JP4334429B2 - Optical measuring method and optical measuring apparatus - Google Patents

Optical measuring method and optical measuring apparatus Download PDF

Info

Publication number
JP4334429B2
JP4334429B2 JP2004210448A JP2004210448A JP4334429B2 JP 4334429 B2 JP4334429 B2 JP 4334429B2 JP 2004210448 A JP2004210448 A JP 2004210448A JP 2004210448 A JP2004210448 A JP 2004210448A JP 4334429 B2 JP4334429 B2 JP 4334429B2
Authority
JP
Japan
Prior art keywords
signal
pixel
light intensity
interest
target pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004210448A
Other languages
Japanese (ja)
Other versions
JP2006030024A (en
Inventor
淳一 松村
憲治 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2004210448A priority Critical patent/JP4334429B2/en
Priority to KR1020050051696A priority patent/KR100871634B1/en
Priority to TW094121363A priority patent/TWI328673B/en
Priority to CN2005100860244A priority patent/CN1721841B/en
Publication of JP2006030024A publication Critical patent/JP2006030024A/en
Application granted granted Critical
Publication of JP4334429B2 publication Critical patent/JP4334429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、光学的測定方法及び光学的測定装置に関する。より詳しくは、ガラス基板などの検査対象のうち、その表面特性に起因するノイズが存在し且つそのノイズの分布が一定でない検査対象に好適な光学的測定方法及び光学的測定装置に関する。   The present invention relates to an optical measurement method and an optical measurement apparatus. More specifically, the present invention relates to an optical measurement method and an optical measurement apparatus suitable for an inspection object in which noise due to its surface characteristics exists and the noise distribution is not constant among inspection objects such as a glass substrate.

光学的測定方法の一つとして、例えば特開2002−8444号公報に記載されるように、所定の閾値を用いる方法がある。この方法を用いることにより、液晶パネル等に用いるガラス基板に付着したゴミ等の異物を検出する異物検出装置が実現できる。   As one of the optical measurement methods, for example, there is a method using a predetermined threshold as described in JP-A-2002-8444. By using this method, it is possible to realize a foreign matter detection device that detects foreign matter such as dust attached to a glass substrate used for a liquid crystal panel or the like.

図6は従来の光学的測定方法を用いた異物検出装置5の原理図、図7は図6で示す異物IBによる散乱光の光強度信号S1と閾値T0との関係を示す図である。図7上部はガラス基板GL上に異物IBa, IBbを含む4つの異物が存在することを示し、図7下部のグラフは図7上部のラインL0における光強度信号S1を表す。図6に示すように、異物検出装置5は、検査対象であるガラス基板GLに光を照射する照光手段51、照光手段51により照射された光のうちガラス基板GL上において散乱した散乱光を受光して最終的に2次元的な散乱光の光強度信号S1に変換可能な受光手段53、及び散乱光の光強度信号S1を所定の閾値T0と比較する比較手段63を有する。   FIG. 6 is a diagram showing the principle of the foreign object detection device 5 using the conventional optical measurement method, and FIG. 7 is a diagram showing the relationship between the light intensity signal S1 of scattered light from the foreign object IB shown in FIG. The upper part of FIG. 7 shows that there are four foreign substances including foreign substances IBa and IBb on the glass substrate GL, and the lower graph of FIG. 7 represents the light intensity signal S1 in the line L0 in the upper part of FIG. As shown in FIG. 6, the foreign object detection device 5 receives the scattered light scattered on the glass substrate GL among the light emitted by the illumination means 51 that irradiates the glass substrate GL to be inspected and the illumination means 51. Then, it has a light receiving means 53 that can be finally converted into a two-dimensional scattered light intensity signal S1, and a comparison means 63 that compares the scattered light intensity signal S1 with a predetermined threshold T0.

異物検出装置5によると、ガラス基板GL上に異物IBが付着していた場合、照光手段51により照射された光は、異物IBにより散乱し散乱光となる。散乱光の一部は受光手段53で受光され、散乱光の光強度信号S1に変換されて出力される。散乱光の光強度信号S1は、A/D変換器61でA/D変換された後、比較部63において所定の閾値T0と比較され、図7(A)のように、閾値T0よりも大きい場合にのみ異物信号SBが出力される。この処理はガラス基板GLの2次元表面全てについて行われる。これにより、異物信号SBの画素に対応するガラス基板GL上の位置に異物IBが付着していることがわかる。また、異物信号SBの総強度に基づいて、異物IBの大きさも知ることができる。   According to the foreign object detection device 5, when the foreign object IB adheres on the glass substrate GL, the light irradiated by the illumination means 51 is scattered by the foreign object IB and becomes scattered light. A part of the scattered light is received by the light receiving means 53, converted into a light intensity signal S1 of the scattered light, and output. The light intensity signal S1 of the scattered light is A / D converted by the A / D converter 61, and then compared with a predetermined threshold value T0 by the comparison unit 63, and is larger than the threshold value T0 as shown in FIG. Only in this case, the foreign substance signal SB is output. This process is performed on all the two-dimensional surfaces of the glass substrate GL. Thereby, it can be seen that the foreign matter IB is attached to the position on the glass substrate GL corresponding to the pixel of the foreign matter signal SB. Also, the size of the foreign matter IB can be known based on the total intensity of the foreign matter signal SB.

特開2002−8444号公報JP 2002-8444 A

ところで、検査対象とするガラス基板GLの表面には、検出対象とする異物IBの大きさの1/2から1/10程度あるいはそれ以下の微小なキズ、突起物、その他表面粗さなどが一般的には存在し、これらの表面特性はいずれもノイズを引き起こすことがある。この種のノイズは、場所的にも時間的にもその大きさは一定せず変動する。このような変動するノイズの存在下では、上述の異物検出装置5は検出精度が良くないという問題があった。   By the way, on the surface of the glass substrate GL to be inspected, there are generally small scratches, protrusions, and other surface roughness of about 1/2 to 1/10 or less than the size of the foreign matter IB to be detected. All of these surface properties can cause noise. This type of noise varies in both location and time without being constant. In the presence of such fluctuating noise, the above-described foreign matter detection device 5 has a problem that the detection accuracy is not good.

例えば、図7(A)のように表面特性によるノイズSNが小さく且つ一定であった場合には、2つの異物IBa,IBbによる散乱光の光強度信号SBa,SBbは、光強度信号S1(=SB+SN)と所定の閾値T0との比較により良好に検出することができる。しかし、図7(B)のように、ノイズSNが一定でない分布を持っている場合には、所定の閾値T0を設定することにより、左側の異物IBaを検出することはできても、右側の異物IBbのように、比較的小さなノイズSNが存在する位置に異物IBが付着している場合には、その散乱光の光強度信号S1(=SBb+SN)は上記閾値T0を超えないため、異物IBbを検出することはできない。   For example, when the noise SN due to the surface characteristics is small and constant as shown in FIG. 7A, the light intensity signals SBa and SBb of the scattered light from the two foreign substances IBa and IBb are the light intensity signals S1 (= SB + SN) and a predetermined threshold T0 can be detected satisfactorily. However, as shown in FIG. 7B, when the noise SN has a non-constant distribution, it is possible to detect the left foreign object IBa by setting a predetermined threshold T0, but the right SN When the foreign matter IB adheres to a position where a relatively small noise SN exists like the foreign matter IBb, the light intensity signal S1 (= SBb + SN) of the scattered light does not exceed the threshold value T0, so the foreign matter IBb Cannot be detected.

更に、このノイズ分布は検査対象であるガラス基板GLの面内の場所によって異なり、しかもガラス基板GL毎にも異なるため、そもそも所定の閾値T0を共通の値で設定することすら困難である。フラットパネルディスプレイ向けのガラス基板には金属膜などでコーティングがされたものも多く、特にこのような場合には、表面粗さなどがノイズを引き起こし、検出精度の劣化が顕著になる。このため、検査対象の表面特性によらず良い検出精度を達成できる異物検出装置が要望されている。   Furthermore, since this noise distribution varies depending on the location in the surface of the glass substrate GL to be inspected, and also varies for each glass substrate GL, it is difficult to set the predetermined threshold T0 as a common value in the first place. Many glass substrates for flat panel displays are coated with a metal film or the like. Particularly in such a case, surface roughness or the like causes noise, and the detection accuracy is significantly deteriorated. Therefore, there is a demand for a foreign object detection device that can achieve good detection accuracy regardless of the surface characteristics of the inspection object.

本発明は、上述の問題に鑑みてなされたものであり、検査対象の表面特性によるノイズから生じる測定精度の劣化を回避できる光学的測定方法及び光学的測定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an optical measurement method and an optical measurement apparatus that can avoid deterioration in measurement accuracy caused by noise due to surface characteristics of an inspection object.

上述の課題を解決するために、請求項1の発明は、図1,2によく示されるように、検査対象GLの表面状態IBを光学的に測定するための光学的測定方法であって、前記検査対象GLに光を照射し、前記検査対象GLから得られる光を受光して最終的に2次元的な光強度信号S1に変換し、前記光強度信号S1のなかから、前記表面状態IBを測定するに際して必要な信号である注目信号SBと前記表面状態を測定するに際して不要な信号であるノイズ信号SNとを分離することにより注目信号SBのみを抽出し、抽出された注目信号SBと所定の閾値T1とを比較する。さらに、図2(B),2(C)によく示されるように、前記注目信号SBの存在する画素である注目画素40を抽出し、抽出した前記注目画素40の光強度信号から当該注目画素40におけるノイズ信号SNを取り除くことにより前記注目信号SBを抽出する。さらに、図3,4によく示されるように、第1パラメータP1と第2パラメータP2とを記憶部31に予め記憶しておき、隣接する画素の光強度信号S1に順次差分処理を行い、該隣接する画素間の差分値と第1パラメータP1との大小比較に基づいて注目画素40の一方端部42の画素を認識し、つづいて、隣接する画素間の差分値と第2パラメータP2との大小比較に基づいて注目画素40の他方端部44の画素を認識することで注目画素40の位置を認識し、認識された注目画素40の両端部42,44の光強度信号からノイズ信号SNを補間し、補間したノイズ信号SNを各注目画素40の光強度信号から差し引いてなる。注目画素の一方端部42を認識した後、注目画素40の他方端部44を認識できなかった場合に、前記一方端部42から所定画素幅だけ離れた位置を強制的に他方端部44とするか、または、前記一方端部42をはじめから認識しなかったとみなすかのどちらかの処理を実施可能とする。 In order to solve the above-mentioned problem, the invention of claim 1 is an optical measurement method for optically measuring the surface state IB of the inspection object GL, as well shown in FIGS. The inspection object GL is irradiated with light, the light obtained from the inspection object GL is received and finally converted into a two-dimensional light intensity signal S1, and the surface state IB is determined from the light intensity signal S1. Only the attention signal SB is extracted by separating the attention signal SB, which is a signal necessary for measuring the signal, and the noise signal SN, which is an unnecessary signal for measuring the surface state, and the extracted attention signal SB and the predetermined signal The threshold value T1 is compared. Further, as well shown in FIGS. 2 (B) and 2 (C), the pixel of interest 40, which is a pixel in which the signal of interest SB exists, is extracted, and the pixel of interest is extracted from the extracted light intensity signal of the pixel of interest 40. The attention signal SB is extracted by removing the noise signal SN at 40. Further, as well shown in FIGS. 3 and 4, the first parameter P1 and the second parameter P2 are stored in advance in the storage unit 31, and the difference processing is sequentially performed on the light intensity signal S1 of the adjacent pixels, Based on the comparison between the difference value between adjacent pixels and the first parameter P1, the pixel at one end 42 of the target pixel 40 is recognized, and then the difference value between adjacent pixels and the second parameter P2 The position of the target pixel 40 is recognized by recognizing the pixel at the other end 44 of the target pixel 40 based on the size comparison, and the noise signal SN is calculated from the light intensity signals at both ends 42 and 44 of the recognized target pixel 40. The interpolated noise signal SN is subtracted from the light intensity signal of each pixel of interest 40. After recognizing the one end 42 of the target pixel, if the other end 44 of the target pixel 40 cannot be recognized, the position separated from the one end 42 by a predetermined pixel width is forcibly defined as the other end 44. Or it is possible to carry out the process of considering that the one end portion 42 is not recognized from the beginning.

請求項2の発明は、検査対象GLの表面状態IBを光学的に測定するための光学的測定装置1であって、前記検査対象GLに光を照射する照光手段11と、前記検査対象GLから得られる光を受光して最終的に2次元的な光強度信号に変換可能な受光手段13と、前記光強度信号S1のなかから、前記表面状態IBを測定するに際して必要な信号である注目信号SBと前記表面状態IBを測定するに際して不要な信号であるノイズ信号SNとを分離することにより注目信号SBのみを抽出する注目信号抽出手段30と、抽出された注目信号SBと所定の閾値T1とを比較する比較手段23とを有し、前記注目信号抽出手段30は、前記注目信号SBの存在する画素である注目画素40を抽出する注目画素抽出部32と、抽出した前記注目画素40の光強度信号S1から当該注目画素40におけるノイズ信号SNを取り除くことにより前記注目信号SBを抽出するノイズ減算部33とを有し、前記注目信号抽出手段30は、第1パラメータP1と第2パラメータP2とを予め記憶した記憶部31を有し、前記注目画素抽出部34は、前記受光手段13で得られた隣接する画素の光強度信号S1に順次差分処理を行い、該隣接する画素間の差分値と第1パラメータP1との大小比較に基づいて注目画素SBの一方端部42の画素を認識し、つづいて、隣接する画素間の差分値と第2パラメータP2との大小比較に基づいて注目画素40の他方端部44の画素を認識することで注目画素40の位置を認識し、認識された注目画素40の両端部42,43の光強度信号からノイズ信号SNを補間し、前記ノイズ減算部33は、補間したノイズ信号SNを各注目画素40の光強度信号S1から差し引いてなる。前記注目画素抽出部32は、注目画素40の一方端部42を認識した後、注目画素40の他方端部44を認識できなかった場合に、前記一方端部42から所定画素幅だけ離れた位置を強制的に他方端部44とするか、または、前記一方端部42をはじめから認識しなかったとみなすかのどちらかの処理を実施可能である。 The invention of claim 2 is an optical measuring apparatus 1 for optically measuring the surface state IB of the inspection object GL, and includes an illumination means 11 for irradiating the inspection object GL with light, and the inspection object GL. The light receiving means 13 which can receive the obtained light and finally convert it into a two-dimensional light intensity signal, and the attention signal which is a signal necessary for measuring the surface state IB from the light intensity signal S1. Attention signal extraction means 30 for extracting only attention signal SB by separating SB and noise signal SN, which is an unnecessary signal when measuring surface state IB, extracted attention signal SB and predetermined threshold value T1 The attention signal extraction means 30 includes a target pixel extraction unit 32 that extracts a target pixel 40 that is a pixel in which the target signal SB exists, and the extracted target pixel. A noise subtracting unit 33 that extracts the attention signal SB by removing the noise signal SN at the attention pixel 40 from the 0 light intensity signal S1, and the attention signal extraction means 30 includes the first parameter P1 and the second parameter P1. A storage unit 31 that stores parameter P2 in advance, and the pixel-of-interest extraction unit 34 sequentially performs a difference process on the light intensity signal S1 of the adjacent pixels obtained by the light receiving means 13, and performs a difference process between the adjacent pixels. Based on the comparison between the difference value of the first pixel P1 and the first parameter P1, the pixel at the one end portion 42 of the target pixel SB is recognized, and then the comparison between the difference value between adjacent pixels and the second parameter P2 is performed. The position of the target pixel 40 is recognized by recognizing the pixel at the other end 44 of the target pixel 40, and the noise signal SN is obtained from the light intensity signals at both ends 42 and 43 of the recognized target pixel 40. And while, the noise subtraction unit 33 is formed by subtracting the noise signal SN of interpolated from the light intensity signal S1 of each pixel of interest 40. The pixel-of-interest extraction unit 32 recognizes the one end portion 42 of the pixel of interest 40 and then moves away from the one end portion 42 by a predetermined pixel width when the other end portion 44 of the pixel-of-interest 40 cannot be recognized. Can be forcibly set to the other end 44 or the one end 42 is regarded as not recognized from the beginning.

本発明によると、検査対象の表面特性によるノイズから生じる測定精度の劣化を回避できる光学的測定方法及び光学的測定装置が提供される。   According to the present invention, an optical measurement method and an optical measurement apparatus capable of avoiding deterioration in measurement accuracy caused by noise due to surface characteristics of an inspection object are provided.

図1は本発明に係る異物検出装置1の原理図、図2は演算処理部20における処理を説明するための図、図3は異物信号SBを含む光強度信号S1を示す図、図4は異物画素抽出部32における処理を説明するための図、図5は光強度信号S1と実質上の閾値T1’との関係を示す図である。   FIG. 1 is a principle diagram of a foreign object detection device 1 according to the present invention, FIG. 2 is a diagram for explaining the processing in the arithmetic processing unit 20, FIG. 3 is a diagram showing a light intensity signal S1 including a foreign object signal SB, and FIG. FIG. 5 is a diagram for explaining the processing in the foreign object pixel extraction unit 32, and FIG. 5 is a diagram showing the relationship between the light intensity signal S1 and the substantial threshold value T1 ′.

図1に示すように異物検出装置1は、照光手段11、光学系12、受光手段13、演算処理装置20及び表示手段14を備える。照光手段11は、検査対象であるガラス基板GLに向けてレーザービームを斜め上方から照射するように配置される。光学系12は、ガラス基板GLと受光手段13との間に配され、受光手段13における受光面にガラス基板GLの表面からの散乱光を導くレンズを備える。受光手段13は、この散乱光を受光して最終的に2次元的な光強度信号S1に変換可能なアレイセンサカメラである。   As shown in FIG. 1, the foreign object detection apparatus 1 includes an illuminating unit 11, an optical system 12, a light receiving unit 13, an arithmetic processing unit 20, and a display unit 14. The illuminating means 11 is arranged so as to irradiate a laser beam obliquely from above toward the glass substrate GL to be inspected. The optical system 12 includes a lens that is disposed between the glass substrate GL and the light receiving unit 13 and guides scattered light from the surface of the glass substrate GL to the light receiving surface of the light receiving unit 13. The light receiving means 13 is an array sensor camera that can receive this scattered light and finally convert it into a two-dimensional light intensity signal S1.

演算処理装置20は、A/D変換部21、異物信号抽出部30及び比較部23を備える。もちろんA/D変換部21は受光手段13内に配置されていてもよい。すなわち受光手段13が、ディジタル信号を出力するいわゆるディジタルセンサであってもよい。異物信号抽出部30は、記憶部31、異物画素抽出部32及びノイズ減算部33を備える。記憶部31は、第1パラメータP1及び第2パラメータP2を予め記憶している。パラメータΔL、ΔR及びWも記憶しておいてもよい。これらの各パラメータの機能については後述する。異物画素抽出部32は、光強度信号S1から異物信号SBの存在を検知し、図2(B)のように、この異物信号SBの存在する画素またはその領域(以降異物画素または異物領域と呼ぶ)40を抽出する。なお異物信号SBが、本発明の注目信号に相当する。また、異物画素抽出部32が、本発明の注目画素抽出部に相当する。   The arithmetic processing device 20 includes an A / D conversion unit 21, a foreign object signal extraction unit 30, and a comparison unit 23. Of course, the A / D converter 21 may be disposed in the light receiving means 13. That is, the light receiving means 13 may be a so-called digital sensor that outputs a digital signal. The foreign object signal extraction unit 30 includes a storage unit 31, a foreign object pixel extraction unit 32, and a noise subtraction unit 33. The storage unit 31 stores a first parameter P1 and a second parameter P2 in advance. Parameters ΔL, ΔR and W may also be stored. The function of each parameter will be described later. The foreign object pixel extraction unit 32 detects the presence of the foreign object signal SB from the light intensity signal S1, and as shown in FIG. 2B, the pixel in which the foreign object signal SB exists or its region (hereinafter referred to as a foreign object pixel or a foreign object region). ) 40 is extracted. The foreign substance signal SB corresponds to the attention signal of the present invention. The foreign pixel extraction unit 32 corresponds to the target pixel extraction unit of the present invention.

ノイズ減算部33は、図2(B)及び(C)のように、抽出された異物画素40の光強度信号S1からその異物画素40におけるノイズ信号SNを取り除くことにより異物信号SBのみを抽出する。比較部23は、図2(D)のように、異物信号抽出部30で抽出した異物信号SBの値と所定の閾値T1とを比較し、閾値T1よりも大きい場合のみ出力する。表示手段14は、CRTまたは液晶画面などの表示画面を備えたディスプレイ装置であり、演算処理装置20から出力される異物信号SBに基づいて異物IBの情報を表示画面に表示する。   As shown in FIGS. 2B and 2C, the noise subtracting unit 33 extracts only the foreign matter signal SB by removing the noise signal SN in the foreign matter pixel 40 from the extracted light intensity signal S1 of the foreign matter pixel 40. . As shown in FIG. 2D, the comparison unit 23 compares the value of the foreign substance signal SB extracted by the foreign substance signal extraction unit 30 with a predetermined threshold value T1, and outputs it only when it is larger than the threshold value T1. The display means 14 is a display device having a display screen such as a CRT or a liquid crystal screen, and displays information on the foreign matter IB on the display screen based on the foreign matter signal SB output from the arithmetic processing unit 20.

次に、上のように構成された異物検出装置1の異物検出機能について詳しく説明する。図1において、照光手段11はガラス基板GLを照射する。ガラス基板GLに異物IBが付着していると、照射光は異物IBに当たって散乱する。この散乱光の一部は、光学系12を介して集光され受光手段13に導かれる。受光手段13は、上記散乱光の一部を光強度信号S1に変換する。この光強度信号S1は、ノイズ信号SNと異物信号SBとを含んでいる。   Next, the foreign object detection function of the foreign object detection apparatus 1 configured as described above will be described in detail. In FIG. 1, the illumination means 11 irradiates the glass substrate GL. When the foreign substance IB adheres to the glass substrate GL, the irradiation light hits the foreign substance IB and is scattered. A part of the scattered light is collected through the optical system 12 and guided to the light receiving means 13. The light receiving means 13 converts a part of the scattered light into a light intensity signal S1. The light intensity signal S1 includes a noise signal SN and a foreign matter signal SB.

ここで、検査対象とするガラス基板GLの表面には、検出対象とする異物IBの大きさの1/2から1/10程度あるいはそれ以下の微小なキズ、突起物、その他表面粗さなどが一般的には存在し、これらの表面特性はいずれもノイズを引き起こすことがある。ノイズ信号SNはこのようなガラス基板GLの表面特性に基づく信号である。異物信号SBは異物IBにより散乱した散乱光の光強度信号でありノイズ信号SNの上に乗っている。   Here, the surface of the glass substrate GL to be inspected has minute scratches, protrusions, and other surface roughnesses of about 1/2 to 1/10 or less than the size of the foreign matter IB to be detected. Generally present, any of these surface properties can cause noise. The noise signal SN is a signal based on such surface characteristics of the glass substrate GL. The foreign matter signal SB is a light intensity signal of scattered light scattered by the foreign matter IB and is on the noise signal SN.

演算処理装置20に取り込まれたアナログの光強度信号S1は、A/D変換部21においてディジタル信号に変換される。異物画素抽出部32では、異物信号SBの両端部を認識し、それらに挟まれる領域を異物画素40として抽出する。具体的には、例えば図3のような光強度信号S1について、隣接する画素間で順次差分処理を行い、図4のような差分値ΔS1の関係を得る。図4より、ΔS1が第1パラメータP1よりも大きい差分値を立上り信号として持つ画素41があった場合、その画素のアドレスを異物IBの左端部候補とする。第1パラメータP1よりも大きい差分値を立上り信号として持つ画素が隣合う数画素で続いた場合には、最も右側の画素のアドレスを左端部候補にする。   The analog light intensity signal S <b> 1 captured by the arithmetic processing unit 20 is converted into a digital signal by the A / D converter 21. The foreign object pixel extraction unit 32 recognizes both end portions of the foreign object signal SB and extracts a region between them as the foreign object pixel 40. Specifically, for example, with respect to the light intensity signal S1 as shown in FIG. 3, differential processing is sequentially performed between adjacent pixels to obtain the relationship of the difference value ΔS1 as shown in FIG. As shown in FIG. 4, when there is a pixel 41 having a difference value having a larger ΔS1 than the first parameter P1 as a rising signal, the address of the pixel is set as a left end candidate of the foreign object IB. When a pixel having a difference value larger than the first parameter P1 as a rising signal continues in several adjacent pixels, the address of the rightmost pixel is set as a left end candidate.

そして、左端部候補からパラメータΔL、例えば1〜5画素だけ差し引いたアドレスを異物IBの左端部42とする。パラメータΔLだけ差し引くことで、より精度良く異物IBの端部を認識することができる。つづいて、第2パラメータP2よりも小さい差分値を立下り信号として持つ画素43があった場合、その画素43のアドレスを異物IBの右端部候補とする。第2パラメータP2よりも小さい差分値を立下がり信号として持つ画素が隣合う数画素で続いた場合には、最も左側の画素を左端部候補にする。   The address obtained by subtracting the parameter ΔL, for example, 1 to 5 pixels from the left end candidate is set as the left end 42 of the foreign object IB. By subtracting only the parameter ΔL, the end of the foreign object IB can be recognized with higher accuracy. Subsequently, when there is a pixel 43 having a difference value smaller than the second parameter P2 as a falling signal, the address of the pixel 43 is set as a right end candidate of the foreign object IB. When pixels having a difference value smaller than the second parameter P2 as falling signals continue with several adjacent pixels, the leftmost pixel is set as a left end candidate.

そして、右端部候補からパラメータΔR、例えば1〜5画素だけ加算したアドレスを異物IBの右端部44とする。パラメータΔRだけ加算することで、より精度良く異物の端部を認識することができる。もちろん左端部候補の認識にはいろいろなバリエーションが考えられる。例えば第1パラメータP1よりも大きい差分値を立上り信号として持つ画素が、隣合う数画素で続いた場合に、最も左側の画素としてもよいし、それらの中央値としてもよい。右端部候補も同様である。   The address obtained by adding the parameter ΔR, for example, 1 to 5 pixels from the right end candidate is set as the right end 44 of the foreign object IB. By adding only the parameter ΔR, the end of the foreign object can be recognized with higher accuracy. Of course, there are various variations in the recognition of the left edge candidate. For example, when a pixel having a difference value larger than the first parameter P1 as a rising signal continues in several adjacent pixels, it may be the leftmost pixel or the median value thereof. The same applies to the right edge candidate.

ここで、第1パラメータP1は高周波ノイズの振幅と同程度の値が好ましい。第2パラメータP2は第1パラメータP1と同じ位の値かまたはそれよりも小さな値が好ましく、より好ましくは第1パラメータP1の1/2程度がよい。第1及び第2パラメータP1,P2は、除去したい高周波ノイズ、例えば膜面の粗さに応じて設定すればよい。パラメータΔL,ΔRは、ともに検出対象とする異物IBの平均的な注目画素の端部間距離、すなわち異物領域40の1/3程度の大きさが好ましい。例えば、P1=10、P2=−5、ΔL=3、ΔR=−3と設定する。このようにして異物信号SBの左端部42と右端部44とを認識し、それらに挟まれる領域を異物領域40として抽出する。   Here, the first parameter P1 is preferably a value approximately equal to the amplitude of the high frequency noise. The second parameter P2 is preferably the same value as or smaller than the first parameter P1, and more preferably about ½ of the first parameter P1. The first and second parameters P1 and P2 may be set according to the high frequency noise to be removed, for example, the roughness of the film surface. Both of the parameters ΔL and ΔR preferably have an average distance between the ends of the target pixel of the foreign object IB to be detected, that is, about 1/3 of the foreign object region 40. For example, P1 = 10, P2 = −5, ΔL = 3, and ΔR = −3 are set. In this way, the left end portion 42 and the right end portion 44 of the foreign object signal SB are recognized, and an area sandwiched between them is extracted as the foreign object area 40.

次に実行するのが、この異物領域40の光強度信号S1からその異物領域40におけるノイズ信号SNを除去する処理である。左端部42の信号強度を左端部42のノイズ信号とし、同様に右端部44の信号強度を右端部44のノイズ信号とし、その間は、図3のように線形補間する。こうして異物領域40内のノイズ信号SNを求めることができ、異物領域40内の光強度信号S1から、このノイズ信号SNの値を差し引いた値を異物信号SBの信号強度として求めることができる。   Next, processing to be performed is a process for removing the noise signal SN in the foreign substance region 40 from the light intensity signal S1 of the foreign substance region 40. The signal strength at the left end portion 42 is set as the noise signal at the left end portion 42, and similarly, the signal strength at the right end portion 44 is set as the noise signal at the right end portion 44, and linear interpolation is performed between them as shown in FIG. Thus, the noise signal SN in the foreign substance region 40 can be obtained, and a value obtained by subtracting the value of the noise signal SN from the light intensity signal S1 in the foreign substance region 40 can be obtained as the signal intensity of the foreign substance signal SB.

なお、あるアドレスを異物IBの左端部42とみなした後に、異物IBの右端部44とみなせる信号が見つからなかった場合は、強制的に左端部42から所定画素幅W(特に図示せず)だけ右に当該異物の右端部があったとみなすか、または異物IBははじめから存在しなかったかとみなすかを選択できる。こうすることで、左端部42を見つけたが右端部44が見つからないという状態を回避することができる。あるいは想定外の位置に右端部44を誤って検出することを回避することができる。この所定画素幅Wは検出対象とする異物IBの平均的な注目画素の端部間距離、すなわち異物領域40の平均程度の値が好ましい。   If a signal that can be regarded as the right end portion 44 of the foreign object IB is not found after the certain address is regarded as the left end portion 42 of the foreign object IB, only a predetermined pixel width W (not shown) is forced from the left end portion 42. It is possible to select whether it is considered that the right end portion of the foreign object is on the right or whether the foreign object IB is not present from the beginning. By doing so, it is possible to avoid a state where the left end portion 42 is found but the right end portion 44 is not found. Alternatively, it is possible to avoid erroneously detecting the right end portion 44 at an unexpected position. The predetermined pixel width W is preferably a distance between end portions of an average target pixel of the foreign object IB to be detected, that is, an average value of the foreign object region 40.

また、左端部42とみなした後、右端部候補よりも先に再び左端部候補がきたときの処理は、その目的に応じて、新たな左端部候補を無視するか、新たな左端部候補を左端部とみなし直すかを選択することができる。更に、異物が近接して存在することで、2つの異物領域が重なってしまったときの処理は、その目的に応じて2つの異物領域として分割する処理か、2つの異物領域を繋げて1つとする処理かを選択することができる。これにより、異物検出がより一層的確にできるようになる。   Further, after the left end portion 42 is considered, the processing when the left end candidate comes again before the right end portion candidate is either ignored for the new left end candidate or the new left end candidate is selected according to the purpose. It can be selected whether to consider it as the left end. Furthermore, the processing when two foreign object areas overlap due to the presence of foreign objects close to each other can be divided into two foreign object areas depending on the purpose, or two foreign object areas can be connected to one. It is possible to select processing to be performed. As a result, foreign object detection can be performed more accurately.

比較部23は、異物信号抽出部30の処理で抽出した異物信号SBの値と所定の閾値T1とを比較し、閾値T1よりも大きい場合のみ出力する。この閾値T1は、小さくすればより小さな異物IBを検出でき、大きくすればより大きな異物のみ検出することができるようになる。つまり検出の感度を決める値といえる。以上の処理をガラス基板GLの表面全体について行うことにより、閾値T1に応じた異物信号SBを抽出する。   The comparison unit 23 compares the value of the foreign matter signal SB extracted by the processing of the foreign matter signal extraction unit 30 with a predetermined threshold value T1, and outputs only when the value is larger than the threshold value T1. If this threshold value T1 is reduced, a smaller foreign object IB can be detected, and if it is increased, only a larger foreign object can be detected. In other words, it is a value that determines the sensitivity of detection. By performing the above processing on the entire surface of the glass substrate GL, the foreign substance signal SB corresponding to the threshold value T1 is extracted.

このように比較部23は、ノイズ信号SNを取り除いた異物信号SBの値を、所定の大きさの閾値T1と比較する。これは、実質上、図5のように、光強度信号S1とノイズ信号SNに追随した閾値T1’とを比較していることになる。したがって、表面に金属膜がコーティングされたガラス基板GLであっても、金属膜の粗さに基づくノイズ信号のムラに影響されることなく精度良く異物の検出ができる。   In this way, the comparison unit 23 compares the value of the foreign object signal SB from which the noise signal SN is removed with a threshold value T1 having a predetermined magnitude. This substantially compares the light intensity signal S1 with the threshold value T1 'following the noise signal SN as shown in FIG. Therefore, even if the glass substrate GL has a metal film coated on the surface, it is possible to detect a foreign object with high accuracy without being affected by noise signal unevenness based on the roughness of the metal film.

表示手段14は、抽出した異物信号SBを、ガラス基板GL上における付着位置を示す2次元画像として表示画面に表示する。もちろん、異物IBの大きさを表示することもできるし、大きさ毎の個数分布や付着位置分布なども表示することができる。更には、これとは全く逆にノイズの分布を表示することも可能である。すなわちガラス基板GLの粗さ分布も知ることが可能になる。   The display unit 14 displays the extracted foreign substance signal SB on the display screen as a two-dimensional image indicating the adhesion position on the glass substrate GL. Of course, the size of the foreign matter IB can be displayed, and the number distribution and the adhesion position distribution for each size can also be displayed. Furthermore, it is also possible to display the noise distribution on the contrary. That is, it is possible to know the roughness distribution of the glass substrate GL.

上の実施形態において、異物検出装置1の全体または各部の構成、構造及び個数など並びに演算処理装置20における処理の内容及び順序などは、本発明の主旨に沿って適宜変更することができる。上の演算処理装置20では、隣接する画素について差分処理等の上記処理を行っているが、隣同士でなく一画素、または2画素とばした画素同士で上記処理を行うようにすることも可能である。したがって本発明の「隣接する画素」は近傍した画素の意味も含む。また、差分処理の代わりに、より複雑なローパスフィルタリングを用いることも当然可能である。また、本発明は異物検出装置に限定されず、他の用途の光学的測定装置にも適用できる。例えば、欠陥検査装置、突起高さ測定装置、3次元形状測定装置、膜厚測定装置、粗さ計測装置、パターン認識装置及び幅計測装置などに適用することも可能である。   In the above embodiment, the whole or part of the foreign object detection device 1, the configuration, the structure, the number, and the like, and the content and order of processing in the arithmetic processing device 20 can be changed as appropriate according to the gist of the present invention. In the above arithmetic processing unit 20, the above-described processing such as difference processing is performed on adjacent pixels, but it is also possible to perform the above-described processing on pixels that are not adjacent but one pixel or two pixels. is there. Therefore, the “adjacent pixel” in the present invention includes the meaning of a neighboring pixel. It is also possible to use more complicated low-pass filtering instead of the difference processing. Further, the present invention is not limited to the foreign matter detection device, and can be applied to an optical measurement device for other purposes. For example, the present invention can be applied to a defect inspection device, a protrusion height measuring device, a three-dimensional shape measuring device, a film thickness measuring device, a roughness measuring device, a pattern recognition device, a width measuring device, and the like.

本発明に係る異物検出装置の原理図である。It is a principle figure of the foreign material detection apparatus which concerns on this invention. 演算処理部における処理を説明するための図である。It is a figure for demonstrating the process in an arithmetic processing part. 異物信号を含む光強度信号を示す図である。It is a figure which shows the light intensity signal containing a foreign material signal. 異物画素抽出部における処理を説明するための図である。It is a figure for demonstrating the process in a foreign material pixel extraction part. 光強度信号と実質上の閾値との関係を示す図である。It is a figure which shows the relationship between a light intensity signal and a threshold value substantially. 従来の光学的測定方法を用いた異物検出装置の原理図である。It is a principle figure of the foreign material detection apparatus using the conventional optical measuring method. 図6で示す異物による散乱光の光強度信号と閾値との関係を示す図である。It is a figure which shows the relationship between the light intensity signal of the scattered light by the foreign material shown in FIG. 6, and a threshold value.

符号の説明Explanation of symbols

1 異物検出装置(光学的測定装置)
11 照光手段
13 受光手段
23 比較部(比較手段)
30 異物信号抽出部(注目信号抽出手段)
31 記憶部
32 異物画素抽出部(注目画素抽出部)
33 ノイズ減算部
42 左端部(一方端部)
44 右端部(他方端部)
GL ガラス基板(検査対象)
IB 異物(表面状態)
S1 光強度信号
SB 異物信号(注目信号)
SN ノイズ信号
T1 閾値
40 異物画素、異物領域(注目画素)
P1 第1パラメータ
P2 第2パラメータ
1 Foreign object detection device (optical measurement device)
DESCRIPTION OF SYMBOLS 11 Illumination means 13 Light reception means 23 Comparison part (comparison means)
30 Foreign object signal extraction unit (attention signal extraction means)
31 Storage Unit 32 Foreign Object Pixel Extraction Unit (Target Pixel Extraction Unit)
33 Noise subtractor 42 Left end (one end)
44 Right end (the other end)
GL glass substrate (subject to inspection)
IB Foreign matter (surface condition)
S1 Light intensity signal SB Foreign object signal (attention signal)
SN noise signal T1 threshold 40 foreign object pixel, foreign object region (target pixel)
P1 First parameter P2 Second parameter

Claims (2)

検査対象の表面状態を光学的に測定するための光学的測定方法であって、前記検査対象に光を照射し、前記検査対象から得られる光を受光して最終的に2次元的な光強度信号に変換し、前記光強度信号のなかから、前記表面状態を測定するに際して必要な信号である注目信号と前記表面状態を測定するに際して不要な信号であるノイズ信号とを分離することにより注目信号のみを抽出し、抽出された注目信号と所定の閾値とを比較することを特徴とする光学的測定方法において、
前記注目信号の存在する画素である注目画素を抽出し、抽出した前記注目画素の光強度信号から当該注目画素におけるノイズ信号を取り除くことにより前記注目信号を抽出する光学的測定方法であって、
第1パラメータと第2パラメータとを記憶部に予め記憶しておき、隣接する画素の光強度信号に順次差分処理を行い、該隣接する画素間の差分値と第1パラメータとの大小比較に基づいて注目画素の一方端部の画素を認識し、つづいて、隣接する画素間の差分値と第2パラメータとの大小比較に基づいて注目画素の他方端部の画素を認識することで注目画素の位置を認識し、認識された注目画素の両端部の光強度信号からノイズ信号を補間し、補間したノイズ信号を各注目画素の光強度信号から差し引いてなる光学的測定方法であって、
注目画素の一方端部を認識した後、注目画素の他方端部を認識できなかった場合に、前記一方端部から所定画素幅だけ離れた位置を強制的に他方端部とするか、または、前記一方端部をはじめから認識しなかったとみなすかのどちらかの処理を実施可能とする光学的測定方法。
An optical measurement method for optically measuring a surface state of an inspection object, irradiating the inspection object with light, receiving light obtained from the inspection object, and finally a two-dimensional light intensity The signal of interest is converted into a signal, and the signal of interest is separated from the light intensity signal by separating the signal of interest, which is a signal necessary for measuring the surface state, and a noise signal, which is an unnecessary signal when measuring the surface state. In the optical measurement method, wherein only the extracted signal of interest is compared with a predetermined threshold value,
An optical measurement method for extracting a target pixel, which is a pixel in which the target signal exists, and extracting the target signal by removing a noise signal in the target pixel from the extracted light intensity signal of the target pixel,
The first parameter and the second parameter are stored in advance in the storage unit, the difference processing is sequentially performed on the light intensity signals of the adjacent pixels, and based on the magnitude comparison between the difference value between the adjacent pixels and the first parameter. The pixel at the one end of the target pixel is recognized, and then the pixel at the other end of the target pixel is recognized by comparing the difference value between adjacent pixels with the second parameter. Recognizing the position, interpolating a noise signal from the light intensity signal at both ends of the recognized pixel of interest, and subtracting the interpolated noise signal from the light intensity signal of each pixel of interest,
After recognizing one end of the pixel of interest, if the other end of the pixel of interest cannot be recognized, a position separated by a predetermined pixel width from the one end is forced to be the other end, or An optical measurement method capable of performing either of the processes for determining that the one end portion is not recognized from the beginning.
検査対象の表面状態を光学的に測定するための光学的測定装置であって、前記検査対象に光を照射する照光手段と、前記検査対象から得られる光を受光して最終的に2次元的な光強度信号に変換可能な受光手段と、前記光強度信号のなかから、前記表面状態を測定するに際して必要な信号である注目信号と前記表面状態を測定するに際して不要な信号であるノイズ信号とを分離することにより注目信号のみを抽出する注目信号抽出手段と、抽出された注目信号と所定の閾値とを比較する比較手段とを有することを特徴とする光学的測定装置であって、
前記注目信号抽出手段は、前記注目信号の存在する画素である注目画素を抽出する注目画素抽出部と、抽出した前記注目画素の光強度信号から当該注目画素におけるノイズ信号を取り除くことにより前記注目信号を抽出するノイズ減算部とを有してなる光学的測定装置であって、
前記注目信号抽出手段は、第1パラメータと第2パラメータとを予め記憶した記憶部を有し、前記注目画素抽出部は、前記受光手段で得られた隣接する画素の光強度信号に順次差分処理を行い、該隣接する画素間の差分値と第1パラメータとの大小比較に基づいて注目画素の一方端部の画素を認識し、つづいて、隣接する画素間の差分値と第2パラメータとの大小比較に基づいて注目画素の他方端部の画素を認識することで注目画素の位置を認識し、認識された注目画素の両端部の光強度信号からノイズ信号を補間し、前記ノイズ減算部は、補間したノイズ信号を各注目画素の光強度信号から差し引いてなる光学的測定装置であって、
前記注目画素抽出部は、注目画素の一方端部を認識した後、注目画素の他方端部を認識できなかった場合に、前記一方端部から所定画素幅だけ離れた位置を強制的に他方端部とするか、または、前記一方端部をはじめから認識しなかったとみなすかのどちらかの処理を実施可能である光学的測定装置。
An optical measuring device for optically measuring the surface state of an inspection object, and an illumination means for irradiating the inspection object with light, and receiving light obtained from the inspection object and finally two-dimensionally A light receiving means capable of converting into a light intensity signal, a signal of interest which is a signal necessary for measuring the surface state, and a noise signal which is an unnecessary signal for measuring the surface state, among the light intensity signals. An optical measurement device comprising: attention signal extraction means for extracting only the attention signal by separating the signal; and comparison means for comparing the extracted attention signal with a predetermined threshold,
The attention signal extracting unit extracts a target pixel that extracts a target pixel that is a pixel in which the target signal exists, and removes a noise signal in the target pixel from the extracted light intensity signal of the target pixel. An optical measuring device having a noise subtracting unit for extracting
The attention signal extraction unit includes a storage unit that stores a first parameter and a second parameter in advance, and the target pixel extraction unit sequentially performs a difference process on the light intensity signals of adjacent pixels obtained by the light receiving unit. And recognizing a pixel at one end of the pixel of interest based on a comparison between the difference value between the adjacent pixels and the first parameter, and then, between the difference value between the adjacent pixels and the second parameter. Recognizing the position of the target pixel by recognizing the pixel at the other end of the target pixel based on the size comparison, interpolating a noise signal from the light intensity signals at both ends of the recognized target pixel, the noise subtracting unit , An optical measurement device that subtracts the interpolated noise signal from the light intensity signal of each pixel of interest,
The pixel-of-interest extraction unit forcibly identifies a position separated by a predetermined pixel width from the one end when the other end of the target pixel cannot be recognized after recognizing the one end of the target pixel. Or an optical measuring device capable of performing either of the processing that considers that the one end is not recognized from the beginning.
JP2004210448A 2004-07-16 2004-07-16 Optical measuring method and optical measuring apparatus Active JP4334429B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004210448A JP4334429B2 (en) 2004-07-16 2004-07-16 Optical measuring method and optical measuring apparatus
KR1020050051696A KR100871634B1 (en) 2004-07-16 2005-06-16 Optical measuring method and device thereof
TW094121363A TWI328673B (en) 2004-07-16 2005-06-27 Optical measuring method and optical measuring device
CN2005100860244A CN1721841B (en) 2004-07-16 2005-07-18 Optical measure method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210448A JP4334429B2 (en) 2004-07-16 2004-07-16 Optical measuring method and optical measuring apparatus

Publications (2)

Publication Number Publication Date
JP2006030024A JP2006030024A (en) 2006-02-02
JP4334429B2 true JP4334429B2 (en) 2009-09-30

Family

ID=35896562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210448A Active JP4334429B2 (en) 2004-07-16 2004-07-16 Optical measuring method and optical measuring apparatus

Country Status (4)

Country Link
JP (1) JP4334429B2 (en)
KR (1) KR100871634B1 (en)
CN (1) CN1721841B (en)
TW (1) TWI328673B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210527A (en) * 2009-03-11 2010-09-24 Horiba Ltd Apparatus and program for inspecting and removing foreign substance
JP5276525B2 (en) * 2009-06-12 2013-08-28 東レエンジニアリング株式会社 Optical measuring method and optical measuring apparatus
KR101459982B1 (en) * 2010-10-08 2014-11-07 애플 인크. Finger sensing device including differential measurement circuitry and related methods
CN109405735B (en) * 2017-08-18 2020-11-27 阿里巴巴集团控股有限公司 Three-dimensional scanning system and three-dimensional scanning method

Also Published As

Publication number Publication date
CN1721841B (en) 2010-08-04
CN1721841A (en) 2006-01-18
KR100871634B1 (en) 2008-12-02
JP2006030024A (en) 2006-02-02
TW200606394A (en) 2006-02-16
KR20060046459A (en) 2006-05-17
TWI328673B (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP5190405B2 (en) Glass surface foreign matter inspection apparatus and method
JP5994419B2 (en) Inspection method and inspection apparatus
JP2010091361A (en) Method and device for inspecting image
KR100871634B1 (en) Optical measuring method and device thereof
JP4244046B2 (en) Image processing method and image processing apparatus
JP2008249413A (en) Defect detection method and device
JP6031751B2 (en) Glass substrate inspection apparatus and glass substrate manufacturing method
JP2001021332A (en) Surface inspecting device and its method
JP2009097959A (en) Defect detecting device and defect detection method
JP2006226837A (en) Method and apparatus for inspecting stain
JP2007081513A (en) Blot defect detecting method for solid-state imaging element
JP2005265467A (en) Defect detection device
JP5276525B2 (en) Optical measuring method and optical measuring apparatus
JP4403036B2 (en) Soot detection method and apparatus
JP2000161929A (en) Method and device for visual inspection of electronic components and recording medium with program for enabling computer to perform visual inspection process recorded therein
JP5231779B2 (en) Appearance inspection device
JP2021064215A (en) Surface property inspection device and surface property inspection method
JP2009047517A (en) Inspection apparatus
JP6185539B2 (en) Optical connector ferrule end face inspection device and inspection program
JP2000258137A (en) Appearance inspection method and appearance inspection device for electronic component and record medium recording program for making computer realize appearance inspection processing
JP3367450B2 (en) Electronic component appearance inspection method, appearance inspection apparatus, and recording medium storing a program for causing a computer to execute the appearance inspection process
JP2012122964A (en) Method of detecting surface defect
JP2009047513A (en) Inspection apparatus
JP4121628B2 (en) Screen inspection method and apparatus
JP5372618B2 (en) Patterned substrate inspection apparatus and patterned substrate inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4334429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250