC current of a predetermined voltage is further supplied to the load device 300 by the DC / DC converter 102. Discharge circuit 3 is configured wattage power specified from the output of the AC / DC converter unit 1 so as to charge the battery 4.
[0003]
[Problems to be solved by the invention]
In the power supply system configured in this way, the current value changes depending on the power required by the load device 300, and therefore the capacities of the AC / DC conversion unit and the DC / DC conversion unit are set according to the current required by the load device. There was a problem that it was necessary to design a large capacity. For example, when multiple magnetic disk units are connected to the load unit, the startup current when the magnetic disk unit is turned on and the inrush current when the unit starts up are large, and the capacity is designed to handle these startup currents. Had to do.
[0004]
Furthermore, since the conventional system specifies the battery charging characteristics in wattage, the charging current also changes when the input voltage changes or the load device power changes. For example, when the charging current is very small There is a problem that the charging time becomes redundant and the recovery of the battery is delayed, and conversely, when the charging current is excessive, the battery is overcharged, resulting in a dangerous state.
[0005]
Furthermore, the conventional system has a problem in that, for example, even when the battery is exhausted and the battery needs to be charged quickly, the charging time becomes redundant in order to perform charging with a specified wattage.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned problems caused by the prior art, a battery charging method capable of keeping the charging current to the battery constant according to the degree of battery consumption, and a backup power supply for implementing the charging method. Is to provide a device.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an AC / DC converter that converts an AC voltage into a DC voltage, and converts the DC voltage output from the AC / DC converter into a voltage having a predetermined value, so that the load capacity is reduced. A battery charging method for a backup power supply device comprising: a DC / DC conversion unit that outputs to a changing load device; and a battery that is a nickel hydride battery that performs charging by taking in current from the AC / DC conversion unit,
Setting a limit current value of the AC / DC converter and a battery charging current value in a fast charging mode or a battery charging current value in a slow charging mode for the battery;
The current value of the DC / DC conversion unit is detected, and the battery chargeable current value obtained by subtracting the current value from the DC / DC conversion unit from the limit current value is compared with the set battery charging current value. ,
The switching control of the semiconductor element is performed according to the low current value of the chargeable current value or the battery charging current value that can be charged by the battery,
The limit current value of the AC / DC converter is set to a value equal to or greater than the maximum capacity of the load device plus a battery charge current value in the low-speed charge mode for the battery. If the battery charge current value in the quick charge mode is lower by comparing the battery charge current value of the battery and the chargeable current value, the battery charge current value in the quick charge mode The first characteristic is that the battery is charged by the chargeable current value when the charge rate is lower, and by the battery charge current value in the slow charge mode in the slow charge mode.
[0008]
Furthermore, the present invention provides an AC / DC converter that converts an AC voltage into a DC voltage, and converts the DC voltage output from the AC / DC converter into a voltage having a predetermined value, which is output to a load device whose load capacity changes. A backup power supply device comprising: a DC / DC converter that performs charging; and a battery that includes a nickel metal hydride battery that performs charging by taking in current from the AC / DC converter,
A first setting circuit for setting a limit current value of the AC / DC converter;
A second setting circuit for setting a battery charging current value in a rapid charging mode or a battery charging current value in a low-speed charging mode for the battery;
A current detection circuit for detecting a current value from the DC / DC converter;
A comparison circuit that compares the set battery charge current value with a chargeable current value that can be charged by the battery by subtracting the current value from the DC / DC converter from the limit current value;
The have line switching control of the semiconductor device in accordance with the low current value of the battery chargeable chargeable current or battery charging current value, and a battery charging circuit that performs battery charge,
The limit current value of the AC / DC converter is set to a value equal to or greater than the maximum capacity of the load device plus the battery charge current value in the slow charge mode for the battery. When the battery charge current value and the chargeable current value are compared and the battery charge current value in the quick charge mode is lower, the chargeable current value is determined according to the battery charge current value in the quick charge mode. The second characteristic is that the battery is charged with a constant current value when the battery is low, according to the chargeable current value, and when in the low-speed charge mode, depending on the battery charge current value in the low-speed charge mode.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a battery charging method and a backup power supply according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a main circuit configuration of a backup power supply apparatus to which the battery charging method according to the present embodiment is applied.
[0010]
First, the backup power supply device according to the present embodiment is arranged between an AC power supply and a load device, and uses a nickel metal hydride battery as a battery. When the charge amount of the battery is small along with the discharge amount of the battery, the backup power supply device is predetermined. A fast charging mode in which charging is performed with a large current (for example, a rapid charging by 6A in the case of a battery with a capacity of 3 Ah) and a low-speed charging mode in which charging is performed with a predetermined small current when the battery is charged (for example, In the case of a battery with a capacity of 3 Ah, it has a low-speed charging at 0.6 A), and as shown in FIG. 1, an AC / DC converter 101 and a DC / DC converter 102 equivalent to the conventional one, and the DC / DC converter A current detection unit 5 that detects an output current value of 102 as a voltage value at an input unit; and a capacitor 2 that is inserted between lines extending from both ends of the current detection unit 5 0, a parallel circuit composed of a diode 211 and a MOSFET 213 provided on one of the lines, an output of the parallel circuit and a diode 212 inserted between the other of the lines, a choke coil 214, a battery 209, A detecting circuit 206 that detects a current value supplied to the battery 209 as a voltage value, and the capacitor 210 / diode 212 / MOSFET 213 / choke coil 214 constitutes a step-down circuit, and the MOSFET 213 receives a command signal described later. The battery 209 is configured to be charged by being controlled on / off. In this embodiment, an example in which a nickel metal hydride battery is used as a battery will be described, but the present invention is not limited to this.
[0011]
The circuit configuration for turning on / off the MOSFET 213 performs control by converting a current value into a voltage value, and is a setting for presetting the limit current value of the AC / DC converter 101 as the voltage value b. The circuit 220, the subtracter 201 for subtracting the detection value a from the limit value b with the outputs ab of the current detector 5 and the setting circuit 220 as inputs, the output c of the subtractor 201 and a slice level h described later are input. Designated by the setting circuit 204, a multiplier 202 for performing multiplication, a charging current value setting circuit 204 for setting a current value to be charged to the battery 209 as a voltage value e corresponding to the rapid or low speed mode, and A comparator 203 that compares the measured voltage value e with the output d of the multiplier 202 and outputs a low-level value f; and the output f of the comparator 203 and the battery current detector 2 6, the subtractor 208 that outputs the slice level h by subtracting the output g from the input, the triangular wave generation circuit 205 that outputs a predetermined triangular wave signal i, and the triangular wave from the slice level h and the triangular wave generation circuit 205. A pulse generator 207 for driving the MOSFET 213 by receiving a signal i and outputting a pulse signal j having a width specified by the slice level h. The mode switching is performed by detecting the voltage value of the battery 209 using a circuit (not shown) and switching according to the amount of charge.
[0012]
<Explanation of operation in quick charge mode>
In this circuit, first, the limit value of the output current, which is the capability of the AC / DC converter 101, is set as the voltage b by the setting circuit 220, and the current value to be charged in the battery 209 is specified as the voltage e by the setting circuit 204. Then, the voltage value a from the current detection circuit 5 that is actually supplied to the DC / DC converter 102 is subtracted from the limit value voltage b by the subtractor 201, and the current value of the AC / DC converter is determined to be DC. A value obtained by subtracting the current value supplied to the DC converter, that is, a voltage c corresponding to the current that can be charged by the battery is output. Here, for example, the limit of the AC / DC conversion unit is 15A (the output b of the setting circuit 220 is 15V), the current detected by the current detection circuit 5 is 5A (the output a is 5V), and the battery is consumed much and the quick charge mode When charging at 6 A is set as 6 V by the charging current value setting circuit 204 and the subtractor 201 outputs a difference of 10 V (the operation of the multiplier 202 will be described later), the comparator 203 outputs 10 V of the output d and the setting circuit. 6V of the output e of 204 is inputted, and 6V which is a low value is outputted from the comparator 203 as the output f.
[0013]
Here, when the output g of the battery current detection circuit 206 is 6V, that is, when appropriate, the output of the subtracter 208 is 0, the current slice level h is maintained, the battery charge by 6A is maintained, and the battery current detection circuit 206 When the output g is 8V, that is, excessive, g−f (8V−6V) = 2V is output as the slice level h by the subtracter 208, and the output j is obtained by narrowing the pulse width of the triangular wave signal i from the pulse generator 207. By driving the MOSFET 213, the current value supplied to the battery 209 is reduced to 6 A. Conversely, when the output g of the battery current detection circuit 206 is 4V, that is, when the output g is small, the subtractor 208 causes g−f (4V− 6V) = − 2V is output as the slice level h, and the output j is obtained by widening the pulse width of the triangular wave signal i from the pulse generator 207. By driving the MOSFET213 Ri operated as to increase the current supplied to the battery 209 to 6A.
[0014]
Therefore, in the quick charge mode, the backup power supply apparatus according to the present embodiment can charge the battery while maintaining the rapid charge current designated by the charge current setting circuit 204 at 6A. Further, in the present embodiment, when the power required by the load device increases, the increase is detected by the current detection circuit 5, and the current value that can be used for battery charging is output as the output c from the subtractor 201, which is below 6V. In this case, since the output of the comparator 203 outputs a voltage value corresponding to the current value that has fallen, the charging current value by the MOSFET 213 is reduced, so that the capability of the AC / DC converter can be improved even when the load increases. The battery can be charged within the range and rapidly. On the other hand, when the load decreases, 6 V is output from the comparator 203, so that overcharging of the battery 209 can be prevented.
[0015]
The multiplier 202 described above receives the output c of the subtractor 201 and a slice level h, which will be described later, as described above, and detects the duty, which is a parameter indicating the ratio between the input voltage and the battery voltage, by performing multiplication. Thus, the current value is corrected. For example, when the current value detected by the battery current detector 206 is 2 A, the output voltage of the AC / DC converter 101 is 48 V, and the battery voltage is 30 V, actually, [2 A × (output voltage / Battery voltage) = 2A × (48V / 30V)] = 3.2 A can be charged, and this correction is performed.
[0016]
<Description of operation in low-speed charging mode>
The circuit in this mode is set by the setting circuit 220 using the limit voltage b, the setting circuit 204 setting the current value to be charged by the voltage e, and the charging current value setting circuit 204 by the slow charge mode 0.6V. Is set. Here, the present circuit subtracts the voltage value a from the current detection circuit 5 that is actually supplied to the DC / DC conversion unit 102 from the voltage b of the limit value by the subtractor 201, and currently performs AC / DC conversion. A value c obtained by subtracting the current value supplied to the DC / DC conversion unit from the capacity of the unit, that is, a voltage c corresponding to the battery chargeable current is output. Here, for example, the limit of the AC / DC conversion unit is 15 A (the output b of the setting circuit 220 is 15 V), the current detected by the current detection circuit 5 is 5 A (the output a is 5 V), and the low-speed charging mode with less battery consumption When charging at 0.6 A is set as 0.6 V by the charging current value setting circuit 204, the subtractor 201 outputs a difference of 10 V (except for the operation of the multiplier 202) and outputs to the comparator 203. 10V of d and 0.6V of the output e of the setting circuit 204 are inputted, and a low value of 0.6V is outputted from the comparator 203 as the output f.
[0017]
Here, if the output g of the battery current detection circuit 206 is 0.6 V, that is, if appropriate, the output of the subtracter 208 is 0, the current slice level h is maintained, the battery charge by 0.6 A is maintained, the battery current When the output g of the detection circuit 206 is 8V, that is, it is excessive, g−f (8V−0.6V) = 7.4V is output as the slice level h by the subtracter 208, and the triangular wave signal i from the pulse generator 207 is output. By driving the MOSFET 213 with the output j with a narrow pulse width, the current value supplied to the battery 209 is reduced to 0.6 V, and conversely, the output g of the battery current detection circuit 206 is 0.2 V, that is, small. In this case, g−f (0.2−0.6 V) = − 0.4 V is output as the slice level h by the subtracter 208, and the triangle from the pulse generator 207 is output. By driving the MOSFET213 by the output j of spread the pulse width of the signal i, operated as to increase the current supplied to the battery 209 to 0.6V.
[0018]
Therefore, the backup power supply device according to the present embodiment can charge the battery while maintaining the low speed charging current designated by the charging current setting circuit 204 at 0.6 A in the low speed charging mode.
[0019]
As described above, the backup power supply apparatus according to the present embodiment sets the limit current value of the AC / DC converter in advance, sets the charging current in the rapid or low-speed charging mode, and charges the battery with the constant current value designated by each mode. Therefore, overcharge can be prevented by charging the battery in a short time in the quick charge mode, and the AC / DC converter can be charged by charging the battery with a small charge current in the low speed charge mode. Battery charging can be performed within a range where there is no influence.
[0020]
Furthermore, the backup power supply device according to the present embodiment sets the limit current value of the AC / DC converter in advance and detects the supply current of the DC / DC conversion unit supplied to the load device, and within the range of the difference between the two. Since the battery is charged, the capacity of the AC / DC converter can be minimized.
[0021]
Specifically, in the fast charge mode, when the load of the AC / DC converter is normally 5A and 13A is required periodically in the conventional technology, the AC / DC converter supplies the charging current value 6A to 13A. In addition, the capacity has to be increased to 20 A or more in consideration of the margin, but in the present embodiment, the current limit value of the AC / DC conversion unit 1 is set, and from this limit value to the DC / DC conversion unit. In order to perform charging with the charging current value set by the mode within the range of the value obtained by subtracting the supplied detection current value (output c), that is, the current value according to the wattage set as in the prior art is set. Therefore, a large-capacity AC / DC converter can be made unnecessary.
[0022]
When the load of the DC / DC converter changes from 5A → 13A (between 20s) → 5A, since the backup power supply current is 6A → 2A (between 20s) → 6A, the AC / DC converter is 11A → 15A. → 11A, which is a lower capacity than the conventional one.
[0023]
In the embodiment, the example in which the current value is once converted into the voltage value and the charging current to the battery is kept constant according to the mode has been described, but the present invention is not limited to this. You may comprise so that a value itself may be detected and controlled.
[0024]
【The invention's effect】
As described above, according to the present invention, the limit current value b of the AC / DC converter and the battery charge current value e in the quick charge mode or the slow charge mode for the battery are set, and the current value of the DC / DC converter is set. a is detected, the chargeable current value c that can be charged by subtracting the current value a of the DC / DC converter from the limit current value b is compared with the battery charge current value e set by the mode, and both currents are compared. By charging the battery with a low current value among the values, the charging current to the battery can be kept constant according to the degree of consumption of the battery, and the capacity of the AC / DC converter can be made small. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a main circuit configuration of a backup power supply apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining a power supply system according to a conventional technique.
[Explanation of symbols]
101: AC / DC converter, 102: DC / DC converter, 200: AC power supply, 300: load device, 5: current detector, 201: subtractor, 202: multiplier, 203: comparator, 204: charging Current setting circuit, 205: triangular wave generation circuit, 207: pulse generation circuit, 208: subtractor, 209: battery, 220: limit current setting circuit of AC / DC converter.

Claims (2)

交流電圧を直流電圧に変換するAC/DC変換部と、
該AC/DC変換部から出力された直流電圧を所定値の電圧に変換し、負荷容量が変化する負荷装置に出力するDC/DC変換部と、
前記AC/DC変換部から電流を取り込んで充電を行うニッケル水素電池からなるバッテリとを備えるバックアップ電源装置のバッテリ充電方法であって、
前記AC/DC変換部の限界電流値と、バッテリに対する急速充電モード時のバッテリ充電電流値又は低速充電モード時のバッテリ充電電流値とを設定し、
前記DC/DC変換部の電流値を検出し、前記限界電流値からDC/DC変換部からの電流値を減算したバッテリ充電可能な充電可能電流値と前記設定されたバッテリ充電電流値を比較し、
前記バッテリ充電可能な充電可能電流値又はバッテリ充電電流値のうちの低電流値に応じて半導体素子のスイッチング制御を行い、
前記AC/DC変換部の限界電流値は、前記負荷装置の最大容量に前記バッテリに対する低速充電モード時のバッテリ充電電流値を加算した値以上に設定して、急速充電モード時に前記急速充電モード時のバッテリ充電電流値と前記充電可能電流値を比較して前記急速充電モード時のバッテリ充電電流値の方が低い場合には前記急速充電モード時のバッテリ充電電流値によって、前記充電可能電流値の方が低い場合には前記充電可能電流値によって、また、低速充電モード時には前記低速充電モード時のバッテリ充電電流値によって、バッテリ充電を行うことを特徴とするバッテリ充電方法。
An AC / DC converter for converting an alternating voltage into a direct voltage;
A DC / DC converter that converts the DC voltage output from the AC / DC converter into a voltage of a predetermined value and outputs the voltage to a load device whose load capacity changes;
A battery charging method for a backup power supply apparatus comprising a battery made of a nickel metal hydride battery that takes in current from the AC / DC converter and performs charging,
Setting a limit current value of the AC / DC converter and a battery charging current value in a fast charging mode or a battery charging current value in a slow charging mode for the battery;
The current value of the DC / DC conversion unit is detected, and the battery chargeable current value obtained by subtracting the current value from the DC / DC conversion unit from the limit current value is compared with the set battery charging current value. ,
The switching control of the semiconductor element is performed according to the low current value of the chargeable current value or the battery charging current value that can be charged by the battery,
The limit current value of the AC / DC converter is set to a value equal to or greater than the maximum capacity of the load device plus a battery charge current value in the low-speed charge mode for the battery. If the battery charge current value in the quick charge mode is lower by comparing the battery charge current value of the battery and the chargeable current value, the battery charge current value in the quick charge mode A battery charging method comprising: charging the battery according to the chargeable current value when the charge rate is lower, and according to the battery charge current value during the low-speed charge mode in the low-speed charge mode.
交流電圧を直流電圧に変換するAC/DC変換部と、
該AC/DC変換部から出力された直流電圧を所定値の電圧に変換し、負荷容量が変化する負荷装置に出力するDC/DC変換部と、
前記AC/DC変換部から電流を取り込んで充電を行うニッケル水素電池からなるバッテリとを備えるバックアップ電源装置であって、
前記AC/DC変換部の限界電流値を設定する第1の設定回路と、
バッテリに対する急速充電モード時のバッテリ充電電流値又は低速充電モード時のバッテリ充電電流値を設定する第2の設定回路と、
前記DC/DC変換部からの電流値を検出する電流検出回路と、
前記限界電流値からDC/DC変換部からの電流値を減算したバッテリ充電可能な充電可能電流値と前記設定されたバッテリ充電電流値を比較する比較回路と
前記バッテリ充電可能な充電可能電流値又はバッテリ充電電流値のうちの低電流値に応じて半導体素子のスイッチング制御を行い、バッテリ充電を行うバッテリ充電回路とを備え、
前記AC/DC変換部の限界電流値は、前記負荷装置の最大容量に前記バッテリに対する低速充電モード時のバッテリ充電電流値を加算した値以上に設定され、急速充電モード時に前記急速充電モード時のバッテリ充電電流値と前記充電可能電流値を比較して前記急速充電モード時のバッテリ充電電流値の方が低い場合には前記急速充電モード時のバッテリ充電電流値によって、前記充電可能電流値の方が低い場合には前記充電可能電流値によって、また、低速充電モード時には前記低速充電モード時のバッテリ充電電流値によって、バッテリ充電を一定電流値によって行うことを特徴とするバックアップ電源装置。
An AC / DC converter for converting an alternating voltage into a direct voltage;
A DC / DC converter that converts the DC voltage output from the AC / DC converter into a voltage of a predetermined value and outputs the voltage to a load device whose load capacity changes;
A backup power supply device comprising a battery made of a nickel metal hydride battery that takes in current from the AC / DC converter and performs charging,
A first setting circuit for setting a limit current value of the AC / DC converter;
A second setting circuit for setting a battery charging current value in a rapid charging mode or a battery charging current value in a low-speed charging mode for the battery;
A current detection circuit for detecting a current value from the DC / DC converter;
A comparison circuit that compares the set battery charge current value with a chargeable current value that can be charged by the battery by subtracting the current value from the DC / DC converter from the limit current value;
The have line switching control of the semiconductor device in accordance with the low current value of the battery chargeable chargeable current or battery charging current value, and a battery charging circuit that performs battery charge,
The limit current value of the AC / DC converter is set to a value equal to or greater than the maximum capacity of the load device plus the battery charge current value in the slow charge mode for the battery. When the battery charge current value and the chargeable current value are compared and the battery charge current value in the quick charge mode is lower, the chargeable current value is determined according to the battery charge current value in the quick charge mode. The battery pack is charged with a constant current value according to the chargeable current value when the battery voltage is low, and according to the battery charge current value during the low-speed charge mode in the low-speed charge mode.
JP2002109925A 2002-04-12 2002-04-12 Battery charging method and backup power supply apparatus for implementing the charging method Expired - Fee Related JP4349773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002109925A JP4349773B2 (en) 2002-04-12 2002-04-12 Battery charging method and backup power supply apparatus for implementing the charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002109925A JP4349773B2 (en) 2002-04-12 2002-04-12 Battery charging method and backup power supply apparatus for implementing the charging method

Publications (2)

Publication Number Publication Date
JP2003309933A JP2003309933A (en) 2003-10-31
JP4349773B2 true JP4349773B2 (en) 2009-10-21

Family

ID=29393211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002109925A Expired - Fee Related JP4349773B2 (en) 2002-04-12 2002-04-12 Battery charging method and backup power supply apparatus for implementing the charging method

Country Status (1)

Country Link
JP (1) JP4349773B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709497B2 (en) * 2004-04-08 2011-06-22 日立コンピュータ機器株式会社 Power backup device
FR2943188B1 (en) 2009-03-11 2013-04-12 Renault Sas FAST CHARGING DEVICE FOR AN ELECTRIC VEHICLE.
JP4703742B2 (en) 2009-04-30 2011-06-15 株式会社東芝 An electronic device that determines the power supply capability of the power adapter and changes the charging method
JP2013207861A (en) * 2012-03-27 2013-10-07 Asahi Kasei Electronics Co Ltd Charge and discharge circuit
EP3087652A4 (en) * 2013-12-27 2017-09-20 Intel Corporation Power delivery system for an electronic device

Also Published As

Publication number Publication date
JP2003309933A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP3747381B2 (en) Power supply control circuit for electronic devices with built-in batteries
US7671487B2 (en) Uninterruptible power supply and method for controlling same
US6144187A (en) Power measurement for adaptive battery charger
US7049711B2 (en) Uninterruptible power system
US7522435B2 (en) Power supply converter/s with controller/s responsive to voltage, current, and power
US7474079B2 (en) Battery charger with backup charging circuit
US9450452B2 (en) Transformer coupled current capping power supply topology
JP2002369407A (en) Backup power source with peak-cutting function
US6137267A (en) Reverse current protection/current overshoot control for two quadrant battery chargers
JP2002199588A (en) Power supply system
US6949912B2 (en) Enabling circuit for avoiding negative voltage transients
US20230402863A1 (en) Energy System and Charging and Discharging Control Method
US20240120761A1 (en) Method to enhance the life of a lithium battery
JP4349773B2 (en) Battery charging method and backup power supply apparatus for implementing the charging method
JP2015133817A (en) Backup power supply device
WO2017195484A1 (en) Power supply device and power supply method
JP5350734B2 (en) Secondary battery discharge circuit, secondary battery discharge method and information processing apparatus
JP4560657B2 (en) Uninterruptible power system
KR100661470B1 (en) Un-interrupted Switching Mode Power Supply
JP2000323365A (en) Dc supplying device
JP2008035573A (en) Electricity accumulation device employing electric double layer capacitor
JP2010178500A (en) Discharging device, method of discharging, and dc power supply system
JP2003169424A (en) Secondary battery charging method and charging device
JP2995142B2 (en) Series battery charger
JP2000184622A (en) Uninterruptible power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070702

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees