JP4339282B2 - Single crystal diameter measuring device - Google Patents

Single crystal diameter measuring device Download PDF

Info

Publication number
JP4339282B2
JP4339282B2 JP2005160469A JP2005160469A JP4339282B2 JP 4339282 B2 JP4339282 B2 JP 4339282B2 JP 2005160469 A JP2005160469 A JP 2005160469A JP 2005160469 A JP2005160469 A JP 2005160469A JP 4339282 B2 JP4339282 B2 JP 4339282B2
Authority
JP
Japan
Prior art keywords
single crystal
diameter
raw material
boundary
ccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005160469A
Other languages
Japanese (ja)
Other versions
JP2006347775A (en
Inventor
淳慈 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2005160469A priority Critical patent/JP4339282B2/en
Publication of JP2006347775A publication Critical patent/JP2006347775A/en
Application granted granted Critical
Publication of JP4339282B2 publication Critical patent/JP4339282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、チョクラルスキー法(CZ法)等による酸化物などの単結晶の製造中に、当該単結晶の直径を計測する単結晶直径計測装置に関する。   The present invention relates to a single crystal diameter measuring apparatus that measures the diameter of a single crystal during the production of a single crystal such as an oxide by the Czochralski method (CZ method) or the like.

従来、単結晶をCZ法で成長させる方法としては、チャンバーの覗き窓越しに、成長した単結晶の直径を目視で確認し、作業者が成長装置を制御する方法がある。
しかしながら、この従来方法では、作業者が成長装置を常時監視する必要があり、また、単結晶の直径を目視で確認するため、単結晶の直径を一定にすることが難しく、単結晶の直径が目標寸法通りに成長するか否かは作業者の技量に大きく依存していた。
Conventionally, as a method for growing a single crystal by the CZ method, there is a method in which the diameter of the grown single crystal is visually confirmed through a viewing window of a chamber, and an operator controls the growth apparatus.
However, in this conventional method, it is necessary for the operator to constantly monitor the growth apparatus, and since the diameter of the single crystal is visually confirmed, it is difficult to make the diameter of the single crystal constant. Whether or not to grow according to the target dimensions largely depends on the skill of the operator.

そのため、例えば、成長した単結晶と原料融液との境界部をCCDカメラで撮影し、撮影した画像から複数の境界点を求め、数学的手法により単結晶の円形状を定義してその直径を計算し、得られた直径値をもとにコンピュータで単結晶成長時の直径を制御する方法が提案されている(例えば、特許文献1参照)。
特表2001−518443号公報
Therefore, for example, a boundary portion between the grown single crystal and the raw material melt is photographed with a CCD camera, a plurality of boundary points are obtained from the photographed image, a circular shape of the single crystal is defined by a mathematical method, and the diameter is determined. There has been proposed a method of controlling the diameter during single crystal growth by a computer based on the calculated diameter value (see, for example, Patent Document 1).
JP-T-2001-518443

しかし、CCDカメラで撮影した画像から複数の境界点を求め、数学的手法により単結晶の円形状を定義してその直径を計算する方法では、撮影した画像から直接的に単結晶成長時の直径を求めているのではなく、しかも正確な円形状を定義するためには、より多くの境界点を求める必要があり、得られる直径値の精度が低い等の問題がある。
本発明は、単結晶直径計測装置における上記問題を解決するものであって、単結晶成長時の直径値を精度よく求めることができる単結晶直径計測装置を提供することを目的とする。
However, in the method in which a plurality of boundary points are obtained from an image taken with a CCD camera, the circular shape of the single crystal is defined by a mathematical method and the diameter is calculated, the diameter at the time of single crystal growth is directly calculated from the taken image. However, in order to define an accurate circular shape, it is necessary to obtain more boundary points, and there is a problem that the accuracy of the obtained diameter value is low.
An object of the present invention is to solve the above-mentioned problem in a single crystal diameter measuring apparatus, and to provide a single crystal diameter measuring apparatus capable of accurately obtaining a diameter value during single crystal growth.

本発明は、チョクラルスキー法による単結晶の製造中に当該単結晶の直径を計測する装置であって、前記単結晶と原料融液との境界部を、設定した単結晶の回転角度毎に少なくとも2回撮影する撮影手段と、その撮影手段で撮影した各画像から、前記単結晶とともに回転する前記境界部上の1つの計測点を特定する特定手段と、その特定手段で特定した当該1つの計測点の前記各画像における各座標と、前記撮影手段の取り付け角と、前記撮影手段の焦点から前記単結晶の中心までの水平距離と、から当該計測点における単結晶の半径を算出する算出手段と、を備え、当該設定した単結晶の回転角度毎に複数算出された当該半径を平均化することにより単結晶の直径を求めて上記問題を解決している。 The present invention is an apparatus for measuring the diameter of a single crystal during the production of the single crystal by the Czochralski method, wherein the boundary between the single crystal and the raw material melt is set for each set rotation angle of the single crystal. a photographing means for photographing at least twice, from each image photographed by the photographing means, said specifying means for specifying one measurement point on the boundary portion that rotates together with the single crystal, the single identified in the identifying means Calculation means for calculating the radius of the single crystal at the measurement point from the coordinates of the measurement point in each image, the mounting angle of the imaging means, and the horizontal distance from the focal point of the imaging means to the center of the single crystal. The above-mentioned problem is solved by obtaining the diameter of the single crystal by averaging a plurality of the radii calculated for each rotation angle of the set single crystal.

なお、溶融した原料を収容するるつぼ及び引き上げ装置により引き上げられる単結晶を覆うチャンバーを備えた単結晶成長装置であって、チャンバー内を覗くための覗き窓と、覗き窓を開閉する開閉装置と、覗き窓が開くのに連動して単結晶と原料融液の境界部を撮影するCCDカメラとを設けると、覗き窓を所定時間毎に自動的に開き、覗き窓が開くのに連動して、単結晶と原料融液との境界部をCCDカメラで撮影することにより、蒸発した原料が覗き窓のガラスに付着して単結晶の撮影ができなくなるという問題も解決できる。   In addition, a single crystal growth apparatus provided with a crucible containing molten raw material and a chamber that covers a single crystal pulled up by a pulling device, a viewing window for looking into the chamber, an opening and closing device for opening and closing the viewing window, When a CCD camera that captures the boundary between the single crystal and the raw material melt is provided in conjunction with the opening of the viewing window, the viewing window is automatically opened every predetermined time, and in conjunction with the opening of the viewing window, By photographing the boundary between the single crystal and the raw material melt with a CCD camera, it is possible to solve the problem that the evaporated raw material adheres to the glass of the viewing window and the single crystal cannot be photographed.

本発明によれば、撮影した画像をもとに直接的に半径を求めることができるため、例えば、撮影した画像から複数の境界点を求め、数学的手法により単結晶の円形状を定義して直径を計算する方法に比べ、単結晶成長時の直径値を精度よく求めることができる。   According to the present invention, since the radius can be obtained directly based on the photographed image, for example, a plurality of boundary points are obtained from the photographed image, and a single crystal circular shape is defined by a mathematical method. Compared with the method of calculating the diameter, the diameter value at the time of single crystal growth can be obtained with higher accuracy.

以下、本発明の単結晶直径計測装置について、単結晶をチョクラルスキー法(CZ法)等で製造する単結晶成長装置に適用した実施形態を図面に基づき説明する。
即ち、この単結晶成長装置にあっては、引き上げプロセスにおいて、成長した単結晶と原料融液との境界部を単結晶の回転角度が45°の整数倍となるたびに固定カメラ(CCDカメラ)で撮影し、得られた画像のうち撮影順序が前後する2つの画像に基づき、前記境界部の計測点(後に撮影した画像においてCCDカメラの正面にある点)における単結晶の半径、及びカメラ焦点と原料融液との間の垂直距離を計算する。
Hereinafter, an embodiment in which the single crystal diameter measuring apparatus of the present invention is applied to a single crystal growth apparatus for manufacturing a single crystal by the Czochralski method (CZ method) or the like will be described with reference to the drawings.
That is, in this single crystal growth apparatus, a fixed camera (CCD camera) is formed every time the rotation angle of the single crystal is an integral multiple of 45 ° at the boundary between the grown single crystal and the raw material melt in the pulling process. Based on two images whose order of shooting is changed among the obtained images, the radius of the single crystal at the measurement point of the boundary (the point in front of the CCD camera in the image taken later), and the camera focus And calculate the vertical distance between the melt and the raw material melt.

<単結晶成長装置の構成>
図1は、本発明の一実施形態における単結晶成長装置の構成を示す構成図である。この図1に示すように、原料融液4を収容したるつぼ1は、チャンバー5で覆われている。
チャンバー5の上部中央には、パイプ15が設けられている。このパイプ15には、下部に種結晶3を取り付けた引き上げ軸6が挿通されており、この引き上げ軸6を時計回りに回転させながら上方へ移動させることにより、成長した単結晶2が引き上げられる。
チャンバー5の上部側方には、覗き窓7が設けられている。この覗き窓7は、上下回動可能に枢支されたアーム17に取り付けられており、また、覗き窓7の上面中央には、モータ9によって巻き上げ巻き下げされるワイヤ8の先端が連結されている。
<Configuration of single crystal growth apparatus>
FIG. 1 is a configuration diagram showing a configuration of a single crystal growth apparatus in an embodiment of the present invention. As shown in FIG. 1, the crucible 1 containing the raw material melt 4 is covered with a chamber 5.
A pipe 15 is provided in the upper center of the chamber 5. The pipe 15 is inserted with a pulling shaft 6 having a seed crystal 3 attached to the lower portion thereof, and the grown single crystal 2 is pulled up by moving the pulling shaft 6 upward while rotating the pulling shaft 6 clockwise.
A viewing window 7 is provided on the upper side of the chamber 5. The viewing window 7 is attached to an arm 17 that is pivotally supported so as to be rotatable up and down, and the tip of a wire 8 that is wound up and down by a motor 9 is connected to the center of the upper surface of the viewing window 7. Yes.

モータ9は、モータドライバ10を介してコンピュータ13に接続されている。覗き窓7の開及び閉の状態を検出する上限リミットスイッチ11と下限リミットスイッチ12もコンピュータ13に接続されている。
一方、覗き窓7が開いた状態で、るつぼ1内を撮影できる位置には、CCDカメラ14が設置されている。CCDカメラ14もコンピュータ13に接続されている。具体的には、CCDカメラ14は、図2(CCDカメラ14と単結晶2との位置関係を示す側面図及び平面図)に示すように、単結晶2の回転中心に光軸が向けられ、水平面から角度α傾き、前記回転中心とカメラ焦点Fとの間の水平距離が規定値Lyとなる位置に設置されている。また、CCDカメラ14には、CCDカメラ14のカメラ焦点Fを原点とし、単結晶2の回転中心に正対して右方向に伸びているXw軸、回転中心の方向に伸びているYw軸、垂直上方に伸びているZw軸を有するワールド座標系が既定されている。
The motor 9 is connected to the computer 13 via the motor driver 10. An upper limit switch 11 and a lower limit switch 12 that detect the open and closed states of the viewing window 7 are also connected to the computer 13.
On the other hand, a CCD camera 14 is installed at a position where the inside of the crucible 1 can be photographed with the viewing window 7 opened. A CCD camera 14 is also connected to the computer 13. Specifically, as shown in FIG. 2 (a side view and a plan view showing the positional relationship between the CCD camera 14 and the single crystal 2), the CCD camera 14 has an optical axis directed at the center of rotation of the single crystal 2. The angle α is inclined from the horizontal plane, and the horizontal distance between the rotation center and the camera focus F is set at a position where the specified value Ly is obtained. Further, the CCD camera 14 has the camera focal point F of the CCD camera 14 as the origin, the Xw axis extending rightward with respect to the rotation center of the single crystal 2, the Yw axis extending in the direction of the rotation center, and the vertical direction. A world coordinate system having a Zw axis extending upward is defined.

そして、CCDカメラ14は、図3に示すように、単結晶2の画像をCCD(CCDカメラ14の撮像素子)19上に投影し(単結晶2の回転中心をCCD19の中央を通って平面視上下方向に伸びている画素列に投影し)、得られた画像をコンピュータ13に出力する。また、CCD19には、CCD19の中央を原点とし、平面視右方向に伸びているXc軸、上方向に伸びているZc軸を有するCCD座標系が既定されている。なお、CCD座標系では、焦点距離fを単位長さとして規格化した座標値を表す。即ち、座標値は、「CCD座標系原点からの画素の数×CCD19の一画素の大きさ/焦点距離f」となる。
るつぼ1の周囲には、加熱電源16からの電力供給により、るつぼ1を加熱する加熱装置18が設けられている。
Then, as shown in FIG. 3, the CCD camera 14 projects an image of the single crystal 2 onto a CCD (an image pickup device of the CCD camera 14) 19 (the center of rotation of the single crystal 2 passes through the center of the CCD 19 and is viewed in plan view). The image is projected onto a pixel row extending in the vertical direction), and the obtained image is output to the computer 13. The CCD 19 has a predetermined CCD coordinate system having an Xc axis extending in the right direction in plan view and a Zc axis extending in the upward direction with the center of the CCD 19 as the origin. In the CCD coordinate system, coordinate values normalized with the focal length f as a unit length are represented. That is, the coordinate value is “number of pixels from the origin of the CCD coordinate system × size of one pixel of the CCD 19 / focal length f”.
Around the crucible 1, a heating device 18 that heats the crucible 1 by power supply from the heating power supply 16 is provided.

<単結晶成長装置の動作>
単結晶2の引き上げプロセスでは、まず、加熱電源16から加熱装置18に電力を供給し、るつぼ1内で原料を加熱・溶融し、種結晶3を用いて種付けを行う。種付け完了後は、自動直径制御モードに切り替える。自動直径制御モードでは、引き上げ軸6を予めプログラムしておいた引き上げ速度並びに回転速度で動かす。
覗き窓7は通常閉じているが、予めプログラムされた時間毎にコンピュータ13からモータドライバ10へモータ9が正転又は逆転するように指令を出すことにより、モータ9がワイヤ8の巻き上げ巻き下げを行って覗き窓7を開閉する。
<Operation of single crystal growth equipment>
In the pulling process of the single crystal 2, first, power is supplied from the heating power source 16 to the heating device 18, the raw material is heated and melted in the crucible 1, and seeding is performed using the seed crystal 3. After completion of seeding, switch to automatic diameter control mode. In the automatic diameter control mode, the pulling shaft 6 is moved at a pulling speed and a rotating speed programmed in advance.
Although the viewing window 7 is normally closed, the motor 9 winds and unwinds the wire 8 by giving a command from the computer 13 to the motor driver 10 so that the motor 9 rotates forward or backward at every preprogrammed time. Go and open and close the viewing window 7.

また、覗き窓7が開くのと同期して、コンピュータ13は、CCDカメラ14に引き上げ軸6が1回転する間に単結晶2と原料融液4との境界を異なる角度位置にて8回撮影するように指令する。即ち、図4(a)〜(c)に示すように、単結晶2の回転角度が45°の整数倍となるたびに(単結晶2と原料用融液4との境界部を、単結晶2の回転軸を中心として45°刻みで8分割する点i(i=1〜8)による線0−i(単結晶2の回転中心と点iとを結ぶ線)とYw軸とのなす角度が0°となるたびに)前記指令を出力する。   In synchronism with the opening of the viewing window 7, the computer 13 shoots the boundary between the single crystal 2 and the raw material melt 4 at different angular positions eight times while the pulling shaft 6 rotates once in the CCD camera 14. To do so. That is, as shown in FIGS. 4A to 4C, each time the rotation angle of the single crystal 2 becomes an integral multiple of 45 ° (the boundary between the single crystal 2 and the raw material melt 4 is changed to the single crystal 2). The angle between the line 0-i (line connecting the center of rotation of the single crystal 2 and the point i) and the Yw axis by the point i (i = 1 to 8) divided into eight at 45 ° intervals around the rotation axis of 2 The command is output (every time becomes 0 °).

CCDカメラ14は、単結晶2と原料融液4との境界部を撮影し、撮影した画像から単結晶2と原料融液4の境界部を検出する。具体的には、まず、撮影順序が前後する2枚の画像のうち、後に撮影された画像について、図5(a)に示すように、当該画像の中央を通って平面視上下方向に伸びている画素列(スキャンライン)を平面視上側から平面視下側へスキャンして当該スキャンライン上の各画素の輝度を求める。そして、隣接する画素と輝度が大きく異なる画素を検出することで、計測点iがB地点にあるとき(図4の線0−iとYw軸とのなす角度が0°のとき)の座標B’(a2、b2)を特定する。   The CCD camera 14 images the boundary between the single crystal 2 and the raw material melt 4 and detects the boundary between the single crystal 2 and the raw material melt 4 from the captured image. Specifically, first, of the two images whose shooting order is before and after, an image taken later is extended in the vertical direction in plan view through the center of the image, as shown in FIG. A pixel row (scan line) is scanned from the upper side in the plan view to the lower side in the plan view to obtain the luminance of each pixel on the scan line. Then, by detecting a pixel whose luminance is greatly different from that of the adjacent pixel, the coordinate B when the measurement point i is at the B point (when the angle between the line 0-i and the Yw axis in FIG. 4 is 0 °) is obtained. '(A2, b2) is specified.

次に、図5(b)に示すように、前記2枚の画像のうち、先に撮影された画像の所定画素領域(前記計測点iが撮影されている領域、スキャン領域)内において平面視上下方向に伸びているスキャンラインを平面視左側から平面視右側へ順次選択する。次いで、その選択されたスキャンラインを平面視上側から平面視下側へスキャンして当該スキャンライン上の各画素の輝度を求め、隣接する画素と輝度が大きく異なる画素を検出する。そして、単結晶2と原料融液4との境界点の座標(CCD座標系における座標)A”(a1’、b1’)を決定し、その座標A”を下記(1)式に代入し、左辺と右辺とが最も等しくなる座標A’を算出することで、前記計測点iがA地点にあるとき(図4の線0−iとYw軸とのなす角度が45°のとき)の座標A’(a1、b1)を特定する。   Next, as shown in FIG. 5 (b), the two images are viewed in plan within a predetermined pixel region (region where the measurement point i is photographed, scan region) of the image photographed first. Scan lines extending in the vertical direction are sequentially selected from the left side in the plan view to the right side in the plan view. Next, the selected scan line is scanned from the upper side of the plan view to the lower side of the plan view to obtain the luminance of each pixel on the scan line, and a pixel having a greatly different luminance from the adjacent pixel is detected. Then, the coordinates of the boundary point between the single crystal 2 and the raw material melt 4 (coordinates in the CCD coordinate system) A ″ (a1 ′, b1 ′) are determined, and the coordinates A ″ are substituted into the following equation (1): By calculating the coordinate A ′ where the left side and the right side are the same, the coordinate when the measurement point i is at the point A (when the angle between the line 0-i in FIG. 4 and the Yw axis is 45 °) A ′ (a1, b1) is specified.

Figure 0004339282
Figure 0004339282

また、それら特定された座標A’(a1、b1)、B’(a2、b2)に基づき、下記(2)(3)式に従って、前記計測点iにおける単結晶2の半径Ri、及びカメラ焦点Fと原料融液面との間の垂直距離hiを算出する。   Further, based on the specified coordinates A ′ (a1, b1), B ′ (a2, b2), the radius Ri of the single crystal 2 at the measurement point i and the camera focus according to the following formulas (2) and (3): A vertical distance hi between F and the raw material melt surface is calculated.

Figure 0004339282
Figure 0004339282

さらに、上記フローを点1〜点8について繰り返し実行することで、各点における半径Ri、及び原料融液4までの垂直座標hiを求める。そして、得られた半径Ri及び垂直座標hiに基づき、単結晶2と原料融液4との境界直径の平均値Dav、及びカメラ焦点Fと原料融液4との垂直座標の平均値Zavを下記(4)(5)式に従って算出する。
Dav=(ΣRi/8)×2=ΣRi/4 ・・・(4)
Zav=Σhi/8 ・・・(5)
Further, the above flow is repeatedly executed for points 1 to 8 to obtain the radius Ri at each point and the vertical coordinate hi to the raw material melt 4. Then, based on the obtained radius Ri and vertical coordinate hi, the average value Dav of the boundary diameter between the single crystal 2 and the raw material melt 4 and the average value Zav of the vertical coordinate between the camera focus F and the raw material melt 4 are as follows: (4) Calculate according to equation (5).
Dav = (ΣRi / 8) × 2 = ΣRi / 4 (4)
Zav = Σhi / 8 (5)

そして、コンピュータ13は、その算出された平均直径Davと設定した直径との差からPID制御などの手法を用いて、加熱電源16の出力を決定し、設定した直径との差違をなくすよう制御する。このとき、単結晶2の直径が設定した直径より大きくなった場合は、加熱電源18の出力を上げて直径が小さくなるようにし、逆に直径が設定した直径より小さくなった場合は、加熱電源18の出力を下げて直径が大きくなるように操作を行う。   Then, the computer 13 determines the output of the heating power supply 16 using a technique such as PID control from the difference between the calculated average diameter Dav and the set diameter, and performs control so as to eliminate the difference from the set diameter. . At this time, if the diameter of the single crystal 2 becomes larger than the set diameter, the output of the heating power supply 18 is increased so that the diameter becomes smaller. Conversely, if the diameter becomes smaller than the set diameter, the heating power supply The operation is carried out so that the diameter is increased by lowering the output of 18.

このように、本実施形態の単結晶成長装置にあっては、単結晶2と原料融液4との境界部を、設定した単結晶の回転角度毎に少なくとも2回撮影し、その撮影した各画像から前記境界部の計測点を特定し、その特定した計測点の座標A’、B’と、CCDカメラ14の取り付け角αと、カメラ焦点Fから単結晶2の回転中心までの水平距離と、から当該計測点における単結晶2の半径Riを算出するようにした。そのため、撮影した画像をもとに直接的に直径を求めることができるため、例えば、撮影した画像から複数の境界点を求め、数学的手法により単結晶の円形状を定義して直径を計算する方法に比べ、単結晶成長時の直径値を精度よく求めることができる。   As described above, in the single crystal growth apparatus of the present embodiment, the boundary between the single crystal 2 and the raw material melt 4 is photographed at least twice for each rotation angle of the set single crystal, and each photographed image is taken. The measurement point of the boundary part is specified from the image, the coordinates A ′ and B ′ of the specified measurement point, the mounting angle α of the CCD camera 14, the horizontal distance from the camera focus F to the rotation center of the single crystal 2, From this, the radius Ri of the single crystal 2 at the measurement point is calculated. Therefore, since the diameter can be obtained directly based on the photographed image, for example, a plurality of boundary points are obtained from the photographed image, and the diameter is calculated by defining a single crystal circular shape by a mathematical method. Compared with the method, the diameter value at the time of single crystal growth can be obtained with higher accuracy.

また、覗き窓7を所定時間毎に自動的に開き、覗き窓7が開くのに連動して、単結晶2と原料融液4との境界部をCCDカメラ14で撮影するようにした。そのため、蒸発した原料が覗き窓のガラスに付着して単結晶の撮影ができなくなるという問題も解決できる。
また、作業者が装置を常時監視する必要はなく、CCDカメラ14で、単結晶2と原料融液との境界部を撮影するために設けてある覗き窓7に、蒸発した原料が付着しないようにすることにより、覗き窓7内部に気体を流すための複雑な構造は不要となる。即ち、安定した結晶成長が可能で、装置費用が安価なCZ法による単結晶成長装置を提供できる。
Further, the inspection window 7 is automatically opened every predetermined time, and the boundary portion between the single crystal 2 and the raw material melt 4 is photographed by the CCD camera 14 in conjunction with the opening of the inspection window 7. Therefore, it is possible to solve the problem that the evaporated raw material adheres to the glass of the viewing window and the single crystal cannot be photographed.
Further, it is not necessary for the operator to constantly monitor the apparatus, and the evaporated raw material does not adhere to the viewing window 7 provided for photographing the boundary portion between the single crystal 2 and the raw material melt with the CCD camera 14. By doing so, the complicated structure for flowing gas into the inside of the observation window 7 becomes unnecessary. That is, it is possible to provide a single crystal growth apparatus based on the CZ method that enables stable crystal growth and low apparatus costs.

ちなみに、溶融した原料をいれたるつぼ1及び単結晶2を覆う形で設けられたチャンバー5に設置した窓ガラス越しに画像撮影を行う従来の方法では、蒸発した原料が窓ガラスに付着して曇りが生じ、撮影できなくなるため、一般的にはガラス内面部に気体を流して曇りを防止している。従って、覗き窓ガラス内面に一定流量の気体を流すための追加装置が必要となり、単結晶成長装置の費用が高くなるという問題がある。   By the way, in the conventional method of taking images through the window glass installed in the chamber 5 provided so as to cover the crucible 1 and the single crystal 2 containing the molten material, the evaporated material adheres to the window glass and becomes cloudy. As a result, it becomes impossible to photograph, and generally, a gas is flowed to the inner surface of the glass to prevent fogging. Therefore, there is a problem that an additional apparatus for flowing a gas at a constant flow rate on the inner surface of the viewing window glass is required, and the cost of the single crystal growth apparatus is increased.

<半径算出式等の導出方法>
次に、CCDカメラ14で撮影した画像から単結晶の直径Ri、及びカメラ焦点Fと原料融液面との間の垂直距離hiを算出するための(2)(3)式の導出方法を説明する。
まず、図2及び図3に示すように、CCD座標系の座標をワールド座標系の座標に変換する変換マトリックスwRcは、下記(6)式で表される。
<Derivation method of radius calculation formulas>
Next, a method for deriving the equations (2) and (3) for calculating the diameter Ri of the single crystal and the vertical distance hi between the camera focus F and the raw material melt surface from the image taken by the CCD camera 14 will be described. To do.
First, as shown in FIGS. 2 and 3, a conversion matrix wRc for converting the coordinates of the CCD coordinate system to the coordinates of the world coordinate system is expressed by the following equation (6).

Figure 0004339282
Figure 0004339282

また、前記変換マトリックスwRc(上記(6)式)により、ワールド座標系の座標P(X、Y、Z)とCCD座標系の座標P’(a、b)との間には、下記(7)〜(10)式の関係が成り立つ。   Further, according to the conversion matrix wRc (the above equation (6)), the following (7) is established between the coordinates P (X, Y, Z) of the world coordinate system and the coordinates P ′ (a, b) of the CCD coordinate system. ) To (10).

Figure 0004339282
Figure 0004339282

即ち、
X=a/k ・・・(8)
Y=(cosα−b・sinα)/k ・・・(9)
Z=(sinα+b・cosα)/k ・・・(10)
上記(9)(10)式を利用すると、ワールド座標系の座標A(X1、Y1、h)とCCD座標系の座標A’(a1、b1)との間には、下記(11)(12)式の関係が成り立つ(図6参照)。
Y1=(cosα−b1・sinα)/k1 ・・・(11)
h=(sinα+b1・cosα)/k1 ・・・(12)
ここで、Y1=Ly―R・cos45°より、下記(13)式の関係が成り立つ。
That is,
X = a / k (8)
Y = (cosα−b · sinα) / k (9)
Z = (sin α + b · cos α) / k (10)
When the above equations (9) and (10) are used, the following (11) (12) between the coordinates A (X1, Y1, h) of the world coordinate system and the coordinates A ′ (a1, b1) of the CCD coordinate system. ) Is established (see FIG. 6).
Y1 = (cosα−b1 · sinα) / k1 (11)
h = (sin α + b 1 · cos α) / k 1 (12)
Here, from Y1 = Ly−R · cos 45 °, the following equation (13) holds.

Figure 0004339282
Figure 0004339282

また同様に、上記(9)(10)式を利用すると、ワールド座標系の座標B(X2、Y2、h)とCCD座標系の座標B’(a2、b2)との間には、下記(14)(15)式の関係が成り立つ。
Y2=(cosα−b2・sinα)/k2 ・・・(14)
h=(sinα+b2・cosα)/k2 ・・・(15)
ここで、Y2=Ly―Rより、下記(16)式の関係が成り立つ。
Similarly, when the above equations (9) and (10) are used, the following (between the coordinates B (X2, Y2, h) in the world coordinate system and the coordinates B ′ (a2, b2) in the CCD coordinate system are expressed as follows: 14) The relationship of equation (15) is established.
Y2 = (cosα−b2 · sinα) / k2 (14)
h = (sin α + b 2 · cos α) / k 2 (15)
Here, the relationship of the following equation (16) is established from Y2 = Ly-R.

Figure 0004339282
Figure 0004339282

さらに、上記(13)(16)を利用すると、単結晶2の半径Riを算出するための下記(17)式の関係が成り立つ(上記(2)式が導出される)。   Furthermore, when the above (13) and (16) are used, the relationship of the following equation (17) for calculating the radius Ri of the single crystal 2 is established (the above equation (2) is derived).

Figure 0004339282
Figure 0004339282

そして、上記(17)式で算出された単結晶2の半径Riにより、カメラ焦点Fと原料融液面との間の垂直距離hを算出するための下記(18)式の関係が成り立つ(上記(3)式が導出される)。   The relationship of the following equation (18) for calculating the vertical distance h between the camera focal point F and the raw material melt surface is established by the radius Ri of the single crystal 2 calculated by the above equation (17) (above) (3) is derived).

Figure 0004339282
Figure 0004339282

<座標A’検出式の算出方法>
次に、CCD座標系の座標A’を特定するための(1)式の導出方法を説明する。
まず、上記(8)(9)(10)式を利用すると、ワールド座標系の座標A、BとCCD座標系の座標A’、B’との間には、下記(19)〜(22)式の関係が成り立つ。
<Calculation method of coordinate A ′ detection formula>
Next, a method for deriving equation (1) for specifying the coordinate A ′ of the CCD coordinate system will be described.
First, when the above equations (8), (9), and (10) are used, the following (19) to (22) are set between the coordinates A and B in the world coordinate system and the coordinates A ′ and B ′ in the CCD coordinate system. The relationship of the formula holds.

Figure 0004339282
Figure 0004339282

また、幾何学上、座標A、Bについては、下記(23)式の関係が成り立つ。   Further, in terms of geometry, the relationship of the following formula (23) is established for the coordinates A and B.

Figure 0004339282
Figure 0004339282

そのため、上記(19)〜(23)式を利用すると、下記(24)式の関係が成り立つ(上記(1)式が誘導される)。   Therefore, when the above equations (19) to (23) are used, the relationship of the following equation (24) is established (the above equation (1) is derived).

Figure 0004339282
Figure 0004339282

以上、上記実施形態では、図1のCCDカメラ14が特許請求の範囲の撮影手段を構成し、以下同様に、図1のコンピュータ13が特定手段及び算出手段を構成する。
なお、本発明の単結晶直径計測装置は、上記実施の形態の内容に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
上記実施形態では、単結晶2が1回転する間に8枚撮影する(回転角度が45°の整数倍となるたびに撮影する)例を示したが、これに限られるものではない。
As described above, in the above-described embodiment, the CCD camera 14 in FIG. 1 constitutes the photographing means in the claims, and similarly, the computer 13 in FIG. 1 constitutes the specifying means and the calculating means.
The single crystal diameter measuring apparatus of the present invention is not limited to the contents of the above embodiment, and can be appropriately changed without departing from the gist of the present invention.
In the above embodiment, an example is shown in which eight images are taken while the single crystal 2 rotates once (images are taken every time the rotation angle is an integral multiple of 45 °), but the present invention is not limited to this.

本発明の一実施形態である単結晶成長装置の構成図である。It is a block diagram of the single crystal growth apparatus which is one Embodiment of this invention. CCDカメラと単結晶との位置関係を示す側面図及び平面図である。It is the side view and top view which show the positional relationship of a CCD camera and a single crystal. CCD上に投影された単結晶の画像を説明するための説明図である。It is explanatory drawing for demonstrating the image of the single crystal projected on CCD. 単結晶と原料融液との境界線上の計測点を示す側面図及び平面図である。It is the side view and top view which show the measurement point on the boundary line of a single crystal and raw material melt. 単結晶と原料融液との境界部の検出方法を説明するための説明図である。It is explanatory drawing for demonstrating the detection method of the boundary part of a single crystal and raw material melt. 半径算出式などの導出方法を説明するための説明図である。It is explanatory drawing for demonstrating derivation methods, such as a radius calculation formula.

符号の説明Explanation of symbols

1はるつぼ、2は単結晶、3は種結晶、4は原料融液、5はチャンバー、6は引き上げ軸、7は覗き窓、8はワイヤ、9はモータ、10はモータドライバ、11は上限リミットスイッチ、12は下限リミットスイッチ、13はコンピュータ、14はCCDカメラ、15はパイプ、16は加熱電源、17はアーム、18は加熱装置、19はCCD 1 is a crucible, 2 is a single crystal, 3 is a seed crystal, 4 is a raw material melt, 5 is a chamber, 6 is a lifting shaft, 7 is a viewing window, 8 is a wire, 9 is a motor, 10 is a motor driver, and 11 is an upper limit. Limit switch, 12 is a lower limit switch, 13 is a computer, 14 is a CCD camera, 15 is a pipe, 16 is a heating power source, 17 is an arm, 18 is a heating device, and 19 is a CCD.

Claims (1)

チョクラルスキー法による単結晶の製造中に当該単結晶の直径を計測する装置であって、
前記単結晶と原料融液との境界部を、設定した単結晶の回転角度毎に少なくとも2回撮影する撮影手段と、
その撮影手段で撮影した各画像から、前記単結晶とともに回転する前記境界部上の1つの計測点を特定する特定手段と、
その特定手段で特定した当該1つの計測点の前記各画像における各座標と、前記撮影手段の取り付け角と、前記撮影手段の焦点から前記単結晶の中心までの水平距離と、から当該計測点における単結晶の半径を算出する算出手段と、
を備え、当該設定した単結晶の回転角度毎に複数算出された当該半径を平均化することにより単結晶の直径を求めることを特徴とする単結晶直径計測装置。
An apparatus for measuring the diameter of a single crystal during the production of the single crystal by the Czochralski method,
Photographing means for photographing the boundary between the single crystal and the raw material melt at least twice for each rotation angle of the set single crystal;
From each image photographed by the photographing means, a specifying means for specifying one measurement point on the boundary that rotates together with the single crystal,
From each coordinate in the respective images of the one measuring point specified by the specifying means, the mounting angle of the photographing means, and the horizontal distance from the focal point of the photographing means to the center of the single crystal, at the measuring point. A calculating means for calculating the radius of the single crystal;
A single crystal diameter measuring device characterized in that a diameter of a single crystal is obtained by averaging a plurality of the radii calculated for each rotation angle of the set single crystal.
JP2005160469A 2005-05-19 2005-05-31 Single crystal diameter measuring device Expired - Fee Related JP4339282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160469A JP4339282B2 (en) 2005-05-19 2005-05-31 Single crystal diameter measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005147008 2005-05-19
JP2005160469A JP4339282B2 (en) 2005-05-19 2005-05-31 Single crystal diameter measuring device

Publications (2)

Publication Number Publication Date
JP2006347775A JP2006347775A (en) 2006-12-28
JP4339282B2 true JP4339282B2 (en) 2009-10-07

Family

ID=37644008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160469A Expired - Fee Related JP4339282B2 (en) 2005-05-19 2005-05-31 Single crystal diameter measuring device

Country Status (1)

Country Link
JP (1) JP4339282B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746978B2 (en) 2003-08-12 2010-06-29 Loma Linda University Medical Center Path planning and collision avoidance for movement of instruments in a radiation therapy environment
US7789560B2 (en) 2001-10-30 2010-09-07 Loma Linda University Medical Center Method and device for delivering radiotherapy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044108B1 (en) 2008-08-05 2011-06-28 주식회사 엘지실트론 Revision method of diameter of crystal ingot by czochralski method and control method and system used the same method
JP4930488B2 (en) * 2008-10-21 2012-05-16 信越半導体株式会社 Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
JP5664573B2 (en) 2012-02-21 2015-02-04 信越半導体株式会社 Method for calculating height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
JP6519422B2 (en) * 2015-09-15 2019-05-29 株式会社Sumco Method and apparatus for producing single crystal
CN117604618A (en) * 2023-11-24 2024-02-27 保定景欣电气有限公司 Method and device for determining liquid mouth distance in crystal pulling process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789560B2 (en) 2001-10-30 2010-09-07 Loma Linda University Medical Center Method and device for delivering radiotherapy
US8083408B2 (en) 2001-10-30 2011-12-27 Loma Linda University Medical Center Method and device for delivering radiotherapy
US7746978B2 (en) 2003-08-12 2010-06-29 Loma Linda University Medical Center Path planning and collision avoidance for movement of instruments in a radiation therapy environment
US7949096B2 (en) 2003-08-12 2011-05-24 Loma Linda University Medical Center Path planning and collision avoidance for movement of instruments in a radiation therapy environment
US8184773B2 (en) 2003-08-12 2012-05-22 Loma Linda University Medical Center Path planning and collision avoidance for movement of instruments in a radiation therapy environment

Also Published As

Publication number Publication date
JP2006347775A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4339282B2 (en) Single crystal diameter measuring device
JP5678635B2 (en) Silicon single crystal manufacturing apparatus and silicon single crystal manufacturing method
CN104052923B (en) The display control method of capture apparatus, image display and image display
TWI395842B (en) Silicon single crystal pulling method
JP2001510141A (en) Method and apparatus for controlling silicon crystal growth
CN110004492B (en) Crystal growth furnace and monitoring method thereof
JPH0726817B2 (en) Crystal size measuring device
TWI770661B (en) Single crystal manufacturing apparatus and single crystal manufacturing method
TWI675131B (en) Method and device for manufacturing single crystal
TWI656247B (en) Method of manufacturing single-crystalline silicon
JP6645406B2 (en) Single crystal manufacturing method
JP2010076979A (en) Measurement method and system during manufacturing semiconductor single crystal by fz method, and control method and system during manufacturing semiconductor single crystal by fz method
JP2003012395A (en) Single crystal pulling apparatus, its method and program and recording medium
JP2017154901A (en) Manufacturing method and manufacturing apparatus for single crystal
JP4447080B2 (en) Endoscope device
TW201013153A (en) Method and device for continuously measuring silicon island elevation
JP3611364B2 (en) Single crystal diameter control method
TWI593836B (en) A method of controlling a liquid level of a melt flow
EP1186687A2 (en) Method of and apparatus for growing ribbon of crystal
CN117187942B (en) Crucible position control method and device in crystal pulling process
JPH05130646A (en) Stereoscopic camera device
KR102488064B1 (en) Single-crystal ingot growth apparatus and method of controlling the same
TWI828140B (en) Method and apparatus for manufacturing single crystal
WO2022185789A1 (en) Method for detecting state of surface of raw material melt, method for producing monocrystal, and cz monocrystal production device
KR102231090B1 (en) Ingot growth control apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees