JP4324982B2 - Composite nonwoven fabric and absorbent article using the same - Google Patents

Composite nonwoven fabric and absorbent article using the same Download PDF

Info

Publication number
JP4324982B2
JP4324982B2 JP09321597A JP9321597A JP4324982B2 JP 4324982 B2 JP4324982 B2 JP 4324982B2 JP 09321597 A JP09321597 A JP 09321597A JP 9321597 A JP9321597 A JP 9321597A JP 4324982 B2 JP4324982 B2 JP 4324982B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
short fiber
composite
melting point
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09321597A
Other languages
Japanese (ja)
Other versions
JPH10273884A (en
Inventor
寿克 藤原
真吾 堀内
義実 辻山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP09321597A priority Critical patent/JP4324982B2/en
Publication of JPH10273884A publication Critical patent/JPH10273884A/en
Application granted granted Critical
Publication of JP4324982B2 publication Critical patent/JP4324982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0010】
【発明の属する技術分野】
本発明は、嵩高で、風合い及び感触の良好な複合化不織布及びその製造法、それを用いた吸収性物品に関する。さらに詳しくは、使い捨ておむつや生理用ナプキン等の吸収性物品、手術用着衣、掛け布、ハップ材の基布等の他、フィルター材、土木資材等にも好適に使用でき、特に使い捨ておむつや生理用ナプキン等の吸収性物品のトップシートに要求される体液の透過性、スポット透過性、サラット感、また透過した体液の逆戻り性の低さに優れる複合化不織布及びその製造法、さらには本発明の複合化不織布を用いた吸収性物品に関するものである。
【0011】
【従来の技術】
カード法に代表される手法で得られる短繊維不織布は、均質性に優れ、捲縮を有する短繊維によって構成されることから、嵩高で肌触り等の感触が良好なものである。しかしながら、カード法を使用して得られる短繊維不織布は、不織布を構成している短繊維が不織布の長手方向すなわち機械方向(不織布の生産方向)に配列し極めてランダム性に劣っている。このため、機械方向の引っ張り強度が強く、吸収性物品の加工特性(高速生産性)に優れるが、吸収性物品の表面材、特にトップシートに用いた場合、この短繊維不織布は、不織布の機械方向に毛細管的な作用が働き、体液の透過時に体液が繊維の配列方向に広がり易く、透過性に劣るばかりか、保液しやすいという欠点があった。
【0012】
一方、カード法よりも比較的繊維長の短い繊維を扱うウェッブ形成法としては、抄紙法やエアレイド法が知られている。いずれの方法も、水もしくは空気といった媒体中に短繊維を分散させた後に吸引集積し、ウェッブを形成する。このため、この両手法による不織布は繊維の配列方向がランダムであり、吸収性物品の表面材、特にトップシートに用いた場合、スポット透過性に優れる。
しかしながら、無捲縮の繊維を抄紙法で加工した不織布は、比較的高強度ではあるものの、極端に嵩高性が劣っており、吸収性物品の表面材として用いた場合、透過性に劣り、保液しやすいばかりか、肌触り等の感触が悪いという欠点があった。この不織布の透過性及び感触が悪く保液しやすく、肌触り等の感触が悪い理由は、構成繊維の短繊維に捲縮が発現しておらず、見かけ密度が高く含有空気量が少ないためである。従って、捲縮を有した短繊維を用いれば感触の良好な短繊維不織布が得られると考えられる。しかし、捲縮を有した繊維をこの方法で加工した不織布は、嵩高性は改善され、体液の透過性、スポット透過性、サラット感、また透過した体液の逆戻り性の低さには優れるものの、繊維の配列がランダムなため、カード基を通過させることにより繊維が配向した不織布と比較して、機械方向の強度が比較的小さく、破れやすいがために吸収性物品の加工特性(高速生産性)に劣るという欠点があった。
また、エアレイド法による不織布は、一般的に抄紙法で得られる不織布よりも嵩高であり、吸収性物品の表面材、特にトップシートに用いた場合、体液の透過性、スポット透過性、サラット感、また透過した体液の逆戻り性の低さに優れるが、捲縮繊維を抄紙法に用いた場合同様の理由で機械方向の強度が比較的小さく、破れやすいがために吸収性物品の加工特性(高速生産性)に劣るという欠点があった。
【0013】
このようにいずれの短繊維不織布ともに長所と短所があり、これら長所を単一層において両立させることは難しかった。これら短繊維不織布の長所を両立させる類似の技術には、例えば特開昭58−180651号公報に、ランダムカード機等による短繊維不織布と通常のカード機による短繊維不織布を積層した不織布が開示されている。しかしながら、この技術に記載のランダムカード機による短繊維不織布は、多少のランダム性は付与されるものの、所詮カード法を使用して得られるため、カード機の針で繊維が梳かれて開繊される際に繊維間の摩擦によって生じる短繊維相互間の交差角は鋭角を形成しやすく、加えて不織布を構成している短繊維が不織布の長手方向すなわち機械方向に配向しているためランダム性に劣っている。このため、吸収性物品の表面材として用いた場合、この短繊維不織布及びこの積層不織布は、不織布の機械方向に毛細管的な作用が働き、体液の透過時に体液が繊維の配列方向に広がり易いために、透過性に劣るばかりか、保液しやすく、スポット透過性に乏しく、逆戻りし易いということがあった。すなわち、この技術に係わる積層不織布は、使い捨ておむつや生理用ナプキン等の吸収性物品の表面材として固有の特性である尿、汗、血液等の体液の透過性の良さ、スポット透過性、サラット感、また透過した体液の逆戻り性の低さについては満足のできるものではなかった。
【0014】
【発明が解決しようとする課題】
本発明の第1の目的は、嵩高で風合い及び感触の良好な複合化不織布を提供することであり、第2の目的は、特に要求性能の厳しい吸収性物品の表面材、特にトップシート或いはセカンドシートなどの体液が透過する部材に使用した場合、尿、汗、血液等の体液の透過性、スポット透過性、肌触り感を向上させ、かつ逆戻り性の低い複合化不織布及びその製造法を提供することにある。
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、カード法による短繊維不織布とある特定の短繊維不織布とを複合化することにより、複合化不織布の見かけ密度を十分に低下させ、引張強度が高く且つ肌触り良好で、さらに使い捨ておむつや生理用ナプキン等の吸収性物品の表面材に要求される体液の透過性及びスポット透過性に優れ、かつ逆戻り性の低い複合化不織布が提供できることを知り、本発明を完成するに至った。
【0015】
【課題を解決するための手段】
(1) 螺旋型、ジグザク型、もしくは、U字型の捲縮を有する繊維長38〜90mmの短繊維不織布(A)とエアレイド法を用いて得られた繊維長3〜30mmの短繊維不織布(B)が接合された少なくとも2層の複合化不織布であって、短繊維不織布(A)を構成する繊維同士が接触あるいは接合されて形成される接点の交差角分布において、不織布(A)の総接点数の少なくとも50%が交差角0〜30゜であり、前記短繊維不織布(B)は、少なくとも2種の高融点成分と低融点成分との熱可塑性樹脂からなる熱融着性複合短繊維であり、かつ、該熱融着性複合短繊維同士は熱融着され、形成される短繊維接点の交差角分布が短繊維不織布(B)の総接点数の少なくとも50%を交差角60〜90゜で占めていることを特徴とする複合化不織布。
(2) 短繊維不織布(A)が、少なくとも2種の高融点成分と低融点成分との熱可塑性樹脂からなる熱融着性複合繊維(C)と親水性繊維(D)からなり、かつ、親水性繊維の混合比率が、70重量%以下である(1)項に記載の複合化不織布。
(3) 短繊維不織布(A)が、厚み方向に密度勾配を有する(1)または(2)項に記載の複合化不織布。
(4) 短繊維不織布(B)が、厚み方向に密度勾配を有する(1)〜(3)項のいずれかに記載の複合化不織布。
(5) 短繊維不織布(A)が、該不織布に含まれる熱融着性複合繊維の低融点成分の融点以上、高融点成分の融点以下で熱処理された(1)から(4)項の何れかに記載の複合化不織布。
(6) 少なくとも2種の高融点成分と低融点成分との熱可塑性樹脂からなる熱融着性複合短繊維ウェッブを、エアレイド法により開繊飛散させながら、螺旋型、ジグザク型、もしくは、U字型の捲縮を有する短繊維不織布(A)上に堆積した後、堆積された短繊維ウェッブに含まれる熱可塑性樹脂の低融点成分の融点以上、高融点成分の融点以下で熱処理して短繊維不織布(B)を形成することを特徴とする複合化不織布の製造法。
(7) (1)〜(5)項のいずれかに記載の複合化不織布を表面材のトップシート及びセカンドシートのうち1種以上を用いた吸収性物品。
(8) (1)〜(5)項のいずれかに記載の複合化不織布を表面材のトップシート及びセカンドシートのうち1種以上に、短繊維不織布(B)側を体液の流れの上流側となるようにして用いた吸収性物品。
【0016】
【発明の実施の形態】
本発明は上記構成をとることにより、単独として用いた場合の短繊維不織布(A)及び(B)の弱点を、複合化不織布にすることで克服し、両者のメリットを最大限に引き出している点にその特徴がある。すなわち、短繊維不織布(B)の機械方向の引っ張り強度の低さを短繊維不織布(A)が実質的に補強し、短繊維(A)が不織布の長手方向すなわち機械方向に配列しているために生じる、短繊維不織布(A)のスポット透過性の悪さを、短繊維不織布(B)の優れた体液透過性能が複合化不織布の体液透過性、スポット透過性及びサラット感を向上させ、かつ透過した体液の逆戻りを防止していることである。
以下本発明を詳細に説明する。
本発明に係る複合化不織布は、繊維長38〜90mmの短繊維不織布(A)と繊維長3〜30の短繊維不織布(B)で構成されるものである。以下、短繊維不織布(A)を構成する短繊維層を短繊維層(A)或いは短繊維ウェッブ(A)、さらにこれらを構成する短繊維を短繊維(A)とし、短繊維不織布(B)の場合も同様とする。
【0017】
本発明でいう短繊維不織布(A)とは、短繊維(A)が集積接合されてなるもので、従来公知のカード機、例えばパラレルカード機、ランダムカード機、ランダムウェッバー等を用いて得ることができる。
短繊維不織布(A)を構成する短繊維の繊度は、用途により微細繊度(0.5〜2d/f)、細繊度(2〜12d/f)、中繊度(12〜50d/f)、太繊度(50〜1000d/f)等、種々の使用ができる。特に吸収性物品の表面材に使用する場合において、短繊維(A)の繊度は0.5〜12dが好ましい。短繊維(A)の繊度が0.5d/f未満になると、短繊維(A)が開繊される際に、開繊機の針が通り難くなり、いわゆるネップが存在する不均質な短繊維不織布しか得られないので好ましくない。逆に短繊維(A)の繊度が12d/fを超えると、短繊維(A)の剛性が高くなって、柔軟性に富む短繊維不織布(A)が得られないので好ましくない。特に、吸収性物品の表面材に使用する場合において、繊度は0.5〜6d/fのものが最も好ましい。その他、手術用着衣、掛け布、ハップ材の基布等には細繊度(2〜12d/f)、土木資材等には中繊度(12〜50d/f)〜太繊度(50〜1000d/f)の広範囲の適用が図れる。
【0018】
短繊維不織布(A)の目付けは、使われる用途によって任意であるが、手術用着衣、掛け布、ハップ材の基布等に使用する場合において、5〜150g/m2が好ましい。短繊維不織布(A)の目付けが、5g/m2未満になると、短繊維不織布(A)の厚みが薄くなりすぎて、短繊維ウェッブ(A)を固定化させる際や、固定化された短繊維不織布(A)を巻き取る際、短繊維(B)を堆積もしくは短繊維不織布(B)と積層させる際等において、取扱いが困難であったり、均質性が低下するので好ましくない。逆に、150g/m2を超えると短繊維不織布自体の剛性が高くなり、柔軟性が低下するので好ましくない。特に、吸収性物品の表面材に使用する場合において、短繊維不織布(A)の目付けは、5〜50g/m2が好ましい。
さらに、短繊維(A)は、カード機によって梳かれて開繊するための捲縮が付与されたものを使用する。捲縮形状としては螺旋型、ジグザグ型、U字型等が例示され、とりわけ、嵩高性が良好な点において、螺旋型とU字型が好ましい。
【0019】
短繊維不織布(A)を構成している短繊維(A)としては、熱可塑性樹脂若しくは非熱可塑性樹脂より成る合成繊維、半合成繊維、天然繊維、無機繊維等が使用できる。短繊維(A)が熱可塑性樹脂以外の原料を使用した場合、短繊維(A)は、短繊維ウェッブ(A)を固定化する際等において加工のバラエティーが広がる点から、溶剤に可溶性のものが好ましい。短繊維が熱可塑性の場合、短繊維(A)は、1成分よりなる繊維であっても良いし、2成分以上、例えば、3若しくは4成分から成る複合繊維であっても良い。しかし、経済性を考慮すれば、特殊な用途を除いて2成分で十分である。
ここで短繊維(A)の原料となる熱可塑性樹脂は、各種のポリエチレン、ポリプロピレン等のポリオレフィン系、ポリエステル系、ポリアミド系、ポリウレタン系等を例示でき、とりわけ好ましくはポリオレフィン系である。複合短繊維としては、非熱融着性複合繊維であっても良いし、熱融着性複合繊維であっても良いが、短繊維不織布(A)の短繊維同士の接点接着固定の効果や、後工程の短繊維不織布(B)との複合化における接合の効果を考慮したとき熱融着性複合繊維を含むことが好ましい。熱融着性複合短繊維とは、繊維表面の少なくとも一部に、低融点成分が形成される2成分系以上の複合短繊維である。
【0020】
熱融着性複合短繊維の組み合わせの例として、高密度ポリエチレン/ポリプロピレン、直鎖状低密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/ポリプロピレン、プロピレンと他のαーオレフィンとの二元共重合体または三元共重合体/ポリプロピレン、直鎖状低密度ポリエチレン/高密度ポリエチレン、低密度ポリエチレン/高密度ポリエチレン、各種のポリエチレン/熱可塑性ポリエステル、ポリプロピレン/熱可塑性ポリエステル、プロピレンと他のαーオレフィンとの二元共重合体または三元共重合体/熱可塑性ポリエステル、低融点熱可塑性ポリエステル/熱可塑性ポリエステル、各種のポリエチレン/ナイロン6、ポリプロピレン/ナイロン6、プロピレンと他のαーオレフィンとの二元共重合体または三元共重合体/ナイロン6、ナイロン6/ナイロン66、ナイロン6/熱可塑性ポリエステルなどを挙げることができる。
【0021】
これらの中ではポリオレフィン系同士若しくはポリオレフィン系とポリエステル系からなる組み合わせが好ましく、その具体例としては高密度ポリエチレン/ポリプロピレンまたはエチレン・プロピレン・ブテン−1結晶性三元共重合体/ポリプロピレンあるいは高密度ポリエチレン/ポリエチレンテレフタレート等を挙げることができる。
さらに、これらの中ではポリオレフィン系同士、例えば高密度ポリエチレン/ポリプロピレン、エチレン・プロピレン・ブテン−1結晶性三元共重合体/ポリプロピレン等が耐薬品性の面から特に好ましい。
【0022】
該複合成分の高融点成分と低融点成分との融点差または軟化点差は、15℃以上が好ましい。例えば、熱融着性複合短繊維が、A,B,C3種の熱可塑性樹脂で構成され、この融点または軟化点がA>B>Cの場合、AB間及びBC間の少なくとも一方の融点差または軟化点差は、15℃以上が好ましい。すなわち、熱融着性複合短繊維を構成する熱可塑性樹脂を融点の高い順または低い順に並べた時、隣合う成分の融点差または軟化点差の少なくとも1つが、15℃以上であることが好ましい。また、熱融着性複合短繊維を構成する3種の熱可塑性樹脂A,B,Cの融点または軟化点がA>B>Cであって、AB間にのみ15℃以上の融点差または軟化点差がある場合は、Aが高融点成分、B,Cが低融点成分と定義される。さらに、熱融着性複合短繊維を構成する3種の熱可塑性樹脂A,B,Cの融点または軟化点がA>B>Cであって、AB間及びBC間共に15℃以上の融点差または軟化点差がある場合は、Aが高融点成分、Cが低融点成分と定義され、複合短繊維が熱融着複合短繊維であるという条件を満たした上で、Bは高融点成分及び低融点成分のどちらで扱われても差し支えない。すなわち、熱融着性複合短繊維が3種以上の熱可塑性樹脂で構成する場合、熱融着性複合短繊維を構成する熱可塑性樹脂を融点の高い順または低い順に並べた時の隣合う成分の融点差または軟化点差が15℃以上の間を境に、低融点成分と高融点成分が定義される。さらにこの間が複数存在する場合は、低融点成分が繊維表面の少なくとも一部に形成されるという条件を満たした上で、低融点成分と高融点成分は、任意の間を境に定義してかまわない。
【0023】
更に、非熱可塑性の樹脂より成る合成繊維、半合成繊維、天然繊維、無機繊維としてはフェノール系樹脂による繊維、レーヨン、キュプラ、アセテート、炭素繊維、ガラスファイバーなどを例示することができる。
また該複合短繊維は、鞘芯型、偏心鞘芯型、並列型、多層型、海島型の複合繊維が使用できる。また用途により短繊維は、着色剤、耐光剤、難燃剤、抗菌剤などが添加されていても良い。さらに、短繊維の断面は、円形であっても異形であっても良く、これら断面を持った短繊維は、中空型であってもそうでなくても良い。
短繊維不織布(A)は、2種以上の短繊維(A)で構成されていても良い。すなわち、短繊維不織布(A)は、複合型または単一型、複合型の場合は樹脂の組み合わせの異なるもの、さらに複合型の場合は熱融着性または熱融着性でないもの、単一型の場合は樹脂のことなるもの、断面形状の異なるもの、中空型またはそうでないもの、繊度の異なるものの各種組合せによる2種以上の短繊維(A)の混綿によって構成されていても良い。また、短繊維不織布(A)は、上記短繊維から構成される単層であっても良いし、2層以上であっても良い。
複合化不織布を体液が透過する部材に用いる場合、複合化不織布は親水性でなければならない。複合化不織布を親水化するために、短繊維(A)、(B)は、その表面に界面活性剤等の親水化剤を塗布または付着させ親水性に処理することができる。特に、短繊維(A)、(B)が熱可塑性樹脂で構成される場合、この熱可塑性樹脂に親水化樹脂や界面活性剤等の親水化剤を練り込み、繊維を成形することで、あらかじめ短繊維(A)、(B)を親水性にすることもできる。また、親水化樹脂や界面活性剤の具体例及び適用方法、適用範囲は、後述する吸収性物品の体液拡散層の場合と同様である。
【0024】
本発明において、特に好ましい短繊維不織布(A)としては、該熱融着性複合短繊維を短繊維不織布中に30重量%以上含有し、且つこの熱融着性複合短繊維の低融点成分によって短繊維相互間が結合されたものである。また、主たる構成短繊維に、この構成短繊維よりも15℃以上低融点の熱融着性短繊維を30重量%以上混繊して、この熱融着短繊維によって主たる構成短繊維を結合した短繊維不織布を使用することもできる。このように、熱融着性複合短繊維や低融点熱融着性短繊維の如く繊維状のもので繊維相互間を結合させる理由は、繊維の結合が、面状でなく接触点でのみ行われ、得られる短繊維不織布(A)の風合いが良好となり、また柔軟性に富むためである。
また、短繊維不織布(A)は、前記熱融着性複合短繊維と親水性短繊維の混綿によって構成されても良く、親水性短繊維の混綿率は、短繊維不織布の0〜70重量%、好ましくは0〜30重量%である。この範囲とした理由は、親水性短繊維を混綿することで体液の繰り返し透過性に優れるが、親水性短繊維の混綿率が70重量%を超えると熱融着性複合短繊維が30重量%未満となり、熱融着性複合短繊維の融着による短繊維不織布の形態保持が困難になるためである。
【0025】
ここで言う親水性短繊維には、レーヨン、キュプラ、アセテート、ビニロン、ナイロン、蛋白・アクリロニトリル共重合糸、綿、羊毛、絹、麻、パルプ、高分子吸収体(Super Absorbent Polymer)繊維、生分解性繊維等が例示でき、とりわけ好ましくは、レーヨン、キュプラ、アセテート、綿、パルプ等のセルロース系繊維、高分子吸収体繊維及び生分解性繊維である。また、短繊維不織布(A)は、前記熱融着性複合短繊維または前記熱融着性複合短繊維及び親水性短繊維から構成される1層であっても良いし、2層以上であっても良い。短繊維不織布を2層以上にする場合、短繊維不織布(A)は、不織布の厚み方向に密度勾配を付与させたものが好ましい。すなわち、短繊維ウェッブは、密度が次第に増大するように、もしくは密度が次第に減少するように密度勾配を形成させ堆積接合させることが好ましい。また、不織布の厚み方向に親水性繊維の混率に勾配を付与させたものも好ましい。すなわち、短繊維ウェッブは、親水性繊維の混率が次第に増大するように、もしくは次第に減少するように堆積接合させることが好ましい。この様に短繊維不織布(A)に密度勾配もしくは親水性繊維の混率に勾配を付与する理由は、液体の密度が粗な部分から密な部分へ移動する性質もしくは親水性の低いところから高いところへ移動する性質によって体液の透過性が向上し、かつ透過した後の逆戻りを防止し、吸収性物品の表面材等の使用にさらに好適になるためである。
【0026】
以上のような構成を持つ短繊維不織布(A)は、例えば以下のようにして製造されるものである。すなわち、熱融着性短繊維と他の繊維が混合解繊したものを従来公知のカード機に供給し、これより所定の方法によって紡出された均一なウェッブを得る。そして、加熱気体流を充満させた中に導入し、短繊維ウェッブ(A)に含まれる熱融着複合短繊維の低融点成分の融点以上、高融点成分の融点以下で熱処理することで短繊維不織布(A)を得るのである。或いは短繊維ウエッブ(A)に含まれる熱融着性繊維が単一繊維の場合には例えば、凹凸ロールと平滑ロールによって構成されるポイントボンド加工機により、熱圧着することにより短繊維不織布(A)を得ることができる。
また、短繊維ウェッブ(A)の固定化(不織布化)としては、上記した例、すなわち熱風加熱法に限らず公知の手法、例えばニードルパンチ法、高圧水流法、エンボスロール法、超音波加熱法等が用いられ、これら手法の組合せであってもかまわない。短繊維ウェッブ(A)固定化(不織布化)の組合せとしては、ニードルパンチ処理とエンボスロール処理、ニードルパンチ処理と超音波加熱処理、ニードルパンチ処理と熱風加熱処理、高圧水流処理とエンボスロール処理、高圧水流処理と超音波加熱処理、高圧水流処理と熱風加熱処理等が例示でき、これら処理は、その順序を問わないが、ニードルパンチ処理は、エンボスロール処理や超音波加熱処理、熱風加熱処理によって形成された熱融着点に対する破壊や切断等の悪影響を避ける点において、先に行われた方が好ましい。
【0027】
一方、短繊維不織布(B)は、カット長3〜30mmの短繊維(B)が集積接合されてなるもので、後述するような特定の構成を持つものである。短繊維(B)の繊度は、用途により微細繊度(0.5〜2d/f)、細繊度(2〜12d/f)、中繊度(12〜50d/f)、太繊度(50〜1000d/f)等、種々の使用ができる。特に吸収性物品の表面材に使用する場合において、短繊維(B)の繊度は0.5〜12dが好ましい。短繊維(B)の繊度が0.5d/f未満になると、短繊維(B)が開繊される際に、開繊機の針が通り難くなり、いわゆるネップが存在する不均質な短繊維不織布(B)しか得られないので好ましくない。逆に短繊維(B)の繊度が12d/fを超えると、短繊維(B)の剛性が高くなって、柔軟性に富む短繊維不織布(B)が得られないので好ましくない。特に、吸収性物品の表面材に使用する場合において、繊度は0.5〜6d/fのものが最も好ましい。その他、手術用着衣、掛け布、ハップ材の基布等には細繊度(2〜12d/f)、土木資材等には中繊度(12〜50d/f)〜太繊度(50〜1000d/f)の広範囲の適用が図れる。
【0028】
また、短繊維不織布(B)の目付けは、短繊維不織布(A)と同様に、使われる用途によって任意であるが、手術用着衣、掛け布、ハップ材の基布等に使用する場合において、5〜150g/m2が好ましい。短繊維不織布(B)の目付けが、5g/m2未満になると、短繊維不織布(A)の場合と同様に短繊維不織布(B)の厚みが薄くなりすぎて、取扱いが困難であったり、均質性が低下するので好ましくない。逆に、150g/m2を超えると短繊維不織布(B)自体の剛性が高くなり、柔軟性が低下するので好ましくない。特に、吸収性物品の表面材に使用する場合において、短繊維不織布(B)の目付けは、5〜50g/m2が好ましい。短繊維(B)は、繊維長が3〜30mmのものが使用できる。短繊維(B)の繊維長が3mm未満になると、短繊維不織布(B)の嵩高性が低下し、見かけ密度が高くなるので好ましくない。逆に、30mmを超えると開繊性が悪くなり、均質性が低下するので好ましくない。とりわけ、繊維長が3〜15mmのものが、嵩高性と均質性の良好な点において好ましい。さらに、短繊維(B)は、捲縮が付与されたもの及び無捲縮のものが使用できる。とりわけ、嵩高性が良好な点において、短繊維(B)は捲縮付与されたものが好ましい。捲縮としては螺旋型、ジグザグ型、U字型等が例示され、好ましくは螺旋型とU字型である。また、抄紙法を用いて短繊維不織布(B)を製造する場合は、捲縮が付与された短繊維(B)を用いなければならない。抄紙法で捲縮繊維を用いなければならない理由は、この方法がウェッブ形成の媒体に水を用い、その媒体の力学的な作用によって嵩高性が失われ、得られる不織布の空隙が小さくなり、吸収性物品の表面材に用いた場合体液の透過性に劣りかつ保液しやすいためである。
【0029】
短繊維(B)は、各種のポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂等の各種組合せによる熱融着性を有する複合繊維である。短繊維(B)を熱融着性複合短繊維とした理由は、後述する特定の構造を保持するためである。熱融着性複合短繊維とは、繊維表面の少なくとも一部に、低融点成分が形成される2成分系以上、例えば、3成分若しくは4成分、からなる複合短繊維である。しかし、特定の用途を除いて、経済性からみて2成分が好ましい。
熱融着性複合短繊維(B)に用いられる樹脂及びその組み合わせは短繊維不織布(A)の場合に開示された熱可塑性樹脂及びその組み合わせをそのまま利用することができる。しかし、その選択は短繊維不織布(A)の場合と独立に行われる。
更に、3成分以上の樹脂を使用した場合には短繊維不織布(A)の場合と同様に高融点側及び低融点側が定義される。
また、該熱融着複合短繊維(B)は、鞘芯型、偏心鞘芯型、並列型、多層型、海島型の複合繊維が使用できる。また用途により短繊維(B)は、着色剤、耐光剤、難燃剤、抗菌剤などが添加されていても良い。さらに、熱融着性複合短繊維(B)の断面は、円形であっても異形であっても良く、これら断面を持った熱融着性複合短繊維(B)は、中空型であっても、そうでなくても良い。
【0030】
短繊維不織布(B)は、上述した方法で製造された熱融着性複合短繊維(B)の内、樹脂の組み合わせの異なるもの、断面形状の異なるもの、中空型またそうでないもの、繊維長の異なるもの、繊度の異なるものの各種組合せによる2種以上の熱融着性複合短繊維(B)の混綿によって構成されていても良い。
さらに、短繊維不織布(B)は、前記熱融着性複合短繊維(B)から構成される1層であっても良いし、2層以上であっても良い。短繊維不織布(B)を2層以上にする場合、短繊維不織布(B)は、不織布の厚み方向に密度勾配を付与させたものが好ましい。すなわち、短繊維ウェッブ(B)は、密度が次第に増大するように、もしくは密度が次第に減少するように密度勾配を形成させ堆積接合させることが好ましい。この様に短繊維不織布(B)に密度勾配を付与する理由は、液体の密度が粗な部分から密な部分へ移動する性質によって体液の透過性が向上し、かつ透過した後の逆戻りを防止し、吸収性物品の表面材等の使用にさらに好適になるためである。
【0031】
本発明において特に重要なことは、使用する短繊維不織布(B)が、構成する該熱融着性複合短繊維(B)をランダムかつポーラスに配列させて、集積接合している点である。すなわち、前記短繊維不織布(B)は、該熱融着性複合短繊維(B)から構成され、かつ熱融着性複合短繊維同士は熱融着され、形成される短繊維接点の交差角分布が短繊維不織布(B)の総接点数の少なくとも50%を交差角60〜90゜で占めていることを特徴とするものである。交差角60〜90゜の百分率(%)は、短繊維不織布(B)のランダム性或いはポーラス性の尺度として用いた。また、交差角60〜90゜の百分率(%)は、2つの短繊維が交差接合して形成される4角のうち最小の角度を測定し、これを交差角として、この測定を100点以上行い、交差角分布を求め、交差角60〜90゜に含まれる交差角の数をA、測定した交差角の総数をMとし、A/M×100で求めた。
【0032】
短繊維不織布(B)を構成する熱融着性複合短繊維がランダムかつポーラスに配列しなければならない理由は、吸収性物品の表面材に使用した場合に、体液の透過性能に優れるという効果を発揮するためである。すなわち、エアレイド法や抄紙法を用いて得られる短繊維不織布(B)は、構成する短繊維がランダムかつポーラスに配列しているために、カード法による不織布に見られる不織布の機械方向への毛細管的な作用が起こりにくくなり、体液の透過が、不織布上で体液が繊維の配列方向に広がることなく行われるからである。さらに、この短繊維不織布(B)を構成する短繊維(B)は、短繊維の繊維長が充分に短いために、比較的不織布の厚み方向に繊維が配列している。このため、得られる短繊維不織布(B)は、クッション性に優れ、嵩高で見かけ密度が十分に低下し、かつ不織布の厚み方向の毛細管的な作用を有しており、本発明の複合化不織布を、特に要求性能の厳しい吸収性物品の表面材として使用した場合、尿、汗、血液等の体液の透過性、スポット透過性及びサラット感を更に向上させ、かつ透過した体液の逆戻りを防止するという効果を奏するのである。
【0033】
以上のような構成を持つ短繊維不織布(B)は、例えば以下のようにして製造されるものである。すなわち、熱融着性複合短繊維(B)と親水性短繊維を混綿し、これを開繊してエアレイド不織布加工機に供給する。供給された短繊維は、エアレイド不織布加工機によって開繊飛散され捕集コンベア上に堆積される。この操作を多段的に行った多層短繊維ウェッブ(B)を、熱融着性複合短繊維(B)の低融点成分の融点以上、高融点成分の融点以下の加熱気体流の中に導入し、熱融着性複合短繊維(B)の低融点成分を軟化または溶融させることで短繊維相互間を接合し短繊維不織布(B)を得るのである。また、短繊維(B)の不織布化は、後述するように、短繊維不織布(A)との複合化と共に行われても良い。すなわち短繊維(B)の不織布化は、エアレイド不織布加工機で飛散させた短繊維(B)を走行する短繊維不織布(A)上もしくは短繊維ウェッブ(A)上に、直接堆積させた後、熱風加熱処理する事で短繊維不織布(A)との複合化と共に行われても良い。
【0034】
本発明に係る複合化不織布は、上記した短繊維不織布(A)と短繊維不織布(B)とが少なくとも2種複合化されたものである。短繊維不織布(A)と短繊維不織布(B)の複合化は、短繊維層(A)と短繊維不織布(B)の積層接合であっても、短繊維層(A)と短繊維ウェッブ(B)の積層接合であっても良い。ここで言う短繊維層(A)は、短繊維不織布(A)もしくは短繊維ウェッブ(A)のことである。短繊維不織布(A)と短繊維不織布(B)の複合化における短繊維層(A)と短繊維層(B)の接合は、短繊維層(B)すなわち短繊維不織布(B)もしくは短繊維ウェッブ(B)に含まれる熱融着性複合短繊維の低融点成分を軟化または溶融させることで行われる。具体例としてはエンボスロール法、超音波加熱法、熱風加熱法等が挙げられる。また、この例外として短繊維不織布(A)と短繊維不織布(B)の複合化は、ホットメルト等の各種接着剤や粘着剤によって行われても良く、接着剤や粘着剤の塗布パターンに制限はないが、少量の塗布が可能で複合化不織布の柔らかさを損なわない点においてスパイラルパターンが好ましい。とりわけ嵩高性が良好な点において、短繊維不織布(A)と短繊維不織布(B)の複合化における短繊維層(A)と短繊維層(B)の接合は熱風加熱法が好ましい。さらに、短繊維層(A)が30重量%以上の熱融着性複合短繊維もしくは低融点熱融着短繊維の混繊で構成され、かつ短繊維層(A)及び短繊維層(B)に含まれるそれぞれの低融点成分の融点が、それぞれの高融点成分の融点よりも15℃以上低い融点になるように選定されることも好ましい。
【0035】
このように短繊維層(A)及び短繊維層(B)における各成分の融点を選定する理由は、短繊維不織布(A)と短繊維不織布(B)の複合化における短繊維層(A)と短繊維層(B)の接合が、短繊維層(B)、すなわち短繊維不織布(B)もしくは短繊維ウェッブ(B)に含まれる熱融着性複合短繊維の低融点成分を軟化または溶融させることだけでなく、短繊維不織布(A)の低融点成分を軟化または溶融させることでも行われ、かつ2種以上の熱融着性複合繊維を短繊維層(A)に混綿もしくは短繊維層(B)に混綿した場合であっても、それぞれの低融点成分が熱融着の効果を発揮し、複合化不織布及び接合面の強度をさらに強固にする事ができるからである。
【0036】
この場合の熱風加熱処理は、短繊維層(A)及び短繊維層(B)の低融点成分のうち最も高融点である成分の融点以上、短繊維層(A)及び短繊維層(B)の高融点成分のうち最も低融点である成分の融点以下で行われることが好ましい。熱風加熱処理を短繊維層(A)及び短繊維層(B)の低融点成分の最も高融点である成分の融点未満で行うと、短繊維不織布(A)と短繊維不織布(B)の複合化における短繊維層(A)と短繊維層(B)の接合が、全ての低融点成分によって行われないのであまり好ましくない。逆に、熱風加熱処理を短繊維層(A)及び短繊維層(B)の高融点成分の最も低融点である成分の融点を越えて行うと、この高融点成分が熱によるダメージや収縮もしくは嵩の低下等を起こし、不均質な複合化不織布しか得られないので好ましくない。
また、複合化不織布の短繊維層(A)の厚み方向に密度勾配もしくは親水性繊維の混率に勾配を持たせる場合、短繊維層(A)は、用途に応じて短繊維不織布(B)と接合する側を密にしても良いし、粗にしても良い。複合化不織布の短繊維層(B)の厚み方向に密度勾配を持たせる場合も同様に、短繊維層(B)は、適宜、用途に応じて短繊維不織布(A)と接合する側を密にしても良いし、粗にしても良い。
さらに、複合化不織布は、用途に応じどちらを表に使用しても良く、以上のようにして得られる2層の複合化不織布に、短繊維層(A)または短繊維層(B)をさらに積層接合させ、複合化不織布を3層以上にして用いる事もできる。また、さらに上記2層以上の複合化不織布に上記以外の不織布、編織物、紙、フィルム等のシートを積層することもできる。とりわけ吸収性物品のトップシート或いはセカンドシートに用いる場合においては、短繊維不織布(B)側を体液の流れの上流側に設定することが好ましく、その場合の密度勾配は、体液の流れの上流側から順に密にすることが好ましい。
【0037】
複合化不織布は、短繊維不織布(A)側を体液の流れの上流側にしても下流側にしても本発明の特性、効果を発揮できるが、特に複合化不織布の短繊維不織布(A)側を体液の流れの下流側にすると、短繊維(A)が不織布の長手方向すなわち機械方向に配列しているため、実質的に体液を不織布の機械方向に拡散させ、体液の流れの最も下流にある吸収層中の高吸収性ポリマーに有効に分配し、いわゆる横漏れを防止する事ができる。さらに、このカード不織布層すなわち短繊維不織布(A)は、短繊維(A)が不織布の長手方向すなわち機械方向に配列しているために、厚み方向での加重に対する反発力が劣っている。しかしながら、このことが体液を透過した後、複合化不織布に加重が加えられた時に生じる逆戻り防止の効果を奏するのである。すなわち、体液を透過した複合化不織布に加重が加えられ余剰の体液の滲み出しによって生じる逆戻りを、加重に対する反発力に劣るがために、短繊維不織布(A)がその加重によって高密度になり体液を保持することで防止するのである。
【0038】
また、短繊維不織布(A)は、後述するような特定の構造にすることで、上記複合化不織布特有の機能をより充実させる事ができる。すなわち、短繊維不織布(A)を構成する繊維同士が接触あるいは接合されて形成される接点の交差角分布が不織布(A)の総接点数の少なくとも50%を交差角0〜30゜で占めさせることである。交差角0〜30゜の百分率(%)は、短繊維不織布(A)の繊維の配向性或いは異方性の尺度として用いた。また、交差角0〜30゜の百分率(%)は、2つの短繊維が交差接合あるいは交差接触して形成される4角のうち最小の角度を測定し、これを交差角として、この測定を100点以上行い、交差角分布を求め、交差角0〜30゜に含まれる交差角の数をA、測定した交差角の総数をMとし、A/M×100で求めた。
【0039】
ただし、このように複合化不織布を短繊維不織布(B)を体液の流れの上流側にして、体液が透過する部分(トップシート、セカンドシートなど)のうち、特に直接肌に接触するトップシートに用いる場合は、注意が必要である。それは、前述した短繊維不織布(B)を構成する短繊維が比較的不織布の厚み方向に配列し、繊維末端が多く存在することから直接肌に接触させたときに皮膚を刺激し、かぶれの原因になる点への注意である。
このような問題は、前記したように複合化不織布を3層以上にすることで解決できる。すなわち、複合化不織布の短繊維不織布(B)側にさらに不織布を積層接合させることで、繊維末端が多く存在する短繊維不織布(B)を被覆し、皮膚に対する刺激を軽減させることで解決できるのである。例えば、その積層接合させる不織布には、スパンボンド不織布や短繊維不織布(A)を含むカード不織布といった短繊維不織布(B)以外の各種不織布を使用でき、その各種不織布の目付は5〜15g/m2の範囲が好ましい。
目付を上記範囲にした理由は、5g/m2未満になると、積層接合する不織布の厚みが薄くなりすぎて、構成繊維を固定化(不織布化)させる際や、固定化された積層接合する不織布を巻き取る際等において、取扱いが困難であったり、均質性が低下するので好ましくない。逆に、15g/m2以上になると、積層接合する不織布自体の性質が発揮され、上述した短繊維不織布(B)の特徴或いは効果を阻害するために好ましくない。また、積層接合する不織布に短繊維不織布(A)を用いるような場合、交差角を前記鋭角に分布せしめることは、スポット透過性を悪くするため好ましくない。
【0040】
本発明において、特に好ましい短繊維不織布(A)と短繊維不織布(B)の複合化の態様は、熱風加熱法による短繊維層(A)と短繊維ウェッブ(B)の積層接合である。熱風加熱法による短繊維層(A)と短繊維ウェッブ(B)の積層接合とは、短繊維不織布(A)もしくは短繊維ウェッブ(A)上に直接短繊維ウェッブ(B)を堆積させ、短繊維ウェッブ(B)に含まれる熱融着性複合短繊維の低融点成分の融点以上、高融点成分の融点以下の加熱気体流の中に導入熱処理して、短繊維不織布(A)と短繊維不織布(B)を接合する事である。この様にして得られる短繊維層(A)と短繊維ウェッブ(B)の積層接合、すなわち短繊維不織布(A)もしくは短繊維ウェッブ(A)と短繊維ウェッブ(B)の積層接合による複合化不織布は、短繊維不織布(A)と短繊維不織布(B)の積層接合のごとき通常の接合構造とは異なり、接合面において、短繊維ウェッブ(B)が短繊維不織布(A)もしくは短繊維ウェッブ(A)の空隙に入り込み、層間において互いの短繊維同士の接着点が3次元的に形成され、かつ比較的不織布の厚み方向に、短繊維層(B)の短繊維が配列した構造になっている。このため、熱風加熱法による短繊維層(A)と短繊維ウェッブ(B)の積層接合で得られる複合化不織布は、短繊維不織布(A)と短繊維不織布(B)の層間にアンカー効果が生じ、吸収性物品の表面材として使用時に予想される外的なずれ応力やよれ応力に対する形態安定性に優れる。
【0041】
また、短繊維不織布(A)と短繊維不織布(B)の層間においても短繊維層(B)を構成する短繊維(B)が比較的不織布の厚み方向に配列しているため、クッション性に優れ、嵩高で見かけ密度が十分に低く、かつ不織布の厚み方向への毛細管的な作用がさらに向上し、吸収性物品の表面材に用いた場合、体液の透過性能及びスポット透過性に優れ、かつ透過した体液の逆戻り性を低化させている。この様に、短繊維不織布(A)と短繊維不織布(B)の複合化は、吸収性物品の表面材に用いた場合の形態安定性及び体液の透過性、スポット透過性に優れ、かつ透過した体液の逆戻り性が低い点において、熱風加熱法による短繊維層(A)と短繊維ウェッブ(B)の積層接合が好ましいのである。また、この熱風加熱法による短繊維層(A)と短繊維ウェッブ(B)の積層接合においても、短繊維層(A)を30重量%以上の熱融着性複合短繊維もしくは低融点熱融着短繊維の混繊で構成し、かつ短繊維層(B)の低融点成分及び短繊維層(B)の低融点成分の融点が、お互いの高融点成分の融点よりも15℃以上低融点になるように選定されていることが好ましい。この場合の熱風加熱処理も、短繊維層(A)及び短繊維層(B)の低融点成分のうち最も高融点である成分の融点以上、短繊維層(A)及び短繊維層(B)の高融点成分のうち最も低融点である成分の融点以下で行われることが好ましく、特に熱風加熱による短繊維ウェッブ(A)と短繊維ウェッブ(B)の積層接合においては、短繊維ウェッブ(A)と短繊維ウェッブ(B)の不織布化ならびに複合化が同時に行われるため、これが必要条件となる。
【0042】
以下、本発明に係る短繊維層(A)と短繊維ウェッブ(B)の積層接合による複合化不織布の製造法の例を説明する。まず、熱融着性短繊維と他の繊維が混合解繊したものを従来公知のカード機に供給し、これより所定の作用によって紡出された均一なウェッブ(A)を得る。続いて、短繊維ウェッブ(A)は、短繊維ウェッブ(A)を固定化するために、加熱した彫刻ロールと平滑ロールの間で部分的に熱圧着処理され、短繊維不織布(A)としてエアレイド不織布加工機に搬送される。ここで短繊維層(A)を短繊維ウェッブ(A)のまま用いるのであれば、短繊維ウェッブ(A)は、彫刻ロールと平滑ロールの間で部分的な熱圧着を行わずに、そのままエアレイド不織布加工機に搬送される。次に、短繊維層(B)となる短繊維(B)群が、エアレイド不織布加工機によって開繊飛散された後、サクションブロアーによって吸引されながら、搬送されてくる短繊維層(A)上に堆積され、短繊維層(A)と短繊維ウェッブ(B)の積層体を形成し、熱風加熱乾燥機に搬送される。熱風加熱乾燥機に搬送された短繊維層(A)と短繊維ウェッブ(B)の積層体は、短繊維ウェッブ(B)のみ或いは短繊維層(A)と短繊維ウェッブ(B)の両層に含まれる熱融着性複合短繊維の低融点成分の融点以上、高融点成分の融点以下で熱風加熱乾燥機によって熱処理され、複合化不織布として巻き取られる。
【0043】
本発明は、複合化不織布からなる表面材及び、体液を保持する吸収体よりなる吸収性物品、例えば生理用ナプキン、使い捨ておむつ、失禁用パッド、おりものシート等を提供するものである。本発明で言う表面材とは、トップシート、バックシート、サイドギャザ等、吸収性物品の表面を形成する部材及び、吸収体の包材やセカンドシートの様な部材等も含むものを言う。本発明の吸収性物品は、表面材のうち少なくともトップシート或いはセカンドシートに複合化不織布を用いることを特徴としている。
本発明の一例として第1図及び第2図により、さらに詳しく説明すると、生理用ナプキン1は、液体透過性のトップシート2と液体不透過性のバックシート4、体液を吸収保持する吸収体5とから成り、吸収体5はトップシート2とバックシート4との間に配置されている。さらに、吸収体5は、包材9に包まれている。
また、バックシート4のパンティーと接触する側には、接着層12が設けられ、この接着層12を覆うようにリリースライナー13が配置されている。また、トップシート2と体液拡散層11との間に液体透過性のセカンドシート3を配置する場合もある。包材9と吸収体5の間に体液拡散層11を配置する場合もある。生理用ナプキン1は、様々な形状に形成できるが、ほとんどの場合、およそ長方形状を有しており、端縁部は、各々円弧形状部6として形成される。吸収体5は、一般にバックシート4よりも小さく、様々な形状に形成できるが、ほとんどの場合、およそ長方形状を有しており、その吸収体部の端部はバックシート4の形状に対応し円弧形状部7として形成されることがある。吸収部材としての吸収体5の長手側部10及び吸収性物品1の長手側部8は、装着時のフィット性を考慮し、内側に湾曲させ、中央部分を若干狭く形成してもかまわない。
【0044】
本発明の吸収性物品は、上記構成を持つ吸収性物品の表面材のうち、少なくともトップシート2、セカンドシート3のいずれかに、本発明の複合化不織布を用いることを特徴とする。また、トップシート2とセカンドシート3の両方ともが本発明の複合化不織布で構成されたものを用いることもできる。本発明の複合化不織布は、短繊維不織布(A)と短繊維不織布(B)の複合化されたものである。
バックシート4は、液体不透過性を十分に有するものであれば、特に制限はなく、例えば、編織物、不織布、フィルム等がその例に挙げられる。具体例としては、熱可塑性樹脂に炭酸カルシウム等のフィラーを加えて延伸した液不透過性でかつ蒸気を透過させる蒸気透過性のシートなどがある。好ましくは、肌に近い感触を有したもの、例えば上記フィルムと不織布或いは編織物との複合材等であり、前記複合化不織布及び複合化不織布と他の不織布やフィルム或いは編織物との複合材を用いてもかまわない。
【0045】
吸収体5は、親水性繊維と高分子吸収体(Super Absorbent Polymer)を主体としている。ここで言う親水性繊維には、レーヨン、キュプラ、アセテート、ビニロン、ナイロン、蛋白・アクリロニトリル共重合糸、綿、羊毛、絹、麻、パルプ等が挙げられ、好ましくは、レーヨン、キュプラ、アセテート、パルプ等のセルロース系繊維であるが、実質的には、ほとんどの場合パルプが使用されている。パルプ繊維は、吸収体に従来から用いられている物であれば特に制限はないが、そのパルプ繊維の平均繊維長は、粉砕、積層、圧縮処理等を考慮すると、通常0.8〜5mmの範囲にあることが好ましい。
【0046】
高分子吸収体は、従来から用いられている物であれば特に制限されないが、高分子吸収体の飽和吸収量は25g/g以上であることが望ましく、繊維状及び粒子状のものが使用できる。なお飽和吸収量は、250メッシュのナイロン製ティーバックに高分子吸収体1gを導入し、これを過剰量の0.9重量%食塩水中に1時間浸漬させ、15分間水切りを行った後の増加重量として求められる。
高分子吸収体が粒子状の場合は、その粒子径が100〜800μmであることが望ましい。具体的な高分子吸収体の組成としては、ポリアクリル酸ソーダ、アクリル酸ビニルアルコール共重合体、ポリアクリル酸ソーダ架橋体、デンプン−アクリル酸グラフト共重合体、イソブチレン−無水マレイン酸共重合体またはそのケン化物、ポリアクリル酸カリウム、ポリアクリル酸セシウム等が好適である。高分子吸収体の配合率は、吸収体の総重量に対し特別な場合を除き5〜10重量%の範囲であり、これら高分子吸収体は単独で、或いは複数種の混合によって使用することができる。また、吸収体に、熱融着性複合短繊維を混綿する事も好ましい。熱融着性複合短繊維の混率は、吸収体に使用される繊維総重量の0〜60%が好ましい。熱融着性複合短繊維を混綿する理由は、熱融着性複合短繊維を熱処理することで吸収体全体に熱融着性複合短繊維が接合したネットワークが形成され、装着者の動きによる圧縮およびずれ応力やよれ応力に対して形態安定の効果を発揮し、吸収体の体液吸収性能の低下を防止するためである。
【0047】
一般に吸収体は、形状保持やいわゆる粉落ち防止等のために、包材9に覆われている。包材9は、レーヨン、キュプラ、アセテート、ビニロン、ナイロン、蛋白・アクリロニトリル共重合糸、綿、羊毛、絹、麻、パルプ等の親水性短繊維を主体に構成され、好ましくは、レーヨン、キュプラ、アセテート、パルプ等のセルロース系繊維であるが、実質的には、ほとんどの場合パルプが使用されている。包材9に熱融着性複合短繊維を混綿する事もできる。熱融着性複合短繊維の混率は、吸収体に使用される繊維総重量の0〜60%が好ましい。熱融着性複合短繊維の混綿が好ましい理由は、吸収体の場合と同様に熱融着性複合短繊維を熱処理することで吸収体全体に熱融着性複合短繊維が接合したネットワークが形成され、装着者の動きによる圧縮およびずれ応力やよれ応力に対して形態安定の効果を発揮し、体液吸収性能の低下を防止するためと、さらにトップシート2やバックシート4等の表面材と加熱ロール法や超音波加熱法等で融着接合する場合に、強固な接合点を形成し、吸収性物品全体としての形態安定性に優れるためである。
吸収体及び包材に使用する熱融着性複合短繊維としては、表面材の複合化不織布に用いる短繊維(B)の場合に開示されたものが使用できる。さらに、熱融着性複合短繊維は、二成分以上、例えば、3若しくは4成分から成る熱融着性複合短繊維であっても良い。しかし、経済性を考慮すれば、特殊な用途を除いて2成分で十分である。吸収体及び包材に使用する熱融着性複合短繊維のカット長は、シート状に形成することが可能な範囲であって、特に制限されないが、好ましくは、3〜90mmである。
【0048】
さらに、包材9と吸収体5の代わりに、包材9と吸収体5が一体化された吸収層を使用することも好ましい。ここでいう包材9と吸収体5が接合一体化された吸収層とは、上記吸収体を上記親水性短繊維に10〜60重量%の上記熱融着性複合短繊維を混綿した不織布で挟み込み接合一体化して、所望の形態に一体裁断したものであり、例えば以下のように製造される。すなわち、包材9と吸収体5が接合一体化された吸収層は、エアレイド法を用い、上記親水性短繊維に0〜60重量%の上記熱融着性複合短繊維を混綿したものを開繊飛散させ堆積させる。続けてこの上に上記親水性繊維と上記高分子吸収体の混合物を開繊飛散させ堆積させ、さらにこの上に上記親水性短繊維に10〜60重量%の上記熱融着性複合短繊維を混綿したものを開繊飛散させ堆積させ、熱処理によって接合一体化した後、一体裁断して得られる。包材9と吸収体5の一体化における接合は、短繊維ウェッブに含まれる熱融着性複合短繊維の低融点成分を軟化または溶融させることで行われ、具体例としてはエンボスロール法、超音波加熱法、熱風加熱法等が挙げられる。とりわけ嵩高性が良好な点において、熱風加熱法が好ましい。また、より強力な接合の為、上記包材9と吸収体5が一体化された吸収層の吸収体5に上記熱融着性複合短繊維を混綿することも好ましい。このような吸収層は、吸収性物品へ加工する際に、吸収体からの粉落ちが少なく、取り扱いやすい点において好ましい態様である。
【0049】
一般に、吸収性物品は、体液の出口と接触する点において多量の体液を吸収し、吸収体は飽和状態となる。体液は、この点から放射状に広がり、脚に最も近い部分から濡れる、いわゆる横漏れを生じさせる。この横漏れ防止を図る好ましい対策の一つとして体液拡散層11を、トップシート2と吸収体5の間に介在させることができる。体液拡散層11は、体液を迅速に吸収拡散させ、体液の吸収を吸収体全体で行わせることで体液の総合吸収量を向上させるものである。体液拡散層11には、編織物、不織繊維集合体、多孔フィルム等が例示され、実質的には不織繊維集合体が一般的である。ここで言う不織繊維集合体とは、短繊維ウェッブや長繊維フリース、スライバー等の繊維集合体およびこれらを布状に成形した短繊維不織布や長繊維不織布、メルトブローン不織布等の不織布のことである。
体液拡散層11は、体液の良好な搬送性と拡散性とを発現させる点において、親水性であることが好ましい。体液拡散層11は、その表面に界面活性剤等の親水化剤を塗布または付着させ親水性に処理することができる。特に、体液拡散層11が熱可塑性樹脂で構成される場合、この熱可塑性樹脂に親水化樹脂や界面活性剤等の親水化剤を練り込み、繊維またはフィルムを成形することで、あらかじめ体液拡散層11を親水性にすることができる。
【0050】
親水性樹脂としては、エチレングリコール等のエーテル類や、ビニルアルコールの単独重合体及びこのエチレンまたはプロピレンとの共重合体、ポリエーテルブロックアミド共重合体等が例示でき、具体例としては熱可塑性ポリエチレングリコール(商品名アクアコーク;住友精化(株)製)、エチレンビニルアルコール共重合体(商品名エバール;クラレ(株)製)、ポリエーテルブロックアミド共重合体(商品名PEBAX;ATOCHEM社製)である。主体となる熱可塑性樹脂へこれら親水性樹脂を練り込む場合の添加率(重量%)は、20〜100重量%が好ましく、上記親水化樹脂より適宜に選択して単独で或いは2種以上の混合物として添加できる。また、界面活性剤としては、高級アルコール硫酸エステル塩、アルキルベンゼンスルホン酸塩、高級アルコールリン酸エステル塩等のアニオン界面活性剤、アルキルアミン塩、第4級アミン塩等のカチオン界面活性剤或いはポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルエステル類、多価アルコールアルキルエステル類等の非イオン界面活性剤が例示できる。主体となる熱可塑性樹脂へこれら界面活性剤を練り込む場合の添加率(重量%)は、0.05〜10.0重量%が好ましく、上記界面活性剤より適宜に選択して単独で或いは2種以上の混合物として添加できる。さらに、親水化樹脂や界面活性剤等の親水化剤を練り込んだ繊維またはフィルムの表面に、界面活性剤等の親水化剤を塗布または付着することもできる。
また、トップシート2と体液拡散層11との間に設置される場合があるセカンドシート3は、クッション性の付与をしたり、体液が体液拡散層へ到達するまでに事前に体液をある程度分配あるいは拡散する補助機能を付与したり、吸収体に吸収した体液を肌側に逆戻りするのを防止することができる。
【0051】
体液拡散層11に用いる編織物や不織繊維集合体を構成する繊維には、短繊維または長繊維を使用することができ、その繊度は0.5〜18d/fの物が使用できる。繊維の繊度が0.5d/f未満であると、生産性を維持させるための高速紡糸による曳糸性の低下や、曳糸性を維持させるための生産性の低下が起こるので好ましくない。逆に繊度が18d/fを超えると、繊維の剛性が高くなって、柔軟性に富む不織繊維集合体が得られないので好ましくない。また、不織繊維集合体の目付けは、5〜150g/m2が好ましい。不織繊維集合体の目付けが、5g/m2未満になると、厚みが薄くなりすぎて、吸収性物品に成形する時に取扱いが困難であったり、均質性が低下するので好ましくない。逆に、150g/m2を超えると不織繊維集合体の剛性が高くなり、柔軟性が低下するので好ましくない。
編織物や不織繊維集合体を構成する繊維としては、表面材の複合化不織布に用いる短繊維(A)の場合に開示されたものが使用できる。さらに、繊維が熱可塑性の場合、繊維は、1成分よりなる繊維であっても良いし、2成分以上、例えば、3成分若しくは4成分から成る複合繊維であっても良い。しかし、経済性を考慮すれば、特殊な用途を除いて2成分で十分である。
【0052】
編織物や不織繊維集合体を構成する繊維は、捲縮が付与されたもの及び非捲縮のものが使用できる。とりわけ、嵩高性が良好で、かつ逆戻り性の低さに優れる点において、繊維は捲縮付与されたものが好ましい。捲縮としては螺旋型、ジグザグ型、U字型等が例示され、好ましくは螺旋型とU字型である。また、編織物や不織繊維集合体を構成する繊維は、鞘芯型、偏心鞘芯型、並列型、多層型、海島型の複合繊維が使用できる。またデザイン性や機能性付与のために繊維は、着色剤、抗菌剤などが添加されていても良い。さらに、繊維の断面は、円形であっても異形であっても良く、これら断面を持った繊維は、中空型であっても、そうでなくても良い。特に、体液の良好な搬送性と拡散性とを発現させる点において、繊維の断面は異形であることが好ましく、その断面の異形度は、1.3以上であることが好ましい。なお、異形度は、異形糸の周長をL、異形糸の断面積をSとしたとき、L/(2√(πS))で求められる。
【0053】
体液拡散層として用いる編織物や不織繊維集合体は、上述した繊維のうち、長繊維または短繊維、短繊維で繊維長の異なるもの、複合型または単一型、複合型の場合は樹脂の組み合わせの異なるもの、さらに複合型の場合は熱融着性または熱融着性でないもの、単一型の場合は樹脂の異なるもの、断面形状や異形度の異なるもの、中空型またはそうでないもの、親水剤や抗菌剤等の添加剤を添加したものまたはそうでないもの、添加剤の異なるもの、繊維長の異なるもの、繊度の異なるものの各種組合せによる2種以上の繊維の混綿或いは混繊によって構成されていても良い。さらに、体液拡散層である編織物や不織繊維集合体は、上記繊維から構成される単層であっても良いし、2層以上であっても良い。
体液拡散層11は、トップシート2と吸収体5の間に導入される。吸収体5が、包材9で覆われている場合、体液拡散層11は、トップシート2と包材9の間に導入してもよいし、包材9と吸収体5の間に導入してもよい。とりわけ、ホットメルト接着剤等による接合時に体液拡散層11の目詰まりを避ける点において、包材9と吸収体5の間に導入する事が好ましい。
【0054】
本発明において図1及び2に示した生理用ナプキン1以外の態様として、生理用ナプキンに1対のウイングもしくは1対のサイドギャザ或いはその両方を備えたものも好ましい。ウイングは、吸収性物品長手側部8の中央付近よりトップシート2及びバックシート4を延長して形成しても良いし、トップシート2やバックシート4以外の部材を吸収体長手側部8の中央付近に接合させて形成しても良い。使用時においてウイングは、パンティーの下に折り返され、パンティーを包み込むようにして装着されており、少なくとも2つの目的により提供される。第1の目的は、特にパンティーの端部において2重のバリアを構成する事で、血液等の体液による装着者及びパンティーの汚れを防止することであり、第2の目的は、ウイングのパンティー側表面に配された接着層によって、適正な位置に固定することである。サイドギャザは、吸収体長手側部8のやや内側でトップシート2より上部に突出或いは突出部を内側に折り畳んだ状態で、吸収性物品の長手方向に沿って形成される。サイドギャザは、体液の横漏れ防止のために提供され、この機能を果たすためにバックシート4と同様に液体不透過性である。
【0055】
トップシート2やセカンドシート3、バックシート4、包材9、吸収体5、体液拡散層11、ウイング、サイドギャザ等の各部材間における接合は、ホットメルト接着剤やその他接着剤、粘着剤もしくは加熱ロール法や超音波加熱法等の融着接合によって行われる。また、バックシート4に配された接着層12やウイングのパンティー側表面に配された接着層には、ホットメルト接着剤やその他接着剤、粘着剤が用いられている。接着層12は、接着層12の保護等のためにリリースライナー13に覆われている。
【0056】
【作用】
本発明に係る複合化不織布は、短繊維不織布(A)と短繊維不織布(B)が接合された複合化不織布であって、前記短繊維不織布(B)は、少なくとも2種の高融点成分と低融点成分との熱可塑性樹脂からなる熱融着性複合短繊維であり、かつ、該熱融着性複合短繊維同士は熱融着され、形成される短繊維接点の交差角分布が短繊維不織布(B)の総接点数の少なくとも50%を交差角60〜90゜で占めている。すなわち複合化不織布を構成する短繊維不織布(B)のランダム性が高くなっており、さらに、この短繊維不織布(B)は、エアレイド法を用いて得られ、かつ構成する短繊維(B)の繊維長が充分に短いために、比較的不織布の厚み方向に繊維が配列している。従って、本発明に係る複合化不織布は、嵩高で見かけ密度が十分に低下しており、不織布の長手方向すなわち機械方向への毛細管的な作用が起こりにくいがために、保液しにくく、かつ不織布の厚み方向への毛細管的な作用に優れている。
【0057】
さらに、本発明に係る複合化不織布の製造法は、少なくとも2種の高融点成分と低融点成分との熱可塑性樹脂からなる熱融着性複合短繊維ウェッブ(B)をエアレイド法により開繊飛散させながら、短繊維が集積されてなる短繊維層(A)上に堆積した後、堆積された短繊維ウェッブ(B)に含まれる熱可塑性樹脂の低融点成分の融点以上、高融点成分の融点以下で熱処理する事によって行うものである。このため本製造法すなわち短繊維層(A)と短繊維ウェッブ(B)の積層接合による複合化不織布は、短繊維不織布(A)と短繊維不織布(B)の積層接合のごとき通常の接合構造とは異なり、接合面において、短繊維ウェッブ(B)が短繊維層(A)、すなわち短繊維不織布(A)もしくは短繊維ウエッブ(A)用のウェッブの空隙に入り込み、短繊維(A)と短繊維(B)の接着点が三次元的に形成され、かつ比較的不織布の厚み方向に短繊維(B)が配列した構造になっている。従って、本製造法による複合化不織布は、短繊維不織布(A)と短繊維不織布(B)の層間のアンカー効果に優れている。また、かつ短繊維不織布(A)と短繊維不織布(B)の層間においても短繊維(B)が比較的不織布の厚み方向に配列しているため、さらに嵩高で見かけ密度が低く、かつ不織布の厚み方向への毛細管的な作用が向上している。
【0058】
【実施例】
以下、本発明に係る複合化不織布を吸収性物品の表面材として評価した実施例について詳述するが、本発明はこれらに限定されるものではない。
実施例を詳述する前に、本発明に係る複合化不織布の物性値等の定義と測定方法について説明する。
【0059】
(目付け)不織布の重量を面積で割り、不織布1m2当たりの重量(g)で表したもの。
(剪断強度)吸収性物品の表面材として使用したときに予想されるずれ応力やよれ応力に対する形態安定性を、剪断強度として評価した。複合化不織布を、幅5cm、長さ15cmの大きさに切断し、長手方向の両端より短繊維層(A)と短繊維層(B)を長さ6.5cm剥離させ、中央2cmだけが複合化不織布になった試料を用意した。この試料を、定速引張試験機を用い、試料の長手方向の端部は、短繊維層(A)を、その反対側の端部は短繊維層(B)をつかみ、破断するまで引張試験を行った。この破断した試料の破断状態を観察し、材料破壊したものを○、短繊維層(A)と短繊維層(B)がはっきり層分離していないものを△、短繊維層(A)と短繊維層(B)がはっきり層分離したものを×とし、剪断強度として表した。
(表面風合い)
肌触り等の感触を、モニター10名による感触試験により表面風合いとして評価した。試験方法は、モニターが試料を手指で把持し、柔らかいもしくは風合いがよいと感じるか否かを判断し、柔らかいもしくは風合いがよいと判定した試料に1点/1名で加点していった。
(見かけ密度)
東洋精機株式会社のデジシックネステスターを用い、試料の3.5cmφの範囲に2.0g/cm2の荷重を加た時の厚みを0.1Dcmとし、試料の目付けをM×10ー4g/cm2としたとき、見かけ密度は、M/(D×1000)なる式で算出されるものであり、その単位は、g/cm3である。
(透過速度)
複合化不織布の透過性を透過速度として評価した。市販の紙オムツから分離した吸収体の上にティッシュを乗せた。この上に試料が水平になるように乗せ、さらにこの上に、50mmφで肉圧が4mm、重量が50gの円筒を乗せた。この円筒内に50ccの生理食塩水を、一気に投入し、投入してから試料に吸収されるまでの時間を測定し、透過速度とした。
(にじみ性)
スポット透過性をにじみ性として評価した。透過速度を測定した後に、試料に広がった生理食塩水の痕跡の向かい合う境界が最長となるところの距離をLとし、(L−50)/50で得られる値をにじみ性として表した。
(保液性)
サラット感は、官能評価であるが、便宜的に保液性として評価した。透過速度とにじみ性を評価した後の試料の重量を測定し、その値をXとし、試料を乾燥機に投入し水分を除去したときの重量をYとしたとき、(X−Y)/Y×100で得られる値を保液性とした。
(逆戻り性)
透過速度を測定後3分間放置し、吸収性シート上にある試料に濾紙を乗せ、5kgの荷重を30秒間加えたとき、濾紙が吸い取った生理食塩水の重量を逆戻り性として表した。
(ランダム性)
複合化不織布の短繊維層(A)及び(B)について、2つの短繊維が交差接合((A)のみの場合は交差接触もある))して形成される4角のうち最小の角度を測定し、これを交差角とした。この測定を100点以上行い、交差角分布を求め、交差角60〜90゜に含まれる交差角の数をA、測定した交差角の総数をMとしたとき、A/M×100で得られる値をランダム性として表した。
【0060】
(実施例1)
繊度2デニール、カット長38mm、ジグザグ型捲縮のポリプロピレン短繊維を準備し、パラレルカード機に供給した。目付12g/m2の短繊維ウェッブ(A)を得た。この短繊維ウェッブ(A)を145℃に加熱した凹凸ロールと平滑ロールによって構成されたポイントボンド加工機に導入し、熱圧着加工を行った。この短繊維不織布(A)をエアーレイド不織布加工機の捕集コンベアに供給した。繊度2デニール、カット長10mmのポリプロピレン樹脂を芯成分、高密度ポリエチレン樹脂を鞘成分とし偏心芯鞘型断面の螺旋捲縮を持った熱融着性複合短繊維(B)を開繊し、エアレイド不織布加工機に供給した。供給された短繊維(B)を、エアレイド不織布加工機によって開繊飛散させ、捕集コンベアに供給した前記短繊維不織布(A)上に堆積させて、短繊維不織布(A)と短繊維ウェッブ(B)の積層物を得た。なお、短繊維ウェッブ(B)の目付けは12g/m2とした。この短繊維不織布(A)と短繊維ウェッブ(B)の積層物を、138℃の加熱気体流の中に導入し、熱融着性複合短繊維(B)の低融点成分である高密度ポリエチレン樹脂を溶融させ、短繊維(B)相互間および短繊維層(A)と短繊維層(B)の層間を接合して複合化不織布を得た。
得られた複合化不織布を整理用ナプキンの表面材のトップシートとして使用した。吸収性が良好で、液戻りも少なく吸収性物品に好適なものであった。
【0061】
(実施例2)
繊度2デニール、カット長38mm、のポリプロピレン樹脂を芯成分、高密度ポリエチレン樹脂を鞘成分とし偏心芯鞘型断面の螺旋捲縮を持った熱融着性複合短繊維(A)を準備した。前記熱融着性複合短繊維(A)をパラレルカード機に供給し、目付12g/m2の短繊維ウェッブ(A)を得た。この短繊維ウェッブ(A)をエアーレイド不織布加工機の捕集コンベアに供給した。繊度2デニール、カット長10mmのポリプロピレン樹脂を芯成分、高密度ポリエチレン樹脂を鞘成分し偏心芯鞘型の螺旋捲縮を持った熱融着性複合短繊維(B)を開繊し、エアレイド不織布加工機に供給した。供給された短繊維(B)を、エアレイド不織布加工機によって開繊飛散させ、捕集コンベアに供給した前記短繊維ウェッブ(A)上に堆積させて、短繊維ウェッブ(A)と短繊維ウェッブ(B)の積層物を得た。なお、短繊維ウェッブ(B)の目付けは12g/m2とした。この短繊維ウェッブ(A)と短繊維ウェッブ(B)の積層物を、138℃の加熱気体流の中に導入し、熱融着性複合短繊維(A)、(B)の低融点成分である高密度ポリエチレン樹脂を溶融させ、短繊維不織布(A)、(B)の短繊維相互間および短繊維層(A)と短繊維層(B)の層間を接合して複合化不織布を得た。
得られた複合化不織布を整理用ナプキンの表面材のトップシートとして使用した。吸収性が良好で、液戻りも少なく吸収性物品に好適なものであった。
【0062】
(実施例3)
短繊維(B)のカット長を、5mmとした他は、実施例2と同様の条件で複合化不織布を製造した。
得られた複合化不織布を整理用ナプキンの表面材のセカンドシートとして使用した。吸収性が良好で、液戻りも少なく吸収性物品に好適なものであった。
【0063】
(実施例4)
短繊維(B)のカット長を、30mmとした他は、実施例2と同様の条件で複合化不織布を製造した。
得られた複合化不織布を整理用ナプキンの表面材のセカンドシートとして使用した。吸収性が良好で、液戻りも少なく吸収性物品に好適なものであった。
【0064】
(実施例5)
短繊維(A)のカット長を51mmにし、短繊維層(A)に、繊度が3デニールでカット長が45mmのレーヨンを30重量%混綿した他は、実施例3と同様の条件で複合化不織布を製造した。
得られた複合化不織布を整理用ナプキンの表面材のトップシートとセカンドシートとして使用した。吸収性が良好で、液戻りも少なく吸収性物品に好適なものであった。
【0065】
(実施例6)
短繊維層(A)に、繊度が3デニールでカット長が45mmのレーヨンを70重量%混綿した他は、実施例5と同様の条件で複合化不織布を製造した。
得られた複合化不織布を整理用ナプキンの表面材のトップシートとセカンドシートとして使用した。吸収性が良好で、液戻りも少なく吸収性物品に好適なものであった。
【0066】
(比較例1)
繊度2デニール、カット長38mmのポリプロピレン樹脂からなる短繊維(A)を準備した。前記短繊維(A)をパラレルカード機に供給し、目付12g/m2の短繊維ウェッブ(A)を得た。この短繊維ウェッブ(A)を145℃に加熱した凹凸ロールと平滑ロールによって構成されたポイントボンド加工機に導入し、熱圧着加工を行った。この短繊維不織布(A)をエアーレイド不織布加工機の捕集コンベアに供給した。
繊度2デニール、カット長38mm、ジグザグ型捲縮のポリプロピレン樹脂を芯成分、高密度ポリエチレン樹脂を鞘成分とする熱融着性複合短繊維(B)(本発明では熱融着性複合短繊維(A)に該当するが短繊維不織布(A)と区別するため(B)とした)をパラレルローラーカード加工機に導入開繊し、目付けが12g/m2の短繊維ウェッブ(B)を得た。この短繊維ウェッブ(A)と短繊維ウェッブ(B)を積層した後、138℃の加熱気体流の中に導入し、熱融着性複合短繊維の低融点成分である高密度ポリエチレン樹脂を溶融させ、短繊維ウェッブ(A)、(B)の短繊維相互間および短繊維不織布(A)と短繊維不織布(B)の層間を接合して複合化不織布を得た。
【0067】
(比較例2)
短繊維(A)をポリプロピレン樹脂を芯成分、高密度ポリエチレン樹脂を鞘成分とする熱融着性複合短繊維(A)とし、短繊維(B)をランダムウェッバー法で処理する以外は実施例2と同様にして複合化不織布を得た。
【0068】
【表1】

Figure 0004324982
PP:ポリプロピレン
PE:ポリエチレン(ここでは高密度ポリエチレンのこと)
【0069】
表1の結果より明らかなとおり、実施例に係る複合化不織布は、比較例に係る複合化不織布に比べ、短繊維層(B)のエアーレイド不織布とカード不織布が同目付けのもので構成されているにも拘らず、見かけ密度が小さく、表面の風合いに優れ、更に剪断強度、透過速度、にじみ性、保液性、逆戻り性、ランダム性全てにおいて優れている。従って、実施例に係る複合化不織布は、吸収性物品の表面材として使用したときに予想されるずれ応力やよれ応力に対する形態安定性に優れると共に、見かけ密度が低いために表面の風合いに優れ、複合化不織布の長手方向すなわち機械方向への毛細管的な作用が低く、かつ複合化不織布の厚み方向への毛細管的な作用に優れるがために透過速度、にじみ性、保液性、逆戻り性に優れている。すなわち、本発明に係る複合化不織布は、従来の積層不織布では困難であった高い剪断強度と表面風合いの良さを両立させ、さらに複合化に用いる短繊維不織布(B)に高いランダム性を付与させることで、使い捨ておむつや生理用ナプキン等の吸収性物品の表面材として固有の特性である尿、汗、血液等の体液の透過性の良さ、スポット透過性、サラット感、また透過した体液の逆戻り性の低さを満足させているのである。
【0070】
なお、以上主として、本発明に係る複合化不織布が、吸収性物品の表面材として使用する場合について説明したが、本発明に係る複合化不織布は、前述したように、手術用着衣、掛け布、ハップ材の基布等の他、フィルター材、土木資材等にも好適に使用しうるものである。
【0071】
【発明の効果】
本発明に係る複合化不織布は、前述した構造による作用から、以下に示す効果を有する。
(1)複合化不織布を構成する短繊維不織布(B)のランダム性が高く、かつ短繊維不織布(B)を構成する短繊維(B)が不織布の厚み方向に配列しているため、クッション性に優れる。
(2)複合化不織布の見かけ密度が十分に低いため、嵩高かつ表面の風合いが良好で、吸収性物品の表面材として使用した場合、肌触りに優れる。
(3)複合化不織布の長手方向すなわち機械方向への毛細管的な作用が起こりにくいため、吸収性物品の表面材として使用した場合、スポット透過性に優れる。
(4)複合化不織布の長手方向すなわち機械方向への毛細管的な作用が低く、かつ複合化不織布の厚み方向への毛細管的な作用に優れるため、吸収性物品の表面材として使用した場合、体液の透過性に優れる。
(5)複合化不織布の見かけ密度が十分に低く、かつ不織布の厚み方向への毛細管的な作用に優れるために、吸収性物品の表面材として使用した場合、透過した体液の逆戻り性が低い。
(6)不織布の長手方向すなわち機械方向への毛細管的な作用が起こりにくいため、保液性が低く、吸収性物品の表面材として使用した場合、サラット感に優れる。
(7)接合した短繊維不織布(A)と短繊維不織布(B)の層間のアンカー効果が優れるため、吸収性物品の表面材として使用した場合、ずれ応力やよれ応力に対する形態安定性に優れる。
【図面の簡単な説明】
【図1】本発明の複合化不織布を一部に用いた整理用ナプキンの一例の肌側から見た展開平面図である。
【図2】図1のX−X´部分の断面の概略端面図である。
【符号の説明】
1 整理用ナプキン
2 トップシート
3 セカンドシート
4 バックシート
5 吸収体
6 生理用ナプキン長手方向縁端部
7 吸収体長手縁端部
8 整理用ナプキン長手側部
9 包材
10 吸収体長手側部
11 体液拡散層
12 接着層
13 リリースライナー[0010]
BACKGROUND OF THE INVENTION
The present invention relates to a composite non-woven fabric that is bulky and has a good texture and feel, a method for producing the same, and an absorbent article using the same. More specifically, it can be suitably used for absorbent articles such as disposable diapers and sanitary napkins, surgical clothes, quilts, base materials for hap materials, filter materials, civil engineering materials, etc. Composite nonwoven fabric excellent in low body fluid permeability, spot permeability, slat feeling, and low reversibility of permeated body fluid required for top sheets of absorbent articles such as napkins for medical use, and a method for producing the same The present invention relates to an absorbent article using the composite nonwoven fabric.
[0011]
[Prior art]
A short fiber nonwoven fabric obtained by a technique typified by the card method is excellent in homogeneity and is composed of short fibers having crimps, so that it is bulky and has a good feel such as touch. However, the short fiber nonwoven fabric obtained by using the card method is extremely inferior in randomness because the short fibers constituting the nonwoven fabric are arranged in the longitudinal direction of the nonwoven fabric, that is, in the machine direction (nonwoven fabric production direction). For this reason, the tensile strength in the machine direction is strong and the processing characteristics (high-speed productivity) of the absorbent article are excellent. However, when used for the surface material of the absorbent article, particularly the top sheet, this short fiber nonwoven fabric is a non-woven machine. Capillary action works in the direction, and the body fluid tends to spread in the fiber arrangement direction during permeation of the body fluid, resulting in the disadvantage of not only poor permeability but also liquid retention.
[0012]
On the other hand, a paper making method and an airlaid method are known as web forming methods for handling fibers having a fiber length relatively shorter than that of the card method. In any method, short fibers are dispersed in a medium such as water or air, and then collected by suction to form a web. For this reason, the nonwoven fabric by both these methods has random fiber arrangement directions, and is excellent in spot permeability when used for a surface material of an absorbent article, particularly a top sheet.
However, a non-crimped non-woven fabric processed by a papermaking method has a relatively high strength, but is extremely inferior in bulk. When used as a surface material of an absorbent article, the non-crimped fiber is inferior in permeability and retained. In addition to being easy to liquid, there was a drawback that the touch such as the touch was bad. The reason why the nonwoven fabric has poor permeability and feel and is easy to retain liquid, and the feel such as touch is bad is that the short fibers of the constituent fibers are not crimped, the apparent density is high, and the air content is low. . Therefore, it is considered that a short fiber nonwoven fabric having a good feel can be obtained by using short fibers having crimps. However, the nonwoven fabric obtained by processing the crimped fiber by this method has improved bulkiness, excellent body fluid permeability, spot permeability, slat feeling, and low reversibility of the permeated body fluid, Because the fiber arrangement is random, the mechanical properties of the absorbent article are relatively small compared to non-woven fabrics in which the fibers are oriented by passing the card group and are easy to break. There was a disadvantage of being inferior.
In addition, the nonwoven fabric obtained by the airlaid method is generally bulkier than the nonwoven fabric obtained by the papermaking method, and when used as a surface material of an absorbent article, particularly a top sheet, the permeability of body fluid, spot permeability, slat feeling, The permeated body fluid is excellent in low reversibility. However, when crimped fiber is used for papermaking, the machine direction strength is relatively small and it is easy to break for the same reason. There was a disadvantage that the productivity was inferior.
[0013]
As described above, each of the short fiber nonwoven fabrics has advantages and disadvantages, and it has been difficult to make these advantages compatible in a single layer. For example, Japanese Patent Application Laid-Open No. 58-180651 discloses a non-woven fabric obtained by laminating a short fiber non-woven fabric by a random card machine and a short fiber non-woven fabric by a normal card machine. ing. However, although the short fiber nonwoven fabric by the random card machine described in this technology is given a certain degree of randomness, it is obtained by using the card method, so that the fiber is spun and opened by the card machine needle. The crossing angle between the short fibers caused by the friction between the fibers tends to form an acute angle, and in addition, the short fibers constituting the nonwoven fabric are oriented in the longitudinal direction of the nonwoven fabric, that is, in the machine direction. Inferior. For this reason, when used as a surface material for absorbent articles, the short fiber nonwoven fabric and the laminated nonwoven fabric have a capillary action in the machine direction of the nonwoven fabric, and the body fluid tends to spread in the fiber arrangement direction when the body fluid permeates. In addition to being inferior in permeability, liquid retention was easy, spot permeability was poor, and reversion was easy. In other words, the laminated nonwoven fabric related to this technology is a characteristic of the surface material of absorbent articles such as disposable diapers and sanitary napkins, and has good permeability to body fluids such as urine, sweat and blood, spot permeability, and slat feeling. Also, the low reversibility of the permeated body fluid was not satisfactory.
[0014]
[Problems to be solved by the invention]
A first object of the present invention is to provide a composite non-woven fabric that is bulky and has a good texture and feel, and a second object is a surface material of an absorbent article, particularly a top sheet or a second, which has particularly strict performance requirements. Provided is a composite nonwoven fabric that improves the permeability of body fluids such as urine, sweat, and blood, the spot permeability, and the feeling of touch when used for a member such as a sheet, and a method for producing the same. There is.
As a result of intensive studies to solve the above problems, the present inventors have sufficiently reduced the apparent density of the composite nonwoven fabric by compositing the short fiber nonwoven fabric by the card method and a specific short fiber nonwoven fabric. A composite nonwoven fabric having high tensile strength, good touch, excellent body fluid permeability and spot permeability required for surface materials of absorbent articles such as disposable diapers and sanitary napkins, and low reversibility Knowing that it can be provided, the present invention has been completed.
[0015]
[Means for Solving the Problems]
(1) A short fiber nonwoven fabric (A) having a fiber length of 38 to 90 mm having a spiral, zigzag or U-shaped crimp, and a short fiber nonwoven fabric having a fiber length of 3 to 30 mm obtained using the airlaid method ( B) is a composite nonwoven fabric of at least two layers joined, and in the crossing angle distribution of the contacts formed by contacting or joining the fibers constituting the short fiber nonwoven fabric (A), the total of the nonwoven fabric (A) At least 50% of the number of contacts has a crossing angle of 0 to 30 °, and the short fiber nonwoven fabric (B) is a heat-fusible composite short fiber made of a thermoplastic resin of at least two types of high melting point components and low melting point components. And the heat-fusible composite short fibers are heat-fused, and the distribution of the crossing angles of the short fiber contacts formed is at least 50% of the total number of contacts of the short fiber nonwoven fabric (B). Composite characterized by occupying 90 ° Non-woven fabric.
(2) The short fiber nonwoven fabric (A) is composed of a heat-fusible conjugate fiber (C) and a hydrophilic fiber (D) made of a thermoplastic resin of at least two kinds of high melting point components and low melting point components, and The composite nonwoven fabric according to item (1), wherein the mixing ratio of the hydrophilic fibers is 70% by weight or less.
(3) The composite nonwoven fabric according to (1) or (2), wherein the short fiber nonwoven fabric (A) has a density gradient in the thickness direction.
(4) The composite nonwoven fabric according to any one of (1) to (3), wherein the short fiber nonwoven fabric (B) has a density gradient in the thickness direction.
(5) Any of the items (1) to (4), wherein the short fiber nonwoven fabric (A) is heat-treated at a temperature not lower than the melting point of the low melting point component and not higher than the melting point of the high melting point component of the heat-fusible composite fiber contained in the nonwoven fabric. A composite non-woven fabric according to claim 1.
(6) While causing the heat-fusible composite short fiber web made of a thermoplastic resin of at least two kinds of high melting point components and low melting point components to be spread and scattered by the airlaid method, Has a spiral, zigzag or U-shaped crimp After being deposited on the short fiber nonwoven fabric (A), the short fiber nonwoven fabric (B) is formed by heat treatment above the melting point of the low melting point component and below the melting point of the high melting point component of the thermoplastic resin contained in the deposited short fiber web. A method for producing a composite nonwoven fabric characterized by comprising:
(7) An absorbent article using one or more of the composite nonwoven fabric according to any one of (1) to (5) among a top sheet and a second sheet as a surface material.
(8) The composite nonwoven fabric according to any one of (1) to (5) is used as one or more of the top sheet and the second sheet of the surface material, and the short fiber nonwoven fabric (B) side is upstream of the flow of body fluid. Absorbent article used in such a way.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
By taking the above-mentioned configuration, the present invention overcomes the weak points of the short fiber nonwoven fabric (A) and (B) when used alone by making a composite nonwoven fabric, and maximizes the merits of both. The point has its characteristics. That is, the short fiber nonwoven fabric (A) substantially reinforces the low tensile strength in the machine direction of the short fiber nonwoven fabric (B), and the short fibers (A) are arranged in the longitudinal direction of the nonwoven fabric, that is, in the machine direction. The short-fiber nonwoven fabric (A) has poor spot permeability, and the short-fiber nonwoven fabric (B) 's excellent body fluid permeability improves the body fluid permeability, spot permeability and slat feeling of the composite nonwoven fabric, and transmits Is to prevent the body fluid from returning.
The present invention will be described in detail below.
The composite nonwoven fabric according to the present invention comprises a short fiber nonwoven fabric (A) having a fiber length of 38 to 90 mm and a short fiber nonwoven fabric (B) having a fiber length of 3 to 30. Hereinafter, the short fiber layer constituting the short fiber nonwoven fabric (A) is referred to as the short fiber layer (A) or the short fiber web (A), and the short fiber constituting these is referred to as the short fiber (A), and the short fiber nonwoven fabric (B). The same applies to.
[0017]
The short fiber nonwoven fabric (A) as used in the present invention is obtained by integrating and bonding the short fibers (A), and is obtained using a conventionally known card machine, for example, a parallel card machine, a random card machine, a random weber, or the like. Can do.
The fineness of the short fibers constituting the short fiber nonwoven fabric (A) is fine fineness (0.5 to 2 d / f), fine fineness (2 to 12 d / f), medium fineness (12 to 50 d / f), thick depending on the use. Various uses such as fineness (50 to 1000 d / f) can be made. In particular, when used as a surface material for absorbent articles, the fineness of the short fibers (A) is preferably 0.5 to 12d. When the fineness of the short fiber (A) is less than 0.5 d / f, the staple of the fiber spreader becomes difficult to pass when the short fiber (A) is opened, and a non-homogeneous short fiber nonwoven fabric in which a so-called nep exists. However, it is not preferable because it can only be obtained. On the contrary, if the fineness of the short fibers (A) exceeds 12 d / f, the short fibers (A) have high rigidity, and the short fiber nonwoven fabric (A) rich in flexibility cannot be obtained. In particular, when used as a surface material for absorbent articles, the fineness is most preferably 0.5 to 6 d / f. In addition, fineness (2 to 12 d / f) is used for surgical clothes, quilts, base fabrics for hap materials, and medium fineness (12 to 50 d / f) to thick fineness (50 to 1000 d / f) for civil engineering materials. ) In a wide range of applications.
[0018]
The basis weight of the short fiber non-woven fabric (A) is arbitrary depending on the application to be used, but in the case of using it for surgical clothes, hanging cloths, base materials for hap materials, etc., it is 5 to 150 g / m. 2 Is preferred. The basis weight of the short fiber nonwoven fabric (A) is 5 g / m 2 When the ratio is less than 1, the thickness of the short fiber nonwoven fabric (A) becomes too thin, and when the short fiber web (A) is fixed or when the fixed short fiber nonwoven fabric (A) is wound up, the short fiber (B ) Is deposited or laminated with the short fiber nonwoven fabric (B), it is difficult to handle or the homogeneity is lowered. Conversely, 150 g / m 2 Exceeding this is not preferable because the rigidity of the short fiber nonwoven fabric itself increases and the flexibility decreases. In particular, when used as a surface material for absorbent articles, the basis weight of the short fiber nonwoven fabric (A) is 5 to 50 g / m. 2 Is preferred.
Furthermore, the short fiber (A) is used that has been crimped by a card machine to be opened and opened. Examples of the crimped shape include a spiral shape, a zigzag shape, and a U shape, and the spiral shape and the U shape are particularly preferable in terms of good bulkiness.
[0019]
As the short fibers (A) constituting the short fiber nonwoven fabric (A), synthetic fibers, semi-synthetic fibers, natural fibers, inorganic fibers and the like made of a thermoplastic resin or a non-thermoplastic resin can be used. When the short fiber (A) is made of a raw material other than the thermoplastic resin, the short fiber (A) is soluble in a solvent because the variety of processing is widened when the short fiber web (A) is fixed. Is preferred. When the short fiber is thermoplastic, the short fiber (A) may be a fiber composed of one component, or a composite fiber composed of two or more components, for example, three or four components. However, considering economic efficiency, two components are sufficient except for special applications.
Examples of the thermoplastic resin used as a raw material for the short fiber (A) include various polyolefins such as polyethylene and polypropylene, polyesters, polyamides, polyurethanes, and the like, and polyolefins are particularly preferable. The composite short fiber may be a non-heat-sealable conjugate fiber or a heat-sealable conjugate fiber, but the effect of contact bonding and fixing between the short fibers of the short-fiber nonwoven fabric (A) When considering the effect of bonding in the composite with the short fiber nonwoven fabric (B) in the subsequent step, it is preferable to include a heat-fusible composite fiber. The heat-fusible composite short fiber is a composite short fiber of two or more components in which a low melting point component is formed on at least a part of the fiber surface.
[0020]
Examples of combinations of heat-fusible composite short fibers include high density polyethylene / polypropylene, linear low density polyethylene / polypropylene, low density polyethylene / polypropylene, binary copolymers or ternary of propylene and other α-olefins Copolymer / polypropylene, linear low density polyethylene / high density polyethylene, low density polyethylene / high density polyethylene, various polyethylene / thermoplastic polyester, polypropylene / thermoplastic polyester, binary co-polymerization of propylene and other α-olefins Polymers or terpolymers / thermoplastic polyesters, low melting thermoplastic polyesters / thermoplastic polyesters, various polyethylene / nylon 6, polypropylene / nylon 6, binary copolymers of propylene and other α-olefins or terpolymers Original copolymer / Nylon 6, nylon 6 / nylon 66, nylon 6 / thermoplastic polyester can be mentioned.
[0021]
Of these, combinations of polyolefins or polyolefins and polyesters are preferred. Specific examples thereof include high-density polyethylene / polypropylene or ethylene / propylene / butene-1 crystalline terpolymer / polypropylene or high-density polyethylene. / Polyethylene terephthalate.
Further, among these, polyolefins such as high-density polyethylene / polypropylene, ethylene / propylene / butene-1 crystalline terpolymer / polypropylene, etc. are particularly preferable from the viewpoint of chemical resistance.
[0022]
The melting point difference or softening point difference between the high melting point component and the low melting point component of the composite component is preferably 15 ° C. or higher. For example, when the heat-fusible composite short fiber is composed of A, B, and C types of thermoplastic resins and the melting point or softening point is A>B> C, at least one melting point difference between AB and BC Alternatively, the softening point difference is preferably 15 ° C. or higher. That is, when the thermoplastic resins constituting the heat-fusible composite short fibers are arranged in order of increasing or decreasing melting point, it is preferable that at least one of the melting point difference or softening point difference between adjacent components is 15 ° C. or higher. Further, the melting points or softening points of the three types of thermoplastic resins A, B, and C constituting the heat-fusible composite short fiber are A>B> C, and a melting point difference of 15 ° C. or more is softened only between AB. When there is a point difference, A is defined as a high melting point component, and B and C are defined as low melting point components. Further, the melting points or softening points of the three types of thermoplastic resins A, B, and C constituting the heat-fusible composite short fiber are A>B> C, and the difference between the melting points is 15 ° C. or more between AB and BC. Alternatively, when there is a difference in softening point, A is defined as a high melting point component, C is defined as a low melting point component, and satisfies the condition that the composite short fiber is a heat-sealed composite short fiber, and B is a high melting point component and a low melting point component. Either melting point component can be used. That is, when the heat-fusible composite short fiber is composed of three or more types of thermoplastic resins, the adjacent components when the thermoplastic resins constituting the heat-fusible composite short fiber are arranged in order of high or low melting point The low-melting-point component and the high-melting-point component are defined at a boundary between the melting point difference or the softening point difference of 15 ° C. or more. Further, when there are a plurality of intervals, the low melting point component and the high melting point component may be defined with an arbitrary interval as long as the low melting point component is formed on at least a part of the fiber surface. Absent.
[0023]
Furthermore, examples of synthetic fibers, semi-synthetic fibers, natural fibers, and inorganic fibers made of non-thermoplastic resins include phenol resin fibers, rayon, cupra, acetate, carbon fibers, and glass fibers.
As the composite short fiber, a sheath core type, an eccentric sheath core type, a parallel type, a multilayer type, and a sea-island type composite fiber can be used. Depending on the application, the short fiber may be added with a colorant, a light-resistant agent, a flame retardant, an antibacterial agent and the like. Furthermore, the cross section of the short fiber may be circular or irregular, and the short fiber having these cross sections may or may not be a hollow type.
The short fiber nonwoven fabric (A) may be composed of two or more types of short fibers (A). That is, the short fiber non-woven fabric (A) is a composite type or a single type, in the case of a composite type, a resin having a different combination, in the case of a composite type, a heat-fusible or non-heat-fusible one In this case, it may be composed of a mixture of two or more types of short fibers (A) by various combinations of different resin, different cross-sectional shapes, hollow type or not, and different finenesses. The short fiber nonwoven fabric (A) may be a single layer composed of the above short fibers, or may be two or more layers.
When the composite nonwoven fabric is used as a member through which body fluid passes, the composite nonwoven fabric must be hydrophilic. In order to hydrophilize the composite nonwoven fabric, the short fibers (A) and (B) can be hydrophilically treated by applying or adhering a hydrophilic agent such as a surfactant to the surface thereof. In particular, when the short fibers (A) and (B) are made of a thermoplastic resin, a hydrophilic agent such as a hydrophilic resin or a surfactant is kneaded into the thermoplastic resin, and the fiber is molded in advance. The short fibers (A) and (B) can be made hydrophilic. Specific examples, application methods, and application ranges of the hydrophilic resin and the surfactant are the same as those of the body fluid diffusion layer of the absorbent article described later.
[0024]
In the present invention, as the particularly preferred short fiber nonwoven fabric (A), the heat fusible composite short fiber is contained in the short fiber nonwoven fabric in an amount of 30% by weight or more, and depending on the low melting point component of the heat fusible composite short fiber. The short fibers are joined together. Further, the main constituent short fibers were mixed with 30% by weight or more of heat-fusible short fibers having a melting point of 15 ° C. or more lower than that of the constituent short fibers, and the main constituent short fibers were bonded by the heat-bonding short fibers. Short fiber nonwoven fabrics can also be used. As described above, the reason why the fibers are bonded with each other in the form of a fiber such as the heat-fusible composite short fiber or the low melting point heat-fusible short fiber is that the fibers are bonded only at the contact point, not in the plane. This is because the resulting short fiber nonwoven fabric (A) has a good texture and is rich in flexibility.
The short fiber nonwoven fabric (A) may be composed of a blend of the heat-fusible composite short fiber and the hydrophilic short fiber, and the blend ratio of the hydrophilic short fiber is 0 to 70% by weight of the short fiber nonwoven fabric. , Preferably 0 to 30% by weight. The reason for this range is that, by blending the hydrophilic short fibers, it is excellent in repeated permeability of body fluids, but when the blend ratio of the hydrophilic short fibers exceeds 70% by weight, the heat-fusible composite short fibers are 30% by weight. This is because it becomes difficult to maintain the shape of the short-fiber nonwoven fabric by fusing the heat-fusible composite short fibers.
[0025]
The hydrophilic short fibers mentioned here include: rayon, cupra, acetate, vinylon, nylon, protein / acrylonitrile copolymer yarn, cotton, wool, silk, hemp, pulp, super absorbent polymer fiber, biodegradation In particular, cellulosic fibers such as rayon, cupra, acetate, cotton, and pulp, polymer absorbent fibers, and biodegradable fibers are preferable. Moreover, the short fiber nonwoven fabric (A) may be a single layer composed of the heat-fusible composite short fiber or the heat-fusible composite short fiber and the hydrophilic short fiber, or two or more layers. May be. When making a short fiber nonwoven fabric into two or more layers, the short fiber nonwoven fabric (A) to which the density gradient was provided in the thickness direction of the nonwoven fabric is preferable. That is, the short fiber web is preferably deposited and bonded by forming a density gradient so that the density gradually increases or the density gradually decreases. Moreover, what gave the gradient to the mixing rate of the hydrophilic fiber in the thickness direction of a nonwoven fabric is also preferable. In other words, the short fiber web is preferably deposited and bonded so that the mixing ratio of the hydrophilic fibers gradually increases or decreases. The reason for adding a gradient to the density gradient or hydrophilic fiber mixing ratio in the short fiber nonwoven fabric (A) is that the liquid density moves from a rough portion to a dense portion or from a low hydrophilicity to a high one. This is because the permeability of the body fluid is improved by the property of moving to the surface, and the reverse movement after the permeation is prevented, making it more suitable for the use of the surface material of the absorbent article.
[0026]
The short fiber nonwoven fabric (A) having the above configuration is manufactured, for example, as follows. In other words, a mixture of fibrillated short fibers and other fibers is supplied to a conventionally known card machine to obtain a uniform web spun by a predetermined method. And it introduce | transduces in the inside filled with a heating gas flow, A short fiber is heat-processed above the melting | fusing point of the low melting point component of the heat-fusion composite short fiber contained in the short fiber web (A), and below the melting point of a high melting point component. A nonwoven fabric (A) is obtained. Alternatively, when the heat-fusible fiber contained in the short fiber web (A) is a single fiber, for example, a short fiber nonwoven fabric (A ) Can be obtained.
Further, the immobilization (non-woven fabric) of the short fiber web (A) is not limited to the above-described example, that is, a hot air heating method, but a known method such as a needle punch method, a high-pressure water flow method, an embossing roll method, an ultrasonic heating method. Etc., and a combination of these methods may be used. Combinations of short fiber web (A) fixation (nonwoven fabric) include needle punching and embossing roll processing, needle punching and ultrasonic heating, needle punching and hot air heating, high pressure water flow and embossing roll, High pressure water flow treatment and ultrasonic heating treatment, high pressure water flow treatment and hot air heating treatment, etc. can be exemplified, and these treatments are not limited to the order, but needle punching treatment is performed by embossing roll treatment, ultrasonic heating treatment, hot air heating treatment, etc. In order to avoid adverse effects such as breakage and cutting on the formed heat-sealing point, it is preferable to perform the process first.
[0027]
On the other hand, the short fiber nonwoven fabric (B) is formed by integrating and joining short fibers (B) having a cut length of 3 to 30 mm, and has a specific configuration as described later. The fineness of the short fibers (B) can be fine (0.5 to 2 d / f), fine (2 to 12 d / f), medium (12 to 50 d / f), thick (50 to 1000 d / f) depending on the application. f) can be used in various ways. In particular, when used as a surface material for absorbent articles, the fineness of the short fibers (B) is preferably 0.5 to 12d. When the fineness of the short fiber (B) is less than 0.5 d / f, the staple of the fiber spreader becomes difficult to pass when the short fiber (B) is opened, and the non-homogeneous short fiber nonwoven fabric in which a so-called nep exists. Since only (B) can be obtained, it is not preferable. Conversely, when the fineness of the short fibers (B) exceeds 12 d / f, the short fibers (B) have high rigidity, and the short fiber nonwoven fabric (B) rich in flexibility cannot be obtained. In particular, when used as a surface material for absorbent articles, the fineness is most preferably 0.5 to 6 d / f. In addition, fineness (2 to 12 d / f) is used for surgical clothes, quilts, base fabrics for hap materials, and medium fineness (12 to 50 d / f) to thick fineness (50 to 1000 d / f) for civil engineering materials. ) In a wide range of applications.
[0028]
Further, the basis weight of the short fiber nonwoven fabric (B) is arbitrary depending on the application used, as in the case of the short fiber nonwoven fabric (A), but in the case of use for surgical clothes, cloths, base materials for hap materials, etc. 5 to 150 g / m 2 Is preferred. The basis weight of the short fiber nonwoven fabric (B) is 5 g / m 2 If it is less than the same, it is not preferable because the thickness of the short fiber nonwoven fabric (B) becomes too thin as in the case of the short fiber nonwoven fabric (A), and it is difficult to handle or the homogeneity is lowered. Conversely, 150 g / m 2 If it exceeds 1, the rigidity of the short fiber nonwoven fabric (B) itself is increased, and the flexibility is lowered, which is not preferable. In particular, when used for the surface material of an absorbent article, the basis weight of the short fiber nonwoven fabric (B) is 5 to 50 g / m. 2 Is preferred. The short fiber (B) having a fiber length of 3 to 30 mm can be used. When the fiber length of the short fiber (B) is less than 3 mm, the bulkiness of the short fiber nonwoven fabric (B) is lowered and the apparent density is increased, which is not preferable. On the other hand, if it exceeds 30 mm, the spreadability is deteriorated and the homogeneity is lowered, which is not preferable. In particular, fibers having a fiber length of 3 to 15 mm are preferred in terms of good bulkiness and homogeneity. Furthermore, as the short fiber (B), those with crimps and those without crimps can be used. In particular, in terms of good bulkiness, the short fiber (B) is preferably crimped. Examples of the crimp include a spiral type, a zigzag type, and a U shape, and preferably a spiral type and a U shape. Moreover, when manufacturing a short fiber nonwoven fabric (B) using a papermaking method, you have to use the short fiber (B) to which the crimp was provided. The reason why the crimped fiber must be used in the papermaking method is that this method uses water as the web-forming medium, the bulkiness is lost due to the mechanical action of the medium, and the voids in the resulting nonwoven fabric become smaller, absorbing. This is because when used as a surface material of a functional article, it is inferior in the permeability of body fluids and easily retained.
[0029]
The short fiber (B) is a composite fiber having heat-fusibility by various combinations of various polyolefin resins such as polyethylene and polypropylene, polyester resins and polyamide resins. The reason why the short fiber (B) is a heat-fusible composite short fiber is to maintain a specific structure described later. The heat-fusible composite short fiber is a composite short fiber composed of two or more components in which a low melting point component is formed on at least a part of the fiber surface, for example, three or four components. However, except for specific applications, two components are preferable from the viewpoint of economy.
As the resin used in the heat-fusible composite short fiber (B) and the combination thereof, the thermoplastic resin and the combination disclosed in the case of the short fiber nonwoven fabric (A) can be used as they are. However, the selection is performed independently of the short fiber nonwoven fabric (A).
Further, when a resin having three or more components is used, the high melting point side and the low melting point side are defined as in the case of the short fiber nonwoven fabric (A).
Further, as the heat-bonded composite short fiber (B), a sheath core type, an eccentric sheath core type, a parallel type, a multilayer type, and a sea-island type composite fiber can be used. Depending on the application, the short fiber (B) may be added with a colorant, a light-resistant agent, a flame retardant, an antibacterial agent, and the like. Furthermore, the cross section of the heat-fusible composite short fiber (B) may be circular or irregular, and the heat-fusible composite short fiber (B) having these cross sections is a hollow type. But it doesn't have to be.
[0030]
The short fiber nonwoven fabric (B) is a heat fusible composite short fiber (B) produced by the above-described method, having a different resin combination, a different cross-sectional shape, a hollow type or not, a fiber length May be constituted by a blend of two or more kinds of heat-fusible composite short fibers (B) by various combinations of those having different sizes and different finenesses.
Furthermore, the short fiber nonwoven fabric (B) may be a single layer composed of the heat-fusible composite short fibers (B), or may be two or more layers. When the short fiber nonwoven fabric (B) has two or more layers, the short fiber nonwoven fabric (B) preferably has a density gradient in the thickness direction of the nonwoven fabric. That is, it is preferable that the short fiber web (B) is deposited and bonded by forming a density gradient so that the density gradually increases or the density gradually decreases. The reason for imparting a density gradient to the short fiber nonwoven fabric (B) in this way is that the fluid density increases from the coarse part to the dense part, so that the permeability of the body fluid is improved and the reverse flow after permeation is prevented. This is because it becomes more suitable for the use of the surface material of the absorbent article.
[0031]
What is particularly important in the present invention is that the short fiber nonwoven fabric (B) to be used is integrated and bonded by arranging the heat-fusible composite short fibers (B) in a random and porous manner. That is, the short fiber nonwoven fabric (B) is composed of the heat-fusible composite short fibers (B), and the heat-fusible composite short fibers are heat-fused with each other, and the intersection angle of the short fiber contacts formed is formed. The distribution occupies at least 50% of the total number of contacts of the short fiber nonwoven fabric (B) at an intersection angle of 60 to 90 °. The percentage (%) of the crossing angle of 60 to 90 ° was used as a measure of randomness or porous property of the short fiber nonwoven fabric (B). In addition, the percentage (%) of the crossing angle of 60 to 90 ° is the minimum angle among the four corners formed by cross-joining the two short fibers. The crossing angle distribution was obtained, and the crossing angle included in the crossing angle of 60 to 90 ° was A, and the total number of crossing angles measured was M. The crossing angle distribution was obtained by A / M × 100.
[0032]
The reason why the heat-fusible composite short fibers constituting the short fiber nonwoven fabric (B) must be randomly and porously arranged is that when used as a surface material of an absorbent article, it has an excellent body fluid permeability. It is to demonstrate. That is, the short fiber nonwoven fabric (B) obtained by using the airlaid method or the paper making method has capillaries in the machine direction of the nonwoven fabric found in the nonwoven fabric by the card method because the constituent short fibers are randomly and porously arranged. This is because the body fluid permeates through the nonwoven fabric without spreading in the fiber arrangement direction on the nonwoven fabric. Furthermore, since the short fiber (B) which comprises this short fiber nonwoven fabric (B) has short enough fiber length, the fiber is arranged in the thickness direction of the nonwoven fabric comparatively. For this reason, the obtained short fiber nonwoven fabric (B) has excellent cushioning properties, is bulky, has a sufficiently low apparent density, and has a capillary action in the thickness direction of the nonwoven fabric. The composite nonwoven fabric of the present invention , Especially when used as a surface material for absorbent articles with strict requirements, improves the permeability of body fluids such as urine, sweat, and blood, the spot permeability and the feeling of slats, and prevents reversal of the permeated body fluids That is the effect.
[0033]
The short fiber nonwoven fabric (B) having the above-described configuration is manufactured, for example, as follows. That is, the heat-fusible composite short fiber (B) and the hydrophilic short fiber are mixed, opened, and supplied to an airlaid nonwoven fabric processing machine. The supplied short fibers are spread and scattered by an airlaid nonwoven fabric processing machine and are deposited on a collection conveyor. The multi-layered short fiber web (B) subjected to this operation in a multistage manner is introduced into a heated gas stream having a melting point higher than the low melting point component and lower than the melting point of the high melting point component of the heat-fusible composite short fiber (B). The short-fiber nonwoven fabric (B) is obtained by softening or melting the low melting point component of the heat-fusible composite short fiber (B) to bond the short fibers together. Moreover, the short fiber (B) may be made into a non-woven fabric together with a composite with the short fiber non-woven fabric (A), as will be described later. That is, the short fiber (B) is made into a non-woven fabric by directly depositing on the short fiber non-woven fabric (A) or the short fiber web (A) traveling the short fibers (B) scattered by the air laid non-woven fabric processing machine, You may carry out with a composite with a short fiber nonwoven fabric (A) by carrying out a hot-air heat processing.
[0034]
The composite nonwoven fabric according to the present invention is a composite of at least two types of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B). Even if the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B) are combined with each other by laminating the short fiber layer (A) and the short fiber nonwoven fabric (B), the short fiber layer (A) and the short fiber web ( B) laminated bonding may be used. The short fiber layer (A) referred to here is a short fiber nonwoven fabric (A) or a short fiber web (A). In the composite of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B), the short fiber layer (A) and the short fiber layer (B) are joined by the short fiber layer (B), that is, the short fiber nonwoven fabric (B) or the short fiber. It is carried out by softening or melting the low melting point component of the heat-fusible composite short fiber contained in the web (B). Specific examples include an embossing roll method, an ultrasonic heating method, a hot air heating method, and the like. In addition, as an exception, the composite of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B) may be performed with various adhesives and pressure sensitive adhesives such as hot melt, and is limited to the application pattern of the adhesive and pressure sensitive adhesive. However, a spiral pattern is preferable in that it can be applied in a small amount and does not impair the softness of the composite nonwoven fabric. In particular, in terms of good bulkiness, the hot air heating method is preferable for joining the short fiber layer (A) and the short fiber layer (B) in the composite of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B). Further, the short fiber layer (A) is composed of a mixed fiber of 30% by weight or more of heat-fusible composite short fibers or low melting point heat-bonding short fibers, and the short fiber layer (A) and the short fiber layer (B). It is also preferred that the melting point of each low-melting component contained in is selected so as to be 15 ° C. or more lower than the melting point of each high-melting component.
[0035]
The reason for selecting the melting point of each component in the short fiber layer (A) and the short fiber layer (B) as described above is that the short fiber layer (A) in the composite of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B). And the short fiber layer (B) soften or melt the low melting point component of the heat-fusible composite short fiber contained in the short fiber layer (B), that is, the short fiber nonwoven fabric (B) or the short fiber web (B). It is also performed by softening or melting the low melting point component of the short fiber nonwoven fabric (A), and two or more kinds of heat-fusible conjugate fibers are mixed into the short fiber layer (A) or the short fiber layer. This is because even when blended with (B), each low melting point component exerts the effect of heat fusion, and the strength of the composite nonwoven fabric and the joint surface can be further strengthened.
[0036]
In this case, the hot air heat treatment is performed at a temperature equal to or higher than the melting point of the component having the highest melting point among the low melting point components of the short fiber layer (A) and the short fiber layer (B), the short fiber layer (A), and the short fiber layer (B). Of these high melting point components, the melting point is preferably below the melting point of the component having the lowest melting point. When the hot air heat treatment is performed below the melting point of the highest melting point component of the low melting point component of the short fiber layer (A) and the short fiber layer (B), the composite of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B) Bonding of the short fiber layer (A) and the short fiber layer (B) in the process is not preferable because it is not performed by all the low melting point components. Conversely, if the hot air heat treatment is performed beyond the melting point of the lowest melting point component of the short fiber layer (A) and the short fiber layer (B), the high melting point component is damaged or contracted by heat or This is not preferable because it causes a reduction in bulk and the like, and only a heterogeneous composite nonwoven fabric can be obtained.
Moreover, when giving the density gradient in the thickness direction of the short fiber layer (A) of a composite nonwoven fabric, or the gradient of the mixing rate of a hydrophilic fiber, a short fiber layer (A) is a short fiber nonwoven fabric (B) according to a use. The side to be joined may be dense or rough. Similarly, when a density gradient is provided in the thickness direction of the short fiber layer (B) of the composite nonwoven fabric, the short fiber layer (B) is appropriately formed on the side to be joined to the short fiber nonwoven fabric (A) depending on the use. However, it may be rough or rough.
Furthermore, the composite nonwoven fabric may be used in the table depending on the application, and the short fiber layer (A) or the short fiber layer (B) is further added to the two-layer composite nonwoven fabric obtained as described above. It is also possible to use a laminated nonwoven fabric with three or more composite nonwoven fabrics. Furthermore, sheets other than the above, such as non-woven fabrics, knitted fabrics, paper, and films can be laminated on the composite non-woven fabric of two or more layers. In particular, when used for a top sheet or a second sheet of an absorbent article, it is preferable to set the short fiber nonwoven fabric (B) side to the upstream side of the flow of body fluid, and the density gradient in that case is the upstream side of the flow of body fluid It is preferable to increase the density in order.
[0037]
Although the composite nonwoven fabric can exhibit the characteristics and effects of the present invention regardless of whether the short fiber nonwoven fabric (A) side is upstream or downstream of the body fluid flow, the composite nonwoven fabric particularly has the short fiber nonwoven fabric (A) side. Since the short fibers (A) are arranged in the longitudinal direction of the nonwoven fabric, that is, the machine direction, the body fluid is substantially diffused in the machine direction of the nonwoven fabric, and the most downstream of the body fluid flow. It can be effectively distributed to the superabsorbent polymer in a certain absorbent layer and so-called side leakage can be prevented. Further, the card nonwoven fabric layer, that is, the short fiber nonwoven fabric (A) is inferior in repulsive force against the load in the thickness direction because the short fibers (A) are arranged in the longitudinal direction of the nonwoven fabric, that is, in the machine direction. However, this has the effect of preventing reversal that occurs when a weight is applied to the composite nonwoven fabric after passing through the body fluid. That is, the composite nonwoven fabric that has passed through the body fluid is applied with a load and the reversal caused by the exudation of excess body fluid is inferior in the repulsive force against the load, so that the short fiber nonwoven fabric (A) becomes dense due to the load. It is prevented by holding.
[0038]
Moreover, the short fiber nonwoven fabric (A) can further enhance the functions unique to the composite nonwoven fabric by using a specific structure as described later. That is, the crossing angle distribution of the contacts formed by contacting or joining the fibers constituting the short fiber non-woven fabric (A) occupies at least 50% of the total number of contacts of the non-woven fabric (A) at a crossing angle of 0 to 30 °. That is. The percentage (%) of the crossing angle of 0 to 30 ° was used as a measure of the fiber orientation or anisotropy of the short fiber nonwoven fabric (A). In addition, the percentage (%) of the crossing angle of 0 to 30 ° is the measurement of the minimum angle among the four corners formed by cross-joining or cross-contacting the two short fibers. The crossing angle distribution was obtained by performing 100 or more points, and A / M × 100, where A is the number of crossing angles included in the crossing angle 0 to 30 ° and M is the total number of crossing angles measured.
[0039]
However, the composite non-woven fabric is used as the top sheet that is in direct contact with the skin among the parts (top sheet, second sheet, etc.) through which the body fluid permeates with the short fiber nonwoven fabric (B) upstream of the body fluid flow. Care must be taken when using. This is because the short fibers constituting the short fiber nonwoven fabric (B) described above are relatively arranged in the thickness direction of the nonwoven fabric, and because there are many fiber ends, the skin is stimulated when directly in contact with the skin, causing rashes. It is attention to the point to become.
Such a problem can be solved by making the composite nonwoven fabric into three or more layers as described above. That is, since the nonwoven fabric is further laminated and bonded to the short fiber nonwoven fabric (B) side of the composite nonwoven fabric, it can be solved by covering the short fiber nonwoven fabric (B) with many fiber ends and reducing irritation to the skin. is there. For example, various nonwoven fabrics other than the short fiber nonwoven fabric (B) such as the spunbond nonwoven fabric and the card nonwoven fabric including the short fiber nonwoven fabric (A) can be used for the nonwoven fabric to be laminated and bonded, and the basis weight of the various nonwoven fabrics is 5 to 15 g / m. 2 The range of is preferable.
The reason why the basis weight is within the above range is 5 g / m 2 If it is less than the thickness, the thickness of the non-woven fabric to be laminated and bonded becomes too thin and it is difficult to handle when fixing the constituent fibers (non-woven fabric) or when winding the fixed non-woven fabric to be laminated and bonded. This is not preferable because the homogeneity is lowered. Conversely, 15 g / m 2 If it becomes above, the property of the nonwoven fabric itself which carries out lamination | stacking joining will be exhibited, and it is unpreferable in order to inhibit the characteristic or effect of the short fiber nonwoven fabric (B) mentioned above. Further, when the short fiber nonwoven fabric (A) is used as the nonwoven fabric to be laminated and bonded, it is not preferable to distribute the crossing angle to the acute angle because the spot permeability is deteriorated.
[0040]
In the present invention, a particularly preferred embodiment of the composite of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B) is a laminated joining of the short fiber layer (A) and the short fiber web (B) by a hot air heating method. Laminated bonding of the short fiber layer (A) and the short fiber web (B) by the hot air heating method is performed by depositing the short fiber web (B) directly on the short fiber nonwoven fabric (A) or the short fiber web (A), The short fiber nonwoven fabric (A) and the short fiber are introduced and heat-treated in a heated gas flow not lower than the melting point of the low melting point component and not higher than the melting point of the high melting point component of the heat-fusible composite short fiber contained in the fiber web (B). It is joining a nonwoven fabric (B). Laminate joining of the short fiber layer (A) and the short fiber web (B) obtained in this way, that is, a composite by laminating and joining the short fiber nonwoven fabric (A) or the short fiber web (A) and the short fiber web (B). The non-woven fabric is different from a normal bonding structure such as a laminated bonding of the short fiber non-woven fabric (A) and the short fiber non-woven fabric (B), and the short fiber web (B) is short fiber non-woven fabric (A) or short fiber web on the bonding surface. (A) enters the gap, the bonding points between the short fibers are three-dimensionally formed between the layers, and the short fibers of the short fiber layer (B) are arranged relatively in the thickness direction of the nonwoven fabric. ing. Therefore, the composite nonwoven fabric obtained by laminating and joining the short fiber layer (A) and the short fiber web (B) by the hot air heating method has an anchor effect between the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B). It is excellent in form stability against external shear stress or twisting stress expected when used as a surface material of an absorbent article.
[0041]
Moreover, since the short fiber (B) which comprises a short fiber layer (B) is arranged in the thickness direction of a nonwoven fabric comparatively between the layers of a short fiber nonwoven fabric (A) and a short fiber nonwoven fabric (B), it is cushioning property. Excellent, bulky and sufficiently low in apparent density, and further improves the capillary action in the thickness direction of the nonwoven fabric, and when used as a surface material for absorbent articles, has excellent body fluid permeability and spot permeability, and The reversibility of the permeated body fluid is reduced. Thus, the composite of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B) is excellent in form stability, body fluid permeability and spot permeability when used as a surface material of an absorbent article. In terms of the low reversibility of the body fluid, the laminated bonding of the short fiber layer (A) and the short fiber web (B) by the hot air heating method is preferable. In addition, in the laminated joining of the short fiber layer (A) and the short fiber web (B) by this hot air heating method, the short fiber layer (A) is composed of 30% by weight or more of heat-fusible composite short fibers or low melting point heat fusion. It is composed of mixed fibers of short fibers, and the melting point of the low melting point component of the short fiber layer (B) and the low melting point component of the short fiber layer (B) is 15 ° C. or more lower than the melting point of the mutual high melting point component It is preferable to be selected so that In this case, the hot air heat treatment is also performed at a temperature equal to or higher than the melting point of the component having the highest melting point among the low melting point components of the short fiber layer (A) and the short fiber layer (B), and the short fiber layer (A) and the short fiber layer (B). It is preferable to be carried out below the melting point of the component having the lowest melting point among the high melting point components, and particularly in the laminated joining of the short fiber web (A) and the short fiber web (B) by hot air heating, the short fiber web (A ) And the short fiber web (B) are made into a nonwoven fabric and combined at the same time, which is a necessary condition.
[0042]
Hereinafter, the example of the manufacturing method of the composite nonwoven fabric by the lamination | stacking joining of the short fiber layer (A) and short fiber web (B) based on this invention is demonstrated. First, a mixture of fibrillated short fibers and other fibers is supplied to a conventionally known card machine to obtain a uniform web (A) spun by a predetermined action. Subsequently, in order to immobilize the short fiber web (A), the short fiber web (A) is partially subjected to a thermocompression treatment between the heated engraving roll and the smooth roll, and airlaid as the short fiber nonwoven fabric (A). It is conveyed to the nonwoven fabric processing machine. Here, if the short fiber layer (A) is used as the short fiber web (A), the short fiber web (A) is directly subjected to airlaid without performing partial thermocompression bonding between the engraving roll and the smooth roll. It is conveyed to the nonwoven fabric processing machine. Next, after the short fiber (B) group to be the short fiber layer (B) is spread and scattered by the air laid nonwoven fabric processing machine, the short fiber layer (B) is sucked by the suction blower and conveyed on the short fiber layer (A) being conveyed. It accumulates, forms the laminated body of a short fiber layer (A) and a short fiber web (B), and is conveyed by a hot air heating dryer. The laminate of the short fiber layer (A) and the short fiber web (B) conveyed to the hot air heat dryer is only the short fiber web (B) or both layers of the short fiber layer (A) and the short fiber web (B). The heat-fusible composite short fiber contained in is heat-treated with a hot air heating dryer at a temperature not lower than the melting point of the low melting point component and not higher than the melting point of the high melting point component, and wound as a composite nonwoven fabric.
[0043]
The present invention provides an absorbent article comprising a surface material composed of a composite nonwoven fabric and an absorbent for holding body fluids, such as sanitary napkins, disposable diapers, incontinence pads, origami sheets, and the like. The surface material referred to in the present invention includes a member that forms the surface of an absorbent article, such as a top sheet, a back sheet, and a side gather, and a member such as an absorbent packaging material or a second sheet. The absorbent article of the present invention is characterized in that a composite nonwoven fabric is used for at least the top sheet or the second sheet of the surface material.
1 and 2, the sanitary napkin 1 includes a liquid-permeable top sheet 2, a liquid-impermeable back sheet 4, and an absorbent body 5 that absorbs and holds bodily fluids. The absorber 5 is disposed between the top sheet 2 and the back sheet 4. Further, the absorbent body 5 is wrapped in a packaging material 9.
An adhesive layer 12 is provided on the side of the back sheet 4 that contacts the panties, and a release liner 13 is disposed so as to cover the adhesive layer 12. Further, a liquid permeable second sheet 3 may be disposed between the top sheet 2 and the body fluid diffusion layer 11. A body fluid diffusion layer 11 may be disposed between the packaging material 9 and the absorbent body 5. Although the sanitary napkin 1 can be formed in various shapes, in most cases, the sanitary napkin 1 has an approximately rectangular shape, and the edge portions are each formed as an arc-shaped portion 6. The absorbent body 5 is generally smaller than the back sheet 4 and can be formed in various shapes. In most cases, the absorbent body 5 has an approximately rectangular shape, and the end of the absorbent body part corresponds to the shape of the back sheet 4. It may be formed as an arcuate portion 7. The longitudinal side portion 10 of the absorbent body 5 as the absorbent member and the longitudinal side portion 8 of the absorbent article 1 may be curved inward and the central portion may be slightly narrowed in consideration of fit at the time of wearing.
[0044]
The absorbent article of the present invention is characterized in that the composite nonwoven fabric of the present invention is used for at least one of the top sheet 2 and the second sheet 3 of the surface material of the absorbent article having the above-described configuration. Moreover, both the top sheet 2 and the second sheet 3 can be composed of the composite nonwoven fabric of the present invention. The composite nonwoven fabric of the present invention is a composite of a short fiber nonwoven fabric (A) and a short fiber nonwoven fabric (B).
The back sheet 4 is not particularly limited as long as it has sufficient liquid impermeability, and examples thereof include a knitted fabric, a nonwoven fabric, and a film. Specific examples include a liquid-impermeable sheet that is stretched by adding a filler such as calcium carbonate to a thermoplastic resin and that is permeable to vapor. Preferably, a material having a touch close to the skin, for example, a composite material of the film and a nonwoven fabric or a knitted fabric, and a composite material of the composite nonwoven fabric and the composite nonwoven fabric and another nonwoven fabric, a film, or a knitted fabric. You can use it.
[0045]
The absorbent body 5 is mainly composed of a hydrophilic fiber and a polymer absorbent body (Super Absorbent Polymer). Examples of the hydrophilic fiber mentioned here include rayon, cupra, acetate, vinylon, nylon, protein / acrylonitrile copolymer yarn, cotton, wool, silk, hemp, pulp, etc., preferably rayon, cupra, acetate, pulp In most cases, however, pulp is used. The pulp fiber is not particularly limited as long as it is conventionally used for the absorber, but the average fiber length of the pulp fiber is usually 0.8 to 5 mm in consideration of pulverization, lamination, compression treatment and the like. It is preferable to be in the range.
[0046]
The polymer absorber is not particularly limited as long as it is a conventionally used one, but the saturated absorption amount of the polymer absorber is preferably 25 g / g or more, and fibrous and particulate materials can be used. . The saturated absorption increased after 1 g of the polymer absorbent was introduced into a 250 mesh nylon tea bag, immersed in an excessive amount of 0.9 wt% saline for 1 hour, and drained for 15 minutes. Calculated as weight.
When the polymer absorber is in the form of particles, the particle diameter is desirably 100 to 800 μm. Specific examples of the composition of the polymer absorbent include polyacrylic acid soda, vinyl acrylate alcohol copolymer, polyacrylic acid soda crosslinked product, starch-acrylic acid graft copolymer, isobutylene-maleic anhydride copolymer or The saponified product, potassium polyacrylate, cesium polyacrylate and the like are preferable. The blending ratio of the polymer absorbent is in the range of 5 to 10% by weight except for special cases with respect to the total weight of the absorbent, and these polymer absorbents may be used alone or in combination of plural kinds. it can. Moreover, it is also preferable to mix a heat-fusible composite short fiber into the absorbent body. The mixing ratio of the heat-fusible composite short fiber is preferably 0 to 60% of the total fiber weight used in the absorbent body. The reason for blending the heat-fusible composite short fibers is that the heat-fusible composite short fibers are heat-treated to form a network in which the heat-fusible composite short fibers are bonded to the entire absorbent body, and compression by the movement of the wearer This is because the effect of morphological stability with respect to shear stress and twisting stress is exhibited, and deterioration of the body fluid absorption performance of the absorber is prevented.
[0047]
In general, the absorbent body is covered with a packaging material 9 in order to maintain the shape and prevent so-called powder falling. The packaging material 9 is mainly composed of hydrophilic short fibers such as rayon, cupra, acetate, vinylon, nylon, protein / acrylonitrile copolymer yarn, cotton, wool, silk, hemp, pulp, etc., preferably, rayon, cupra, Cellulose fibers such as acetate and pulp are used, but in most cases, pulp is used. It is also possible to mix heat-sealable composite short fibers with the packaging material 9. The mixing ratio of the heat-fusible composite short fiber is preferably 0 to 60% of the total fiber weight used in the absorbent body. The reason why mixed cotton of heat-fusible composite short fibers is preferable is that, as in the case of the absorber, heat-bonding composite short fibers are heat-treated to form a network in which the heat-fusible composite short fibers are bonded to the entire absorber. In addition, it exerts a form-stabilizing effect against compression and shear stress due to the wearer's movement, prevents deterioration of body fluid absorption performance, and further heats the surface material such as the top sheet 2 and the back sheet 4. This is because, when fusion bonding is performed by a roll method, an ultrasonic heating method, or the like, a strong bonding point is formed and the shape stability of the entire absorbent article is excellent.
As the heat-fusible composite short fiber used for the absorber and the packaging material, those disclosed in the case of the short fiber (B) used for the composite nonwoven fabric of the surface material can be used. Further, the heat-fusible composite short fiber may be a heat-fusible composite short fiber composed of two or more components, for example, three or four components. However, considering economic efficiency, two components are sufficient except for special applications. The cut length of the heat-fusible composite short fiber used for the absorber and the packaging material is a range that can be formed into a sheet shape, and is not particularly limited, but is preferably 3 to 90 mm.
[0048]
Furthermore, instead of the packaging material 9 and the absorbent body 5, it is also preferable to use an absorption layer in which the packaging material 9 and the absorbent body 5 are integrated. The absorbent layer in which the wrapping material 9 and the absorbent body 5 are joined and integrated here is a non-woven fabric in which the absorbent body is mixed with 10 to 60 wt% of the heat-fusible composite short fibers in the hydrophilic short fibers. It is formed by sandwiching and joining and integrally cutting into a desired form. For example, it is manufactured as follows. That is, the absorbent layer in which the packaging material 9 and the absorbent body 5 are joined and integrated is opened using the airlaid method in which 0 to 60% by weight of the heat-fusible composite short fiber is mixed with the hydrophilic short fiber. Sprinkle and deposit. Subsequently, the mixture of the hydrophilic fiber and the polymer absorber is spread and deposited thereon, and further 10 to 60% by weight of the heat-fusible composite short fiber is added to the hydrophilic short fiber. The mixed cotton is spread and scattered, and is joined and integrated by heat treatment, and then cut integrally. Joining in the integration of the wrapping material 9 and the absorbent body 5 is performed by softening or melting the low melting point component of the heat-fusible composite short fiber contained in the short fiber web. Examples include a sonic heating method and a hot air heating method. In particular, the hot air heating method is preferable in terms of good bulkiness. For stronger bonding, it is also preferable to blend the heat-fusible composite short fiber into the absorbent body 5 of the absorbent layer in which the packaging material 9 and the absorbent body 5 are integrated. Such an absorbent layer is a preferred embodiment in that when it is processed into an absorbent article, there is little powder fall off from the absorbent body and it is easy to handle.
[0049]
In general, the absorbent article absorbs a large amount of body fluid at the point of contact with the body fluid outlet, and the absorber becomes saturated. The body fluid spreads radially from this point and causes a so-called side leak that wets from the part closest to the leg. As one of preferable measures for preventing the side leakage, the body fluid diffusion layer 11 can be interposed between the top sheet 2 and the absorbent body 5. The bodily fluid diffusion layer 11 absorbs and diffuses bodily fluids quickly, and absorbs bodily fluids by the entire absorbent body, thereby improving the total absorbed amount of bodily fluids. Examples of the body fluid diffusion layer 11 include a knitted fabric, a non-woven fiber assembly, and a porous film, and a non-woven fiber assembly is generally common. The non-woven fiber assembly referred to here is a fiber assembly such as a short fiber web, a long fiber fleece, or a sliver, and a non-woven fabric such as a short fiber non-woven fabric, a long fiber non-woven fabric, or a melt blown non-woven fabric formed from these. .
The body fluid diffusion layer 11 is preferably hydrophilic in terms of expressing good transportability and diffusibility of body fluid. The body fluid diffusion layer 11 can be treated to be hydrophilic by applying or adhering a hydrophilic agent such as a surfactant to the surface thereof. In particular, when the body fluid diffusion layer 11 is composed of a thermoplastic resin, the body fluid diffusion layer is previously formed by kneading a hydrophilic agent such as a hydrophilic resin or a surfactant into the thermoplastic resin and forming a fiber or film. 11 can be made hydrophilic.
[0050]
Examples of hydrophilic resins include ethers such as ethylene glycol, homopolymers of vinyl alcohol, copolymers of this with ethylene or propylene, and polyether block amide copolymers. Specific examples include thermoplastic polyethylene. Glycol (trade name: Aqua Coke; manufactured by Sumitomo Seika Co., Ltd.), ethylene vinyl alcohol copolymer (trade name: Eval; manufactured by Kuraray Co., Ltd.), polyether block amide copolymer (trade name: PEBAX; manufactured by ATOCHEM) It is. When these hydrophilic resins are kneaded into the main thermoplastic resin, the addition ratio (% by weight) is preferably 20 to 100% by weight, selected appropriately from the above-mentioned hydrophilic resins, alone or in a mixture of two or more. Can be added as Examples of the surfactant include anionic surfactants such as higher alcohol sulfates, alkylbenzene sulfonates and higher alcohol phosphates, cationic surfactants such as alkylamine salts and quaternary amine salts, or polyoxy Nonionic surfactants such as ethylene alkyl ethers, polyoxyethylene alkyl esters and polyhydric alcohol alkyl esters can be exemplified. The addition ratio (% by weight) when these surfactants are kneaded into the main thermoplastic resin is preferably 0.05 to 10.0% by weight, selected appropriately from the above surfactants alone or 2 It can be added as a mixture of seeds or more. Furthermore, a hydrophilic agent such as a surfactant can be applied or adhered to the surface of a fiber or film kneaded with a hydrophilic agent such as a hydrophilic resin or a surfactant.
In addition, the second sheet 3 that may be installed between the top sheet 2 and the body fluid diffusion layer 11 provides cushioning properties, or distributes body fluid to some extent before the body fluid reaches the body fluid diffusion layer. It is possible to provide an auxiliary function to diffuse or prevent body fluid absorbed by the absorber from returning to the skin side.
[0051]
Short fibers or long fibers can be used as the fibers constituting the knitted fabric or non-woven fiber assembly used in the body fluid diffusion layer 11, and those having a fineness of 0.5 to 18 d / f can be used. If the fiber fineness is less than 0.5 d / f, the spinnability is lowered by high-speed spinning for maintaining the productivity, and the productivity is lowered for maintaining the spinnability. Conversely, if the fineness exceeds 18 d / f, the rigidity of the fibers becomes high, and a non-woven fiber aggregate rich in flexibility cannot be obtained, which is not preferable. In addition, the basis weight of the nonwoven fiber assembly is 5 to 150 g / m. 2 Is preferred. Non-woven fiber aggregate weight is 5g / m 2 If it is less than 1, the thickness becomes too thin, which is not preferable because it is difficult to handle when it is molded into an absorbent article, or the homogeneity is lowered. Conversely, 150 g / m 2 If it exceeds 1, the rigidity of the non-woven fiber assembly becomes high and the flexibility is lowered, which is not preferable.
As the fiber constituting the knitted fabric or non-woven fiber assembly, those disclosed in the case of the short fiber (A) used for the composite nonwoven fabric of the surface material can be used. Further, when the fiber is thermoplastic, the fiber may be a fiber composed of one component, or a composite fiber composed of two or more components, for example, three components or four components. However, considering economic efficiency, two components are sufficient except for special applications.
[0052]
As the fibers constituting the knitted fabric or the non-woven fiber assembly, those with crimps and those without crimps can be used. In particular, the fiber is preferably crimped in that the bulkiness is good and the reversibility is low. Examples of the crimp include a spiral type, a zigzag type, and a U shape, and preferably a spiral type and a U shape. Moreover, the fiber which comprises a knitted fabric and a nonwoven fiber assembly can use a composite fiber of a sheath core type, an eccentric sheath core type, a parallel type, a multilayer type, and a sea-island type. In addition, a colorant, an antibacterial agent, or the like may be added to the fiber for imparting designability and functionality. Further, the cross section of the fiber may be circular or irregular, and the fiber having these cross sections may or may not be a hollow type. In particular, in terms of expressing good transportability and diffusibility of body fluid, the cross section of the fiber is preferably irregular, and the irregularity of the cross section is preferably 1.3 or more. The degree of deformity can be obtained by L / (2√ (πS)) where L is the circumference of the deformed yarn and S is the cross-sectional area of the deformed yarn.
[0053]
The knitted fabric and non-woven fiber assembly used as the body fluid diffusion layer are long fibers or short fibers among the above-mentioned fibers, short fibers having different fiber lengths, composite type or single type, and in the case of composite type, resin Different combinations, in addition, in the case of a composite type, those that are not heat-fusible or heat-fusible, in the case of a single type, those that have different resins, those that have different cross-sectional shapes or different degrees of shape, hollow types or those that do not, It is composed of a mixture of two or more kinds of fibers or a combination of fibers with or without additives such as hydrophilic agents and antibacterial agents, with different additives, with different fiber lengths, and with different fineness. May be. Furthermore, the knitted fabric or the non-woven fiber assembly that is the body fluid diffusion layer may be a single layer composed of the above-described fibers, or may be two or more layers.
The body fluid diffusion layer 11 is introduced between the top sheet 2 and the absorbent body 5. When the absorbent body 5 is covered with the packaging material 9, the body fluid diffusion layer 11 may be introduced between the top sheet 2 and the packaging material 9, or introduced between the packaging material 9 and the absorbent body 5. May be. In particular, it is preferably introduced between the packaging material 9 and the absorbent body 5 in order to avoid clogging of the body fluid diffusion layer 11 during joining with a hot melt adhesive or the like.
[0054]
In the present invention, as a mode other than the sanitary napkin 1 shown in FIGS. 1 and 2, a sanitary napkin provided with a pair of wings or a pair of side gathers or both is also preferable. The wing may be formed by extending the top sheet 2 and the back sheet 4 from the vicinity of the center of the absorbent article longitudinal side portion 8, and members other than the top sheet 2 and the back sheet 4 may be formed on the absorbent longitudinal side portion 8. It may be formed by bonding near the center. In use, the wings are folded under the panties and mounted so as to wrap around the panties and serve for at least two purposes. The first purpose is to prevent the wearer and panties from being soiled by body fluids such as blood by forming a double barrier especially at the end of the panties, and the second purpose is the panty side of the wing. It is to fix at an appropriate position by the adhesive layer arranged on the surface. The side gathers are formed along the longitudinal direction of the absorbent article in a state of protruding slightly above the top sheet 2 on the inner side of the longitudinal side 8 of the absorbent body or folding the protruding portion inward. Side gathers are provided to prevent side leakage of bodily fluids, and are liquid impermeable, like the backsheet 4 to perform this function.
[0055]
Bonding between each member such as the top sheet 2, the second sheet 3, the back sheet 4, the packaging material 9, the absorbent body 5, the body fluid diffusion layer 11, the wing, and the side gathers is performed using a hot melt adhesive, other adhesives, adhesives, It is performed by fusion bonding such as a heating roll method or an ultrasonic heating method. In addition, a hot melt adhesive, other adhesives, and pressure-sensitive adhesives are used for the adhesive layer 12 provided on the back sheet 4 and the adhesive layer provided on the surface of the wing panties. The adhesive layer 12 is covered with a release liner 13 for protecting the adhesive layer 12 and the like.
[0056]
[Action]
The composite nonwoven fabric according to the present invention is a composite nonwoven fabric in which a short fiber nonwoven fabric (A) and a short fiber nonwoven fabric (B) are joined, and the short fiber nonwoven fabric (B) includes at least two high-melting-point components. It is a heat-fusible composite short fiber made of a thermoplastic resin with a low melting point component, and the heat-fusible composite short fibers are heat-fused with each other, and the crossing angle distribution of the formed short fiber contacts is a short fiber. At least 50% of the total number of contacts of the non-woven fabric (B) occupies an intersection angle of 60 to 90 °. That is, the randomness of the short fiber nonwoven fabric (B) constituting the composite nonwoven fabric is high, and this short fiber nonwoven fabric (B) is obtained by using the airlaid method and is composed of the short fibers (B) constituting the composite nonwoven fabric. Since the fiber length is sufficiently short, the fibers are relatively arranged in the thickness direction of the nonwoven fabric. Therefore, the composite nonwoven fabric according to the present invention is bulky and the apparent density is sufficiently reduced, and it is difficult to retain the liquid because the capillary action in the longitudinal direction of the nonwoven fabric, that is, the machine direction is unlikely to occur. Excellent in capillary action in the thickness direction.
[0057]
Furthermore, the method for producing a composite nonwoven fabric according to the present invention is a method in which a heat-fusible composite short fiber web (B) made of a thermoplastic resin of at least two types of high melting point components and low melting point components is spread and scattered by the airlaid method. Then, after being deposited on the short fiber layer (A) in which short fibers are accumulated, the melting point of the high melting point component is equal to or higher than the melting point of the low melting point component of the thermoplastic resin contained in the deposited short fiber web (B). The following is performed by heat treatment. For this reason, this manufacturing method, ie, the composite nonwoven fabric obtained by laminating and joining the short fiber layer (A) and the short fiber web (B), has a normal joining structure such as a laminated joint of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B). Unlike the short fiber (A), the short fiber web (B) enters the gap of the short fiber layer (A), that is, the short fiber nonwoven fabric (A) or the web for the short fiber web (A). The bonding points of the short fibers (B) are three-dimensionally formed, and the short fibers (B) are arranged relatively in the thickness direction of the nonwoven fabric. Therefore, the composite nonwoven fabric by this manufacturing method is excellent in the anchor effect between the layers of the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B). Moreover, since the short fibers (B) are relatively arranged in the thickness direction of the nonwoven fabric between the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B), the bulk density is low and the apparent density is low. Capillary action in the thickness direction is improved.
[0058]
【Example】
Hereinafter, although the Example evaluated the composite nonwoven fabric based on this invention as a surface material of an absorbent article is explained in full detail, this invention is not limited to these.
Before describing the examples in detail, the definition and measurement method of physical properties of the composite nonwoven fabric according to the present invention will be described.
[0059]
(Weight) Dividing the weight of the nonwoven fabric by the area, 1m of nonwoven fabric 2 Expressed in weight per gram (g).
(Shear strength) The form stability against shear stress and twist stress expected when used as a surface material of an absorbent article was evaluated as shear strength. The composite nonwoven fabric is cut into a size of 5 cm in width and 15 cm in length, the short fiber layer (A) and the short fiber layer (B) are separated from each other in the longitudinal direction by 6.5 cm in length, and only the center 2 cm is combined. A sample made into a non-woven fabric was prepared. Using this sample, a constant-speed tensile testing machine was used to grasp the short fiber layer (A) at the end in the longitudinal direction of the sample, and the short fiber layer (B) at the opposite end, until a fracture occurred. Went. Observing the fractured state of the fractured sample, the material fractured is ○, the short fiber layer (A) and the short fiber layer (B) are not clearly separated from each other, Δ, the short fiber layer (A) and the short The fiber layer (B) clearly separated into layers was marked with x and expressed as shear strength.
(Surface texture)
The feel such as touch was evaluated as a surface texture by a feel test by 10 monitors. In the test method, the monitor grasped the sample with fingers and judged whether or not it felt soft or textured, and one point / one person was added to the sample judged to be soft or textured.
(Apparent density)
Using Toyo Seiki Co., Ltd. Digithic Tester, 2.0 g / cm in the range of 3.5 cmφ of the sample 2 The thickness when the load is applied is 0.1 Dcm, and the basis weight of the sample is M × 10 -4 g / cm 2 The apparent density is calculated by the formula M / (D × 1000), and the unit is g / cm. Three It is.
(Transmission speed)
The permeability of the composite nonwoven fabric was evaluated as the permeation rate. A tissue was placed on an absorbent body separated from a commercially available paper diaper. On top of this, a sample was placed so as to be horizontal, and a cylinder having a diameter of 4 mm and a weight of 50 g was placed thereon. Into this cylinder, 50 cc of physiological saline was charged at a stroke, and the time from when it was charged until it was absorbed by the sample was measured and taken as the permeation rate.
(Bleeding)
Spot permeability was evaluated as bleeding. After measuring the permeation rate, the distance at which the opposite boundary of the trace of physiological saline spread on the sample was the longest was L, and the value obtained by (L-50) / 50 was expressed as bleed.
(Liquid retention)
Although the feeling of sarat is a sensory evaluation, it was evaluated as a liquid retaining property for convenience. When the weight of the sample after evaluating the permeation rate and the bleeding property is measured, the value is X, and the weight when the sample is put into the dryer and the water is removed is Y, (XY) / Y The value obtained by x100 was defined as liquid retention.
(Reversibility)
After the permeation rate was measured, the filter paper was allowed to stand for 3 minutes, and when the filter paper was placed on the sample on the absorbent sheet and a 5 kg load was applied for 30 seconds, the weight of physiological saline absorbed by the filter paper was expressed as reversibility.
(Randomness)
For the short fiber layers (A) and (B) of the composite non-woven fabric, the minimum angle among the four angles formed by two short fibers cross-joined (or cross-contact if (A) only) is selected. Measured and made this the crossing angle. This measurement is performed at 100 points or more, the crossing angle distribution is obtained, and A / M × 100 is obtained, where A is the number of crossing angles included in the crossing angle of 60 to 90 ° and M is the total number of crossing angles measured. Values were expressed as randomness.
[0060]
Example 1
Polypropylene short fibers having a fineness of 2 denier, a cut length of 38 mm, and a zigzag crimp were prepared and supplied to a parallel card machine. 12g / m 2 The short fiber web (A) was obtained. This short fiber web (A) was introduced into a point bond processing machine constituted by a concavo-convex roll heated to 145 ° C. and a smooth roll, and subjected to thermocompression processing. This short fiber nonwoven fabric (A) was supplied to the collection conveyor of the air laid nonwoven fabric processing machine. A heat-bondable composite short fiber (B) with a spiral crimp of an eccentric core-sheath type cross-section with a denier of 2 denier and a polypropylene resin with a cut length of 10 mm as the core component and high-density polyethylene resin as the sheath component is opened and airlaid The nonwoven fabric processing machine was supplied. The supplied short fibers (B) are spread and scattered by an airlaid non-woven fabric processing machine, and deposited on the short fiber non-woven fabric (A) supplied to the collecting conveyor, and the short fiber non-woven fabric (A) and the short fiber web ( A laminate of B) was obtained. The basis weight of the short fiber web (B) is 12 g / m. 2 It was. The laminate of the short fiber nonwoven fabric (A) and the short fiber web (B) is introduced into a heated gas flow at 138 ° C., and the high density polyethylene which is a low melting point component of the heat-fusible composite short fiber (B). The resin was melted and the short fibers (B) and the layers of the short fiber layer (A) and the short fiber layer (B) were joined to obtain a composite nonwoven fabric.
The obtained composite nonwoven fabric was used as a top sheet of the surface material of the napkin for arrangement. The absorptivity was good and there was little liquid return, making it suitable for absorbent articles.
[0061]
(Example 2)
A heat-sealable composite short fiber (A) having a spiral crimp of an eccentric core-sheath type cross-section with a core component of polypropylene resin having a fineness of 2 denier and a cut length of 38 mm and a sheath component of high-density polyethylene resin was prepared. The heat-fusible composite short fiber (A) is supplied to a parallel card machine and has a basis weight of 12 g / m. 2 The short fiber web (A) was obtained. This short fiber web (A) was supplied to the collection conveyor of the air laid nonwoven fabric processing machine. Opening a heat-sealable composite short fiber (B) with a spiral crimp of an eccentric core-sheath type with a core component of polypropylene resin with a fineness of 2 denier and a cut length of 10 mm, and a sheath component of high-density polyethylene resin. Supplied to the processing machine. The supplied short fibers (B) are spread and scattered by an airlaid nonwoven fabric processing machine, and are deposited on the short fiber web (A) supplied to the collection conveyor, and the short fiber web (A) and the short fiber web ( A laminate of B) was obtained. The basis weight of the short fiber web (B) is 12 g / m. 2 It was. The laminate of the short fiber web (A) and the short fiber web (B) is introduced into a heated gas stream at 138 ° C., and the low melting point component of the heat-fusible composite short fiber (A) or (B) A high-density polyethylene resin was melted, and a composite nonwoven fabric was obtained by joining the short fiber nonwoven fabrics (A) and (B) and between the short fiber layers (A) and (B). .
The obtained composite nonwoven fabric was used as a top sheet of the surface material of the napkin for arrangement. The absorptivity was good and there was little liquid return, making it suitable for absorbent articles.
[0062]
(Example 3)
A composite nonwoven fabric was produced under the same conditions as in Example 2 except that the cut length of the short fibers (B) was 5 mm.
The obtained composite nonwoven fabric was used as a second sheet of the surface material of the napkin for arrangement. The absorptivity was good and there was little liquid return, making it suitable for absorbent articles.
[0063]
(Example 4)
A composite nonwoven fabric was produced under the same conditions as in Example 2 except that the cut length of the short fibers (B) was 30 mm.
The obtained composite nonwoven fabric was used as a second sheet of the surface material of the napkin for arrangement. The absorptivity was good and there was little liquid return, making it suitable for absorbent articles.
[0064]
(Example 5)
Compounded under the same conditions as in Example 3 except that the cut length of the short fiber (A) was 51 mm and the short fiber layer (A) was mixed with 30% by weight of rayon having a fineness of 3 denier and a cut length of 45 mm. A nonwoven fabric was produced.
The obtained composite nonwoven fabric was used as a top sheet and a second sheet of the surface material of the napkin for arrangement. The absorptivity was good and there was little liquid return, making it suitable for absorbent articles.
[0065]
(Example 6)
A composite nonwoven fabric was produced under the same conditions as in Example 5 except that 70% by weight of rayon having a fineness of 3 denier and a cut length of 45 mm was mixed with the short fiber layer (A).
The obtained composite nonwoven fabric was used as a top sheet and a second sheet of the surface material of the napkin for arrangement. The absorptivity was good and there was little liquid return, making it suitable for absorbent articles.
[0066]
(Comparative Example 1)
A short fiber (A) made of polypropylene resin having a fineness of 2 denier and a cut length of 38 mm was prepared. The short fiber (A) is supplied to a parallel card machine, and the basis weight is 12 g / m. 2 The short fiber web (A) was obtained. This short fiber web (A) was introduced into a point bond processing machine constituted by a concavo-convex roll heated to 145 ° C. and a smooth roll, and subjected to thermocompression processing. This short fiber nonwoven fabric (A) was supplied to the collection conveyor of the air laid nonwoven fabric processing machine.
Heat-bondable composite short fiber (B) having a fineness of 2 denier, a cut length of 38 mm, a zigzag crimped polypropylene resin as a core component, and a high-density polyethylene resin as a sheath component (in the present invention, a heat-bondable composite short fiber ( A) corresponds to A), but (B) has been introduced into a parallel roller card processing machine in order to distinguish it from the short fiber nonwoven fabric (A), and the basis weight is 12 g / m. 2 The short fiber web (B) was obtained. After laminating the short fiber web (A) and the short fiber web (B), it is introduced into a heated gas flow at 138 ° C. to melt the high-density polyethylene resin, which is a low melting point component of the heat-fusible composite short fiber. Then, the short fiber webs (A) and (B) and the short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B) were joined to obtain a composite nonwoven fabric.
[0067]
(Comparative Example 2)
Example 2 except that the short fiber (A) is a heat-fusible composite short fiber (A) having a polypropylene resin as a core component and a high-density polyethylene resin as a sheath component, and the short fiber (B) is treated by a random Webber method. In the same manner, a composite nonwoven fabric was obtained.
[0068]
[Table 1]
Figure 0004324982
PP: Polypropylene
PE: polyethylene (here high-density polyethylene)
[0069]
As is clear from the results in Table 1, the composite nonwoven fabric according to the example is composed of the airlaid nonwoven fabric and the card nonwoven fabric of the short fiber layer (B) having the same weight as the composite nonwoven fabric according to the comparative example. Nevertheless, the apparent density is small, the surface texture is excellent, and the shear strength, permeation speed, bleeding property, liquid retention property, reversibility, and randomness are all excellent. Therefore, the composite nonwoven fabric according to the example is excellent in the form stability against the shear stress and the twist stress expected when used as the surface material of the absorbent article, and excellent in the texture of the surface because the apparent density is low, Capillary action in the longitudinal direction of the composite nonwoven fabric, that is, in the machine direction is low, and it is excellent in capillary action in the thickness direction of the composite nonwoven fabric, so it has excellent permeation speed, bleeding, liquid retention, and reversibility. ing. That is, the composite nonwoven fabric according to the present invention achieves both high shear strength and good surface texture, which were difficult with conventional laminated nonwoven fabrics, and further imparts high randomness to the short fiber nonwoven fabric (B) used for the composite. Therefore, it is a characteristic that is unique as a surface material for absorbent articles such as disposable diapers and sanitary napkins. It satisfies the low nature.
[0070]
In addition, although the composite nonwoven fabric according to the present invention has been mainly described above for use as a surface material for absorbent articles, the composite nonwoven fabric according to the present invention is, as described above, a surgical garment, a covering cloth, It can be suitably used for filter materials, civil engineering materials, etc. as well as hap material base fabrics.
[0071]
【The invention's effect】
The composite nonwoven fabric according to the present invention has the following effects due to the effects of the structure described above.
(1) Since the short fiber nonwoven fabric (B) constituting the composite nonwoven fabric has high randomness and the short fibers (B) constituting the short fiber nonwoven fabric (B) are arranged in the thickness direction of the nonwoven fabric, cushioning properties Excellent.
(2) Since the apparent density of the composite nonwoven fabric is sufficiently low, it is bulky and has a good surface texture, and when used as a surface material for absorbent articles, it is excellent in the touch.
(3) Capillary action in the longitudinal direction of the composite nonwoven fabric, that is, in the machine direction is unlikely to occur, so that when used as a surface material of an absorbent article, it is excellent in spot permeability.
(4) Since the capillary action in the longitudinal direction of the composite nonwoven fabric, that is, in the machine direction is low and the capillary action in the thickness direction of the composite nonwoven fabric is excellent, Excellent permeability.
(5) Since the apparent density of the composite non-woven fabric is sufficiently low and excellent in the capillary action in the thickness direction of the non-woven fabric, when used as a surface material for absorbent articles, the reversibility of the permeated body fluid is low.
(6) Capillary action in the longitudinal direction of the nonwoven fabric, that is, in the machine direction is unlikely to occur, so the liquid retention is low, and when used as a surface material for absorbent articles, the feeling of sarat is excellent.
(7) Since the anchor effect between the layers of the bonded short fiber nonwoven fabric (A) and the short fiber nonwoven fabric (B) is excellent, when used as a surface material of an absorbent article, the shape stability against shear stress or twist stress is excellent.
[Brief description of the drawings]
FIG. 1 is a developed plan view of an example of an organizing napkin partially using a composite nonwoven fabric of the present invention as seen from the skin side.
2 is a schematic end view of a cross section of the XX ′ portion of FIG. 1; FIG.
[Explanation of symbols]
1 Napkin for arrangement
2 Top sheet
3 Second seat
4 Back sheet
5 Absorber
6 Sanitary napkin longitudinal edge
7 Absorber longitudinal edge
8 Longitudinal napkin side
9 Packaging materials
10 Absorber longitudinal side
11 Body fluid diffusion layer
12 Adhesive layer
13 Release liner

Claims (8)

螺旋型、ジグザク型、もしくは、U字型の捲縮を有する繊維長38〜90mmの短繊維不織布(A)とエアレイド法を用いて得られた繊維長3〜30mmの短繊維不織布(B)が接合された少なくとも2層の複合化不織布であって、短繊維不織布(A)を構成する繊維同士が接触あるいは接合されて形成される接点の交差角分布において、不織布(A)の総接点数の少なくとも50%が交差角0〜30゜であり、前記短繊維不織布(B)は、少なくとも2種の高融点成分と低融点成分との熱可塑性樹脂からなる熱融着性複合短繊維であり、かつ、該熱融着性複合短繊維同士は熱融着され、形成される短繊維接点の交差角分布が短繊維不織布(B)の総接点数の少なくとも50%を交差角60〜90゜で占めていることを特徴とする複合化不織布。A short fiber nonwoven fabric (A) having a fiber length of 38 to 90 mm having a spiral, zigzag or U-shaped crimp and a short fiber nonwoven fabric (B) having a fiber length of 3 to 30 mm obtained by using the airlaid method. In the composite non-woven fabric of at least two layers joined, the crossing angle distribution of the contacts formed by contacting or joining the fibers constituting the short fiber nonwoven fabric (A), the total number of contacts of the nonwoven fabric (A) At least 50% has a crossing angle of 0 to 30 °, and the short fiber nonwoven fabric (B) is a heat-fusible composite short fiber composed of a thermoplastic resin of at least two types of high melting point components and low melting point components, The heat-fusible composite short fibers are heat-sealed, and the crossing angle distribution of the short fiber contacts formed is such that at least 50% of the total number of contacts of the short fiber nonwoven fabric (B) is 60 to 90 °. Composite non-woven characterized by occupying . 短繊維不織布(A)が、少なくとも2種の高融点成分と低融点成分との熱可塑性樹脂からなる熱融着性複合繊維(C)と親水性繊維(D)からなり、かつ、親水性繊維の混合比率が、70重量%以下である請求項1に記載の複合化不織布。The short fiber nonwoven fabric (A) is composed of a heat-fusible composite fiber (C) and a hydrophilic fiber (D) made of a thermoplastic resin of at least two types of high melting point components and low melting point components. The composite nonwoven fabric according to claim 1, wherein the mixing ratio of is not more than 70 wt%. 短繊維不織布(A)が、厚み方向に密度勾配を有する請求項1または2に記載の複合化不織布。The composite nonwoven fabric according to claim 1 or 2, wherein the short fiber nonwoven fabric (A) has a density gradient in the thickness direction. 短繊維不織布(B)が、厚み方向に密度勾配を有する請求項1〜3のいずれかに記載の複合化不織布。The composite nonwoven fabric according to claim 1, wherein the short fiber nonwoven fabric (B) has a density gradient in the thickness direction. 短繊維不織布(A)が、該不織布に含まれる熱融着性複合繊維の低融点成分の融点以上、高融点成分の融点以下で熱処理された請求項1から4の何れかに記載の複合化不織布。The composite according to any one of claims 1 to 4, wherein the short fiber nonwoven fabric (A) is heat-treated at a temperature not lower than the melting point of the low melting point component and not higher than the melting point of the high melting point component of the heat-fusible composite fiber contained in the nonwoven fabric. Non-woven fabric. 少なくとも2種の高融点成分と低融点成分との熱可塑性樹脂からなる熱融着性複合短繊維ウェッブを、エアレイド法により開繊飛散させながら、螺旋型、ジグザク型、もしくは、U字型の捲縮を有する短繊維不織布(A)上に堆積した後、堆積された短繊維ウェッブに含まれる熱可塑性樹脂の低融点成分の融点以上、高融点成分の融点以下で熱処理して短繊維不織布(B)を形成することを特徴とする複合化不織布の製造法。 Spiral, zigzag, or U-shaped ridges of a heat-fusible composite short fiber web made of a thermoplastic resin of at least two high-melting components and low-melting components, while being spread and scattered by the airlaid method After being deposited on the short fiber nonwoven fabric (A) having shrinkage, the short fiber nonwoven fabric (B) is heat-treated at a temperature not lower than the melting point of the low melting point component and not higher than the melting point of the high melting point component of the thermoplastic resin contained in the deposited short fiber web. ) To form a composite nonwoven fabric. 請求項1〜5のいずれかに記載の複合化不織布を表面材のトップシート及びセカンドシートのうち1種以上を用いた吸収性物品。An absorbent article using the composite nonwoven fabric according to any one of claims 1 to 5 as one or more of a top sheet and a second sheet as a surface material. 請求項1〜5のいずれかに記載の複合化不織布を表面材のトップシート及びセカンドシートのうち1種以上に、短繊維不織布(B)側を体液の流れの上流側となるようにして用いた吸収性物品。The composite nonwoven fabric according to any one of claims 1 to 5 is used for at least one of a top sheet and a second sheet of a surface material, with the short fiber nonwoven fabric (B) side being an upstream side of a body fluid flow. Absorbent article.
JP09321597A 1997-03-27 1997-03-27 Composite nonwoven fabric and absorbent article using the same Expired - Lifetime JP4324982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09321597A JP4324982B2 (en) 1997-03-27 1997-03-27 Composite nonwoven fabric and absorbent article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09321597A JP4324982B2 (en) 1997-03-27 1997-03-27 Composite nonwoven fabric and absorbent article using the same

Publications (2)

Publication Number Publication Date
JPH10273884A JPH10273884A (en) 1998-10-13
JP4324982B2 true JP4324982B2 (en) 2009-09-02

Family

ID=14076350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09321597A Expired - Lifetime JP4324982B2 (en) 1997-03-27 1997-03-27 Composite nonwoven fabric and absorbent article using the same

Country Status (1)

Country Link
JP (1) JP4324982B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719892B2 (en) * 1999-12-22 2005-11-24 ユニ・チャーム株式会社 Absorbent parts using perforated surface sheets
US6610904B1 (en) * 2000-09-22 2003-08-26 Tredegar Film Products Corporation Acquisition distribution layer having void volumes for an absorbent article
US20020148547A1 (en) * 2001-01-17 2002-10-17 Jean-Claude Abed Bonded layered nonwoven and method of producing same
DE10222672B4 (en) 2001-05-28 2016-01-21 Jnc Corporation Process for the preparation of thermoadhesive conjugate fibers and nonwoven fabric using same
JP4530584B2 (en) * 2001-06-26 2010-08-25 花王株式会社 Absorbent articles
JP2003235896A (en) * 2002-02-15 2003-08-26 Daio Paper Corp Absorptive article having nonwoven fabric and method of manufacturing the same
EP1579831A1 (en) * 2004-03-23 2005-09-28 The Procter & Gamble Company An absorbent article comprising edge barriers comprising a liquid absorbent thermoplastic composition
JP4683957B2 (en) * 2005-02-25 2011-05-18 花王株式会社 Non-woven
JP2007029610A (en) * 2005-07-29 2007-02-08 Oji Nepia Kk Disposable diaper
WO2013165191A1 (en) * 2012-05-02 2013-11-07 (주)비앤비 Device and method for manufacturing cushioning material having excellent restoring force and cushioning material thereby
KR101182845B1 (en) 2012-05-02 2012-09-14 (주) 비앤비 Cushion with excellent resiliency of the manufacturing process and its cushion
GB2581428B (en) * 2013-05-17 2021-02-24 Procter & Gamble Hydroentangled fibrous structures
JP6411066B2 (en) * 2014-05-12 2018-10-24 ユニ・チャーム株式会社 Absorbent article including nonwoven sheet for absorbent body, and method for producing nonwoven sheet used for absorbent article
JP6659338B2 (en) * 2015-12-11 2020-03-04 花王株式会社 Absorbent articles
CN110958865B (en) 2017-07-24 2022-04-15 宝洁公司 Absorbent article with secondary topsheet
JP2022526920A (en) 2019-03-29 2022-05-27 ザ プロクター アンド ギャンブル カンパニー Fluid control layer for absorbent articles
CN111110126A (en) * 2020-01-07 2020-05-08 杭州汇海机械有限公司 Mopping dry towel with combination of filament cutting material and fibers participating in cleaning
CN115298369A (en) * 2020-02-27 2022-11-04 花王株式会社 Nonwoven fabric, nonwoven fabric product and absorbent article provided with same, and method for producing said nonwoven fabric product
CN114214750B (en) * 2022-01-13 2023-09-15 天津工业大学 Flame-retardant polyacrylonitrile composite fiber and preparation method and application thereof

Also Published As

Publication number Publication date
JPH10273884A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP4324982B2 (en) Composite nonwoven fabric and absorbent article using the same
US5951535A (en) Absorptive article
JP3168564B2 (en) Nonwoven fabric and absorbent article using the same
EP1274383B1 (en) Fibrous material layer, method for its manufacture, and absorbent article comprising the material layer in question
KR20060053181A (en) Absorbent article
JP2008161584A (en) Absorbent article
JP6607609B2 (en) Extra fine fiber nonwoven fabric
JP3760599B2 (en) Laminated nonwoven fabric and absorbent article using the same
CZ331495A3 (en) Absorption sanitary article and process for producing thereof
CZ310795A3 (en) Absorptive sanitary article and process for producing thereof
JP2015123194A (en) Absorbent article
JP3550810B2 (en) Composite nonwoven fabric and method for producing the same
JP5884733B2 (en) Laminated nonwoven fabric and its products
JP4587410B2 (en) Composite nonwoven fabric, method for producing the same, absorbent article using the nonwoven fabric, and wiping cloth
JPH1086256A (en) Composite nonwoven fabric and absorbent article using the same
JPH10251960A (en) Laminated non-woven fabric
JP4442932B2 (en) Liquid impermeable sheet for absorbent articles
JP4103269B2 (en) Stretched nonwoven fabric and molded product using the same
JP2019080907A (en) Absorbent article
JP2013215348A (en) Absorbent sheet and absorbent article including the absorbent sheet
JPH08269859A (en) Composite nonwoven fabric and sanitary material produced by using the composite nonwoven fabric
JP2001503110A (en) Long fiber nonwoven fabric and absorbent article using the same
JP3774105B2 (en) Wrapping material and manufacturing method thereof, and packing bag
NL2027163B1 (en) Absorbent article with improved bottom distribution assembly
JP2000054251A (en) Nonwoven fabric and absorbing article using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term