JP4313083B2 - Screw refrigeration equipment - Google Patents

Screw refrigeration equipment Download PDF

Info

Publication number
JP4313083B2
JP4313083B2 JP2003134626A JP2003134626A JP4313083B2 JP 4313083 B2 JP4313083 B2 JP 4313083B2 JP 2003134626 A JP2003134626 A JP 2003134626A JP 2003134626 A JP2003134626 A JP 2003134626A JP 4313083 B2 JP4313083 B2 JP 4313083B2
Authority
JP
Japan
Prior art keywords
screw
expansion valve
refrigerant
refrigeration apparatus
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003134626A
Other languages
Japanese (ja)
Other versions
JP2004340410A (en
Inventor
奈津夫 神崎
祐二 坪田
邦彦 須藤
雅彦 熊谷
一郎 櫻場
達雄 三摩
和善 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Kobe Steel Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Chubu Electric Power Co Inc, Kobe Steel Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2003134626A priority Critical patent/JP4313083B2/en
Publication of JP2004340410A publication Critical patent/JP2004340410A/en
Application granted granted Critical
Publication of JP4313083B2 publication Critical patent/JP4313083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【0001】
【発明の属する技術分野】
本発明は、エコノマイザを用いたスクリュ冷凍装置に関するものである。
【0002】
【従来の技術】
従来、エコノマイザを用いたスクリュ冷凍装置は公知である(例えば、特許文献1及び2参照。)。
【0003】
【特許文献1】
特開平7−83525号公報(図1)
【特許文献2】
特開2003−21089号公報(図1)
【0004】
特許文献1には、油冷式スクリュ圧縮機を用いたスクリュ冷凍装置であって、エコノマイザで蒸発した冷媒ガスをロータ室内に導くとともに、油冷却のための冷熱源として用いられて、蒸発した冷媒ガスを上記冷媒ガスに比して、より吐出口に近いロータ室内に導くようにしたスクリュ冷凍装置が開示されている。
【0005】
特許文献2には、2段スクリュ圧縮機が用いられたスクリュ冷凍装置であって、エコノマイザが設けられるとともに、第1段目圧縮機と第2段目圧縮機とを同回転数で回転させる駆動モータの回転数を制御することにより、2段スクリュ圧縮機の容量を変更し得るように形成されたスクリュ冷凍装置が開示されている。
【0006】
【発明が解決しようとする課題】
スクリュ圧縮機を用いたスクリュ冷凍装置の場合、スクリュ圧縮機の圧縮空間部、即ち中間圧力部にエコノマイザ流路からの冷媒を流入させることにより、容易にエコノマイザシステムをスクリュ冷凍装置に組込むことが可能であること、さらにスクリュ圧縮機の駆動部であるモータの回転数が一定であっても、冷凍能力とCOP(成績係数(=冷凍能力/消費動力))の改善が可能となることから、エコノマイザを組込んだ冷凍装置が従来より広く採用されている。
【0007】
特許文献1に開示のスクリュ冷凍装置では、エコノマイザが用いられ、さらに特許文献2に開示のスクリュ冷凍装置では、エコノマイザとインバータを介して回転数制御されるモータとが用いられており、それぞれにおいて性能向上を期待できる点もある。しかしながら、これらの冷凍装置は、以下のような問題を有することが判明した。
【0008】
まず第1の問題は、モータの回転数が低い領域での性能が低下する点である。即ち、スクリュ圧縮機は、周知のように、雌雄一対のスクリュロータが噛合い、回転してガス圧縮する構造を有するもので、図5に例示するように、スクリュロータの回転数が低下するとその断熱効率(断熱圧縮の際の圧縮効率)は低下する。なお、図5において、横軸はスクリュロータの定格回転数を基準として表した回転数比、縦軸は定格回転数における断熱効率を基準として表した断熱効率比を示している。図示するように、回転数比が25%程度になると、断熱効率は約20%低下する。冷却熱負荷が低減するにつれて、スクリュロータの回転数が低下しても、蒸発器での熱交換能力に余力が出てくるため、スクリュ圧縮機の圧縮効率が一定であれば、スクリュ冷凍装置の冷凍能力の向上が期待される。しかしながら、図6に示すように、COP比については、回転数が定格回転数の50%前後で最大になり、冷却熱負荷が低下するにつれて、即ち、スクリュロータの回転数が低下するにつれて、スクリュ圧縮機の性能低下、即ち断熱効率の低下が進み、COP比も低下してゆくという問題がある。なお、図6において、横軸は上記同様に表した回転数比、縦軸は定格回転数におけるCOPを基準として表したCOP比を示している。
【0009】
第2の問題は、凝縮器、或いは蒸発器における問題である。即ち、スクリュ冷凍装置内で循環する冷媒の状態は、スクリュ圧縮機から凝縮器までは高圧のガス、凝縮器内では高圧の液・ガス混合状態、凝縮器からエコノマイザを経て主膨張弁までは高圧の液体、主膨張弁から蒸発器出口までは低圧の液・ガス混合状態、蒸発器からスクリュ圧縮機までは低圧のガス、エコノマイザ用の補助膨張弁からエコノマイザ出口までは中間圧の液・ガス混合状態、エコノマイザからスクリュ圧縮機までは中間圧のガスとなっている。通常、蒸発器内以外でのガスと液体のバランスは略一定であるが、スクリュ圧縮機のスクリュロータがある回転数以下になると、蒸発器においてガスと液体とが分離し易くなるため、蒸発器内に滞留する液体が増大する。従って、安定的かつ高性能な運転を継続するためには、液量変動を吸収する受液器を設けるか、定格条件における性能を犠牲にして冷媒の充填量を増大させる必要がある。
【0010】
図7は、横軸に上記同様に表した回転数比、縦軸に定格回転数における必要冷媒量を基準として表した必要冷媒量をとって、回転数を変化させた場合における必要冷媒量の変化について得られた測定結果の一例を表したものである。図示するように、回転数比25%では、定格条件で必要な冷媒量の110%の量の冷媒が必要となる。従って、この冷媒量の変化を吸収する受液器を設けるか、10%過充填された状態で定格運転をすることが必要となる。この10%過充填する後者の場合であって、凝縮器がプレート式か管内凝縮タイプのものである場合、過充填分の冷媒が凝縮器内にて液体状態で滞留するため、その分凝縮器における熱交換を行う部分の面積、体積が減少して凝縮器の性能低下をもたらすという問題がある。
本発明は、斯かる従来の問題をなくすことを課題としてなされたもので、熱負荷の変化に拘わらず、常時、良好な性能及びCOPを維持し得るスクリュ冷凍装置を提供しようとするものである。
【0011】
【課題を解決するための手段】
上記課題を解決するために、第1発明は、スクリュ圧縮機から、少なくとも凝縮器、エコノマイザ、主膨張弁及び蒸発器を経て上記スクリュ圧縮機に戻る冷媒循環流路と、上記凝縮器と上記主膨張弁との間の冷媒の一部を上記エコノマイザの補助膨張弁を経た後、上記スクリュ圧縮機のロータ室内の中間圧力部に導くエコノマイザ流路とを備えたスクリュ冷凍装置において、上記スクリュ圧縮機の駆動部として設けられた回転数可変のモータと、熱負荷を検出する熱負荷検出手段と、この熱負荷検出手段からの熱負荷信号に基づき、圧縮機能力が過大であると判断される場合には上記モータの回転数を下げ、上記圧縮機能力が不足していると判断される場合には、上記回転数を上げ、他の場合には上記回転数を維持させる回転数制御部と、上記回転数が、上記補助膨張弁を常時閉とした場合と該補助膨張弁を常時開とした場合とのCOP比が両者略同等となる所定の回転数以下になった場合には、上記補助膨張弁を閉状態にし、その他の場合には、上記補助膨張弁を開状態に保つ弁開閉制御部とを設けた構成とした。
【0012】
第2発明は、第1の構成に加えて、上記熱負荷検出手段が、上記蒸発器を出た被冷却液の温度を検出する温度検出器である構成とした。
【0013】
第3発明は、第1の構成に加えて、上記熱負荷検出手段が、上記凝縮器を出た温水の温度を検出する温度検出器である構成とした。
【0014】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1は本発明に係るスクリュ冷凍装置1を示し、このスクリュ冷凍装置1には、スクリュ圧縮機11から凝縮器12、受液器13、エコノマイザ14、主膨張弁15及び蒸発器16を経てスクリュ圧縮機11に戻る冷媒循環流路L1と、エコノマイザ14からスクリュ圧縮機11のロータ室内の中間圧力部に通じるエコノマイザ流路L2とが設けられている。
【0015】
スクリュ圧縮機11は、互いに噛合う雌雄一対の回転可能に収容されたスクリュロータを有し、その駆動は回転数可変のモータ21によりなされる。また、モータ21と電源22との間には、演算部23とインバータ24とを含む回転数制御部25が介設されている。
凝縮器12は、縦型1パス対向流タイプでプレート式の周知のもので、ここを冷却水流路26が通り抜けている。図示するように、スクリュ圧縮機11から吐出された冷媒は凝縮器12の上部から流入し、下部から流出するのに対して、冷却水流路26の冷却水は凝縮器12の下部から流入し、上部から流出するようになっており、凝縮器12内にて冷媒と冷却水との間で熱交換が行われる。そして、この熱交換により冷媒は熱を奪われて凝縮し、凝縮器12から流出していき、冷却水は熱を吸収して温水として凝縮器12から流出してゆく。
【0016】
受液器13は、凝縮器12の下方に配設されており、凝縮器12内で凝縮した冷媒液は、ここで滞留することなく、直ちに受液器13内に流下する。このように、受液器13を凝縮器12の下方に配設してあるので、凝縮した冷媒液は直ちに凝縮器12外に流出する故、凝縮器12内で良好な熱交換が維持される。
【0017】
エコノマイザ14は、凝縮器12と主膨張弁15との間における冷媒循環流路L1の部分から分岐し、補助膨張弁27が介設されたエコノマイザ流路L2の部分と補助膨張弁27の二次側にて冷媒循環流路L1内の冷媒とエコノマイザ流路L2内の冷媒との間で熱交換を行わせる熱交換部28とにより構成されている。なお、一般には、この熱交換部28のみをエコノマイザと呼称する場合もあるが、本発明の実施形態では、エコノマイザを上述のように定義する。熱交換部28内では、冷媒循環流路L1とエコノマイザ流路L2とは互いに対向流をなすようにそれぞれ配置されており、この両者間で効率よく熱交換が行われるようになっている。そして、冷媒循環流路L1から分流してきた高圧冷媒は補助膨張弁27にて減圧され、気化させられたうえ熱交換部28に流入し、冷媒循環流路L1内の冷媒を過冷却した後、エコノマイザ流路L2によりスクリュ圧縮機11内の中間圧力部に供給される。なお、補助膨張弁27は弁開閉制御部29により開閉されるように形成されている。
【0018】
一方、主膨張弁15には、エコノマイザ14にて過冷却された冷媒液が導かれ、ここで、冷媒液は減圧され、気化させられた後、蒸発器16に向かう。
蒸発器16には、下から上に向けて流動する冷媒に対して、対向流をなすようにここを貫く被冷却液流路31が設けられており、冷媒循環流路L1内の冷媒と被冷却液流路31内の被冷却液との間で効率よく熱交換が行われるようになっている。そして、この熱交換の結果、被冷却液流路31内の被冷却液は冷却された蒸発器16から流出してゆき、冷媒は蒸発し、ガス状態になってスクリュ圧縮機11に戻り、上記同様の状態変化を繰返しながら、循環する。
【0019】
蒸発器16から出た被冷却液流路31の出側部分には、熱負荷を検出する手段として、ここでの被冷却液温度を検出する温度検出器32が設けられており、ここから検出温度を示す温度信号が演算部23に送られる。演算部23では、入力された温度信号に基づき、被冷却液流路31の出側部分における被冷却液の温度が予め設定された温度となるように、PID演算にて、モータ21の回転数を算出し、その回転数にするための制御信号をインバータ24に出力し、このインバータ24を介してモータ21の回転数制御が行われる。即ち、冷却熱負荷に対応するようにモータ21の回転数制御が行われる。
【0020】
さらに、演算部23からは、モータ21の回転数に応じて補助膨張弁27を開閉するための制御信号が弁開閉制御部29に出力され、この弁開閉制御部29を介して補助膨張弁27が開閉されるようになっている。具体的には、モータ21の回転数が定格回転数の50%の近傍の所定の回転数以下になったときには、補助膨張弁27を閉状態とし、その他のときには、補助膨張弁27を開状態にするようになっている。なお、ここでいう所定の回転数については、図2及び3に基づいて後述する。
【0021】
図2及び3は、本発明に係るスクリュ冷凍装置1における回転数比に対するCOP比、必要冷媒量比の変化を説明するためのものである。破線で示された曲線Xがスクリュ冷凍装置1で、仮に補助膨張弁27を常時閉とした場合、実線で示された曲線Yが、仮に補助膨張弁27を常時開とした場合を示している。
この図2から分かるように、回転数比50%の近傍の所定の回転数(図中、一点鎖線で示す。)でCOP比が両者略同等となり、それ以下ではエコノマイザ14の機能を停止した場合を示す曲線Xの方がCOP比はより改善され、回転数比が小さくなるにつれて、さらにそれが顕著になっている。なお、図2における曲線Yは図6における曲線と同じである。
【0022】
また、図3からも分かるように、曲線Xの方が曲線Yより必要冷媒量はより少なく、回転数比が50%近傍の所定の回転数以下で、回転数比が小さくなるにつれて、さらにそれが顕著になっている。なお、図3における曲線Yは図7における曲線と同じである。
斯かるCOP比、必要冷媒量比の特性は、回転数の低くなった場合に、エコノマイザ14の機能を停止することにより、主膨張弁15の1次側における冷媒の過冷却量の減少により、蒸発器16の入口でのフラッシュガス量が増大し、この結果、蒸発器16内で滞留する冷媒液量が減少し、冷凍サイクルの繰返しに必要な冷媒量の変化の幅が小さくなることに起因していると推定される。
【0023】
本発明に係るスクリュ冷凍装置1は、このようなCOP比、必要冷媒量比のモータの回転数に対する特性を利用している。即ち、本発明に係るスクリュ冷凍装置1においては、前述のとおり、モータ21の回転数が定格回転数の50%近傍の所定回転数以下になったときには、補助膨張弁27を閉状態として、その他のときには、補助膨張弁27を開状態にするようになっているが、そうすることによって、スクリュ冷凍装置1のCOP比は上記の所定回転数より大では、図2における曲線Yに従って、上記の所定回転数以下では、図2における曲線Xに従って、変化してゆくこととなる。また、スクリュ冷凍装置1の必要冷媒量比は上記の所定回転数より大では、図3における曲線Yに従って、上記の所定回転数以下では、図3における曲線Xに従って変化してゆくこととなる。
【0024】
図4は、本発明に係る他のスクリュ冷凍装置2を示し、上述したスクリュ冷凍装置1とは、エコノマイザ14の構成が異なる点を除き、他は実質的に同一であり、互いに共通する部分については、同一番号を付して説明を省略する。
このスクリュ冷凍装置2では、冷媒循環流路L1からのエコノマイザ流路L2の分岐点が受液器13と熱交換部28との間になっている。
そして、上記同様に温度検出器32からの温度信号に基づき回転数制御部25によりモータ21の回転数が制御され、弁開閉制御部29により補助膨張弁27が開閉されるようになっている。
【0025】
なお、本発明のスクリュ冷凍装置を、凝縮器から出る温水を利用するシステムとして、つまり、いわゆるヒートポンプとして利用したものに適用してもよい。その場合のスクリュ冷凍装置には、図1、4の各図に点線と二点鎖線で示したように、熱負荷を検出する手段として、温度検出器32に代え、凝縮器12から出た冷却水流路26の出側部分に温度検出器33が設けられ、ここから検出温度を示す温度信号が演算部23に送られるように構成される。
また、スクリュ冷凍装置1及び2において、受液器13は、冷凍サイクルの繰返しに必要な冷媒量の変化を吸収するクッションタンクとしての役割を担っているが、受液器13は必ずしも必要でなく、省いてもよい。
さらに、図1及び4では、受液器13を凝縮器12とエコノマイザ14との間に設けた例を示したが、本発明はこれに限定するものでなく、受液器13をエコノマイザ14と蒸発器16との間、或いは蒸発器16とスクリュ圧縮機11との間に設けてもよい。
ところで、好ましくは、冷媒として非共沸混合冷媒を用いるのがよい。この非共沸混合冷媒を用いた場合、エコノマイザ14にて冷媒が過冷却されることにより、蒸発器16における冷媒の蒸発開始温度が低下する故、蒸発器16における熱交換効率が向上する。
【0026】
また、本発明のスクリュ冷凍装置を構成するスクリュ圧縮機には、油冷式スクリュ圧縮機を用いてもよい。その場合には、スクリュ圧縮機11と凝縮器12との間に油分離回収器が介設され、その油分離回収器の下部の油溜まり部から油冷却器を経て、スクリュ圧縮機のロータ室、軸封部、軸受等に油を供給する油供給流路などが設けられることが望ましい。
さらに、スクリュ圧縮機11は、一段の圧縮機本体だけを備えたものに限定するものでなく、直列配置された複数段の圧縮機本体を備えたものも含み、この場合における中間圧力部とは、一段目の圧縮機本体の吸込圧力と最終段の圧縮機本体の吐出圧力との間の圧力部を意味する。即ち、この複数段の圧縮機本体については、エコノマイザ流路L2がスクリュ圧縮機11内での冷媒流動空間部に合流する位置は、一段目の圧縮機本体の吸込口と最終段の圧縮機本体の吐出口との間であればよい。
【0027】
【発明の効果】
以上の説明より明らかなように、第1発明によれば、スクリュ圧縮機を用いるとともに、エコノマイザを備えたスクリュ冷凍装置において、スクリュ圧縮機の駆動部として設けられた回転数可変のモータと、熱負荷を検出する熱負荷検出手段と、この熱負荷検出手段からの熱負荷信号に基づき、圧縮機能力が過大であると判断される場合には上記モータの回転数を下げ、上記圧縮機能力が不足していると判断される場合には、上記回転数を上げ、他の場合には上記回転数を維持させる回転数制御部と、上記回転数が、上記補助膨張弁を常時閉とした場合と該補助膨張弁を常時開とした場合とのCOP比が両者略同等となる所定の回転数以下になった場合には、上記補助膨張弁を閉状態にし、その他の場合には、上記補助膨張弁を開状態に保つ弁開閉制御部とを設けた構成としてある。
また、第2発明によれば、第1発明の構成に加えて、上記熱負荷検出手段が、上記蒸発器を出た被冷却液の温度を検出する温度検出器である構成としてある。
さらに、第3発明によれば、第1発明の構成に加えて、上記熱負荷検出手段が、上記凝縮器を出た温水の温度を検出する温度検出器である構成としてある。
【0028】
このため、スクリュ圧縮機駆動用のモータの回転数が低下した場合、エコノマイザの機能が停止させられ、蒸発器内での冷媒液の滞留量が減少し、冷凍サイクルに必要な冷媒量の変化の幅が縮小する結果、冷却熱負荷の変化に拘わらず、常時、良好な性能及びCOPを維持することが可能になるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係るスクリュ冷凍装置の全体構成を示す図である。
【図2】 本発明に係るスクリュ冷凍装置におけるモータ(スクリュロータ)の回転数比とCOP比との関係を説明する図である。
【図3】 本発明に係るスクリュ冷凍装置におけるモータ(スクリュロータ)の回転数比と必要冷媒量比との関係を説明する図である。
【図4】 本発明に係る他のスクリュ冷凍装置の全体構成を示す図である。
【図5】 一般的なスクリュ圧縮機におけるモータ(スクリュロータ)の回転数比と断熱効率との関係を示す図である。
【図6】 従来のスクリュ冷凍装置におけるモータ(スクリュロータ)の回転数比とCOP比との関係を示す図である。
【図7】 従来のスクリュ冷凍装置におけるモータ(スクリュロータ)の回転数比と必要冷媒量比との関係を示す図である。
【符号の説明】
1、2 スクリュ冷凍装置 11 スクリュ圧縮機
12 凝縮器 13 受液器
14 エコノマイザ 15 主膨張弁
16 蒸発器 21 モータ
22 電源 23 演算部
24 インバータ 25 回転数制御部
26 冷却水流路 27 補助膨張弁
28 熱交換部 29 弁開閉制御部
31 被冷却液流路 32、33 温度検出器
L1 冷媒循環流路 L2 エコノマイザ流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a screw refrigeration apparatus using an economizer.
[0002]
[Prior art]
Conventionally, a screw refrigeration apparatus using an economizer is known (see, for example, Patent Documents 1 and 2).
[0003]
[Patent Document 1]
JP-A-7-83525 (FIG. 1)
[Patent Document 2]
Japanese Patent Laying-Open No. 2003-21089 (FIG. 1)
[0004]
Patent Document 1 discloses a screw refrigeration apparatus using an oil-cooled screw compressor, which guides refrigerant gas evaporated by an economizer into a rotor chamber, and is used as a cooling heat source for oil cooling. A screw refrigeration apparatus is disclosed in which a gas is introduced into a rotor chamber closer to the discharge port than the refrigerant gas.
[0005]
Patent Document 2 discloses a screw refrigeration apparatus using a two-stage screw compressor, provided with an economizer, and driving to rotate the first-stage compressor and the second-stage compressor at the same rotational speed. There is disclosed a screw refrigeration apparatus formed so that the capacity of a two-stage screw compressor can be changed by controlling the number of rotations of a motor.
[0006]
[Problems to be solved by the invention]
In the case of a screw refrigeration system using a screw compressor, the economizer system can be easily incorporated into the screw refrigeration system by allowing the refrigerant from the economizer flow path to flow into the compression space of the screw compressor, that is, the intermediate pressure section. Furthermore, since the refrigeration capacity and COP (coefficient of performance (= refrigeration capacity / power consumption)) can be improved even if the rotation speed of the motor that is the drive unit of the screw compressor is constant, the economizer The refrigeration apparatus incorporating is widely used than before.
[0007]
The screw refrigeration apparatus disclosed in Patent Document 1 uses an economizer, and the screw refrigeration apparatus disclosed in Patent Document 2 uses an economizer and a motor whose rotational speed is controlled via an inverter. There is also a point where improvement can be expected. However, these refrigeration devices have been found to have the following problems.
[0008]
First, the first problem is that the performance in a region where the rotational speed of the motor is low is lowered. That is, as is well known, the screw compressor has a structure in which a pair of male and female screw rotors mesh with each other and rotate to compress the gas, and as illustrated in FIG. Adiabatic efficiency (compression efficiency during adiabatic compression) decreases. In FIG. 5, the horizontal axis represents the rotational speed ratio expressed with reference to the rated rotational speed of the screw rotor, and the vertical axis represents the thermal insulation efficiency ratio expressed with reference to the thermal insulation efficiency at the rated rotational speed. As shown in the figure, when the rotation speed ratio is about 25%, the heat insulation efficiency is reduced by about 20%. As the cooling heat load is reduced, even if the rotational speed of the screw rotor is reduced, there is a surplus in the heat exchange capacity of the evaporator, so if the compression efficiency of the screw compressor is constant, Improvement of refrigeration capacity is expected. However, as shown in FIG. 6, with respect to the COP ratio, the screw speed becomes maximum at around 50% of the rated speed, and as the cooling heat load decreases, that is, as the speed of the screw rotor decreases, There is a problem that the performance of the compressor is lowered, that is, the heat insulation efficiency is lowered, and the COP ratio is also lowered. In FIG. 6, the horizontal axis represents the rotational speed ratio expressed in the same manner as described above, and the vertical axis represents the COP ratio expressed with reference to the COP at the rated rotational speed.
[0009]
The second problem is a problem in the condenser or the evaporator. That is, the state of the refrigerant circulating in the screw refrigeration system is high pressure gas from the screw compressor to the condenser, high pressure liquid / gas mixed state in the condenser, high pressure from the condenser to the main expansion valve through the economizer. Low-pressure liquid / gas mixed state from the main expansion valve to the evaporator outlet, low-pressure gas from the evaporator to the screw compressor, and intermediate-pressure liquid / gas mixture from the auxiliary expansion valve for the economizer to the economizer outlet State, the gas from the economizer to the screw compressor is an intermediate pressure gas. Normally, the balance of gas and liquid outside the evaporator is substantially constant, but when the screw rotor of the screw compressor falls below a certain number of rotations, it becomes easy to separate the gas and liquid in the evaporator. The liquid that stays inside increases. Therefore, in order to continue stable and high-performance operation, it is necessary to provide a liquid receiver that absorbs fluctuations in the liquid amount or to increase the charging amount of the refrigerant at the expense of performance under rated conditions.
[0010]
FIG. 7 shows the required refrigerant quantity when the rotational speed is changed, with the horizontal axis representing the same rotation speed ratio as above and the vertical axis representing the required refrigerant quantity based on the required refrigerant quantity at the rated rotation speed. An example of the measurement result obtained about a change is represented. As shown in the figure, when the rotational speed ratio is 25%, 110% of the refrigerant required for the rated conditions is required. Accordingly, it is necessary to provide a liquid receiver that absorbs the change in the refrigerant amount or to perform a rated operation in a state of being overfilled by 10%. In the latter case of 10% overfilling, when the condenser is of the plate type or in-pipe condensing type, the overfilled refrigerant stays in the liquid state in the condenser, and accordingly the condenser There is a problem in that the area and volume of the portion that performs heat exchange in the heat exchanger are reduced and the performance of the condenser is reduced.
The present invention has been made with the object of eliminating such conventional problems, and an object of the present invention is to provide a screw refrigeration apparatus that can always maintain good performance and COP regardless of changes in heat load. .
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the first invention includes a refrigerant circulation passage returning from the screw compressor to at least the condenser, the economizer, the main expansion valve and the evaporator, and returning to the screw compressor, the condenser, and the main A screw refrigeration apparatus comprising: an economizer flow path for guiding a part of the refrigerant between the expansion valve and the economizer through an auxiliary expansion valve of the economizer to an intermediate pressure portion in a rotor chamber of the screw compressor. When it is determined that the compression function force is excessive based on a motor having a variable rotation speed provided as a drive unit, a thermal load detection means for detecting a thermal load, and a thermal load signal from the thermal load detection means A rotation speed controller that lowers the rotation speed of the motor and increases the rotation speed when it is determined that the compression function force is insufficient, and maintains the rotation speed in other cases; Up If the rotational speed has fallen below a predetermined rotational speed COP ratio of the case of the normally open when the said auxiliary expansion valve was normally closed with the auxiliary expansion valve is both substantially equivalent, the auxiliary expansion The valve is closed, and in other cases, a valve opening / closing control unit that keeps the auxiliary expansion valve open is provided.
[0012]
In the second aspect of the invention, in addition to the first configuration, the thermal load detection means is a temperature detector that detects the temperature of the liquid to be cooled that has exited the evaporator.
[0013]
In the third aspect of the invention, in addition to the first configuration, the thermal load detection means is a temperature detector that detects the temperature of hot water that has exited the condenser.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a screw refrigeration apparatus 1 according to the present invention. The screw refrigeration apparatus 1 includes a screw compressor 11, a condenser 12, a receiver 13, an economizer 14, a main expansion valve 15, and an evaporator 16. A refrigerant circulation passage L1 that returns to the compressor 11 and an economizer passage L2 that leads from the economizer 14 to an intermediate pressure portion in the rotor chamber of the screw compressor 11 are provided.
[0015]
The screw compressor 11 has a pair of male and female screw rotors that are rotatably accommodated to be engaged with each other, and is driven by a motor 21 having a variable number of rotations. Further, a rotation speed control unit 25 including a calculation unit 23 and an inverter 24 is interposed between the motor 21 and the power source 22.
The condenser 12 is a well-known vertical one-pass counter-flow type plate type, and a cooling water passage 26 passes through the condenser 12. As shown in the figure, the refrigerant discharged from the screw compressor 11 flows in from the upper part of the condenser 12 and flows out from the lower part, whereas the cooling water in the cooling water flow path 26 flows in from the lower part of the condenser 12, It flows out from the upper part, and heat exchange is performed between the refrigerant and the cooling water in the condenser 12. And by this heat exchange, the refrigerant is deprived of heat and condensed and flows out of the condenser 12, and the cooling water absorbs heat and flows out of the condenser 12 as hot water.
[0016]
The liquid receiver 13 is disposed below the condenser 12, and the refrigerant liquid condensed in the condenser 12 immediately flows down into the liquid receiver 13 without staying here. Thus, since the liquid receiver 13 is arrange | positioned under the condenser 12, since the condensed refrigerant | coolant liquid immediately flows out of the condenser 12, favorable heat exchange is maintained in the condenser 12. .
[0017]
The economizer 14 branches from the portion of the refrigerant circulation flow path L1 between the condenser 12 and the main expansion valve 15, and the economizer flow path L 2 in which the auxiliary expansion valve 27 is interposed and the secondary of the auxiliary expansion valve 27. On the side, the heat exchanger 28 is configured to exchange heat between the refrigerant in the refrigerant circulation passage L1 and the refrigerant in the economizer passage L2. In general, only the heat exchanging unit 28 may be referred to as an economizer, but in the embodiment of the present invention, the economizer is defined as described above. In the heat exchanging section 28, the refrigerant circulation flow path L1 and the economizer flow path L2 are respectively arranged so as to face each other, and heat exchange is efficiently performed between the two. Then, the high-pressure refrigerant that has been diverted from the refrigerant circulation flow path L1 is decompressed by the auxiliary expansion valve 27, is vaporized and then flows into the heat exchange unit 28, and after supercooling the refrigerant in the refrigerant circulation flow path L1, It is supplied to the intermediate pressure part in the screw compressor 11 by the economizer flow path L2. The auxiliary expansion valve 27 is formed so as to be opened and closed by a valve opening / closing control unit 29.
[0018]
On the other hand, the refrigerant liquid supercooled by the economizer 14 is guided to the main expansion valve 15, where the refrigerant liquid is depressurized and vaporized, and then goes to the evaporator 16.
The evaporator 16 is provided with a to-be-cooled liquid passage 31 that penetrates the refrigerant flowing from the bottom to the top so as to form a counter flow. Heat exchange is efficiently performed with the liquid to be cooled in the coolant flow path 31. As a result of this heat exchange, the liquid to be cooled in the liquid flow path 31 flows out from the cooled evaporator 16, the refrigerant evaporates, returns to the screw compressor 11 in a gas state, and It circulates while repeating the same state change.
[0019]
A temperature detector 32 for detecting the temperature of the liquid to be cooled is provided as a means for detecting a thermal load at the outlet side portion of the liquid flow path 31 to be cooled that has exited from the evaporator 16. A temperature signal indicating the temperature is sent to the calculation unit 23. In the calculation unit 23, based on the input temperature signal, the rotation speed of the motor 21 is calculated by PID calculation so that the temperature of the liquid to be cooled at the outlet side portion of the liquid flow path 31 to be cooled becomes a preset temperature. , And a control signal for setting the rotational speed is output to the inverter 24, and the rotational speed control of the motor 21 is performed via the inverter 24. That is, the rotational speed control of the motor 21 is performed so as to correspond to the cooling heat load.
[0020]
Further, a control signal for opening and closing the auxiliary expansion valve 27 according to the number of rotations of the motor 21 is output from the calculation unit 23 to the valve opening / closing control unit 29, and the auxiliary expansion valve 27 is connected via the valve opening / closing control unit 29. Can be opened and closed. Specifically, the auxiliary expansion valve 27 is closed when the rotation number of the motor 21 is equal to or less than a predetermined rotation number near 50% of the rated rotation number, and the auxiliary expansion valve 27 is opened at other times. It is supposed to be. The predetermined number of revolutions here will be described later with reference to FIGS.
[0021]
2 and 3 are diagrams for explaining changes in the COP ratio and the necessary refrigerant amount ratio with respect to the rotation speed ratio in the screw refrigeration apparatus 1 according to the present invention. A curve X indicated by a broken line is the screw refrigeration apparatus 1 and the auxiliary expansion valve 27 is normally closed, and a curve Y indicated by a solid line is a case where the auxiliary expansion valve 27 is normally open. .
As can be seen from FIG. 2, the COP ratio is substantially equal at a predetermined rotational speed in the vicinity of the rotational speed ratio of 50% (indicated by a one-dot chain line in the figure), and the function of the economizer 14 is stopped below that. In the curve X indicating the COP ratio, the COP ratio is further improved, and this becomes more remarkable as the rotational speed ratio becomes smaller. The curve Y in FIG. 2 is the same as the curve in FIG.
[0022]
Further, as can be seen from FIG. 3, the required amount of refrigerant in the curve X is smaller than that in the curve Y, the rotation speed ratio is less than a predetermined rotation speed near 50%, and as the rotation speed ratio becomes smaller Has become prominent. The curve Y in FIG. 3 is the same as the curve in FIG.
The characteristics of the COP ratio and the necessary refrigerant amount ratio are such that when the rotational speed becomes low, the function of the economizer 14 is stopped, thereby reducing the amount of refrigerant subcooling on the primary side of the main expansion valve 15. This is because the amount of flash gas at the inlet of the evaporator 16 is increased, and as a result, the amount of refrigerant liquid staying in the evaporator 16 is decreased, and the range of change in the refrigerant amount necessary for repeating the refrigeration cycle is reduced. It is estimated that
[0023]
The screw refrigeration apparatus 1 according to the present invention utilizes the characteristics of the COP ratio and the necessary refrigerant amount ratio with respect to the motor rotation speed. That is, in the screw refrigeration apparatus 1 according to the present invention, as described above, when the rotational speed of the motor 21 becomes equal to or less than the predetermined rotational speed near 50% of the rated rotational speed, the auxiliary expansion valve 27 is closed and the other In this case, the auxiliary expansion valve 27 is opened, but by doing so, the COP ratio of the screw refrigeration apparatus 1 is larger than the above-mentioned predetermined rotational speed, according to the curve Y in FIG. Below a predetermined number of revolutions, it will change according to the curve X in FIG. Further, the required refrigerant amount ratio of the screw refrigeration apparatus 1 is changed according to the curve Y in FIG. 3 when it is larger than the above-mentioned predetermined rotational speed, and according to the curve X in FIG.
[0024]
FIG. 4 shows another screw refrigeration apparatus 2 according to the present invention, which is substantially the same as the above-described screw refrigeration apparatus 1 except that the configuration of the economizer 14 is different. Are given the same numbers and their explanation is omitted.
In the screw refrigeration apparatus 2, the branch point of the economizer flow path L <b> 2 from the refrigerant circulation flow path L <b> 1 is between the liquid receiver 13 and the heat exchange unit 28.
Similarly to the above, based on the temperature signal from the temperature detector 32, the rotational speed of the motor 21 is controlled by the rotational speed controller 25, and the auxiliary expansion valve 27 is opened and closed by the valve opening / closing controller 29.
[0025]
Note that the screw refrigeration apparatus of the present invention may be applied to a system that uses hot water from a condenser, that is, a so-called heat pump. In the screw refrigeration apparatus in that case, as shown by a dotted line and a two-dot chain line in each of FIGS. 1 and 4, as a means for detecting a thermal load, the cooling from the condenser 12 is used instead of the temperature detector 32. A temperature detector 33 is provided at the outlet side of the water flow path 26, and a temperature signal indicating the detected temperature is sent from the temperature detector 33 to the calculation unit 23.
Further, in the screw refrigeration apparatuses 1 and 2, the liquid receiver 13 plays a role as a cushion tank that absorbs a change in the refrigerant amount necessary for repeating the refrigeration cycle, but the liquid receiver 13 is not necessarily required. You can omit it.
1 and 4 show an example in which the liquid receiver 13 is provided between the condenser 12 and the economizer 14, the present invention is not limited to this, and the liquid receiver 13 is connected to the economizer 14 and the economizer 14. It may be provided between the evaporator 16 or between the evaporator 16 and the screw compressor 11.
By the way, it is preferable to use a non-azeotropic refrigerant mixture as the refrigerant. When this non-azeotropic refrigerant mixture is used, since the refrigerant is supercooled by the economizer 14, the evaporation start temperature of the refrigerant in the evaporator 16 is lowered, so that the heat exchange efficiency in the evaporator 16 is improved.
[0026]
An oil-cooled screw compressor may be used as the screw compressor constituting the screw refrigeration apparatus of the present invention. In that case, an oil separator / recovery unit is interposed between the screw compressor 11 and the condenser 12, and the rotor chamber of the screw compressor passes through the oil cooler from the oil reservoir at the bottom of the oil separation / recovery unit. It is desirable to provide an oil supply flow path for supplying oil to the shaft seal portion, the bearing and the like.
Further, the screw compressor 11 is not limited to the one having only one stage of the compressor body, but includes one having a plurality of stages of compressor bodies arranged in series. The pressure part between the suction pressure of the compressor body of the first stage and the discharge pressure of the compressor body of the final stage is meant. That is, with respect to the multistage compressor body, the position where the economizer flow path L2 joins the refrigerant flow space in the screw compressor 11 is at the suction port of the first stage compressor body and the final stage compressor body. It suffices if it is between the discharge outlet.
[0027]
【The invention's effect】
As is clear from the above description, according to the first invention, in the screw refrigeration apparatus using the screw compressor and provided with the economizer, a motor with a variable rotation speed provided as a drive unit of the screw compressor, Based on the thermal load detection means for detecting the load and the thermal load signal from the thermal load detection means, when it is determined that the compression function force is excessive, the rotational speed of the motor is reduced and the compression function force is reduced. When it is determined that the rotation speed is insufficient, the rotation speed is increased, and in other cases, the rotation speed control unit that maintains the rotation speed, and the rotation speed causes the auxiliary expansion valve to be normally closed. When the auxiliary expansion valve is normally open, the auxiliary expansion valve is closed when the COP ratio is equal to or less than a predetermined number of rotations that are substantially equal to each other. Keep expansion valve open There a structure in which a switching control section.
According to the second invention, in addition to the configuration of the first invention, the thermal load detecting means is a temperature detector for detecting the temperature of the liquid to be cooled that has exited the evaporator.
Furthermore, according to the third invention, in addition to the structure of the first invention, the thermal load detecting means is a temperature detector that detects the temperature of the hot water that has exited the condenser.
[0028]
For this reason, when the rotational speed of the motor for driving the screw compressor is reduced, the function of the economizer is stopped, the amount of refrigerant liquid remaining in the evaporator is reduced, and the change in the amount of refrigerant necessary for the refrigeration cycle is reduced. As a result of the reduction of the width, there is an effect that it is possible to always maintain good performance and COP regardless of the change of the cooling heat load.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a screw refrigeration apparatus according to the present invention.
FIG. 2 is a diagram for explaining a relationship between a rotation speed ratio of a motor (screw rotor) and a COP ratio in the screw refrigeration apparatus according to the present invention.
FIG. 3 is a diagram for explaining a relationship between a rotation speed ratio of a motor (screw rotor) and a necessary refrigerant amount ratio in the screw refrigeration apparatus according to the present invention.
FIG. 4 is a diagram showing an overall configuration of another screw refrigeration apparatus according to the present invention.
FIG. 5 is a diagram showing a relationship between a rotation speed ratio of a motor (screw rotor) and heat insulation efficiency in a general screw compressor.
FIG. 6 is a diagram showing a relationship between a rotational speed ratio of a motor (screw rotor) and a COP ratio in a conventional screw refrigeration apparatus.
FIG. 7 is a diagram showing a relationship between a rotation speed ratio of a motor (screw rotor) and a necessary refrigerant amount ratio in a conventional screw refrigeration apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 Screw refrigeration apparatus 11 Screw compressor 12 Condenser 13 Receiver 14 Economizer 15 Main expansion valve 16 Evaporator 21 Motor 22 Power supply 23 Calculation part 24 Inverter 25 Rotational speed control part 26 Cooling water flow path 27 Auxiliary expansion valve 28 Heat Replacement part 29 Valve opening / closing control part 31 Cooled liquid flow path 32, 33 Temperature detector L1 Refrigerant circulation flow path L2 Economizer flow path

Claims (3)

スクリュ圧縮機から、少なくとも凝縮器、エコノマイザ、主膨張弁及び蒸発器を経て上記スクリュ圧縮機に戻る冷媒循環流路と、上記凝縮器と上記主膨張弁との間の冷媒の一部を上記エコノマイザの補助膨張弁を経た後、上記スクリュ圧縮機のロータ室内の中間圧力部に導くエコノマイザ流路とを備えたスクリュ冷凍装置において、
上記スクリュ圧縮機の駆動部として設けられた回転数可変のモータと、
熱負荷を検出する熱負荷検出手段と、
この熱負荷検出手段からの熱負荷信号に基づき、圧縮機能力が過大であると判断される場合には上記モータの回転数を下げ、上記圧縮機能力が不足していると判断される場合には、上記回転数を上げ、他の場合には上記回転数を維持させる回転数制御部と、
上記回転数が、上記補助膨張弁を常時閉とした場合と該補助膨張弁を常時開とした場合とのCOP比が両者略同等となる所定の回転数以下になった場合には、上記補助膨張弁を閉状態にし、その他の場合には、上記補助膨張弁を開状態に保つ弁開閉制御部と
を設けたことを特徴とするスクリュ冷凍装置。
Refrigerant circulation path returning from the screw compressor to at least the condenser, the economizer, the main expansion valve and the evaporator and returning to the screw compressor, and a part of the refrigerant between the condenser and the main expansion valve. In the screw refrigeration apparatus comprising an economizer flow path that leads to an intermediate pressure portion in the rotor chamber of the screw compressor after passing through the auxiliary expansion valve of
A motor with a variable number of revolutions provided as a drive unit of the screw compressor;
Thermal load detection means for detecting thermal load;
When it is determined that the compression function force is excessive based on the heat load signal from the heat load detection means, the number of rotations of the motor is decreased, and when it is determined that the compression function force is insufficient. A rotation speed control unit that increases the rotation speed and maintains the rotation speed in other cases;
If the COP ratio between the case where the auxiliary expansion valve is normally closed and the case where the auxiliary expansion valve is normally open is equal to or less than a predetermined rotation number where both are substantially equal, A screw refrigeration apparatus comprising: a valve opening / closing control unit that keeps the expansion valve closed and in other cases maintains the auxiliary expansion valve open.
上記熱負荷検出手段が、上記蒸発器を出た被冷却液の温度を検出する温度検出器であることを特徴とする請求項1に記載のスクリュ冷凍装置。  The screw refrigeration apparatus according to claim 1, wherein the thermal load detection means is a temperature detector that detects the temperature of the liquid to be cooled that has exited the evaporator. 上記熱負荷検出手段が、上記凝縮器を出た温水の温度を検出する温度検出器であることを特徴とする請求項1に記載のスクリュ冷凍装置。  The screw refrigeration apparatus according to claim 1, wherein the thermal load detection means is a temperature detector that detects the temperature of hot water that has exited the condenser.
JP2003134626A 2003-05-13 2003-05-13 Screw refrigeration equipment Expired - Lifetime JP4313083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134626A JP4313083B2 (en) 2003-05-13 2003-05-13 Screw refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134626A JP4313083B2 (en) 2003-05-13 2003-05-13 Screw refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2004340410A JP2004340410A (en) 2004-12-02
JP4313083B2 true JP4313083B2 (en) 2009-08-12

Family

ID=33525138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134626A Expired - Lifetime JP4313083B2 (en) 2003-05-13 2003-05-13 Screw refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4313083B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7156624B2 (en) * 2004-12-09 2007-01-02 Carrier Corporation Compressor sound suppression
JP4559241B2 (en) * 2005-01-21 2010-10-06 株式会社神戸製鋼所 Refrigeration equipment
CN1865812A (en) * 2005-05-19 2006-11-22 量子能技术股份有限公司 Heat pump system and method for heating a fluid
CN101321996A (en) * 2005-12-01 2008-12-10 开利公司 Method and equipment for cooling load in optimized economization type vapor compression system
BRPI0622229A2 (en) * 2006-12-29 2012-01-03 Carrier Corp Method for operating a transport refrigeration system
CN102301189B (en) * 2009-01-27 2013-06-19 三菱电机株式会社 Air Conditioner And Method Of Returning Refrigerating Machine Oil
EP2413065B1 (en) * 2009-03-26 2019-05-08 Mitsubishi Electric Corporation Refrigerator
JP2010261670A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Refrigerating device
JP2013001268A (en) * 2011-06-17 2013-01-07 Nippon Soken Inc Air conditioning device for vehicle
JP6071741B2 (en) * 2013-05-16 2017-02-01 株式会社神戸製鋼所 Heat pump system
CN104215008B (en) * 2014-10-08 2016-05-25 烟台荏原空调设备有限公司 A kind of method and system of screw refrigerator capacity regulating
EP3334937A1 (en) * 2015-08-11 2018-06-20 Carrier Corporation Screw compressor economizer plenum for pulsation reduction

Also Published As

Publication number Publication date
JP2004340410A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4069733B2 (en) Air conditioner
CN203249455U (en) Air conditioning device
JP5502459B2 (en) Refrigeration equipment
CN107110570A (en) Heat storage type air conditioner
WO2009147826A1 (en) Refrigeration cycle device
JP4313083B2 (en) Screw refrigeration equipment
KR101220583B1 (en) Freezing device
JP5484890B2 (en) Refrigeration equipment
JP6179842B2 (en) Refrigeration apparatus and additional refrigerant amount adjusting apparatus for refrigeration apparatus
KR101220663B1 (en) Freezing device
JP6080031B2 (en) Refrigeration equipment
JP4336619B2 (en) Engine heat pump
JP5523817B2 (en) Refrigeration equipment
KR101332478B1 (en) Freezing device
JP2013155972A (en) Refrigeration device
JP5502460B2 (en) Refrigeration equipment
JP2013164250A (en) Refrigerating apparatus
JP4367579B1 (en) Refrigeration equipment
JP6112388B2 (en) Refrigeration equipment
JP4902585B2 (en) Air conditioner
JP2011133208A (en) Refrigerating apparatus
JP6065261B2 (en) Refrigeration equipment
JP2011137556A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4313083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term