JP4337216B2 - Modeling method by stereolithography and stereolithography by stereolithography - Google Patents

Modeling method by stereolithography and stereolithography by stereolithography Download PDF

Info

Publication number
JP4337216B2
JP4337216B2 JP2000067991A JP2000067991A JP4337216B2 JP 4337216 B2 JP4337216 B2 JP 4337216B2 JP 2000067991 A JP2000067991 A JP 2000067991A JP 2000067991 A JP2000067991 A JP 2000067991A JP 4337216 B2 JP4337216 B2 JP 4337216B2
Authority
JP
Japan
Prior art keywords
modeling
base plate
powder body
stereolithography
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000067991A
Other languages
Japanese (ja)
Other versions
JP2001254107A (en
Inventor
雅克 深井
和也 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2000067991A priority Critical patent/JP4337216B2/en
Publication of JP2001254107A publication Critical patent/JP2001254107A/en
Application granted granted Critical
Publication of JP4337216B2 publication Critical patent/JP4337216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉末体にレーザを照射してこれを焼結して造形物を製造する光造形装置で造形物を製造する際に必要な三次元モデル構造、この三次元モデルで製造された造形物構造、および造形物の造形方法に関するものである。
【0002】
【従来の技術】
金型等を製作する技術として、金属粉末にレーザを照射することでこれを焼結して造形物を製作する造形装置を用いる技術がある。
図9は造形装置の一例を示す説明図である。
この造形装置では、造形するモデルの三次元データを基に積層厚毎の断面のスライスデータを作成し、まず、昇降可能な造形側のプラットホーム1にスチールプレートを金属粉末で被覆したベースプレート2を乗せて、これを造形物3の土台とし、このベースプレート2上に一層分の厚みで金属粉末4を供給側のプラットフォーム5上からリコータ6により供給し、前記作成したスライスデータでレーザ7を金属粉末4に照射することで金属粉末4を焼結させ、第1層の金属粉末層をスライスデータで特定される形状に硬化させるとともに、第1層とベースプレート2を結合する。次に、プラットホーム1を降下させ、1層分の厚みで新たに金属粉末4を供給し、前記作成したスライスデータでレーザ7を金属粉末層に照射することで金属粉末を焼結し、第2の層の金属粉末層をスライスデータで特定される形状に硬化させるとともに、第1層と第2層を結合する。この処理を繰り返して造形物3を製作する。
【0003】
この装置では、レーザの照射速度を低くすると、金属粉末が強く焼結することで造形物の密度が高くなり、レーザの照射速度を上げると、金属粉末の焼結が弱くなり、造形物の密度が低くなるものである。
【0004】
【発明が解決しようとする課題】
上述したように、レーザによる金属粉末の焼結で成形金型の入れ駒を作成する場合、造形時のレーザ照射で造形物表面で発生した熱が冷えることで生じる収縮による内部応力で、第1層以降の層にベースプレートに対して剥離方向の力が発生し、造形物のコーナ部分がベースプレートと剥離し、反りが発生してしまうことがあった。
【0005】
図10は剥離発生の原理を示す説明図で、まず、造形時のレーザ照射で造形物3表面には熱が発生する。そして、この熱が冷えることで生じる収縮により、造形物全体を曲げようとする力が発生する、これにより、ベースプレート2に対して剥離方向の力が発生し、造形物3のコーナ部分がベースプレート2と剥離してしまうものである。
【0006】
この傾向は、金型形状のように造形物の厚さが厚くなるほど剥離荷重が大きくなるため、顕著である。造形物を金型として使う場合、ベースプレートは入れ駒の一部として利用するため、剥離が発生すると、必要な強度が得られず、ベースプレートとの密着性も悪くなり、最終的に全面が剥がれてしまう可能性があるということ、さらに、反りによる変形で寸法精度が悪くなることから、剥離が発生した場合、再造形が必要であった。
【0007】
また、金型は、表面に巣があると、その巣が成形品の表面に転写され、成形品の表面品質が悪くなるとともに、金型表面の強度も落ちる。
このため、金型の表面は密度が高くなるようにしなければならない。そこで、金型を造形する際、表面を造形する際には、レーザの照射速度を低く、内部を造形する際にはレーザの照射速度を高くして、表面は密度が高く、内部は密度の粗い金型を作成することとして、造形時間が長くならないようにしている。
【0008】
しかしながら、このような2重構造となるように造形すると、表面と内部で密度差が大きくなり、造形途中で応力による割れが発生することがある。また、内部の造形時は、造形時間を短縮するため、2層に1回ずつ照射するという技術も考えられているが、2層に1回ずつの照射では上下の繋がりが弱くなり、表面に割れが発生した場合、焼結金属は収縮する特性があるので繋がりが弱い部分で剥がれて引き裂かれることもある。
【0009】
また、金型を2重構造とした場合、密度の高い底面側では強い収縮が発生するため、やはりコーナ部分がベースプレートから剥離しやすいものであった。
【0010】
【課題を解決するための手段】
上述した課題を解決するため、請求項1の発明は、造形するモデルの三次元データから積層厚毎のスライスデータを作成しておき、ベースプレート上に粉末体を供給し、この粉末体に前記スライスデータを基にレーザを照射して該粉末体を焼結してベースプレートと結合し、以降、順次粉末体の供給と焼結を行って造形物を製作する造形装置を用いた光造形による造形方法において、造形物のモデルの三次元データに、造形物のコーナにベースプレートの上面に固着するテーパ状の剥離防止サポートを追加し、この剥離防止サポート部を追加した三次元データを用いて造形物を形成することを特徴とする。
【0011】
請求項2の発明は、ベースプレート上に粉末体を供給し、この粉末体にレーザを照射して該粉末体を焼結してベースプレートと結合し、以降、順次粉末体の供給と焼結を行って造形物を製作する造形装置を用いた光造形による造形物において、造形物のコーナにベースプレートの上面に固着するテーパ状の剥離防止サポートを一体に形成したことを特徴とする。
【0014】
【発明の実施の形態】
図1は本発明の第1の実施の形態を示す三次元モデル構造の一例を示す斜視図、図2は本実施の形態の光造形の流れを示すフローチャート、図3は第1の実施の形態における造形物の一例を示す説明図であり、図2のフローの流れに従い、図1に示す三次元モデル、図3に示す造形物の説明を行う。
【0015】
まず、造形物の三次元モデルを作成する(SA1)。次に、この三次元モデルに、ベースプレートとの剥離防止サポートを追加する(SA2)。第1の実施の形態において、造形物は、図3に示すように、ベースプレート2と造形物3の境界に、テーパ状の剥離防止サポート8が設けられるものであり、造形時に、ベースプレート2と造形物3の境界に、この剥離防止サポート8が造形されるように、図1に示すように、造形物3の三次元モデル3aに剥離防止サポート8を追加する。この剥離防止サポート8は、最外形部から徐々に厚みが厚くなる形状が望ましく、また、造形物3の形状が長方形の場合、各コーナに剥離防止サポート8が形成されるようにする。なお、造形物3自体の設計段階では、剥離防止サポートを考慮することはなく、三次元モデル3a作成時に、造形物3の形状、サイズに応じて剥離防止サポート8を付加するものである。
【0016】
次に、剥離防止サポート8を追加した三次元モデル3aから、スライスデータを作成する(SA3)。
スライスデータを作成すると、レーザの照射速度等、造形条件を設定する(SA4)。そして、上記作成したデータを用いて、造形装置で造形を行う(SA5)。
【0017】
これにより、図3に示すような剥離防止サポート8が設けられた造形物3が製作される。
図4は剥離荷重の分布を示す説明図で、図4(a)は剥離防止サポートがある場合の剥離荷重の分布を示し、図4(b)は比較のため剥離防止サポートのない従来の場合の剥離荷重の分布を示す。
【0018】
剥離防止サポート8を設ける場合、図4(a)に示すように、造形開始時は、剥離防止サポート8の最外形部は十分に薄いため、剥離荷重は小さくベースプレート2と十分に固着している。積層が進むと、剥離荷重は剥離防止サポート8の厚みの増加に従って徐々に大きくなって行くが、剥離防止サポート8の最外形部が十分に固着しているため、剥離することはない。積層がさらに進み剥離防止サポート8のない部分となると、造形物3は剥離防止サポート8と一体で造形しているため、充分ベースプレート2に固着している剥離防止サポート8に支えられて、剥離荷重は弱められる。
【0019】
剥離防止サポート8がない場合、図4(b)に示すように、積層が進むと、造形物3の表面に行くに従い剥離荷重が大きくなり、造形物3がベースプレート2から剥離しやすくなる。特に、コーナ部は剥離荷重がより大きくなるので、より剥離しやすくなる。そこで、図3に示すように、各コーナに剥離防止サポート8が形成されるようにすれば、剥離を防止することが可能となる。
【0020】
図5は本発明の第2の実施の形態における造形物の一例を示す説明図で、図5(a)は平面断面図、図5(b)は側断面図である。図6は造形物の外観斜視図で、第2の実施の形態の造形物3の外観は、その一例として、表面に直方体の窪みがあり、さらにこの窪みから2本の穴3bが設けられているもので、図5(a)は図6の造形物3をA線で切断した平面断面図、図5(b)は図6の造形物3をB線で切断した平面断面図である。この第2の実施の形態では、図2に示すフローSA4の造形条件の設定において、レーザの照射速度を内側から外側に向かって段階的に遅くする設定と、造形物内部に格子状の柱を同時に造形する設定とを付加する。なお。第2の実施の形態では、剥離防止サポートは付加しなくてもよい。
【0021】
第2の実施の形態では、造形物3の内部を、内側から外側に向かってコア9a、コア9b、コア9cと複数領域に分割し、コア9cの外側に造形物3の表面となるスキン10を造形するものである。さらに、柱11を、上面から見ると格子状に、かつ、ベースプレート2からスキン10の間を貫通して入れるものである。
【0022】
図7および図8はレーザ速度別照射領域を示す説明図で、以下に第2の実施の形態における造形条件設定の詳細を説明する。なお、図7は図5に示す造形物の各領域の平面断面図、図8は図5に示す造形物の各領域の側断面図である。
まず、図7(a)、図8(a)に示すスキン10の領域を指定し、底部の領域指定を削除したスキン10用造形データを作成する。次に、スキン10より内側部分に図7(b)、図8(b)に示すコア9cの領域指定と、毎層レーザを照射する指定を行い、底部の領域をスキン10から削除した分下方へ延長したコア9c用造形データを作成する。次に、コア9cより内側部分に図7(c)、図8(c)に示すコア9bの領域指定と、毎層レーザを照射する指定を行い、コア9b用造形データを作成する。次に、コア9bより内側部分に図7(d)、図8(d)に示すコア9aの領域指定と、毎層レーザを照射する指定を行い、コア4a用造形データを作成する。
【0023】
そして、スキン10用造形データに最も遅いレーザ照射速度を設定し、コア9c、9b、9aの順にスキン10よりも速いレーザ照射速度を設定する。なお、図7、図8では図示していないが、図5に示す格子状の柱11の部分も、スキン10と同じ最も遅いレーザ照射速度で造形する設定を行う。
この設定で造形物を製作すると、図5に示す造形物が得られる。
【0024】
図5に示す造形物では、コア9aからスキン10に向かって段階的にレーザの照射速度を遅くし、密度を上げていくため、各領域間で密度差が極端に大きくなることがなく、応力の影響による造形物の割れを防止できる。これにより、スキン10の密度をより高くすることが可能となり、表面の巣を減少させ、成形品表面の品質を向上させることが可能となる。
【0025】
また、造形物3の底部をコア9cの条件で造形することで、強度は保ちつつ収縮を抑え、底部が収縮する際の造形物3のコーナ部をひっぱり上げる力が緩和され、ベースプレート2からの剥離を防止できる。
さらに、コア9a〜9cは毎層レーザを照射することで上下の層間での繋がりが強化され、さらに、密度の高い格子状の柱11を上下に入れることから、上下方向の繋がりはより強化されて、内部での剥離がなくなるとともに、上下方向の圧力に対する強度も増加する。
【0026】
なお、第2の実施の形態では、造形物3は4重構造としたが、これに限るものではなく、造形物の大きさ等を考慮して変更されるものである。
上述した本発明は、金属粉末を焼結して造形物を製造するものとして説明したが、他の樹脂を硬化させて造形する光造形技術にも応用可能である。
【0027】
【発明の効果】
以上説明したように、本発明は、光造形による造形物において、造形物のコーナにベースプレートの上面に固着するテーパ状の剥離防止サポートを一体に形成したものとしているため、造形物とベースプレートとの境界面における剥離荷重の発生を抑え、ベースプレートとの剥離や造形物の反りを抑えることができる。
【0028】
また、本発明は、造形物を内側から外側に向かって複数領域に分割し、内側から外側に向かって段階的に密度が高くなるように一体に造形するとともに、最下層から表面まで密度の高い格子状の柱を一体に造形することとしたので、内部応力の発生を抑えつつ表面の高密度化が図れるとともに、成形圧力による変形を抑えることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す三次元モデル構造の一例を示す斜視図
【図2】本実施の形態の光造形の流れを示すフローチャート
【図3】第1の実施の形態における造形物の一例を示す説明図
【図4】剥離荷重の分布を示す説明図
【図5】本発明の第2の実施の形態における造形物の一例を示す説明図
【図6】造形物の外観斜視図
【図7】レーザ速度別照射領域を示す説明図
【図8】レーザ速度別照射領域を示す説明図
【図9】造形装置の一例を示す説明図
【図10】剥離発生の原理を示す説明図
【符号の説明】
2 ベースプレート
3 造形物
3a 造形物の三次元モデル
8 剥離防止サポート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional model structure necessary for manufacturing a modeled object with an optical modeling apparatus that irradiates a powder body with a laser and sinters it to manufacture a modeled object, and a model manufactured with this three-dimensional model. The present invention relates to an object structure and a modeling method of a modeled object.
[0002]
[Prior art]
As a technique for manufacturing a mold or the like, there is a technique using a modeling apparatus that manufactures a model by sintering a metal powder by irradiating a laser.
FIG. 9 is an explanatory diagram illustrating an example of a modeling apparatus.
In this modeling apparatus, slice data of a cross section for each stacking thickness is created based on the three-dimensional data of the model to be modeled, and first, a base plate 2 in which a steel plate is coated with metal powder is placed on a platform 1 on the modeling side that can be moved up and down. Then, this is used as the base of the model 3, and the metal powder 4 is supplied onto the base plate 2 with a thickness of one layer from the supply-side platform 5 by the recoater 6, and the laser 7 is applied to the metal powder 4 using the created slice data. , The metal powder 4 is sintered, the first metal powder layer is cured into a shape specified by the slice data, and the first layer and the base plate 2 are combined. Next, the platform 1 is lowered, the metal powder 4 is newly supplied in a thickness of one layer, and the metal powder is sintered by irradiating the metal powder layer with the laser 7 using the created slice data. The metal powder layer is cured into a shape specified by the slice data, and the first layer and the second layer are combined. This process is repeated to produce the model 3.
[0003]
In this device, if the laser irradiation rate is lowered, the metal powder is strongly sintered to increase the density of the shaped object, and if the laser irradiation rate is increased, the metal powder is less sintered and the density of the shaped object is increased. Is low.
[0004]
[Problems to be solved by the invention]
As described above, when forming a molding die insert piece by sintering metal powder with a laser, the internal stress due to shrinkage caused by cooling of the heat generated on the surface of the molded article by laser irradiation during modeling is the first. A force in the peeling direction is generated with respect to the base plate in the layers after the layer, and the corner portion of the model is peeled off from the base plate, which may cause warpage.
[0005]
FIG. 10 is an explanatory diagram showing the principle of the occurrence of peeling. First, heat is generated on the surface of the modeled object 3 by laser irradiation during modeling. And the force which is going to bend the whole modeling object generate | occur | produces by the shrinkage | contraction produced by this heat cooling, Thereby, the force of a peeling direction generate | occur | produces with respect to the base plate 2, and the corner part of the modeling object 3 becomes the base plate 2 And will peel off.
[0006]
This tendency is conspicuous because the peeling load increases as the thickness of the shaped object increases as in the shape of a mold. When using a molded object as a mold, the base plate is used as a part of the insert, so if peeling occurs, the required strength cannot be obtained, the adhesion with the base plate will deteriorate, and the entire surface will eventually peel off. Since there is a possibility that the dimensional accuracy deteriorates due to deformation due to warpage, re-modeling was necessary when peeling occurred.
[0007]
Further, when the mold has a nest on the surface, the nest is transferred to the surface of the molded product, and the surface quality of the molded product is deteriorated and the strength of the mold surface is also lowered.
For this reason, the surface of the mold must be made dense. Therefore, when modeling the mold, when modeling the surface, the laser irradiation rate is low, and when modeling the inside, the laser irradiation rate is increased, the surface is high density, and the inside is dense. By creating a rough mold, the molding time is kept from becoming long.
[0008]
However, when modeling is performed so as to have such a double structure, the density difference between the surface and the interior increases, and cracking due to stress may occur during the modeling. In addition, in order to shorten the modeling time during internal modeling, a technique of irradiating the two layers once is also considered. However, the irradiation of the two layers once weakens the upper and lower connections, and the surface When cracking occurs, the sintered metal has a property of shrinking, and therefore, it may be peeled off at a portion where the connection is weak.
[0009]
Further, when the mold has a double structure, strong shrinkage occurs on the high-density bottom surface side, so that the corner portion is easily peeled off from the base plate.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention of claim 1 creates slice data for each layer thickness from three-dimensional data of a model to be shaped, supplies a powder body on a base plate, and supplies the slice to the powder body. Laser shaping based on the data to sinter the powder body and combine it with the base plate, and thereafter, a modeling method by optical modeling using a modeling apparatus that sequentially supplies and sinters the powder body to produce a modeled object In the three-dimensional data of the model of the model, a taper-shaped peeling prevention support part that is fixed to the upper surface of the base plate is added to the corner of the model, and the three-dimensional data using the three-dimensional data to which the peeling prevention support part is added. and forming a.
[0011]
According to the second aspect of the present invention, a powder body is supplied onto the base plate, the powder body is irradiated with a laser to sinter the powder body and coupled to the base plate, and thereafter the powder body is sequentially supplied and sintered. Oite the shaped object by stereolithography using a molding apparatus for fabricating a shaped article Te, characterized in that it is formed integrally with tapered peeling prevention support portion for securing the upper surface of the base plate at the corners of the shaped object.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view showing an example of a three-dimensional model structure showing a first embodiment of the present invention, FIG. 2 is a flowchart showing a flow of stereolithography of the present embodiment, and FIG. 3 is a first embodiment. It is explanatory drawing which shows an example of the molded article in FIG., And the three-dimensional model shown in FIG. 1 and the molded article shown in FIG. 3 are demonstrated according to the flow of FIG.
[0015]
First, a three-dimensional model of a model is created (SA1). Next, a support unit for preventing peeling from the base plate is added to the three-dimensional model (SA2). In the first embodiment, as shown in FIG. 3, the modeled object is provided with a taper-shaped peeling prevention support part 8 at the boundary between the base plate 2 and the modeled object 3. As shown in FIG. 1, the anti-separation support unit 8 is added to the three-dimensional model 3 a of the model 3 so that the anti-separation support unit 8 is modeled at the boundary of the model 3. The peeling prevention support portion 8 is desirably in a shape that gradually increases in thickness from the outermost portion, and when the shaped article 3 is rectangular, the peeling prevention support portion 8 is formed at each corner. In the design stage of the molded article 3 itself, the peeling prevention support portion is not taken into consideration, and the peeling prevention support portion 8 is added according to the shape and size of the molded article 3 when creating the three-dimensional model 3a. .
[0016]
Next, slice data is created from the three-dimensional model 3a to which the peeling prevention support unit 8 is added (SA3).
When the slice data is created, modeling conditions such as laser irradiation speed are set (SA4). And modeling is performed with a modeling apparatus using the created data (SA5).
[0017]
Thereby, the molded article 3 provided with the peeling prevention support part 8 as shown in FIG. 3 is manufactured.
FIG. 4 is an explanatory view showing the distribution of peeling load, FIG. 4 (a) shows the distribution of peeling load when there is a peeling prevention support portion , and FIG. 4 (b) is a conventional case without a peeling prevention support portion for comparison. The distribution of peel load in the case of.
[0018]
When the peeling prevention support portion 8 is provided, as shown in FIG. 4A, since the outermost portion of the peeling prevention support portion 8 is sufficiently thin at the start of modeling, the peeling load is small and the base plate 2 is sufficiently fixed. ing. As the lamination progresses, the peeling load gradually increases as the thickness of the peeling prevention support portion 8 increases. However, since the outermost part of the peeling prevention support portion 8 is sufficiently fixed, the peeling load does not peel off. When the stacking further proceeds and the part without the anti-separation support part 8 is formed, the modeled article 3 is formed integrally with the anti-separation support part 8 and is therefore supported by the anti-separation support part 8 that is sufficiently fixed to the base plate 2. The peel load is weakened.
[0019]
When there is no peeling prevention support part 8, as shown in FIG. 4B, as the stacking progresses, the peeling load increases as going to the surface of the shaped article 3, and the shaped article 3 is easily peeled from the base plate 2. In particular, the corner portion is more easily peeled because the peeling load is larger. Therefore, as shown in FIG. 3, if the peeling prevention support portion 8 is formed at each corner, peeling can be prevented.
[0020]
FIG. 5 is an explanatory view showing an example of a modeled object according to the second embodiment of the present invention. FIG. 5 (a) is a plan sectional view and FIG. 5 (b) is a side sectional view. FIG. 6 is an external perspective view of a modeled object. As an example of the modeled object 3 according to the second embodiment, the surface has a rectangular parallelepiped recess, and two holes 3b are provided from the recess. FIG. 5A is a plan cross-sectional view of the shaped article 3 of FIG. 6 cut along the A line, and FIG. 5B is a plan cross-sectional view of the shaped article 3 of FIG. 6 cut along the B line. In the second embodiment, in the setting of the modeling conditions of the flow SA4 shown in FIG. 2, a setting in which the laser irradiation speed is gradually decreased from the inside toward the outside, and a grid-like column is provided inside the modeled object. At the same time, the setting for modeling is added. Note that. In the second embodiment, the peeling prevention support portion may not be added.
[0021]
In 2nd Embodiment, the inside of the molded article 3 is divided | segmented into a core 9a, the core 9b, the core 9c, and several area | regions toward inner side from the inner side, and the skin 10 used as the surface of the molded article 3 outside the core 9c. Is to shape. Further, the pillars 11 are arranged in a lattice shape when viewed from above and through the base plate 2 through the skin 10.
[0022]
FIG. 7 and FIG. 8 are explanatory diagrams showing irradiation regions according to laser speeds, and details of modeling condition setting in the second embodiment will be described below. 7 is a cross-sectional plan view of each region of the shaped article shown in FIG. 5, and FIG. 8 is a side sectional view of each region of the shaped article shown in FIG.
First, the skin 10 modeling data in which the region of the skin 10 shown in FIGS. 7A and 8A is specified and the bottom region specification is deleted is created. Next, the area of the core 9c shown in FIG. 7B and FIG. 8B is designated on the inner side of the skin 10 and the laser irradiation is performed for each layer, and the bottom area is deleted from the skin 10 below. The modeling data for the core 9c extended to is created. Next, the core 9b shown in FIGS. 7 (c) and 8 (c) is designated on the inner side of the core 9c, and each layer laser is designated to create modeling data for the core 9b. Next, the area designation of the core 9a shown in FIGS. 7D and 8D and the designation of irradiating each layer laser are performed on the inner part from the core 9b, and the modeling data for the core 4a is created.
[0023]
Then, the slowest laser irradiation speed is set in the modeling data for the skin 10, and the laser irradiation speed higher than that of the skin 10 is set in the order of the cores 9c, 9b, and 9a. Although not shown in FIGS. 7 and 8, the grid-shaped column 11 shown in FIG. 5 is also set to be modeled at the same slowest laser irradiation speed as that of the skin 10.
When a model is manufactured with this setting, a model illustrated in FIG. 5 is obtained.
[0024]
In the modeled object shown in FIG. 5, the laser irradiation speed is gradually decreased from the core 9a toward the skin 10 to increase the density, so that the density difference does not become extremely large between the regions, and stress is increased. It is possible to prevent the molded object from being cracked due to the influence of. Thereby, the density of the skin 10 can be further increased, the nest of the surface can be reduced, and the quality of the surface of the molded product can be improved.
[0025]
Further, by modeling the bottom of the model 3 under the condition of the core 9c, the shrinkage is suppressed while maintaining the strength, and the force to pull up the corner of the model 3 when the bottom contracts is alleviated. Separation can be prevented.
Further, the cores 9a to 9c are reinforced by irradiating the lasers of each layer, and the connection between the upper and lower layers is strengthened. Furthermore, since the dense lattice-like pillars 11 are put up and down, the connection in the vertical direction is further strengthened. As a result, there is no internal peeling, and the strength against the pressure in the vertical direction increases.
[0026]
In the second embodiment, the three-dimensional object 3 has a quadruple structure, but is not limited to this, and is changed in consideration of the size of the three-dimensional object.
The present invention described above has been described as one in which a metal powder is sintered to produce a modeled object, but the present invention can also be applied to an optical modeling technique for modeling by curing other resins.
[0027]
【The invention's effect】
As described above, according to the present invention, in the modeled object by optical modeling , since the taper-shaped anti-separation support portion fixed to the upper surface of the base plate is integrally formed at the corner of the modeled object, the modeled object and the base plate It is possible to suppress the generation of a peeling load at the boundary surface, and to suppress the peeling from the base plate and the warping of the molded article.
[0028]
In addition, the present invention divides the shaped object into a plurality of regions from the inside to the outside, and integrally forms the density so that the density increases stepwise from the inside to the outside, and the density is high from the bottom layer to the surface. Since the lattice-like columns are formed integrally, the surface density can be increased while suppressing the generation of internal stress, and deformation due to the molding pressure can be suppressed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a three-dimensional model structure showing a first embodiment of the present invention. FIG. 2 is a flowchart showing a flow of stereolithography of the present embodiment. FIG. 4 is an explanatory diagram showing an example of a modeled object in the form. FIG. 4 is an explanatory diagram showing a distribution of peeling load. FIG. 5 is an explanatory diagram showing an example of a modeled object in the second embodiment of the present invention. FIG. 7 is an explanatory view showing an irradiation region according to laser speed. FIG. 8 is an explanatory view showing an irradiation region according to laser speed. FIG. 9 is an explanatory view showing an example of a modeling apparatus. Explanatory drawing showing [signs]
2 Base plate 3 Model 3a Model three-dimensional model 8 Peeling prevention support part

Claims (2)

造形するモデルの三次元データから積層厚毎のスライスデータを作成しておき、ベースプレート上に粉末体を供給し、この粉末体に前記スライスデータを基にレーザを照射して該粉末体を焼結してベースプレートと結合し、以降、順次粉末体の供給と焼結を行って造形物を製作する造形装置を用いた光造形による造形方法において
造形物のモデルの三次元データに、造形物のコーナにベースプレートの上面に固着するテーパ状の剥離防止サポートを追加し、この剥離防止サポート部を追加した三次元データを用いて造形物を形成することを特徴とする光造形による造形方法
Slice data for each layer thickness is created from the three-dimensional data of the model to be modeled, a powder body is supplied onto the base plate, and the powder body is sintered by irradiating the powder body with a laser based on the slice data. Then, in the modeling method by optical modeling using a modeling apparatus that sequentially supplies and sinters powder bodies and manufactures a modeled object, combined with the base plate,
Add a taper anti-separation support part that adheres to the upper surface of the base plate at the corner of the object and add the anti-separation support part to the 3D data of the object model to form the object. A modeling method by stereolithography characterized by :
ベースプレート上に粉末体を供給し、この粉末体にレーザを照射して該粉末体を焼結してベースプレートと結合し、以降、順次粉末体の供給と焼結を行って造形物を製作する造形装置を用いた光造形による造形物において、
造形物のコーナにベースプレートの上面に固着するテーパ状の剥離防止サポートを一体に形成したことを特徴とする光造形による光造形物。
A powder body is supplied onto the base plate, the powder body is irradiated with a laser to sinter the powder body and bonded to the base plate, and thereafter, the powder body is sequentially supplied and sintered to produce a shaped object. Oite the shaped object by stereolithography using the apparatus,
An optical modeling object by optical modeling , wherein a taper-shaped anti-separation support portion that is fixed to the upper surface of the base plate is integrally formed at a corner of the modeling object.
JP2000067991A 2000-03-13 2000-03-13 Modeling method by stereolithography and stereolithography by stereolithography Expired - Fee Related JP4337216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067991A JP4337216B2 (en) 2000-03-13 2000-03-13 Modeling method by stereolithography and stereolithography by stereolithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067991A JP4337216B2 (en) 2000-03-13 2000-03-13 Modeling method by stereolithography and stereolithography by stereolithography

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008260109A Division JP4983768B2 (en) 2008-10-06 2008-10-06 Modeling method by stereolithography

Publications (2)

Publication Number Publication Date
JP2001254107A JP2001254107A (en) 2001-09-18
JP4337216B2 true JP4337216B2 (en) 2009-09-30

Family

ID=18587103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067991A Expired - Fee Related JP4337216B2 (en) 2000-03-13 2000-03-13 Modeling method by stereolithography and stereolithography by stereolithography

Country Status (1)

Country Link
JP (1) JP4337216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520298A (en) * 2017-03-23 2019-11-29 卡本有限公司 It can be used for manufacturing the lip supports object of object by increasing material manufacturing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344901B4 (en) 2002-09-30 2006-09-07 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional sintered product
JP4751144B2 (en) * 2005-08-29 2011-08-17 株式会社松風 Modeling data creation system, manufacturing method and modeling data creation program
JP5189953B2 (en) * 2008-10-22 2013-04-24 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
JP5302710B2 (en) * 2009-02-24 2013-10-02 パナソニック株式会社 Manufacturing apparatus and manufacturing method of three-dimensional shaped object
JP5895172B2 (en) * 2012-02-09 2016-03-30 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
JP6247837B2 (en) * 2013-05-17 2017-12-13 シーメット株式会社 Stereolithography method
US9833953B2 (en) * 2014-11-14 2017-12-05 3D Systems, Inc. Methods and devices for counteracting stresses during 3D printing
RU2688098C1 (en) * 2018-08-10 2019-05-17 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Method for laser layer-by-layer synthesis of bulk articles from powders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520298A (en) * 2017-03-23 2019-11-29 卡本有限公司 It can be used for manufacturing the lip supports object of object by increasing material manufacturing

Also Published As

Publication number Publication date
JP2001254107A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
JP6859435B2 (en) Methods and thermal structures for additive manufacturing
EP3205424B1 (en) Method and connecting supports for additive manufacturing
US9216451B2 (en) Method of casting a component having interior passageways
US20180154441A1 (en) Methods and table supports for additive manufacturing
WO2011155567A1 (en) Method for producing three-dimensionally shaped structure, and three-dimensionally shaped structure obtained by same
JP2019534186A5 (en)
JP4337216B2 (en) Modeling method by stereolithography and stereolithography by stereolithography
JP2005171299A (en) Method for manufacturing three-dimensionally formed article
JP2015516316A (en) Multilayer manufacturing substrate
JP2008101256A (en) Stack-molded die and producing method therefor
KR102145781B1 (en) Manufacturing method of 3D shape sculpture
JP4983768B2 (en) Modeling method by stereolithography
JP6888259B2 (en) Laminated modeling structure, laminated modeling method and laminated modeling equipment
JP6417586B2 (en) Modeling method and model
JP5058552B2 (en) Additive manufacturing apparatus and additive manufacturing method
JP7207020B2 (en) Method for manufacturing metal article having three-dimensional structure
Ang et al. Study of trapped material in rapid prototyping parts
JP2010052318A (en) Light shaping method
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
US11351612B2 (en) Manufacturing support and method for additive manufacturing process
JP4131230B2 (en) Mold as stereolithography
KR100833332B1 (en) Mold for injection molding and manufacturing method thereof
JP7358821B2 (en) Additive manufacturing equipment and additive manufacturing method
JP2005074931A (en) Shaping method by rapid prototyping and shaped article
JP7068576B2 (en) Injection molding mold and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees