JP4318355B2 - High wind speed air washer - Google Patents

High wind speed air washer Download PDF

Info

Publication number
JP4318355B2
JP4318355B2 JP28744499A JP28744499A JP4318355B2 JP 4318355 B2 JP4318355 B2 JP 4318355B2 JP 28744499 A JP28744499 A JP 28744499A JP 28744499 A JP28744499 A JP 28744499A JP 4318355 B2 JP4318355 B2 JP 4318355B2
Authority
JP
Japan
Prior art keywords
water
spray
air
spray chamber
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28744499A
Other languages
Japanese (ja)
Other versions
JP2001104740A (en
Inventor
順一 玉村
誠 神崎
正夫 森兼
州三 秋田
英和 森田
正 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Kubota Air Conditioner Ltd
Original Assignee
Kubota Corp
Kubota Air Conditioner Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Kubota Air Conditioner Ltd filed Critical Kubota Corp
Priority to JP28744499A priority Critical patent/JP4318355B2/en
Publication of JP2001104740A publication Critical patent/JP2001104740A/en
Application granted granted Critical
Publication of JP4318355B2 publication Critical patent/JP4318355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Separation Of Particles Using Liquids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体工場等における空気調和装置に係り、空気中の塵埃や有害ガスを除去するとともに、飽和効率の高い加湿を行なう高風速エアワッシャに関する。
【0002】
【従来の技術】
従来のエアワッシャとしては、例えば図18に示すものがある。このエアワッシャ10は、矩形の流路断面を有する本体ケーシング11の内部に、所定長さの水噴霧室12を有している。水噴霧室12は、その一端に形成した空気入口12aにおいてダクト(図示せず)に接続しており、このダクトから流入する空気Aが水噴霧室12の流路を通って他端に形成した空気出口12bから流出する。
【0003】
水噴霧室12には、空気入口12aに位置して第1ワッシャメディア13を配置し、水噴霧室12の流路の途中に位置して第2ワッシャメディア14を配置し、空気出口12bに位置して第3ワッシャメディア15を配置しており、第1ワッシャメディア13と第2ワッシャメディア14の間を第1段エアワッシャ部12cとし、第2ワッシャメディア14と第3ワッシャメディア15の間を第2段エアワッシャ部12dとしている。各ワッシャメディア13、14、15は、空気流の流路断面とほぼ等しい形状を有し、ポリ塩化ビニルデン系繊維やステンレスの線材等からなり、たとえば25mm〜50mm程度の厚みを有するマット状のものである。
【0004】
水噴霧室12の内部には、複数の第1段ノズル16を第1ワッシャメディア13より下流側の位置に配置するとともに、複数の第2段ノズル17を第2ワッシャメディア14より下流側の位置に配置している。第1段ノズル16は、空気流とは逆方向に向けて第1ワッシャメディア13に達する噴霧水を噴霧するものであり、第2段ノズル17は、空気流とは逆方向に向けて第2ワッシャメディア14に達しない噴霧水を噴霧するものである。
【0005】
水噴霧室12の下流側には、水噴霧室12を通過した空気に含まれる水滴等を除去するエリミネータ18が配置してあり、水噴霧室12の空気出口12bには、水噴霧室12と同様の流路断面形状を有する所定長さの冷却室19が接続してある。冷却室19の内部には冷却器として冷却コイル20が設けてあり、水噴霧室12の下流側には送風機(図示せず)が配置してあり、この送風機を作動することによって水噴霧室12の流路に空気を導く。
【0006】
【発明が解決しようとする課題】
上記したエアワッシャ10においては、水噴霧室12における風速が2.0〜2.5m/sであり、外形寸法の大きな形状を有するために、その形状に見合う大きな設置スペースが必要であり、設置場所が制限される。このため、水噴霧室における風速を高めることにより、必要な風量を確保しながら装置を小型化することが求められる。
【0007】
しかし、水噴霧室における風速を高風速化すると、水噴霧室を通過する空気と噴霧水との接触時間が短くなってガス除去性能および飽和加湿効率が低下し、風速の高まりに伴って噴霧水がワッシャメディアを通過して下流側へ飛散するキャリアオーバーが増大し、空気流の圧力損失が上昇して送風に必要な動力が増加するなどの問題があった。
【0008】
本発明は上記した課題を解決するものであり、高風速化と小型化を図りながらも、確実なガス除去性能と高い飽和加湿効率を具現できる高風速エアワッシャを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記した課題を解決するために、請求項1に係る本発明の高風速エアワッシャは、断面形状が円形もしくは矩形の通風路をなし、一側の空気入口から他側の空気出口に向かって空気流が流れる水噴霧室と、水噴霧室の空気入口に配置して空気流を旋回させるガイドベーンと、水噴霧室の空気出口に配置する気液接触メディアと、ガイドベーンと気液接触メディアとの間の空間に水噴霧室内の通風方向に沿って所定距離を隔てた複数箇所に列状に配置し、放射状に組み付けた複数の小口径の噴霧口から空気流に向けて噴霧水を高圧噴霧する多頭噴霧水ノズルと、流下する噴霧水を受け止める貯水槽と、貯水槽内の循環水を多頭噴霧水ノズルに循環供給する循環水供給系とを備えた構成としたものである。
請求項2に係る本発明の高風速エアワッシャは、気液接触メディアが通風方向に対して傾斜面をなし、水噴霧室に空気流を5〜6m/sの高風速で通風するものである。
請求項3に係る本発明の高風速エアワッシャは、多頭噴霧水ノズルを水噴霧室内の通風方向に沿って所定距離を隔てた複数箇所に列状に、かつ平行な複数の列状に配置したものである。
【0010】
上記した構成により、水噴霧室の空気入口から流入する空気流に対し、その流れに対向するように貯水槽からの水を多頭噴霧水ノズルの各小口径の噴霧口から放射状に高圧噴霧し、各位置の多頭噴霧水ノズルから噴霧水を空気流に向けて多段に噴霧する。
噴霧水は空気中の塵埃や有害ガスに衝突し、衝突した空気中の塵埃や有害ガスが噴霧水とともに空気流に乗って気液接触メディアに達し、気液接触メディアが塵埃や有害ガスを伴った噴霧水を捕捉する。気液接触メディアに達した噴霧水は、気液接触メディアに付着した塵埃を洗い流して流下するとともに有害ガスを取り込んで貯水槽へ流入する。この貯水槽に滞留する循環水を、循環水供給系を通って再び多頭噴霧水ノズルから噴霧する。
【0011】
このように噴霧水は、多頭噴霧水ノズルから放射状で広範囲に、かつ細かな噴霧水粒径(平均60〜90μm)で噴霧し、各位置の多頭噴霧水ノズルから空気流に向けて多段に繰り返し噴霧することで、空気流と噴霧水の接触効率が高くなるので、水噴霧室に空気流を高風速(5〜6m/s)で通風し、空気流量に対する噴霧水量の割合を低く設定しても、確実なガス除去性能と高い飽和加湿効率を得ることができ、高風速化(従来の2〜3倍)と小型化(水噴霧室の空気通過断面積が従来の1/2〜1/3)を実現できる。
【0012】
噴霧水を微細化するために高圧噴霧(噴霧水圧:0.6〜1.2MPa)するが、ガス除去性能と飽和加湿効率を満たす噴霧水量が従来の1/3〜1/6の少ない噴霧水量(空気流重量の0.08〜0.16%)となることで、噴霧に要する消費動力は従来と同程度以下である。
しかも、微細な噴霧水を多段に噴霧して空気流と噴霧水の接触効率を高くしているので、気液接触メディアは、その設置数を少なくできる。また、気液接触メディアは、その気液接触面が通風方向に対して傾斜する円錐形もしくはV字形の形状を有するので、水噴霧室の空気流通過断面積に対して大きな気液接触面積を得ることができる。このため、気液接触メディアにおける噴霧水の捕捉率が高まるので、水噴霧室の空気出口にのみに設置しても十分に噴霧水を捕捉することができ、水噴霧室に空気流を高風速で通風しても、圧力損失とキャリアオーバーを従来と同等程度以下に抑制することができる。
【0013】
また、水噴霧室の空気入口に設けたガイドベーンによって、水噴霧室を流れる空気流を旋回させることにより、多頭噴霧水ノズルから広範囲に噴霧する噴霧水と空気流との接触効率が高くなり、水噴霧室に空気流を高風速で通風する状態においても、確実なガス除去性能と高い飽和加湿効率を得ることができ、高風速化と小型化を実現できる。
【0014】
請求項4に係る本発明の高風速エアワッシャは、多頭噴霧水ノズルを水噴霧室内の通風方向に沿って所定距離を隔てた複数箇所に列状に、かつ平行な複数の列状に配置し、ガイドベーンを多頭噴霧水ノズルの各列に対応して複数箇所に配置し、隣接するガイドベーンを気流旋回方向が相互に逆方向となるように形成したものである。
【0015】
上記した構成により、水噴霧室内に複数の旋回空気流が生起し、隣接する旋回空気流が相互に逆方向に旋回することで、空気流の旋回が互いに阻害されることがなく、多頭噴霧水ノズルから広範囲に噴霧する噴霧水と空気流との接触効率が高くなり、水噴霧室に空気流を高風速で通風する状態においても、確実なガス除去性能と高い飽和加湿効率を得ることができ、高風速化と小型化を実現できる。
【0016】
請求項5に係る本発明の高風速エアワッシャは、多頭噴霧水ノズルを水噴霧室内の通風方向に沿って所定距離を隔てた複数箇所に列状に、かつ平行な複数の列状に配置し、ガイドベーンを多頭噴霧水ノズルの各列に対応して複数箇所に配置し、水噴霧室内に個々のガイドベーンに対応する通風路を形成するメディアを多頭噴霧水ノズルの各列の間に配置したものである。
【0017】
上記した構成により、水噴霧室内に複数の旋回空気流が生起し、干渉防止メディアによって相互の干渉を防止する状態で、各旋回空気流が各通風路を流れることで、多頭噴霧水ノズルから広範囲に噴霧する噴霧水と空気流との接触効率が高くなる。しかも、干渉防止メディアを金網状等とすることで、干渉防止メディアに衝突した噴霧水が更に微細化するので、水噴霧室に空気流を高風速で通風する状態においても、確実なガス除去性能と高い飽和加湿効率を得ることができ、高風速化と小型化を実現できる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1〜図3に示すように、エアワッシャ11は、矩形(円形でも良い)の流路断面を有する本体ケーシング12の内部に、所定長さ(1.5〜1.8m)の水噴霧室13を有している。水噴霧室13は、その一端に形成した空気入口13aにおいてダクト(図示せず)に接続しており、このダクトから流入する空気Aが水噴霧室13の流路を通って他端に形成した空気出口13bから流出する。
【0019】
水噴霧室13には、空気入口13aに空気流を旋回させるガイドベーン14を配置し、空気出口13bに位置して気液接触メディア15を配置しており、気液接触メディア15は、通風方向に対して傾斜面をなす円錐形もしくはV字形の形状をなし、ポリ塩化ビニルデン系繊維等の合成樹脂やステンレスの線材等の金属繊維からなり、たとえば50mm程度の厚みを有するマット状のものである。
【0020】
水噴霧室13の内部には、空気流に向けて噴霧水を高圧噴霧する複数の多頭噴霧水ノズル16が、水噴霧室13の通風方向に沿って所定距離を隔てた複数箇所に列状に配置してある。図4〜図6に示すように、各多頭噴霧水ノズル16は、小口径の噴霧口17aを有する複数のノズルチップ17を放射状に組み付けたものである。
【0021】
水噴霧室13の下流には、流下する噴霧水を受け止める貯水槽18が設けてあり、貯水槽18に滞留する循環水を多頭噴霧水ノズル16に循環供給する循環水供給系19が水噴霧室13の下部に連通して設けてある。
循環水供給系19は、貯水槽18の下部に開口する吸込管20と、吸込管20に接続した循環ポンプ21と、循環ポンプ21を駆動するモータ22と、循環ポンプ21の吐出口に接続して水噴霧室13の上方にまで延びる吐出管23と、吐出管23から分岐して水噴霧室12に垂直方向に配設した複数の分岐管24とからなり、各分岐管24に複数の多頭噴霧水ノズル16を設けている。
【0022】
貯水槽18には、オバーフロー管25と、補給水として清浄水を供給する補給水供給管26が連通している。水噴霧室13の下流側には、水噴霧室13の空気出口13bに接続して冷却室27を設けており、冷却室27の内部には冷却器として冷却コイル28が設けてある。冷却室27の下方にはドレンパン29が形成してある。水噴霧室13の下流側には送風機(図示せず)が配置してあり、この送風機を作動することによって水噴霧室13の流路に空気を導く。
【0023】
上記した構成における作用を説明する。空気Aは空気入口13aからガイドベーン14を通して水噴霧室13に流入する。空気流はガイドベーン14に案内されて旋回し、旋回空気流となって水噴霧室13を流れる。
この旋回空気流に向けて、貯水槽18からの循環水を多頭噴霧水ノズル16の噴霧口17aから放射状に、0.6〜1.2MPaの噴霧水圧で高圧噴霧し、かつ各位置の多頭噴霧水ノズル16から多段に噴霧する。
【0024】
噴霧水は空気中の塵埃や有害ガスに衝突し、衝突した空気中の塵埃や有害ガスが噴霧水とともに旋回空気流に乗って気液接触メディア15に達し、気液接触メディア15が塵埃や有害ガスを伴った噴霧水を捕捉する。
気液接触メディア15に達した噴霧水は、気液接触メディア15に付着した塵埃を洗い流して流下するとともに有害ガスを取り込んで貯水槽18へ流入する。この貯水槽18に滞留する循環水を、循環水供給系19を通って再び多頭噴霧水ノズルから噴霧する。
【0025】
このように噴霧水を、多頭噴霧水ノズル16から放射状で広範囲に、かつ高圧噴霧することで平均60〜90μmの細かな噴霧水粒径で噴霧し、各位置の多頭噴霧水ノズル16から旋回空気流に向けて多段に繰り返し噴霧することで、空気流と噴霧水の接触効率が高くなる。
このため、水噴霧室13に空気流を5〜6m/sの高風速で通風し、空気流量に対する噴霧水量の割合を低く設定しても、確実なガス除去性能と高い飽和加湿効率を得ることができ、従来の2〜3倍の高風速化と、水噴霧室13の空気通過断面積を従来の1/2〜1/3とする小型化を実現できる。
【0026】
噴霧水を微細化するために高圧噴霧するが、ガス除去性能と飽和加湿効率を満たす噴霧水量が空気流重量の0.08〜0.16%でよく、従来の1/3〜1/6の少ない噴霧水量となることで、噴霧に要するモータ22の消費動力は従来と同程度以下である。
気液接触メディア15は、水噴霧室13の下流のみに設置し、その気液接触面が通風方向に対して傾斜する円錐形もしくはV字形の形状を有するので、水噴霧室13の空気流通過断面積に対して大きな気液接触面積を得ることができる。このため、気液接触メディアにおける噴霧水の捕捉率が高まるので、水噴霧室13の空気出口13bにのみに設置しても十分に噴霧水を捕捉することができ、水噴霧室13に旋回空気流を高風速で通風しても、圧力損失とキャリアオーバーを従来と同等程度に抑制することができる。気液接触メディア15を通過した空気は、浄化して十分に加湿した清浄な空気として空気出口13bから冷却室27に導き、冷却コイル28によって所定温度に冷却する。
【0027】
上述した過程において、循環水は空気の加湿に伴って減少するので、この循環水の減少量を補うとともに、循環水中の有害ガス濃度を一定値以下に維持するために必要な必要補給水量の補給水を補給水供給管26から供給する。
図7〜図9は本発明の他の実施の形態を示すものであり、先の実施の形態と同様の作用を行なう部材については同一番号を付して説明を省略する。図7〜図9において、冷却室27の上流側にはそれぞれ独立した複数の水噴霧室13を設け、各水噴霧室13にガイドベーン14、気液接触メディア15、多頭噴霧水ノズル16を設けている。
【0028】
図10〜図12は本発明の他の実施の形態を示すものであり、先の実施の形態と同様の作用を行なう部材については同一番号を付して説明を省略する。図10〜図12において、多頭噴霧水ノズル16は、通風方向に沿って所定距離を隔てた複数箇所に列状に、かつ平行な複数の列状に配置している。ガイドベーン14は、多頭噴霧水ノズル16の各列に対応して複数箇所に配置し、図13に示すように、隣接するガイドベーン16を気流旋回方向が相互に逆方向となるように形成している。
【0029】
この構成により、水噴霧室13の内部に複数の旋回空気流が生起し、隣接する旋回空気流が相互に逆方向に旋回することで、空気流の旋回が互いに阻害されることがなく、多頭噴霧水ノズル16から広範囲に噴霧する噴霧水と空気流との接触効率が高くなり、水噴霧室13に空気流を高風速で通風する状態においても、確実なガス除去性能と高い飽和加湿効率を得ることができ、高風速化と小型化を実現できる。
【0030】
図14〜図16は本発明の他の実施の形態を示すものであり、先の実施の形態と同様の作用を行なう部材については同一番号を付して説明を省略する。図14〜図16において、多頭噴霧水ノズル16は、通風方向に沿って所定距離を隔てた複数箇所に列状に、かつ平行な複数の列状に配置している。ガイドベーン14は多頭噴霧水ノズル16の各列に対応して複数箇所に配置しており、水噴霧室13の内部には個々のガイドベーン14に対応する通風路を形成する干渉防止メディア31を多頭噴霧水ノズル16の各列の間に配置している。この干渉防止メディア31は、金網もしくはパンチングメタルで形成する。図17に示すように、隣接するガイドベーン16は気流旋回方向が相互に逆方向となるように形成している。
【0031】
この構成により、水噴霧室13の内部に複数の旋回空気流が生起し、干渉防止メディア31によって相互の干渉を防止する状態で、各旋回空気流が各通風路を流れることで、多頭噴霧水ノズル16から広範囲に噴霧する噴霧水と空気流との接触効率が高くなる。しかも、干渉防止メディアに衝突した噴霧水が更に微細化するので、水噴霧室13に空気流を高風速で通風する状態においても、確実なガス除去性能と高い飽和加湿効率を得ることができ、高風速化と小型化を実現できる。
【0032】
【発明の効果】
以上述べたように本発明によれば、噴霧水を多頭噴霧水ノズルから放射状で広範囲に、かつ細かな噴霧水粒径で噴霧し、各位置の多頭噴霧水ノズルから多段に繰り返し噴霧することで、空気流と噴霧水との接触効率が高くなるので、確実なガス除去性能と高い飽和加湿効率を得ることができ、高風速化と小型化を実現できる。気液接触メディアを円錐形もしくはV字形の形状として気液接触面積を増加して噴霧水の捕捉率を高めることで、高風速化しても圧力損失とキャリアオーバーを従来と同等程度に抑制することができる。ガイドベーンによって空気流を旋回させることにより、噴霧水と空気流との接触効率をさらに高めることができ、確実なガス除去性能と高い飽和加湿効率を得ることができる。小型化によって設置場所の制約がなくなり、既設のダクトの途中に本装置を設置することで、既設の空気調和装置の機能向上を図れる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すエアワッシャの平断面図である。
【図2】同エアワッシャの縦断面図である。
【図3】同エアワッシャの正面図である。
【図4】同エアワッシャにおける多頭噴霧水ノズルの断面図である。
【図5】同多頭噴霧水ノズルの側面図である。
【図6】同多頭噴霧水ノズルの正面図である。
【図7】本発明の他の実施形態を示すエアワッシャの平断面図である。
【図8】同エアワッシャの縦断面図である。
【図9】同エアワッシャの正面図である。
【図10】本発明の他の実施形態を示すエアワッシャの平断面図である。
【図11】同エアワッシャの縦断面図である。
【図12】同エアワッシャの正面図である。
【図13】同エアワッシャにおける空気流の旋回方向を示す模式図である。
【図14】本発明の他の実施形態を示すエアワッシャの平断面図である。
【図15】同エアワッシャの縦断面図である。
【図16】同エアワッシャの正面図である。
【図17】同エアワッシャにおける空気流の旋回方向を示す模式図である。
【図18】従来のエアワッシャの構成を示す平断面図である。
【符号の説明】
11 エアワッシャ
12 本体ケーシング
13 水噴霧室
13a 空気入口
13b 空気出口
14 ガイドベーン
15 気液接触メディア
16 多頭噴霧水ノズル
17 ノズルチップ
17a 噴霧口
18 貯水槽
19 循環水供給系
20 吸込管
21 循環ポンプ
22 モータ
23 吐出管
24 分岐管
25 オバーフロー管
26 補給水供給管
27 冷却室
28 冷却コイル
29 ドレンパン
31 干渉防止メディア
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner in a semiconductor factory or the like, and relates to a high wind speed air washer that removes dust and harmful gases in the air and performs humidification with high saturation efficiency.
[0002]
[Prior art]
An example of a conventional air washer is shown in FIG. The air washer 10 has a water spray chamber 12 having a predetermined length inside a main casing 11 having a rectangular channel cross section. The water spray chamber 12 is connected to a duct (not shown) at an air inlet 12a formed at one end thereof, and air A flowing from the duct is formed at the other end through the flow path of the water spray chamber 12. It flows out from the air outlet 12b.
[0003]
In the water spray chamber 12, a first washer medium 13 is disposed at the air inlet 12a, a second washer medium 14 is disposed in the middle of the flow path of the water spray chamber 12, and is positioned at the air outlet 12b. The third washer medium 15 is arranged, the first washer medium 13 and the second washer medium 14 are defined as a first-stage air washer portion 12c, and the second washer medium 14 and the third washer medium 15 are defined as The second stage air washer portion 12d is used. Each washer media 13, 14, 15 has a shape substantially equal to the cross section of the air flow path, is made of polyvinyl chloride fiber, stainless steel wire, etc., and has a mat shape having a thickness of about 25 mm to 50 mm, for example. It is.
[0004]
In the water spray chamber 12, a plurality of first stage nozzles 16 are arranged at positions downstream of the first washer media 13, and a plurality of second stage nozzles 17 are positioned downstream of the second washer media 14. Is arranged. The first stage nozzle 16 sprays spray water reaching the first washer medium 13 in the direction opposite to the air flow, and the second stage nozzle 17 is the second direction in the direction opposite to the air flow. The spray water that does not reach the washer medium 14 is sprayed.
[0005]
An eliminator 18 that removes water droplets and the like contained in the air that has passed through the water spray chamber 12 is disposed on the downstream side of the water spray chamber 12, and an air outlet 12b of the water spray chamber 12 includes a water spray chamber 12 and A cooling chamber 19 of a predetermined length having the same flow path cross-sectional shape is connected. A cooling coil 20 is provided as a cooler inside the cooling chamber 19, and a blower (not shown) is arranged downstream of the water spray chamber 12, and the water spray chamber 12 is operated by operating this blower. Air is introduced into the flow path.
[0006]
[Problems to be solved by the invention]
In the air washer 10 described above, the wind speed in the water spray chamber 12 is 2.0 to 2.5 m / s, and since it has a large outer shape, a large installation space corresponding to the shape is required. Location is limited. For this reason, it is required to reduce the size of the apparatus while ensuring the necessary air volume by increasing the wind speed in the water spray chamber.
[0007]
However, when the wind speed in the water spray chamber is increased, the contact time between the air passing through the water spray chamber and the spray water is shortened, and the gas removal performance and the saturation humidification efficiency are lowered. However, there has been a problem that the carrier over which passes through the washer medium and scatters downstream increases, the pressure loss of the air flow increases, and the power required for blowing increases.
[0008]
The present invention solves the above-described problems, and an object thereof is to provide a high wind speed air washer capable of realizing reliable gas removal performance and high saturation humidification efficiency while achieving high wind speed and downsizing.
[0009]
[Means for Solving the Problems]
To solve the problems described above, a high wind speed air washer of the present invention according to claim 1, in cross section a circular or rectangular air passage, toward the air inlet on one side to the other side of the air outlet air A water spray chamber in which a flow flows, a guide vane that is disposed at an air inlet of the water spray chamber and swirls the air flow, a gas-liquid contact medium disposed at an air outlet of the water spray chamber, a guide vane and a gas-liquid contact medium, A high-pressure spray of spray water from a plurality of small-diameter spray ports arranged in a row at a predetermined distance along the direction of ventilation in the water spray chamber in a space between A multi-head spray water nozzle , a water storage tank that receives the spray water flowing down, and a circulating water supply system that circulates and supplies the circulating water in the water tank to the multi-head spray water nozzle.
In the high wind speed air washer of the present invention according to claim 2, the gas-liquid contact medium forms an inclined surface with respect to the ventilation direction, and the air flow is passed through the water spray chamber at a high wind speed of 5 to 6 m / s. .
In the high wind speed air washer according to the third aspect of the present invention, the multi-head spray water nozzles are arranged in a plurality of rows at a predetermined distance along the ventilation direction in the water spray chamber and in a plurality of parallel rows. Is.
[0010]
With the above-described configuration, for the air flow flowing in from the air inlet of the water spray chamber, water from the water storage tank is radially sprayed from the small-diameter spray ports of the multi-head spray water nozzle so as to face the flow, Spray water is sprayed in multiple stages from the multi-head spray water nozzles at each position toward the air flow.
The spray water collides with dust and harmful gas in the air, and the dust and harmful gas in the collided air rides on the air flow with the spray water and reaches the gas-liquid contact medium, which is accompanied by dust and harmful gas. Capture the spray water. The sprayed water that has reached the gas-liquid contact medium is washed away from the dust adhering to the gas-liquid contact medium and flows into the water storage tank by taking in harmful gases. The circulating water staying in this water tank is sprayed again from the multi-head spray water nozzle through the circulating water supply system.
[0011]
In this way, spray water is sprayed radially from a multi-head spray water nozzle in a wide range and with a fine spray water particle size (average 60 to 90 μm), and is repeated in multiple stages from the multi-head spray water nozzle at each position toward the air flow. By spraying, the contact efficiency of the air flow and spray water is increased, so the air flow is passed through the water spray chamber at a high wind speed (5 to 6 m / s), and the ratio of the amount of spray water to the air flow rate is set low. However, reliable gas removal performance and high saturation humidification efficiency can be obtained, and high wind speed (2 to 3 times the conventional) and downsizing (the air passage cross-sectional area of the water spray chamber is 1/2 to 1/1 of the conventional one). 3) can be realized.
[0012]
High-pressure spraying (spraying water pressure: 0.6 to 1.2 MPa) to make the spraying water finer, but the amount of spraying water that satisfies the gas removal performance and saturation humidification efficiency is less than the conventional 1/3 to 1/6. By being (0.08 to 0.16% of the air flow weight), the power consumption required for spraying is about the same as or lower than that of the conventional art.
In addition, since the contact efficiency of the air flow and spray water is increased by spraying fine spray water in multiple stages, the number of gas-liquid contact media can be reduced. Further, since the gas-liquid contact medium has a conical or V-shaped shape in which the gas-liquid contact surface is inclined with respect to the ventilation direction, the gas-liquid contact area has a large gas-liquid contact area with respect to the air flow passage cross-sectional area of the water spray chamber. Obtainable. For this reason, since the capture rate of the spray water in the gas-liquid contact medium is increased, the spray water can be sufficiently captured even if it is installed only at the air outlet of the water spray chamber. Even if the air is ventilated, the pressure loss and the carrier over can be suppressed to the same level or lower.
[0013]
In addition, by swirling the air flow flowing through the water spray chamber by the guide vane provided at the air inlet of the water spray chamber, the contact efficiency between the spray water sprayed over a wide range from the multi-head spray water nozzle and the air flow is increased. Even in a state where the air flow is passed through the water spray chamber at a high wind speed, reliable gas removal performance and high saturation humidification efficiency can be obtained, and high wind speed and downsizing can be realized.
[0014]
A high wind speed air washer according to a fourth aspect of the present invention has multi-head spray water nozzles arranged in rows at a plurality of locations separated by a predetermined distance along the ventilation direction in the water spray chamber and in a plurality of parallel rows. The guide vanes are arranged at a plurality of locations corresponding to each row of the multi-head spray water nozzles, and the adjacent guide vanes are formed so that the airflow swirl directions are opposite to each other.
[0015]
With the above-described configuration, a plurality of swirling air flows are generated in the water spray chamber, and the swirling air flows adjacent to each other are swirled in opposite directions, so that the swirling of the air flow is not hindered with each other. The contact efficiency between the spray water sprayed over a wide range from the nozzle and the air flow is increased, and reliable gas removal performance and high saturation humidification efficiency can be obtained even when the air flow is passed through the water spray chamber at a high wind speed. High wind speed and downsizing can be realized.
[0016]
The high wind speed air washer of the present invention according to claim 5 is configured such that the multi-head spray water nozzles are arranged in a plurality of rows at a predetermined distance along the ventilation direction in the water spray chamber and in a plurality of parallel rows. , Guide vanes are arranged in multiple locations corresponding to each row of multi-head spray water nozzles, and media that forms a ventilation path corresponding to each guide vane in the water spray chamber is placed between each row of multi-head spray water nozzles It is a thing.
[0017]
With the above-described configuration, a plurality of swirling airflows are generated in the water spray chamber, and each swirling airflow flows through each ventilation passage in a state in which mutual interference is prevented by the interference prevention media, so that a wide range from the multi-head spraying water nozzle can be obtained. The contact efficiency between the spray water sprayed and the air flow is increased. In addition, by making the interference prevention media like a wire mesh, the spray water that collides with the interference prevention media is further refined, so that reliable gas removal performance can be achieved even when the air flow is passed through the water spray chamber at a high wind speed. High saturation humidification efficiency can be obtained, and high wind speed and downsizing can be realized.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, the air washer 11 has a water spray chamber having a predetermined length (1.5 to 1.8 m) inside a main body casing 12 having a rectangular (or circular) channel cross section. 13. The water spray chamber 13 is connected to a duct (not shown) at an air inlet 13a formed at one end thereof, and air A flowing from the duct is formed at the other end through the flow path of the water spray chamber 13. It flows out from the air outlet 13b.
[0019]
In the water spray chamber 13, a guide vane 14 that swirls the air flow is disposed at the air inlet 13 a, and a gas-liquid contact medium 15 is disposed at the air outlet 13 b, and the gas-liquid contact medium 15 is in the ventilation direction. It has a conical or V-shaped shape that forms an inclined surface, and is made of a synthetic resin such as polyvinylidene fiber or a metal fiber such as a stainless wire, and has a mat-like shape having a thickness of about 50 mm, for example. .
[0020]
Inside the water spray chamber 13, a plurality of multi-head spray water nozzles 16 for spraying spray water at high pressure toward the air flow are arranged in rows at a predetermined distance along the ventilation direction of the water spray chamber 13. It is arranged. As shown in FIGS. 4 to 6, each multi-head spray water nozzle 16 is formed by radially assembling a plurality of nozzle tips 17 having small-diameter spray ports 17 a.
[0021]
A water storage tank 18 that catches the spray water flowing down is provided downstream of the water spray chamber 13, and a circulating water supply system 19 that circulates the circulating water staying in the water storage tank 18 to the multi-head spray water nozzle 16 is provided in the water spray chamber. 13 is provided in communication with the lower part.
The circulating water supply system 19 is connected to a suction pipe 20 that opens at a lower portion of the water storage tank 18, a circulation pump 21 connected to the suction pipe 20, a motor 22 that drives the circulation pump 21, and a discharge port of the circulation pump 21. And a plurality of branch pipes 24 branched from the discharge pipe 23 and arranged in the vertical direction in the water spray chamber 12. Each branch pipe 24 has a plurality of multiple heads. A spray water nozzle 16 is provided.
[0022]
An overflow pipe 25 and a make-up water supply pipe 26 for supplying clean water as make-up water communicate with the water storage tank 18. On the downstream side of the water spray chamber 13, a cooling chamber 27 is provided connected to the air outlet 13 b of the water spray chamber 13, and a cooling coil 28 is provided inside the cooling chamber 27 as a cooler. A drain pan 29 is formed below the cooling chamber 27. A blower (not shown) is disposed on the downstream side of the water spray chamber 13, and air is guided to the flow path of the water spray chamber 13 by operating the blower.
[0023]
The operation of the above configuration will be described. Air A flows from the air inlet 13a through the guide vane 14 into the water spray chamber 13. The air flow is guided by the guide vanes 14 and swirls to flow as a swirling air flow through the water spray chamber 13.
The circulating water from the water storage tank 18 is sprayed radially from the spray port 17a of the multi-head spray water nozzle 16 toward the swirling air flow at a spray water pressure of 0.6 to 1.2 MPa, and the multi-head spray at each position. Spraying from the water nozzle 16 in multiple stages.
[0024]
The spray water collides with dust and harmful gas in the air, and the dust and harmful gas in the colliding air ride on the swirling air flow together with the spray water and reach the gas-liquid contact medium 15, and the gas-liquid contact medium 15 becomes dust and harmful. Capture spray water with gas.
The spray water that has reached the gas-liquid contact medium 15 is washed away from the dust adhering to the gas-liquid contact medium 15 and flows into the water storage tank 18 by taking in harmful gases. The circulating water staying in the water storage tank 18 is again sprayed from the multi-head spray water nozzle through the circulating water supply system 19.
[0025]
In this way, spray water is sprayed from the multi-head spray water nozzle 16 in a radial, wide-range and high-pressure spray to spray with a fine spray water particle size of 60 to 90 μm on average, and swirling air from the multi-head spray water nozzle 16 at each position. By repeatedly spraying in multiple stages toward the flow, the contact efficiency of the air flow and spray water is increased.
For this reason, even if an air flow is passed through the water spray chamber 13 at a high wind speed of 5 to 6 m / s and the ratio of the spray water amount to the air flow rate is set low, reliable gas removal performance and high saturation humidification efficiency can be obtained. Thus, it is possible to realize a wind speed that is two to three times higher than that of the conventional one and a reduction in size of the water spray chamber 13 that has an air passage cross-sectional area of ½ to 3 of the conventional one.
[0026]
Although high-pressure spraying is performed to refine the spray water, the amount of spray water that satisfies gas removal performance and saturation humidification efficiency may be 0.08 to 0.16% of the air flow weight, which is 1/3 to 1/6 of the conventional one. Since the amount of sprayed water is small, the power consumption of the motor 22 required for spraying is less than or equal to the conventional level.
The gas-liquid contact medium 15 is installed only downstream of the water spray chamber 13 and has a conical or V-shaped shape whose gas-liquid contact surface is inclined with respect to the ventilation direction. A large gas-liquid contact area with respect to the cross-sectional area can be obtained. For this reason, since the capture rate of the spray water in the gas-liquid contact medium is increased, the spray water can be sufficiently captured even if it is installed only at the air outlet 13 b of the water spray chamber 13. Even if the flow is ventilated at a high wind speed, pressure loss and carrier over can be suppressed to the same extent as in the past. The air that has passed through the gas-liquid contact medium 15 is led to the cooling chamber 27 from the air outlet 13b as purified air that has been purified and sufficiently humidified, and is cooled to a predetermined temperature by the cooling coil 28.
[0027]
In the above-mentioned process, the circulating water decreases with the humidification of the air. Therefore, the amount of supplemental water necessary for maintaining the harmful gas concentration in the circulating water below a certain value is compensated for while supplementing the decrease in the circulating water. Water is supplied from a makeup water supply pipe 26.
7 to 9 show other embodiments of the present invention, and members that perform the same operations as those of the previous embodiments are given the same reference numerals and description thereof is omitted. 7 to 9, a plurality of independent water spray chambers 13 are provided on the upstream side of the cooling chamber 27, and a guide vane 14, a gas-liquid contact medium 15, and a multi-head spray water nozzle 16 are provided in each water spray chamber 13. ing.
[0028]
10 to 12 show other embodiments of the present invention, and members that perform the same operations as those of the previous embodiments are denoted by the same reference numerals and description thereof is omitted. 10 to 12, the multi-head spray water nozzles 16 are arranged in rows at a plurality of locations separated by a predetermined distance along the ventilation direction, and in rows. The guide vanes 14 are arranged at a plurality of locations corresponding to each row of the multi-head spray water nozzles 16, and as shown in FIG. 13, the adjacent guide vanes 16 are formed so that the airflow swirl directions are opposite to each other. ing.
[0029]
With this configuration, a plurality of swirling air flows are generated inside the water spray chamber 13, and the adjacent swirling air flows swirl in opposite directions, so that swirling of the air flow is not hindered from each other, and there are many heads. The contact efficiency between the spray water sprayed over a wide range from the spray water nozzle 16 and the air flow is increased, and even in a state where the air flow is passed through the water spray chamber 13 at a high wind speed, reliable gas removal performance and high saturation humidification efficiency are achieved. It is possible to obtain high wind speed and miniaturization.
[0030]
FIGS. 14 to 16 show other embodiments of the present invention, and members that perform the same operations as those of the previous embodiments are denoted by the same reference numerals and description thereof is omitted. 14 to 16, the multi-head spray water nozzles 16 are arranged in rows at a plurality of locations separated by a predetermined distance along the ventilation direction, and in parallel rows. The guide vanes 14 are arranged at a plurality of locations corresponding to each row of the multi-head spray water nozzles 16, and an interference preventing medium 31 that forms a ventilation path corresponding to each guide vane 14 is provided inside the water spray chamber 13. It arrange | positions between each row | line | column of the multi-head spray water nozzle 16. FIG. The interference prevention medium 31 is formed of a metal mesh or punching metal. As shown in FIG. 17, the adjacent guide vanes 16 are formed so that the airflow swirl directions are opposite to each other.
[0031]
With this configuration, a plurality of swirling air flows are generated inside the water spray chamber 13, and each swirling air flow flows through each ventilation path in a state in which mutual interference is prevented by the interference prevention medium 31, thereby allowing the multi-head spray water to flow. The contact efficiency between the spray water sprayed over a wide range from the nozzle 16 and the air flow is increased. Moreover, since the spray water colliding with the interference prevention medium is further refined, even in a state where the air flow is passed through the water spray chamber 13 at a high wind speed, reliable gas removal performance and high saturation humidification efficiency can be obtained. High wind speed and downsizing can be realized.
[0032]
【The invention's effect】
As described above, according to the present invention, spray water is sprayed radially from a multi-head spray water nozzle in a wide range and with a fine spray water particle size, and repeatedly sprayed in multiple stages from the multi-head spray water nozzle at each position. Since the contact efficiency between the air flow and the spray water becomes high, reliable gas removal performance and high saturation humidification efficiency can be obtained, and high wind speed and downsizing can be realized. By increasing the gas-liquid contact area by increasing the gas-liquid contact area by increasing the gas-liquid contact area with a conical or V-shaped gas-liquid contact medium, pressure loss and carrier over can be suppressed to the same level as in the past. Can do. By rotating the air flow with the guide vanes, the contact efficiency between the spray water and the air flow can be further increased, and reliable gas removal performance and high saturation humidification efficiency can be obtained. By reducing the size, there is no restriction on the installation location, and the function of the existing air conditioner can be improved by installing this apparatus in the middle of the existing duct.
[Brief description of the drawings]
FIG. 1 is a plan sectional view of an air washer showing an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the air washer.
FIG. 3 is a front view of the air washer.
FIG. 4 is a cross-sectional view of a multi-head spray water nozzle in the air washer.
FIG. 5 is a side view of the multi-head spray water nozzle.
FIG. 6 is a front view of the multi-head spray water nozzle.
FIG. 7 is a plan sectional view of an air washer showing another embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of the air washer.
FIG. 9 is a front view of the air washer.
FIG. 10 is a plan cross-sectional view of an air washer showing another embodiment of the present invention.
FIG. 11 is a longitudinal sectional view of the air washer.
FIG. 12 is a front view of the air washer.
FIG. 13 is a schematic diagram showing a swirling direction of airflow in the air washer.
FIG. 14 is a cross-sectional plan view of an air washer showing another embodiment of the present invention.
FIG. 15 is a longitudinal sectional view of the air washer.
FIG. 16 is a front view of the air washer.
FIG. 17 is a schematic diagram showing a swirling direction of airflow in the air washer.
FIG. 18 is a plan sectional view showing a configuration of a conventional air washer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Air washer 12 Main body casing 13 Water spray chamber 13a Air inlet 13b Air outlet 14 Guide vane 15 Gas-liquid contact medium 16 Multi-head spray water nozzle 17 Nozzle tip 17a Spray port 18 Reservoir 19 Circulating water supply system 20 Suction pipe 21 Circulation pump 22 Motor 23 Discharge pipe 24 Branch pipe 25 Overflow pipe 26 Supplementary water supply pipe 27 Cooling chamber 28 Cooling coil 29 Drain pan 31 Interference prevention medium

Claims (5)

断面形状が円形もしくは矩形の通風路をなし、一側の空気入口から他側の空気出口に向かって空気流が流れる水噴霧室と、水噴霧室の空気入口に配置して空気流を旋回させるガイドベーンと、水噴霧室の空気出口に配置する気液接触メディアと、ガイドベーンと気液接触メディアとの間の空間に水噴霧室内の通風方向に沿って所定距離を隔てた複数箇所に列状に配置し、放射状に組み付けた複数の小口径の噴霧口から空気流に向けて噴霧水を高圧噴霧する多頭噴霧水ノズルと、流下する噴霧水を受け止める貯水槽と、貯水槽内の循環水を多頭噴霧水ノズルに循環供給する循環水供給系とを備えたことを特徴とする高風速エアワッシャ。A circular or rectangular cross section is used, and the air flow is swirled by placing it in the water spray chamber where the air flow flows from the air inlet on one side to the air outlet on the other side, and the air inlet of the water spray chamber. A guide vane, a gas-liquid contact medium disposed at the air outlet of the water spray chamber, and a space between the guide vane and the gas-liquid contact medium are arranged in a plurality of locations separated by a predetermined distance along the direction of ventilation in the water spray chamber. A multi-head spray water nozzle that sprays spray water at a high pressure toward a stream of air from a plurality of small-diameter spray holes that are radially assembled, a water tank that receives the spray water that flows down , and circulating water in the water tank A high wind speed air washer comprising a circulating water supply system that circulates and supplies the water to a multi-head spray water nozzle. 気液接触メディアが通風方向に対して傾斜面をなし、水噴霧室に空気流を5〜6m/sの高風速で通風することを特徴とする請求項1に記載の高風速エアワッシャ。The high wind speed air washer according to claim 1, wherein the gas-liquid contact medium forms an inclined surface with respect to the ventilation direction, and the air flow is passed through the water spray chamber at a high wind speed of 5 to 6 m / s . 多頭噴霧水ノズルを水噴霧室内の通風方向に沿って所定距離を隔てた複数箇所に列状に、かつ平行な複数の列状に配置したことを特徴とする請求項1または2に記載の高風速エアワッシャ。The high-head spray water nozzle according to claim 1 or 2, wherein the multi-head spray water nozzles are arranged in a plurality of rows at a predetermined distance along the ventilation direction in the water spray chamber and in a plurality of parallel rows. Wind speed air washer. 多頭噴霧水ノズルを水噴霧室内の通風方向に沿って所定距離を隔てた複数箇所に列状に、かつ平行な複数の列状に配置し、ガイドベーンを多頭噴霧水ノズルの各列に対応して複数箇所に配置し、隣接するガイドベーンを気流旋回方向が相互に逆方向となるように形成したことを特徴とする請求項1または2に記載の高風速エアワッシャ。Multi-head spray water nozzles are arranged in multiple rows at a predetermined distance along the direction of ventilation in the water spray chamber and in multiple parallel rows, and guide vanes correspond to each row of multi-head spray water nozzles. The high wind speed air washer according to claim 1 or 2, wherein the guide vanes are arranged at a plurality of locations and the adjacent guide vanes are formed so that the airflow swirl directions are opposite to each other. 多頭噴霧水ノズルを水噴霧室内の通風方向に沿って所定距離を隔てた複数箇所に列状に、かつ平行な複数の列状に配置し、ガイドベーンを多頭噴霧水ノズルの各列に対応して複数箇所に配置し、水噴霧室内に個々のガイドベーンに対応する通風路を形成するメディアを多頭噴霧水ノズルの各列の間に配置したことを特徴とする請求項1または2に記載の高風速エアワッシャ。Multi-head spray water nozzles are arranged in multiple rows at a predetermined distance along the direction of ventilation in the water spray chamber and in multiple parallel rows, and guide vanes correspond to each row of multi-head spray water nozzles. Te was placed at a plurality of positions, of individual water spray chamber guide vanes according to claim 1 or 2, characterized in that a medium to form a ventilation path corresponding between each row of the multi-head water spray nozzle High wind speed air washer.
JP28744499A 1999-10-08 1999-10-08 High wind speed air washer Expired - Lifetime JP4318355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28744499A JP4318355B2 (en) 1999-10-08 1999-10-08 High wind speed air washer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28744499A JP4318355B2 (en) 1999-10-08 1999-10-08 High wind speed air washer

Publications (2)

Publication Number Publication Date
JP2001104740A JP2001104740A (en) 2001-04-17
JP4318355B2 true JP4318355B2 (en) 2009-08-19

Family

ID=17717413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28744499A Expired - Lifetime JP4318355B2 (en) 1999-10-08 1999-10-08 High wind speed air washer

Country Status (1)

Country Link
JP (1) JP4318355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640534C1 (en) * 2017-06-29 2018-01-09 Олег Савельевич Кочетов Mesh horizontal filter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040042535A (en) * 2002-11-14 2004-05-20 주식회사 포스코 Filling materials of spray cooler having excellent heat exchange efficiency
KR100476719B1 (en) * 2002-12-05 2005-03-17 삼성전자주식회사 Contamination control system and Air-conditioning system of substrate processing apparatus using the same
JP4836702B2 (en) * 2006-07-28 2011-12-14 三機工業株式会社 Air washer
JP2009018290A (en) * 2007-07-13 2009-01-29 Ebara Corp Exhaust gas washing device
JP5085791B1 (en) * 2012-01-31 2012-11-28 株式会社リョーシン Spraying equipment
CN105080248A (en) * 2014-05-16 2015-11-25 朱玲 Air purifying and dedusting fan
KR101617691B1 (en) 2015-04-28 2016-05-18 주식회사 글로벌스탠다드테크놀로지 Device for purifying exhuasted gas from chemical vapor deposition
KR101587599B1 (en) * 2015-07-24 2016-02-03 (주)명성씨.엠.아이 Preprocessing device for air cleaning
CN108355433A (en) * 2018-04-13 2018-08-03 广西农垦糖业集团星星制糖有限公司 A kind of oblique cutting type smoke duster
CN109092050A (en) * 2018-10-10 2018-12-28 山东省农业科学院畜牧兽医研究所 A kind of poultry house deodorizing facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640534C1 (en) * 2017-06-29 2018-01-09 Олег Савельевич Кочетов Mesh horizontal filter

Also Published As

Publication number Publication date
JP2001104740A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP4318355B2 (en) High wind speed air washer
KR100737393B1 (en) Apparatus for removing dust of cokes quenching tower
JP4836702B2 (en) Air washer
JP2010167330A (en) Wet two-stage desulfurization equipment
JP3842698B2 (en) Absorption tower structure in wet flue gas desulfurization equipment suitable for gas blowout prevention
CN101382088A (en) Apparatus and method for pressurized inlet evaporative cooling of gas turbine engines
KR20070003493A (en) Centrifugal humidifying device
JP2001096119A (en) Air washer
JPH01270960A (en) Centrifugal separation type apparatus for purifying paint mist-containing air
JP2001511705A (en) Cleaning device for separating gaseous or particulate inclusions from a gas stream
JP3877485B2 (en) High wind speed air washer
JP3698548B2 (en) Air washer
JP3502239B2 (en) Gas turbine plant
JP3916360B2 (en) Air washer
JP3544836B2 (en) Air washer
KR102365718B1 (en) Wet tower
JP2002005474A (en) Air washer
JP3698547B2 (en) Air washer
CN113623755B (en) Purification cavity for water purification module, water purification module and air conditioner
CN2259604Y (en) Vertical fluid dynamic cooling tower
JP3519497B2 (en) Wet flue gas desulfurization equipment
CN213019980U (en) Spraying piece, water purification module and air conditioner
CN220310059U (en) Dust waste gas purifying system
CN109529490A (en) A kind of rinse water arrangement for telescopic dedusting defogging equipment
CN210050892U (en) Machine and air conditioner in water spray subassembly, air purification module, air conditioning

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4318355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term