JP4309896B2 - Manipulator - Google Patents

Manipulator Download PDF

Info

Publication number
JP4309896B2
JP4309896B2 JP2006019222A JP2006019222A JP4309896B2 JP 4309896 B2 JP4309896 B2 JP 4309896B2 JP 2006019222 A JP2006019222 A JP 2006019222A JP 2006019222 A JP2006019222 A JP 2006019222A JP 4309896 B2 JP4309896 B2 JP 4309896B2
Authority
JP
Japan
Prior art keywords
axis
power transmission
manipulator
pulley
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006019222A
Other languages
Japanese (ja)
Other versions
JP2006192281A (en
Inventor
野 誠 神
川 豊 美 宮
田 志 郎 塚
藤 章 工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006019222A priority Critical patent/JP4309896B2/en
Publication of JP2006192281A publication Critical patent/JP2006192281A/en
Application granted granted Critical
Publication of JP4309896B2 publication Critical patent/JP4309896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Transmission Devices (AREA)

Description

手術支援用マニピュレーターやエネルギー機器などの狭隘部補修用マニピュレーターに関する。   The present invention relates to a manipulator for repairing a narrow part such as an operation support manipulator or an energy device.

従来、胆嚢摘出手術などの腹腔鏡下手術においては、図31に示すように、患者150の腹部に小さな穴151、152、153をいくつかあけ、それらにトラカール154を取り付け、トラカール154を介して、それらの孔に内視鏡161、鉗子171、172などを挿入し、術者(通常、外科医)160が内視鏡161の映像をモニタ162で見ながら手術を行っている。このような手術方法は、開腹を必要としないため、患者への負担が少なく、術後の回復や退院までの日数が大幅に低減される。このため、適用分野の拡大が期待されている。   Conventionally, in laparoscopic surgery such as cholecystectomy, as shown in FIG. 31, several small holes 151, 152, and 153 are made in the abdomen of a patient 150, and a trocar 154 is attached to them, The endoscope 161, forceps 171, 172, and the like are inserted into these holes, and an operator (usually a surgeon) 160 performs an operation while viewing an image of the endoscope 161 on the monitor 162. Since such an operation method does not require laparotomy, the burden on the patient is small, and the number of days until recovery and discharge from the operation is greatly reduced. For this reason, expansion of application fields is expected.

そのような背景のもと、発明者らは、図32に示すような、従来の鉗子にロボット技術を取り入れた医療用マニピュレーター(ロボット鉗子)1を提案している(特許文献1参照)。このマニピュレーター1は、姿勢操作部23と処置操作部24とを有する操作指令部20と、一端側が前記操作指令部20に接続された連結部30と、前記連結部30の他端側に接続され、処置部14と、前記処置部14を2自由度以上に姿勢変更可能に支持する支持部15、16と、を有する作業部10と、前記姿勢操作部23からの操作指令を前記支持部に送って前記処置部14の姿勢を変更させるとともに、前記処置操作部24からの操作指令を前記処置部に送って前記処置部14を動作させる制御部(図示せず)と、を備えた医療用マニピュレーターである。   Under such a background, the inventors have proposed a medical manipulator (robot forceps) 1 in which robot technology is incorporated into a conventional forceps as shown in FIG. 32 (see Patent Document 1). The manipulator 1 is connected to an operation command unit 20 having a posture operation unit 23 and a treatment operation unit 24, a connection unit 30 having one end connected to the operation command unit 20, and the other end of the connection unit 30. The working unit 10 having the treatment unit 14 and the support units 15 and 16 that support the treatment unit 14 so that the posture can be changed in two or more degrees of freedom, and an operation command from the posture operation unit 23 to the support unit. And a control unit (not shown) for operating the treatment unit 14 by sending an operation command from the treatment operation unit 24 to the treatment unit and changing the posture of the treatment unit 14 It is a manipulator.

さらに、本発明者らは、縫合結紮作業に適した自由度配置として、図33に示すような医療用マニピュレーターも提案している(特許文献2参照)。医療用マニピュレーター1は、作業部10と、操作指令部20と、両端が作業部10と操作指令部20とに接続された連結部30とを備えている。作業部10は、連結部30の中心軸方向31に対して直交する第1の回転軸11と、第1の回転軸11に対して直交する第2の回転軸12を有する支持部と、術部に処置を施す処置部(グリッパ)14の中心軸方向が、第2の回転軸12と概ね平行に配置されている。言いかえれば、作業部10は、グリッパ14を2自由度で姿勢変更が可能に支持する支持部としてのヨー軸関節支持部15およびロール軸関節支持部16とを有している。操作指令部20は、連結部30の中心軸方向31に対して直交する第3の回転軸21と、第3の回転軸21に対して直交する第4の回転軸22からなる姿勢操作部23と、操作者が把持して操作する際の操作者の手首の回転方向と、第4の回転軸22の軸方向が概ね平行である処置操作部24とを有している。術部に処置を施す処置部14の把持動作13は、処置操作部24の把持動作25により行う。   Furthermore, the present inventors have also proposed a medical manipulator as shown in FIG. 33 as a degree of freedom arrangement suitable for a suture ligation operation (see Patent Document 2). The medical manipulator 1 includes a working unit 10, an operation command unit 20, and a connecting unit 30 having both ends connected to the work unit 10 and the operation command unit 20. The working unit 10 includes a first rotating shaft 11 that is orthogonal to the central axis direction 31 of the connecting unit 30, a support unit that includes a second rotating shaft 12 that is orthogonal to the first rotating shaft 11, The central axis direction of the treatment portion (gripper) 14 for performing treatment on the portion is disposed substantially parallel to the second rotation shaft 12. In other words, the working unit 10 includes a yaw shaft joint support unit 15 and a roll shaft joint support unit 16 as support units that support the gripper 14 so that the posture can be changed with two degrees of freedom. The operation command unit 20 includes a posture operation unit 23 including a third rotation shaft 21 orthogonal to the central axis direction 31 of the connecting unit 30 and a fourth rotation shaft 22 orthogonal to the third rotation shaft 21. And a treatment operation unit 24 in which the rotation direction of the wrist of the operator when the operator grips and operates and the axial direction of the fourth rotation shaft 22 are substantially parallel to each other. The grasping operation 13 of the treatment unit 14 for performing treatment on the surgical site is performed by the grasping operation 25 of the treatment operation unit 24.

遠隔操作型マスタスレーブマニピュレーターに対して、このロボット鉗子は、操作部(マスタ)と鉗子先端部ハンド(スレーブ)を連結させ一体化し、従来の鉗子の利点である術者が行った方が簡単で確実な大きく素早い操作と、マニピュレーターの利点である微細な作業や難しい角度からの操作の両方を可能としたものである。先端部に曲げ・回転などの関節を備えているため、自由自在にハンドの姿勢を動かすことができ、これまでの鉗子では難しかったいろいろな方向からの縫合作業や結紮作業が容易になる。また、右手はロボット鉗子、左手は従来の鉗子という具合に、従来の手術機器と一緒に使うことができる。さらに、システムが簡単・コンパクトなため、低コストで導入できるというメリットがある。   Compared to the remote-operated master-slave manipulator, this robot forceps is easier to perform by the surgeon, which is the advantage of conventional forceps, by connecting and integrating the operation unit (master) and forceps tip hand (slave). It is possible to perform both reliable large and quick operations and fine operations, which are the advantages of manipulators, and operations from difficult angles. Since the tip has a joint such as bending and rotation, the posture of the hand can be freely moved, and sutures and ligatures from various directions that have been difficult with conventional forceps become easy. In addition, the right hand can be used with a conventional surgical instrument, such as a robot forceps and a left hand a conventional forceps. Furthermore, since the system is simple and compact, there is an advantage that it can be introduced at low cost.

また、同様の構成のマニピュレーターは、作業者が直接その場で作業をすることが困難な場所での作業、すなわちエネルギー機器などの狭隘部の補修作業などにも適している。当然、マニピュレーターの寸法(長さ、太さ、大きさなど)は、作業内容、作業領域に応じて設計されるものである。従って、必ずしも、医療用に限定するものではない。
特開2000-350735号公報 特開2002-102248号公報 特許第2519749号公報
A manipulator having a similar configuration is also suitable for work in a place where it is difficult for an operator to work directly on the spot, that is, for repairing a narrow part such as an energy device. Of course, the dimensions (length, thickness, size, etc.) of the manipulator are designed according to the work content and work area. Therefore, it is not necessarily limited to medical use.
JP 2000-350735 A Japanese Patent Laid-Open No. 2002-102248 Japanese Patent No. 2519749

手術支援用マニピュレーターやエネルギー機器などの狭隘部補修用マニピュレーターは、小型・軽量化、高信頼性化、高剛性化、高操作性化、高作業性化、低コスト化が要求され、そのためには、動力伝達機構を小型・軽量化、高信頼性化、高剛性化、低コスト化しなければならない。特に、特許文献1や特許文献2で示した構成のマニピュレーターにおいては、マスタ・スレーブが一体化されているという制限があるため、動力伝達機構の形状、寸法、配置などが操作性に大きな影響を及ぼす。   Narrow part repair manipulators such as surgical support manipulators and energy devices are required to be compact and lightweight, highly reliable, highly rigid, highly maneuverable, highly workable, and low cost. Therefore, the power transmission mechanism must be reduced in size, weight, reliability, rigidity, and cost. In particular, in the manipulators having the configurations shown in Patent Document 1 and Patent Document 2, there is a limitation that the master and the slave are integrated, so that the shape, size, arrangement, etc. of the power transmission mechanism have a great influence on the operability. Effect.

マニピュレーターをはじめロボット、メカトロ機器では、アクチュエータの動力を手先効果器(たとえば、ハンドや工具など)に伝える動力伝達機構としてワイヤとプーリによる伝達が一般的に用いられる。ワイヤとプーリによる動力伝達機構において、多回転の動作範囲を必要とする場合、通常は、図22に示すように、プーリ50、51にワイヤ52を巻き付け、摩擦力による動力伝達を行う。伝達トルクを大きくするためには、摩擦力を大きくすることが必要で、ワイヤのプーリへの巻き付け角度を大きくする、多回転数巻き付ける、または、ワイヤ張力を大きくすればよい。しかしながら、基本的に摩擦による駆動であるため、ワイヤの伸びによる張力低下が生じた場合、ワイヤとプーリ間ですべりが生じ、伝達トルクの低下を招くことになる。このため、張力調整機構が付加されることがあるが、機構が複雑になり、装置の大型化、コスト高の原因となる。さらには関節剛性の低下を招くことになる。また、プーリにワイヤを多回転巻き付けるためには、巻き付け回転数に応じたプーリ幅が必要となるため、装置が大型化する原因となる。そもそも、手術支援用マニピュレーターやエネルギー機器などの狭隘部補修用マニピュレーターには、多回転巻き付けるための十分なスペースがないのが普通である。一方、プーリにワイヤを固定するには、通常、図23に示すように、固定部材53Aを用いて固着する。しかし、ワイヤを多回転巻き付ける場合、固定部材とワイヤが干渉するため、通常、動作範囲(回転角)は、180度未満となる。巻き付け角を増やす方法としては、特許文献3があるが、最大270度程度までであり、360度以上多回転させることは困難である。プーリの回転範囲が限られた状態では、マニピュレーター関節の動作領域すなわち手先効果機の作業領域が狭くなり、作業に支障が生じ、作業性、操作性を大幅に低下させてしまう。作業に支障のない十分な作業領域を得るためには、できる限り多い回転数を必要とするが、従来の方法による動力伝達機構では困難である。   In robots and mechatronic devices such as manipulators, transmission by a wire and a pulley is generally used as a power transmission mechanism that transmits the power of an actuator to a hand effector (for example, a hand or a tool). In a power transmission mechanism using a wire and a pulley, when a multi-rotation operation range is required, a wire 52 is usually wound around the pulleys 50 and 51 as shown in FIG. In order to increase the transmission torque, it is necessary to increase the frictional force, and it is only necessary to increase the winding angle of the wire around the pulley, to wind the multi-rotation number, or to increase the wire tension. However, since it is basically driven by friction, when a tension drop occurs due to the elongation of the wire, a slip occurs between the wire and the pulley, resulting in a reduction in transmission torque. For this reason, a tension adjusting mechanism may be added, but the mechanism becomes complicated, resulting in an increase in size and cost of the apparatus. Furthermore, the joint rigidity is reduced. In addition, in order to wind the wire around the pulley multiple times, a pulley width corresponding to the winding rotation speed is required, which causes the apparatus to be enlarged. In the first place, manipulators for narrow part repair such as operation support manipulators and energy devices usually do not have sufficient space for multiple turns. On the other hand, in order to fix the wire to the pulley, it is usually fixed using a fixing member 53A as shown in FIG. However, when the wire is wound many times, the fixing member and the wire interfere with each other, so that the operation range (rotation angle) is usually less than 180 degrees. As a method for increasing the winding angle, there is Patent Document 3, but it is up to about 270 degrees, and it is difficult to make more than 360 degrees. In a state where the rotation range of the pulley is limited, the operation area of the manipulator joint, that is, the work area of the hand effector is narrowed, causing trouble in the work, and greatly reducing workability and operability. In order to obtain a sufficient work area that does not hinder the work, as many rotational speeds as possible are required, but it is difficult with the power transmission mechanism according to the conventional method.

一方、図24に示すようなワイヤとプーリによる動力伝達機構において、ワイヤ径が細い場合や駆動プーリと従動プーリ間の距離が長い場合、動力伝達時にワイヤの弾性変形(伸び)の影響が大きくなり、十分な動力伝達ができないことがある。また、駆動側プーリを固定した保持状態やサーボロック状態では、従動軸(出力軸)側に十分な回転剛性が得られないという問題がある。所望の回転剛性が得られない場合、十分な作業ができず操作性が低下し、作業性が悪くなる。   On the other hand, in the power transmission mechanism using wires and pulleys as shown in FIG. 24, when the wire diameter is thin or the distance between the driving pulley and the driven pulley is long, the influence of elastic deformation (elongation) of the wire during power transmission increases. , Sufficient power transmission may not be possible. Further, there is a problem that sufficient rotational rigidity cannot be obtained on the driven shaft (output shaft) side in the holding state where the driving pulley is fixed or in the servo lock state. If the desired rotational rigidity cannot be obtained, sufficient work cannot be performed, operability is lowered, and workability is deteriorated.

また、図25、図27に示すようなマスタとスレーブが一体化された一体型マスタスレーブマニピュレーターでは、通常、連結部30まわりの偏心質量が生じる。この偏心質量の配置によっては、重力の影響により連結部まわりに、操作者が意図せぬ回転トルクが生じ、操作性の低下を招くことになる。特に、操作時の初期状態や操作において最も標準的な姿勢であるマニピュレーターの基準姿勢時に、連結部まわりに偏心質量による回転トルクが生じた場合、操作者に余計な操作力を課すことになるため、大幅な操作性低下を招くことになる。また、図25に示すような、共通ロール軸、ピッチ軸、ロール軸の場合は、図に示す基準姿勢の状態から、作業部の姿勢をヨー方向(横方向、左右方向)に変化させることは、特異姿勢のため困難である。一方、図29に示す自由度構成、共通ロール軸、ヨー軸、ロール軸の場合は、図に示す基準姿勢の状態から、作業部の姿勢をピッチ方向(縦方向、上下方向)に変化させることは、特異姿勢のため困難である。実際の操作においては、基準姿勢の状態から作業部の姿勢を横方向および縦方向に誘導させる割合が多く、図25や図29に示す自由度配置では、操作性の低下を招くことになる。   In an integrated master-slave manipulator in which a master and a slave are integrated as shown in FIGS. 25 and 27, an eccentric mass around the connecting portion 30 is usually generated. Depending on the arrangement of the eccentric mass, a rotational torque unintended by the operator is generated around the connecting portion due to the influence of gravity, and the operability is lowered. In particular, if rotational torque due to eccentric mass occurs around the connecting part in the initial state during operation or the standard posture of the manipulator, which is the most standard posture for operation, an extra operating force is imposed on the operator. This will cause a significant decrease in operability. In the case of a common roll axis, pitch axis, and roll axis as shown in FIG. 25, it is possible to change the attitude of the working unit from the reference attitude state shown in the figure to the yaw direction (lateral direction, left-right direction). It is difficult because of the peculiar posture. On the other hand, in the case of the configuration of degrees of freedom shown in FIG. 29, the common roll axis, the yaw axis, and the roll axis, the posture of the working unit is changed in the pitch direction (vertical direction, vertical direction) from the reference posture state shown in the drawing. Is difficult due to its unique posture. In actual operation, the ratio of guiding the posture of the working unit from the reference posture state in the horizontal direction and the vertical direction is large, and the degree of freedom shown in FIGS. 25 and 29 causes a drop in operability.

本発明は、基端部と先端部を有する連結部と、
前記連結部の基端部に接続された操作部と、
前記連結部の先端部に接続された作業部と、
前記操作部からの操作指令を前記作業部に伝える動力伝達機構と、
駆動装置と
を有し、
前記駆動装置は前記連結部の基端部側に設けられ、前記動力伝達機構を駆動する、前記連結部まわりの偏心質量としての、前記駆動装置であって、
前記動力伝達機構は、可撓性動力伝達部材と、この可撓性動力伝達部材が巻き掛けられる駆動側プーリと従動側プーリの一対のプーリと、を有し、
前記作業部は、前記従動側プーリの回転軸と同軸または平行な軸に回動可能な第1の関節軸を有し、
前記操作部は、前記第1の関節軸と平行な第1の操作軸を有し、
前記駆動側プーリの回転軸は、マニピュレーターとしての基準姿勢時に、前記連結部まわりの偏心質量としての前記駆動装置が、前記連結部に対して概ね鉛直下向きになるように配置され、
第1の操作軸と前記駆動側プーリの回転軸が互いにねじれの位置に設置されている
ことを特徴とする。
The present invention includes a connecting portion having a proximal end portion and a distal end portion;
An operation unit connected to a base end of the coupling unit;
A working unit connected to the tip of the coupling unit;
A power transmission mechanism for transmitting an operation command from the operation unit to the working unit;
A drive device, and
The drive device is provided on the base end side of the connecting portion and drives the power transmission mechanism as an eccentric mass around the connecting portion.
The power transmission mechanism includes a flexible power transmission member, and a pair of pulleys, a driving pulley and a driven pulley, around which the flexible power transmission member is wound.
The working unit has a first joint shaft that is rotatable about an axis that is coaxial or parallel to the rotation axis of the driven pulley.
The operation unit has a first operation axis parallel to the first joint axis,
The rotation axis of the driving pulley is arranged so that the driving device as an eccentric mass around the connecting portion is substantially vertically downward with respect to the connecting portion at the reference posture as a manipulator,
The first operating shaft and the rotating shaft of the driving pulley are installed at a twisted position.

さらに、自由度構成が、連結部による共通ロール軸と、横方向の回転を許容するヨー軸と縦方向の回転を許容するピッチ軸との中間の斜め方向への回転を許容する屈曲軸と、ロール軸と、の自由度構成からなることを特徴とする。   Further, the flexure axis is configured to allow rotation in a diagonal direction between a common roll axis by the connecting portion, a yaw axis that allows lateral rotation and a pitch axis that allows vertical rotation, and It is characterized by comprising a degree of freedom configuration with a roll shaft.

操作時の初期状態や操作において最も標準的な姿勢であるマニピュレーターの基準姿勢時に、連結部まわりに偏心質量による回転トルクが生じない構成となっているため、操作者に余計な操作力を課すことになく、作業性、操作性が大幅に向上する。また、自由度構成が、連結部による共通ロール軸と、ヨー軸(横方向)とピッチ軸(縦方向)の間方向(斜め方向)の屈曲軸と、ロール軸の自由度構成となっているため、基準姿勢の状態から作業部の姿勢誘導が容易となり作業性、操作性が大幅に向上する。   In the initial state during operation and the standard posture of the manipulator, which is the most standard posture for operation, it is configured so that rotational torque due to the eccentric mass does not occur around the connecting part, thus imposing extra operating force on the operator. In addition, workability and operability are greatly improved. In addition, the degree of freedom configuration is a common roll axis by the connecting portion, a bending axis in a direction (oblique direction) between the yaw axis (lateral direction) and the pitch axis (longitudinal direction), and a degree of freedom configuration of the roll axis. Therefore, the posture guidance of the working unit is facilitated from the state of the reference posture, and workability and operability are greatly improved.

すなわち、小型・軽量、高信頼性、高剛性、低コストな動力伝達機構を提供することが可能となり、さらにその動力伝達機構を有することにより高操作性、高作業性を備えた手術支援用マニピュレーターやエネルギー機器などの狭隘部補修用マニピュレーターを提供することが可能となる。   In other words, it is possible to provide a power transmission mechanism that is compact, lightweight, highly reliable, highly rigid, and low in cost, and further has a manipulator for operation support that has high operability and high workability by having the power transmission mechanism. It is possible to provide manipulators for repairing narrow spaces such as energy equipment.

操作時の初期状態や操作において最も標準的な姿勢であるマニピュレーターの基準姿勢時に、連結部まわりに偏心質量による回転トルクが生じない構成となっているため、操作者に余計な操作力を課すことはなく、作業性、操作性が大幅に向上する。また、自由度構成が、連結部による共通ロール軸と、ヨー軸とピッチ軸の中間方向の屈曲軸と、ロール軸の自由度構成となっているため、基準姿勢の状態から作業部の姿勢誘導が容易となり作業性、操作性が大幅に向上する。   In the initial state during operation and the standard posture of the manipulator, which is the most standard posture for operation, it is configured so that rotational torque due to the eccentric mass does not occur around the connecting part, thus imposing extra operating force on the operator. No, workability and operability are greatly improved. In addition, since the freedom degree configuration is a common roll axis by the connecting part, a bending axis in the middle direction between the yaw axis and the pitch axis, and a degree of freedom of the roll axis, the attitude guidance of the working part from the reference attitude state Becomes easier and the workability and operability are greatly improved.

すなわち、小型・軽量、高信頼性、高剛性、低コストな動力伝達機構を提供することが可能となり、さらにその動力伝達機構を有することにより高操作性、高作業性を備えた手術支援用マニピュレーターやエネルギー機器などの狭隘部補修用マニピュレーターを提供することが可能となる。   In other words, it is possible to provide a power transmission mechanism that is compact, lightweight, highly reliable, highly rigid, and low in cost, and further has a manipulator for operation support that has high operability and high workability by having the power transmission mechanism. It is possible to provide manipulators for repairing narrow spaces such as energy equipment.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、本発明の第1の実施の形態によるマニピュレーターの動力伝達機構の駆動側および従動側のワイヤ・プーリ部を示す断面図・側面図である。図2は、動力伝達系全体を示す分解状態の概略構成図、図3は、マニピュレーターに組み込んだ場合の概略構成図である。図1に示すように本発明の第1の実施の形態によるマニピュレーターの動力伝達機構においては、駆動側プーリ50、従動側プーリ51、ワイヤ(可撓性動力伝達部材)52、円柱状又はテーパ状のピン53、ワイヤ連結部材(図示せず)から構成されている。ワイヤはステンレスワイヤロープが一般的であるが、タングステンや繊維系材料など他の材質のものでも問題なく、可撓性を有するものであればよい。本発明ではこれら全てを含めてワイヤとよぶ。なお、ワイヤ連結部材は、一本の直線状のワイヤの両端を連結してループ状にするために必要な部材のことである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view and a side view showing wire and pulley portions on the driving side and driven side of the power transmission mechanism of the manipulator according to the first embodiment of the present invention. FIG. 2 is a schematic configuration diagram of an exploded state showing the entire power transmission system, and FIG. 3 is a schematic configuration diagram when incorporated in a manipulator. As shown in FIG. 1, in the power transmission mechanism of the manipulator according to the first embodiment of the present invention, a driving pulley 50, a driven pulley 51, a wire (flexible power transmission member) 52, a columnar shape or a tapered shape. Pin 53 and a wire connecting member (not shown). The wire is generally a stainless steel wire rope, but other materials such as tungsten and fiber materials may be used as long as they have flexibility. In the present invention, all of these are called wires. In addition, a wire connection member is a member required in order to connect the both ends of one linear wire, and to make it a loop shape.

ワイヤ52はループ状に構成されており、本発明の第1の実施例においては、プーリ50、51にそれぞれ1.5回転ずつ巻きつけている。ワイヤ52は、固定ピン53でプーリ50、51に固定されている(締結部)。この構成では、最大±270度の動作範囲が得られる。   The wire 52 is formed in a loop shape, and is wound around the pulleys 50 and 51 by 1.5 rotations in the first embodiment of the present invention. The wire 52 is fixed to the pulleys 50 and 51 by a fixing pin 53 (fastening portion). With this configuration, an operating range of up to ± 270 degrees can be obtained.

図2は、動力伝達系全体を示す概略構成図の一例として、駆動側プーリ50には減速機付きモータ54が、従動側プーリ51にはアーム55が取り付ける例を図示しているが、必ずしもこの構成である必要はなく、基本は駆動側の動力を従動側へ伝達するための動力伝達機構である。図3には、マニピュレーター1に組み込んだ場合の概略構成図を図示しているが、必ずしも本構成である必要はない。マニピュレーター1は、作業部10、操作部20、連結部30および制御部(図示せず)などから構成され、操作者は操作部を操作することで作業部の位置姿勢を誘導する。本マニピュレーターは狭隘部での作業ないし狭隘部を通過させての作業を行うため、作業部10は小型コンパクトに構成する必要がある。かつ、高い操作性、作業性を得るためには、十分な動作領域(従動軸の回転角度)が必要となる。   FIG. 2 shows an example of a schematic configuration diagram showing the entire power transmission system, in which an example is shown in which a motor 54 with a speed reducer is attached to the driving pulley 50 and an arm 55 is attached to the driven pulley 51. It is not necessary to have a configuration, and a basic is a power transmission mechanism for transmitting power on the driving side to the driven side. Although FIG. 3 shows a schematic configuration diagram when incorporated in the manipulator 1, this configuration is not necessarily required. The manipulator 1 includes a work unit 10, an operation unit 20, a connection unit 30, a control unit (not shown), and the like, and the operator guides the position and orientation of the work unit by operating the operation unit. Since the manipulator performs work in a narrow part or work through a narrow part, the work part 10 needs to be configured in a small and compact manner. In addition, in order to obtain high operability and workability, a sufficient operation area (rotation angle of the driven shaft) is required.

次に、駆動部の詳細を示すために、プーリ50ないし51の斜視図を図4に示す。基本的には駆動プーリ50と従動プーリ51は同構造でよい。プーリ50には、ワイヤが嵌め込み可能な幅のスリット溝部56とその概略中心部に円柱状又はテーパ状の穴57を有している。図5にワイヤ12をプーリ50に固定するための固定ピン53の斜視図を図5に示す。固定ピン53は、円柱状又はテーパ状の形状で、概略中心にワイヤ通過可能な穴58があいている。図6(a)−(c)は、固定の手順を示す図である。概略中心にワイヤ通過可能な穴があいている円柱状又はテーパ状の固定ピン53に、ワイヤを通過させた後に、円柱状又はテーパ状の固定ピン53を、プーリ50の円柱状又はテーパ状の穴57に差し込むことにより、ワイヤ52をプーリ50に固定する。ピン53の上面は概ねプーリ50の外周面の高さと一致させる寸法関係とすることにより、回転角度が大きい時にも隣のワイヤと干渉しない構成となる。また、テーパ形状とすることでくさび効果により、ワイヤ52をより強固にプーリ50に固定できる。従って、ワイヤ52をより強固にプーリ50に固定するとともに、多回転が可能となる。   Next, in order to show the details of the drive unit, a perspective view of the pulleys 50 to 51 is shown in FIG. Basically, the drive pulley 50 and the driven pulley 51 may have the same structure. The pulley 50 has a slit groove portion 56 having a width in which a wire can be fitted, and a cylindrical or tapered hole 57 at a substantially central portion thereof. FIG. 5 is a perspective view of the fixing pin 53 for fixing the wire 12 to the pulley 50. FIG. The fixing pin 53 has a columnar shape or a tapered shape, and a hole 58 through which a wire can pass is formed at the approximate center. FIGS. 6A to 6C are diagrams showing a fixing procedure. After passing the wire through a cylindrical or tapered fixing pin 53 having a hole through which the wire can pass at the approximate center, the cylindrical or tapered fixing pin 53 is connected to the columnar or tapered shape of the pulley 50. The wire 52 is fixed to the pulley 50 by being inserted into the hole 57. By making the upper surface of the pin 53 have a dimensional relationship that approximately matches the height of the outer peripheral surface of the pulley 50, even when the rotation angle is large, it does not interfere with the adjacent wire. Moreover, the wire 52 can be more firmly fixed to the pulley 50 by the wedge effect by adopting the taper shape. Therefore, the wire 52 is more firmly fixed to the pulley 50 and multiple rotations are possible.

図7は、テーパ状でまたは円柱状のピン53のワイヤ通過可能な穴58の形状の例を示した図である。円形の穴58の場合(a)、低コストである。一方、図7(b)−(d)のように、スリット部58aを形成することにより穴58が変形しやすいため、くさび効果による締め付け力をワイヤ52に効率よく伝えることが可能なため、さらに締め付け力は上昇する。   FIG. 7 is a view showing an example of the shape of the hole 58 through which the wire of the pin 53 having a tapered shape or a cylindrical shape can pass. In the case of the circular hole 58 (a), the cost is low. On the other hand, as shown in FIGS. 7B to 7D, since the hole 58 is easily deformed by forming the slit portion 58a, it is possible to efficiently transmit the tightening force due to the wedge effect to the wire 52. The clamping force increases.

また、通常、本発明による実施例では、ワイヤ52のピン53への固定作業とピン53のプーリ50への固定作業とを、ピン53をテーパの穴57に挿入するという作業により、同時に行うことが可能となり作業効率が向上する。   Usually, in the embodiment according to the present invention, the fixing operation of the wire 52 to the pin 53 and the fixing operation of the pin 53 to the pulley 50 are simultaneously performed by the operation of inserting the pin 53 into the tapered hole 57. Work efficiency is improved.

本発明の第1の実施例によれば、ワイヤ52とプーリ50,51による動力伝達機構において、摩擦駆動の場合の張力調整機構を必要とせず、また、ワイヤ52とワイヤ53同士が、プーリ50,51への締結部において干渉しない構成であり、省スペース、多回転に対応可能であり、さらに、くさび効果で強い締結力が得られる。これにより、マニピュレーター関節の動作領域すなわち手先効果機の作業領域が広くなり、これにより作業に支障のない十分な作業領域が得られるため、作業性、操作性が大幅に向上する。   According to the first embodiment of the present invention, the power transmission mechanism using the wire 52 and the pulleys 50 and 51 does not require a tension adjusting mechanism in the case of friction drive, and the wire 52 and the wire 53 are connected to each other by the pulley 50. , 51 is a configuration that does not interfere with the fastening portion, 51 can be space-saving and can handle multiple rotations, and a strong fastening force can be obtained with a wedge effect. Thereby, the operation area of the manipulator joint, that is, the work area of the hand effector is widened, and thereby a sufficient work area that does not hinder the work can be obtained, so that workability and operability are greatly improved.

図8〜図12は、本発明の第2の実施の形態によるマニピュレーターの動力伝達機構の駆動側および従動側のワイヤ・プーリ部を示す断面図である。ワイヤ52におけるプーリ50,51間の部分に、中空軸を挿入し又は中実軸60で連結した例を示す。ワイヤ52のプーリへの連結方法はこれらの図に示すように、いろいろ考えられる。これらのいずれのようにしても問題はない。図9、図11は、下側の中空軸60aにワイヤ52を通過させ少なくとも2箇所以上で固着(たとえば圧着)した構成である。一般に固着部の引っ張り強度は、ワイヤ52そのものの引っ張り強度より劣るため、固着部の強度信頼性を確保することが課題であるが、ワイヤ52を中空軸60aに通過させることにより、少なくともワイヤ52の引っ張り強度は保たれるため、固着(たとえば圧着)の不良による固着部の破断の問題を回避できる。   FIGS. 8 to 12 are cross-sectional views showing the wire and pulley portions on the driving side and the driven side of the power transmission mechanism of the manipulator according to the second embodiment of the present invention. An example in which a hollow shaft is inserted into a portion of the wire 52 between the pulleys 50 and 51 or connected by a solid shaft 60 is shown. Various methods of connecting the wire 52 to the pulley are conceivable as shown in these drawings. There is no problem with either of these. 9 and 11 show a configuration in which the wire 52 is passed through the lower hollow shaft 60a and fixed (for example, pressure-bonded) at least at two or more locations. In general, the tensile strength of the fixing portion is inferior to the tensile strength of the wire 52 itself, so it is a problem to ensure the strength reliability of the fixing portion. However, by passing the wire 52 through the hollow shaft 60a, at least the wire 52 Since the tensile strength is maintained, it is possible to avoid the problem of breakage of the fixing portion due to poor fixing (for example, pressure bonding).

図8−図11において、少なくとも高張力を受ける側(下側)のワイヤ52を、中実軸棒60bで連結するか、中空軸60aに貫通させている。つまり、ワイヤ52における、一対のプーリ50,51間に張設された部分としての、2本のワイヤ部分(動力伝達系統)のうちの高張力側のワイヤ52を、中空軸60a又は中実軸60bで補強している。このように、高張力を受けるワイヤ52が片側の場合(下側のワイヤと仮定)、少なくとも高張力を受ける側のワイヤ52を、中空軸60aに貫通させ、又は中実軸棒60bで連結することでも十分な効果が得られる。   8-11, the wire 52 on the side (lower side) that receives at least high tension is connected by a solid shaft rod 60b or penetrated through the hollow shaft 60a. That is, the wire 52 on the high tension side of the two wire portions (power transmission system) as the portion stretched between the pair of pulleys 50 and 51 in the wire 52 is replaced with the hollow shaft 60a or the solid shaft. Reinforced with 60b. Thus, when the wire 52 that receives high tension is on one side (assumed to be the lower wire), at least the wire 52 that receives high tension passes through the hollow shaft 60a or is connected by the solid shaft rod 60b. Even a sufficient effect can be obtained.

図12は、円盤状の支持部材61の穴61a,61aにより前述の中空軸60a又は中実軸60bを摺動自在に支持した構成例である。同図12では、支持部材61に6箇所の穴61a,61a、・・・があいており、そのうちの2つに中空軸60a又は中実軸棒60bを通過支持させている。穴の数は駆動軸数に対応した個数となる。   FIG. 12 shows a configuration example in which the hollow shaft 60a or the solid shaft 60b is slidably supported by the holes 61a and 61a of the disk-shaped support member 61. In FIG. 12, the support member 61 has six holes 61a, 61a,..., Two of which support the hollow shaft 60a or the solid shaft rod 60b. The number of holes corresponds to the number of drive shafts.

ワイヤ52の両側(図では上下)を、中空軸60aに通し又は中実軸60bで連結した場合、駆動プーリ50と従動プーリ51の軸が鉛直方向に向うように配置されている時は、重力的にバランスするため、中空軸60a又は中実軸60bの重力成分が駆動トルク増大を引き起こすことはない。しかし、水平方向に配置した時には、中空軸60a又は中実軸60bの重力の影響がワイヤ52の張力に対して無視できない影響を及ぼすことがある。場合によっては振動増大やワイヤ破断などの事態を引き起こす。そのような場合、図12に示すような支持部材61で支持することにより、重力の影響を低減させることが可能となる。また、駆動プーリ50と従動プーリ61aが連結部30の一部としてのパイプ62に内設される場合、支持部材61は、図13のような円盤状の支持部材を、図14に示すように、パイプ62内の所定間隔毎の必要箇所に配置し、固定すればよい。   When both sides (upper and lower in the figure) of the wire 52 are passed through the hollow shaft 60a or connected by the solid shaft 60b, gravity is applied when the axes of the drive pulley 50 and the driven pulley 51 are oriented in the vertical direction. Therefore, the gravity component of the hollow shaft 60a or the solid shaft 60b does not cause an increase in driving torque. However, when arranged in the horizontal direction, the influence of the gravity of the hollow shaft 60 a or the solid shaft 60 b may have a non-negligible effect on the tension of the wire 52. In some cases, it may cause an increase in vibration or breakage of the wire. In such a case, it is possible to reduce the influence of gravity by supporting the support member 61 as shown in FIG. Further, when the driving pulley 50 and the driven pulley 61a are installed in the pipe 62 as a part of the connecting portion 30, the supporting member 61 is a disk-shaped supporting member as shown in FIG. In this case, the pipe 62 may be arranged and fixed at a necessary location at predetermined intervals.

本発明の第2の実施例によれば、駆動プーリ50と従動プーリ51間の、少なくとも高張力を受ける側のワイヤ部分を、中空軸60aに通し又は中実軸61bで連結しているため、ワイヤ52の径が細い場合や駆動プーリ50と従動プーリ51間の距離が長い場合でも、動力伝達時にワイヤ52の弾性変形(伸び)の影響が小さく、十分な動力伝達が可能となり、また、駆動側プーリを固定した保持状態やサーボロック状態では、従動軸(出力軸)側に十分な回転剛性が得られる。また、支持部材により中空軸ないし中実軸の重力の影響による振動増大やワイヤ破断などの事態を避けることが可能となる。これにより、確かな動力伝達が可能となり、作業性、操作性が大幅に向上する。   According to the second embodiment of the present invention, the wire portion on the side receiving at least high tension between the driving pulley 50 and the driven pulley 51 is passed through the hollow shaft 60a or connected by the solid shaft 61b. Even when the diameter of the wire 52 is thin or when the distance between the drive pulley 50 and the driven pulley 51 is long, the influence of elastic deformation (elongation) of the wire 52 is small during power transmission, and sufficient power transmission is possible. In the holding state where the side pulley is fixed or the servo lock state, sufficient rotational rigidity can be obtained on the driven shaft (output shaft) side. In addition, it is possible to avoid a situation such as an increase in vibration or wire breakage due to the gravity of the hollow shaft or the solid shaft due to the support member. Thereby, reliable power transmission becomes possible, and workability and operability are greatly improved.

図15〜図20は、本発明による第3の実施の形態によるマニピュレーターの斜視図およびそのワイヤ・プーリ部を示した図である。マスタとスレーブが一体化された一体型マスタスレーブマニピュレーターでは、通常、連結部30まわりの偏心質量が生じる。この偏心質量の位置によっては、重力の影響により連結部30まわりに、操作者が意図せぬ回転トルクが生じ、操作性の低下を招くことになる。特に、操作時の初期状態や操作において最も標準的な姿勢であるマニピュレーターの基準姿勢時に、連結部まわりに偏心質量による回転トルクが生じた場合、操作者に余計な操作力を課すことになるため、大幅な操作性低下を招くことになる。   15 to 20 are a perspective view of a manipulator according to a third embodiment of the present invention and a diagram showing a wire pulley portion thereof. In an integrated master-slave manipulator in which a master and a slave are integrated, an eccentric mass around the connecting portion 30 is usually generated. Depending on the position of the eccentric mass, a rotational torque unintended by the operator is generated around the connecting portion 30 due to the influence of gravity, and the operability is lowered. In particular, if rotational torque due to eccentric mass occurs around the connecting part during the initial state during operation or the standard posture of the manipulator, which is the most standard posture for operation, an extra operating force is imposed on the operator. This will cause a significant decrease in operability.

通常、質量の占める割合が大きいのは、駆動モータ54であるため、図15〜20ではマニピュレーターの基準姿勢時に駆動モータ54が概ね上下方向に向くようにしている。つまり、駆動軸プーリ50を従動軸プーリ51に対して、例えば図26に比して、ねじった位置関係としている。対象作業の内容によってマニピュレーターの最適な基準姿勢は異なるが、図15は、共通ロール軸(連結部30の軸周り)、ピッチ軸、ロール軸という自由度構成になっている場合である。従来の実施例では、図25に示すように、基準姿勢時にモータ54が水平方向に配置され、重量バランスが悪く操作性の低下を招いていたが、本実施例では、マニピュレーターの基準姿勢時にモータ54が概ね下方に来るように駆動軸プーリ50と従動軸プーリ51に90度のねじりを加えているため重量バランスがよく操作性に優れる。図16は、ワイヤ52とプーリ50,51の関係を示した図である。図17は、共通ロール軸、ピッチ軸、ヨー軸という自由度構成になっているが、図18に示すように、同様に90度ねじりを加えている。また、同図に示すように、必ずしも駆動プーリ50と従動プーリ51の組み合わせだけでなく、途中のアイドルプーリ51aとの間でねじりを加えることも可能である。   Usually, since the drive motor 54 has a large proportion of mass, in FIGS. 15 to 20, the drive motor 54 is generally directed in the vertical direction when the manipulator is in the reference posture. That is, the drive shaft pulley 50 is twisted with respect to the driven shaft pulley 51 as compared with, for example, FIG. Although the optimal reference posture of the manipulator differs depending on the content of the target work, FIG. 15 shows a case where the configuration is such that the common roll axis (around the connecting portion 30 axis), the pitch axis, and the roll axis. In the conventional embodiment, as shown in FIG. 25, the motor 54 is arranged in the horizontal direction at the reference posture, and the weight balance is poor and the operability is deteriorated. However, in this embodiment, the motor is operated at the reference posture of the manipulator. Since the drive shaft pulley 50 and the driven shaft pulley 51 are twisted by 90 degrees so that 54 is substantially downward, the weight balance is good and the operability is excellent. FIG. 16 is a diagram showing the relationship between the wire 52 and the pulleys 50 and 51. FIG. 17 has a configuration of degrees of freedom such as a common roll axis, a pitch axis, and a yaw axis, but as shown in FIG. 18, a 90 degree twist is similarly applied. Further, as shown in the figure, not only the combination of the drive pulley 50 and the driven pulley 51 but also the twisting can be applied between the idle pulley 51a on the way.

図19は、共通ロール軸、ピッチ軸ないしヨー軸、ロール軸という自由度構成の場合であるが、駆動プーリ50と従動プーリ51とに概ね45度のねじりを加えている。この場合、作業部10側の回転軸63と操作部20側の回転軸64の方向は、概ね一致した方向になっている。図15に示す自由度構成、共通ロール軸、ピッチ軸、ロール軸の場合は、この図に示す基準姿勢の状態から、作業部10の姿勢をヨー方向(横方向)に変化させることは、特異姿勢のため困難である。一方、図29に示す自由度構成、共通ロール軸、ヨー軸、ロール軸の場合は、図に示す基準姿勢の状態から、作業部の姿勢をピッチ方向(縦方向)に変化させることは、特異姿勢のため困難である。実際の操作においては、基準姿勢の状態から作業部の姿勢を横方向および縦方向に誘導させる割合が多く、図25や図29に示す従来例の自由度配置では、操作性の低下を招く。   FIG. 19 shows a case where the common roll axis, pitch axis, yaw axis, and roll axis are configured to have a degree of freedom, and a twist of approximately 45 degrees is applied to the drive pulley 50 and the driven pulley 51. In this case, the directions of the rotating shaft 63 on the working unit 10 side and the rotating shaft 64 on the operating unit 20 side are substantially coincident. In the case of the configuration of degrees of freedom shown in FIG. 15, the common roll axis, the pitch axis, and the roll axis, changing the attitude of the working unit 10 in the yaw direction (lateral direction) from the reference attitude state shown in FIG. Difficult due to posture. On the other hand, in the case of the configuration of degrees of freedom shown in FIG. 29, the common roll axis, the yaw axis, and the roll axis, changing the posture of the working unit in the pitch direction (vertical direction) from the state of the reference posture shown in the drawing is unusual. Difficult due to posture. In an actual operation, the ratio of guiding the posture of the working unit in the horizontal direction and the vertical direction from the reference posture state is large, and the operability is lowered in the conventional degree of freedom arrangement shown in FIGS.

また、腹腔鏡下手術においては、術者160は図21のような姿勢で手術を行うため、術者の手の向きが最も自然な向きとなるのは内側に約45度の向きである。従って、図19の本発明の実施の態様によれば、共通ロール軸、ピッチ軸とヨー軸の中間方向(約45度の傾き)、ロール軸という自由度構成の場合、術者160の手の向きが最も自然な向きとなる向きと、マニピュレーター最も操作しやすい向きとを一致させることができるとともに質量のあるモータ54を安定した下向きに配置させることができる。従って、極力疲労感を低減させることができ、操作性が大幅に向上する。なお、2つのプーリ50,51間の傾きは必ずしも45度である必要は無く、ピッチ軸方向、ヨー軸方向から少しでもずれているだけで、上下方向や左右方向が特異姿勢からずれるために、操作性は向上する。   Further, in the laparoscopic operation, the operator 160 performs the operation in the posture as shown in FIG. 21, and therefore, the direction of the operator's hand is the most natural direction is about 45 degrees inward. Therefore, according to the embodiment of the present invention of FIG. 19, in the case of the configuration of the degree of freedom of the common roll axis, the intermediate direction of the pitch axis and the yaw axis (inclination of about 45 degrees), and the roll axis, the hand of the operator 160 The direction in which the direction becomes the most natural direction and the direction in which the manipulator can be operated most easily can be matched, and the motor 54 with mass can be disposed stably downward. Therefore, a feeling of fatigue can be reduced as much as possible, and the operability is greatly improved. In addition, the inclination between the two pulleys 50 and 51 is not necessarily 45 degrees, and the vertical direction and the horizontal direction are deviated from the singular posture only by slightly deviating from the pitch axis direction and the yaw axis direction. The operability is improved.

また、対象作業の内容によってマニピュレーターの最適な基準姿勢時にモータが概ね下方に設定できるように、駆動軸プーリと従動軸プーリにねじり角度を自由ら設定できる構成としてもよい。   Moreover, it is good also as a structure which can freely set a torsion angle to a drive shaft pulley and a driven shaft pulley so that a motor can be set substantially below at the time of the optimal reference | standard posture of a manipulator by the content of object work.

本発明の第1の実施の形態による動力伝達機構の正面図、左右の側面図およびd−d線,e−e線断面図。BRIEF DESCRIPTION OF THE DRAWINGS The front view of the power transmission mechanism by the 1st Embodiment of this invention, the side view on either side, and a dd line, ee sectional view. 本発明の第1の実施の形態による動力伝達系全体を示す概略分解斜視図。1 is a schematic exploded perspective view showing an entire power transmission system according to a first embodiment of the present invention. 本発明の第1の実施の形態による動力伝達機構をマニピュレーターに組み込んだ場合の概略全体斜視図。1 is a schematic overall perspective view when a power transmission mechanism according to a first embodiment of the present invention is incorporated in a manipulator. 本発明の第1の実施の形態による動力伝達機構のプーリの斜視図。The perspective view of the pulley of the power transmission mechanism by the 1st Embodiment of this invention. 本発明の第1の実施の形態による動力伝達機構の固定ピンの斜視図。The perspective view of the fixing pin of the power transmission mechanism by the 1st Embodiment of this invention. 本発明の第1の実施の形態による動力伝達機構の組立て手順を示す工程図。Process drawing which shows the assembly procedure of the power transmission mechanism by the 1st Embodiment of this invention. 本発明の第1の実施の形態による動力伝達機構の固定ピンの各種形状の例を示す図。The figure which shows the example of the various shapes of the fixing pin of the power transmission mechanism by the 1st Embodiment of this invention. 本発明の第2の実施の形態による動力伝達機構の例の正面図。The front view of the example of the power transmission mechanism by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による動力伝達機構の例の正面図。The front view of the example of the power transmission mechanism by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による動力伝達機構の例の正面図。The front view of the example of the power transmission mechanism by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による動力伝達機構の例の正面図。The front view of the example of the power transmission mechanism by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による動力伝達機構の例の正面図。The front view of the example of the power transmission mechanism by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による動力伝達機構の支持部材の正面図。The front view of the supporting member of the power transmission mechanism by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による動力伝達機構の支持部材のパイプ内への装着状態の横断面図。The cross-sectional view of the mounting state in the pipe of the supporting member of the power transmission mechanism by the 2nd Embodiment of this invention. 本発明の第3の実施の形態によるマニピュレーターの斜視図。The perspective view of the manipulator by the 3rd Embodiment of this invention. 本発明の第3の実施の形態によるマニピュレーターのワイヤとプーリの関係を示す斜視図。The perspective view which shows the relationship between the wire and pulley of a manipulator by the 3rd Embodiment of this invention. 本発明の第3の実施の形態によるマニピュレーターの斜視図。The perspective view of the manipulator by the 3rd Embodiment of this invention. 本発明の第3の実施の形態によるマニピュレーターのワイヤとプーリの関係を示す斜視図。The perspective view which shows the relationship between the wire and pulley of a manipulator by the 3rd Embodiment of this invention. 本発明の第3の実施の形態によるマニピュレーターの斜視図。The perspective view of the manipulator by the 3rd Embodiment of this invention. 本発明の第3の実施の形態によるマニピュレーターのワイヤとプーリの関係を示す斜視図。The perspective view which shows the relationship between the wire and pulley of a manipulator by the 3rd Embodiment of this invention. 術者の姿勢を示す図。The figure which shows an operator's attitude | position. 従来の動力伝達機構の正面図、左右の側面図およびd−d線,e−e線断面図。The front view of the conventional power transmission mechanism, the side view on either side, and a dd line and ee sectional view. 従来の動力伝達機構の正面図、左右の側面図および断面図。The front view of the conventional power transmission mechanism, the side view on either side, and sectional drawing. 従来の動力伝達機構の正面図。The front view of the conventional power transmission mechanism. 従来のマニピュレーターの斜視図。The perspective view of the conventional manipulator. 従来のマニピュレーターのワイヤとプーリの関係を示す斜視図。The perspective view which shows the relationship between the wire and pulley of the conventional manipulator. 従来のマニピュレーターの斜視図。The perspective view of the conventional manipulator. 従来のマニピュレーターのワイヤとプーリの関係を示す斜視図。The perspective view which shows the relationship between the wire and pulley of the conventional manipulator. 従来のマニピュレーターの斜視図。The perspective view of the conventional manipulator. 従来のマニピュレーターのワイヤとプーリの関係を示す斜視図。The perspective view which shows the relationship between the wire and pulley of the conventional manipulator. 内視鏡(腹腔鏡)下での手術を説明する図。The figure explaining the operation under an endoscope (laparoscope). 従来のマニピュレーターの斜視図。The perspective view of the conventional manipulator. 従来のマニピュレーターの斜視図。The perspective view of the conventional manipulator.

符号の説明Explanation of symbols

1 マニピュレーター
10 作業部
20 駆動部
30 連結部
50 駆動側プーリ
51 従動側プーリ
52 ワイヤ
53 固定ピン
54 駆動モータ
55 アーム
56 スリット部
57 テーパ穴
58 穴
59 スリット部
60a 中空軸
60b 中実軸
61 支持部材
62 パイプ
63,64 回転軸
DESCRIPTION OF SYMBOLS 1 Manipulator 10 Working part 20 Drive part 30 Connection part 50 Drive side pulley 51 Drive side pulley 52 Wire 53 Fixing pin 54 Drive motor 55 Arm 56 Slit part 57 Tapered hole 58 Hole 59 Slit part 60a Hollow shaft 60b Solid shaft 61 Support member 62 Pipe 63, 64 Rotating shaft

Claims (2)

基端部と先端部を有する連結部と、
前記連結部の基端部に接続された操作部と、
前記連結部の先端部に接続された作業部と、
前記操作部からの操作指令を前記作業部に伝える動力伝達機構と、
駆動装置
を有し、
前記駆動装置は前記連結部の基端部側に設けられ、前記動力伝達機構を駆動する、前記連結部まわりの偏心質量としての、前記駆動装置であって
前記動力伝達機構は、可撓性動力伝達部材と、この可撓性動力伝達部材が巻き掛けられる駆動側プーリと従動側プーリの一対のプーリと、を有し、
前記作業部は、前記従動側プーリの回転軸と同軸または平行な軸に回動可能な第1の関節軸を有し、
前記操作部は、前記第1の関節軸と平行な第1の操作軸を有し、
前記駆動側プーリの回転軸は、マニピュレーターとしての基準姿勢時に、前記連結部まわりの偏心質量としての前記駆動装置が、前記連結部に対して概ね鉛直下向きになるように配置され、
第1の操作軸と前記駆動側プーリの回転軸が互いにねじれの位置に設置されている
ことを特徴とするマニピュレーター。
A connecting portion having a proximal end portion and a distal end portion;
An operation unit connected to a base end of the coupling unit;
A working unit connected to the tip of the coupling unit;
A power transmission mechanism for transmitting an operation command from the operation unit to the working unit;
With drive
Have
The driving device provided at the base end portion side of the connecting portion, to drive the power transmission mechanism, as eccentric mass around the connecting portion, a said driving device,
The power transmission mechanism includes a flexible power transmission member, and a pair of pulleys, a driving pulley and a driven pulley, around which the flexible power transmission member is wound.
The working unit has a first joint shaft that is rotatable about an axis that is coaxial or parallel to the rotation axis of the driven pulley.
The operation unit has a first operation axis parallel to the first joint axis,
The rotation axis of the driving pulley is arranged so that the driving device as an eccentric mass around the connecting portion is substantially vertically downward with respect to the connecting portion at the reference posture as a manipulator,
Manipulator, characterized in that the rotational axis of the first operating shaft and the driving pulley is installed at the position of the twist each other.
自由度構成が、連結部による共通ロール軸と、横方向の回転を許容するヨー軸と縦方向の回転を許容するピッチ軸との中間の斜め方向への回転を許容する屈曲軸と、ロール軸と、の自由度構成からなることを特徴とする、請求項1に記載のマニピュレーター。   A flexural axis that allows rotation in an oblique direction intermediate between a common roll axis by a connecting portion, a yaw axis that allows lateral rotation, and a pitch axis that allows vertical rotation, and a roll axis. The manipulator according to claim 1, comprising a degree of freedom configuration.
JP2006019222A 2006-01-27 2006-01-27 Manipulator Expired - Lifetime JP4309896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019222A JP4309896B2 (en) 2006-01-27 2006-01-27 Manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019222A JP4309896B2 (en) 2006-01-27 2006-01-27 Manipulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003096446A Division JP3944108B2 (en) 2003-03-31 2003-03-31 Power transmission mechanism and manipulator for medical manipulator

Publications (2)

Publication Number Publication Date
JP2006192281A JP2006192281A (en) 2006-07-27
JP4309896B2 true JP4309896B2 (en) 2009-08-05

Family

ID=36798770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019222A Expired - Lifetime JP4309896B2 (en) 2006-01-27 2006-01-27 Manipulator

Country Status (1)

Country Link
JP (1) JP4309896B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702331B2 (en) * 2006-10-25 2011-06-15 株式会社デンソー Semiconductor integrated circuit device
JP2009050288A (en) 2007-08-23 2009-03-12 Terumo Corp Work mechanism of medical manipulator
JP2009201607A (en) * 2008-02-26 2009-09-10 Terumo Corp Manipulator
KR20090128878A (en) * 2008-06-11 2009-12-16 삼성전자주식회사 Robot joint driving apparatus and robot having the same
JP5788029B2 (en) * 2014-01-10 2015-09-30 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Medical manipulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482688A (en) * 1990-07-23 1992-03-16 Res Dev Corp Of Japan Wire driving type multi-joint arm
JP4014792B2 (en) * 2000-09-29 2007-11-28 株式会社東芝 manipulator

Also Published As

Publication number Publication date
JP2006192281A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP3944108B2 (en) Power transmission mechanism and manipulator for medical manipulator
US11198226B2 (en) Surgical robot
KR102038632B1 (en) surgical instrument, supporting device, and surgical robot system adopting the same
EP2914197B1 (en) Self-antagonistic drive for medical instruments
US8597280B2 (en) Surgical instrument actuator
US11717367B2 (en) Surgical instrument driving mechanism
US10881475B2 (en) Surgical robot
JP4245615B2 (en) manipulator
US20180214220A1 (en) Surgical robot
JP6653044B2 (en) Surgical instruments and systems
CN108472092A (en) Surgical instrument articulated section
CN108472093A (en) Pulley gear for articulating surgical instrument
JP4309896B2 (en) Manipulator
JP6404537B1 (en) Medical treatment tool
JP6867472B2 (en) Surgical system
JP4635043B2 (en) manipulator
WO2021255877A1 (en) Long medical device
KR20230165559A (en) Arm unit for surgical robot

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R151 Written notification of patent or utility model registration

Ref document number: 4309896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term