JP4308779B2 - Signal identification method and lightning location method - Google Patents

Signal identification method and lightning location method Download PDF

Info

Publication number
JP4308779B2
JP4308779B2 JP2005009471A JP2005009471A JP4308779B2 JP 4308779 B2 JP4308779 B2 JP 4308779B2 JP 2005009471 A JP2005009471 A JP 2005009471A JP 2005009471 A JP2005009471 A JP 2005009471A JP 4308779 B2 JP4308779 B2 JP 4308779B2
Authority
JP
Japan
Prior art keywords
signal
point
candidate
target signal
search space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005009471A
Other languages
Japanese (ja)
Other versions
JP2006194839A (en
Inventor
浩史 佐藤
静男 古保
弘司 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005009471A priority Critical patent/JP4308779B2/en
Publication of JP2006194839A publication Critical patent/JP2006194839A/en
Application granted granted Critical
Publication of JP4308779B2 publication Critical patent/JP4308779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、複数の観測地点で信号の記録を行なっている場合に、それぞれの観測地点での記録信号のどれが同一の信号の観測であるかを照合する方法に係り、特にその照合を用いて信号の発信源位置標定する信号同定方法に関する。   The present invention relates to a method of collating which recorded signal at each observation point is the same signal observation when recording signals at a plurality of observation points, and in particular using the collation. The present invention relates to a signal identification method for locating signal sources.

岩波講座 情報科学21「パターン認識と図形処理」(長尾真編)第2章第4節「音声の認識」pp.71-89Iwanami Lecture Information Science 21 “Pattern Recognition and Graphic Processing” (Makoto Nagao) Chapter 2 Section 4 “Speech Recognition” pp.71-89

一般に、位置不特定の発信源の位置標定では複数地点での信号観測が必要となる。具体的な適用例としては、空電観測による発雷位置標定や、地震波観測による震源地特定などがある。   In general, signal localization at a plurality of points is required for position determination of an unspecified source. Specific application examples include lightning location determination by aerodynamic observation and epicenter identification by seismic observation.

同一の信号を探索する場合、適当な探索空間を設定した後、その信号の観測地点に依存しない特徴量、例えば波形や持続時間、減衰しない信号強度などが一致するかを見て、類似信号を探索していた。信号の伝わる速度が速い場合はそれに加えて受信時刻を見ることもある。その場合は、GPSなどの規模の大きい装置を用いて観測地点間で時刻同期を行なっていた。   When searching for the same signal, after setting an appropriate search space, see if the feature quantity that does not depend on the observation point of the signal, for example, the waveform, duration, signal strength that does not decay, etc., match similar signals. I was exploring. If the signal is transmitted at a high speed, the reception time may also be seen. In that case, time synchronization was performed between observation points using a large scale device such as GPS.

しかし、短時間に複数の信号を受信する場合、同じ特徴を持つ信号を複数受信する場合もあり、探索空間が必要以上に大きすぎると誤判定の可能性が高まり、また、必要以上に小さすぎると同一信号の発見できない可能性が高まる。したがって、探索空間の最適な大きさをうまく決めなければならなかった。   However, if multiple signals are received in a short time, multiple signals with the same characteristics may be received. If the search space is too large, the possibility of misjudgment increases, and it is too small as necessary. The possibility that the same signal cannot be found increases. Therefore, the optimal size of the search space had to be determined well.

一方、受信時刻で判定する場合、信号の受信間隔が十分に疎でない限り、伝達速度が光のように極めて速いことと、観測地点間の時刻同期精度が極めて高いことが要求されるので、通用可能分野の範囲が狭く、さらにそのような時刻同期を実現する為には非常にコストが高くなるのが問題である。また、たとえそのように極めて速い信号だとしても、発信源と観測地点の距離に依存して受信時刻に多少の誤差が必ず生じるので、本質的な解決法とは言えない。いずれにせよ、受信時刻を限定するのは難しく、多少の幅のある探索空間を設定しなければいけならなかった。   On the other hand, when judging by the reception time, unless the signal reception interval is sufficiently sparse, it is required that the transmission speed is extremely fast like light and the time synchronization accuracy between observation points is extremely high. There is a problem that the range of possible fields is narrow and the cost becomes very high in order to realize such time synchronization. Moreover, even if it is such a very fast signal, it is not an essential solution because there will always be some error in the reception time depending on the distance between the source and the observation point. In any case, it was difficult to limit the reception time, and it was necessary to set a search space with a certain width.

本発明は従来技術の上記問題点に鑑みてなされたものであり、時刻誤差の影響を受けにくい最適な検索空間を容易に設定できる信号同定方法を提供することを目的とする。   The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a signal identification method that can easily set an optimal search space that is not easily affected by time errors.

本発明の信号同定方法は、複数の不特定信号発信源から断続的に発信されている信号を2つの地点Xと地点Yで観測し、前記地点Xの観測記録中の対象信号を前記地点Yの観測記録中の前記対象信号と同一の可能性のある候補信号とを同定する方法において、前記地点Xにて前記対象信号が検出された同一の時刻を中心として前記地点Yの前記候補信号を検索する範囲を検索空間とし、前記検索空間を前記地点Xと前記地点Yとの距離と信号伝達速度の商の2倍に設定し、検索の結果により複数の前記候補信号が検出された場合に検出された前記候補信号のひとつを新たな対象信号Bとし、前記対象信号Bの観測された地点にて、前記対象信号Bが検出された同一の時刻を中心としてもう一方の地点の前記対象信号Bに対する前記候補信号を検索する範囲を新たな検索空間として設定して再検索を行い、前記対象信号Aと同一の可能性のある候補信号がひとつだけになるか、それぞれの観測地点での観測記録における候補信号数の辻褄が合うまで前記再検索を繰り返すことを特徴とする。(請求項1) In the signal identification method of the present invention, signals intermittently transmitted from a plurality of unspecified signal transmission sources are observed at two points X and Y, and the target signal A in the observation record of the point X is the point. In the method of identifying a candidate signal that may be the same as the target signal A in the observation record of Y, the candidate of the point Y around the same time when the target signal was detected at the point X The search range is a signal search range, and the search space is set to twice the quotient of the distance between the point X and the point Y and the signal transmission speed, and a plurality of candidate signals are detected according to the search result. One of the candidate signals detected in this case is set as a new target signal B, and at the point where the target signal B is observed, the point of the other point is centered on the same time when the target signal B is detected. The candidate signal for the target signal B The search range is set as a new search space, and the search is performed again. If there is only one candidate signal having the same possibility as the target signal A, or the number of candidate signals in the observation record at each observation point The re-searching is repeated until the wrinkles of are met . (Claim 1)

また、本発明の信号同定方法は、前記対象信号の発信源が前記地点Xと前記地点Yのどちらに近いかを判定する手段を有し、どちらに近いかを判定できた場合において、前記対象信号が前記地点Xに近いときは前記対象信号の前記検索空間を前記地点Xでの受信時刻よりも後に限定して前記地点Xと前記地点Yとの距離と信号伝達速度の商の範囲で前記検索空間を設定し、前記対象信号が前記地点Yに近いときは前記対象信号の前記検索空間を前記地点Xでの受信時刻よりも前に限定して前記地点Xと前記地点Yとの距離と信号伝達速度の商の範囲で前記検索空間を設定し、どちらに近いかを判定できなかった場合において、前記対象信号と前記検索空間上で見つかった前記候補信号のひとつを同一と仮定して前記対象信号の発信源が前記地点Xと前記地点Yのどちらに近いか再判定を行い、前記対象信号と前記候補信号が同一であることが矛盾する場合は前記候補信号のひとつを前記対象信号の同一信号候補から除外することを特徴とする。(請求項2)   Further, the signal identification method of the present invention has means for determining whether the source of the target signal is closer to the point X or the point Y, and in the case where it is possible to determine which is closer, the target When the signal is close to the point X, the search space for the target signal is limited after the reception time at the point X, and within the range of the distance between the point X and the point Y and the signal transmission speed quotient. When a search space is set and the target signal is close to the point Y, the search space for the target signal is limited to a time before the reception time at the point X, and the distance between the point X and the point Y In the case where the search space is set within the range of the quotient of the signal transmission speed and it is not possible to determine which one is close to the target signal, one of the candidate signals found on the search space is assumed to be the same. The source of the target signal is Re-determining whether it is closer to X or the point Y, and if there is a contradiction that the target signal and the candidate signal are the same, removing one of the candidate signals from the same signal candidate of the target signal Features. (Claim 2)

さらに、本発明の信号同定方法は、前記検索空間に前記地点X及び前記地点Yでの時間同期精度の最大ずれ幅を加えたことを特徴とする。(請求項3)   Furthermore, the signal identification method of the present invention is characterized in that a maximum deviation width of time synchronization accuracy at the point X and the point Y is added to the search space. (Claim 3)

本発明の発雷位置評定方法は、複数の地点で空電観測をすることによって発雷の位置標定を行なう方法において、上記の信号同定方法を用いて観測地点間の観測信号の同定を行うことを特徴とする。(請求項5)   The lightning location evaluation method of the present invention is a method for determining the location of lightning by performing aerial observations at a plurality of points, and identifying observation signals between observation points using the above signal identification method. It is characterized by. (Claim 5)

請求項1に記載の発明は、各観測地点で生じうる最大の受信時刻のずれ幅を信号伝達速度と観測地点間の距離から算出し、探索空間を受信時刻からずれ幅分だけ前後の時間に限定することで誤判定のリスクを滅らしている。なお、「X、Y間の距離」と「信号の伝達速度」の商、すなわちXからYへの信号の伝達時間が最大のずれ幅になることは、簡単な幾何学的証明で示すことが可能である。
さらに、探索空間中に複数の候補信号が見つかり同一の信号を特定できない場合、同一の信号を特定する為に各候補信号にてそれぞれ再帰的に同様の探索を逆向きに行い、それぞれの観測地点での観測記録における候補信号数の辻褄が合うか、または、芋づる式に候補信号が確定するまで繰り返すことで、多くの場合に、最初の信号と同一の可能牲のある信号候補を一つに絞り込むことができる。
According to the first aspect of the present invention, the maximum deviation time of the reception time that can occur at each observation point is calculated from the signal transmission speed and the distance between the observation points, and the search space is set to the time before and after the deviation time from the reception time. The risk of misjudgment is eliminated by limiting. It should be noted that the quotient of “distance between X and Y” and “signal transmission speed”, that is, that the signal transmission time from X to Y has the maximum deviation width can be shown by simple geometric proof. Is possible.
Furthermore, when multiple candidate signals are found in the search space and the same signal cannot be identified, the same search is performed recursively in each candidate signal in order to identify the same signal, and each observation point In many cases, signal candidates that have the same possibility as the first signal are combined into one by repeating until the number of candidate signals in the observation record in 合 う matches or until the candidate signal is determined by the formula You can narrow down.

請求項2に記載の発明は、信号の発信源の観測地点との相対的位置関係を判定する手段を設けており、信号がどちらの観測地点に先に到達するかが分かるので、受信時刻を中心として請求項1で設定した探索空間を予め二分の一に設定するか、或いは、受信時刻と矛盾する信号を候補から外す手段を設けることでさらに誤判定のリスクを減らしている。   The invention according to claim 2 is provided with means for determining a relative positional relationship with the observation point of the signal transmission source, so that it can be understood which observation point the signal reaches first. The risk of misjudgment is further reduced by setting the search space set in claim 1 as the center at one-half, or by providing means for removing a signal that contradicts the reception time from the candidates.

請求項3に記載の発明は、上述の請求項1及び請求項2の発明で設定した検索空間の範囲に時刻同期精度のずれ幅分を加えて広げることで、同期ずれによる誤判定や探索漏れも防ぎ、併せて要求する時刻同期精度をある程度下げることができる。   According to the third aspect of the present invention, an erroneous determination or a search omission due to a synchronization shift is achieved by adding a time synchronization accuracy shift width to the range of the search space set in the first and second inventions described above. The time synchronization accuracy requested can be lowered to some extent.

なお、発信源がどちらの観測地点に近いかを判断する方法の例としては、観測時に信号の来た方角を見て、もう一方の観測地点と逆方向から来ていれば自分に近いと判断したり、距離に応じて信号強度が減衰するような場合、それぞれの観測地点でその信号強度を見ることで判断したりできる。また、前者の方法の場合でも、もう一方の観測地点側から信号が来ていたときは、そのもう一方の観測地点で信号の方角を確認し、それが最初の観測地点と逆方向からの受信であれば最初の観測地点から遠いことが分かる。   As an example of how to determine which observation point is closer to the source, look at the direction of the signal at the time of observation, and if you are coming from the opposite direction to the other observation point, determine that you are closer to yourself. If the signal strength is attenuated according to the distance, it can be judged by looking at the signal strength at each observation point. Even in the case of the former method, if a signal is coming from the other observation point, check the direction of the signal at the other observation point and receive it from the opposite direction to the first observation point. Then you can see that it is far from the first observation point.

請求項に記載の発明は、発雷位置標定の前処理として上述の方法による電磁波の同定を行うことで、高価な時刻同期装置無しに正確な発雷位置標定を実現できる。 According to the fourth aspect of the present invention, accurate lightning position locating can be realized without an expensive time synchronizer by performing electromagnetic wave identification by the above-described method as preprocessing for lightning locating.

図1は本発明の信号同定方法の一例を示すフロー図である。
まず基本検索空間設定で検索空間の基本時間幅を決定する。ここで検索空間とは同定対象となる対象信号が異なる地点において同一の候補信号を検索する為の時間範囲であり、本発明において基本時間幅は、観測地点間の距離と信号の伝達速度の商の2倍に、観測地点間の最大時刻同期誤差を加えたものである。
FIG. 1 is a flowchart showing an example of the signal identification method of the present invention.
First, the basic time width of the search space is determined in the basic search space setting. Here, the search space is a time range for searching for the same candidate signal at a point with a different target signal to be identified. In the present invention, the basic time width is a quotient of the distance between observation points and the signal transmission speed. 2 times the maximum time synchronization error between observation points.

次に対象信号(ここでは最初に対象信号A)を決め、続いて対象信号の特徴により検索空間を決定する。例えば、信号発信源と各観測地点との位置関係により検索空間を対象信号の受信時間よりも前又は後に限定する。そのような特徴が無ければ、基本時間幅がそのまま探索空間の時間幅となる。限定が行われない探索空間の中心は対象信号の受信時刻である。   Next, the target signal (here, the target signal A first) is determined, and then the search space is determined based on the characteristics of the target signal. For example, the search space is limited before or after the reception time of the target signal depending on the positional relationship between the signal transmission source and each observation point. If there is no such feature, the basic time width becomes the time width of the search space as it is. The center of the search space where no limitation is made is the reception time of the target signal.

次に対象信号と同じ不変特徴をもつ候補信号を検索し、対象信号とそれぞれの候補信号を同一と仮定して比較した結果、受信時刻に矛盾が生じた候補信号を除外する。   Next, candidate signals having the same invariant features as the target signal are searched, and candidate signals having contradictions in reception time are excluded as a result of comparison on the assumption that the target signal and each candidate signal are the same.

検索の結果、対象信号Aと同じ不変特徴をもつ候補信号Bが見つかると、その候補信号Bを対象信号Bとした検索空間で検索を行う。この検索の結果で対象信号Bと候補信号Cで1対1の確定ペアができた場合、候補信号Cが対象信号Aであればその候補信号Bと対象信号Aをペア確定し処理終了となる。   If a candidate signal B having the same invariant characteristics as the target signal A is found as a result of the search, the search is performed in a search space where the candidate signal B is the target signal B. As a result of the search, when the target signal B and the candidate signal C form a one-to-one confirmed pair, if the candidate signal C is the target signal A, the pair of the candidate signal B and the target signal A is confirmed and the processing ends. .

もし、候補信号Cが対象信号Aとのペアでなければ確定ペアを削除し、さらに「確定ペア」があるかどうか確かめる。   If the candidate signal C is not a pair with the target signal A, the confirmed pair is deleted, and it is confirmed whether there is a “determined pair”.

ここで「確定ペア」は、検索の結果、対象信号と同じ不変特徴をもつ候補信号が一つしか確認できなかった対象信号と候補信号の組を言う。   Here, the “determined pair” refers to a set of a target signal and a candidate signal for which only one candidate signal having the same invariant characteristics as the target signal can be confirmed as a result of the search.

確定ペアが無くなったところで、未検索信号、すなわち検索により発見されたが自分からの検索を行なっていない信号が残っているかを確認し、残っていれば順に対象信号として再検索を行なう。残っていなければ、同定不可となり、処理終了となる。   When there are no confirmed pairs, it is checked whether there is an unsearched signal, that is, a signal that has been found by the search but has not been searched by itself, and if it remains, search again as the target signal. If it does not remain, the identification is impossible and the processing ends.

以下、発雷位置標定のための空電観測における電磁波の同定を例に説明する。   Hereinafter, the identification of electromagnetic waves in static observation for lightning location will be described as an example.

図2〜6は、時系列に沿ったX、Yの観測記録上で空電による信号Aと同一の発雷による空電を同定する過程例を示す図であり、電状の記号が信号Aと同じ特徴を持つ信号を表し、三角形の底辺が頂点の信号からの探索空間を表す。また、X側の信号を頂点とする三角形の範囲がXからYへの探索で、Y側の信号を頂点とする三角形の範囲がYからXへの探索である。三角形の底辺の長さが探索空間の時間幅を表す。この基本時間幅は「X、Y間の距離」と「信号の伝達速度」の商の2倍とする。ここではX、Y間の距離が300km、信号の速度を光速(30万km/秒)とすると、基本時間幅は0.001×2=0.002秒となる。また、時刻同期誤差は±0.0005秒とし、探索空間の時間幅は0.002+(0.005×2)=0.003秒とした。   2 to 6 are diagrams showing an example of a process for identifying static electricity caused by the same lightning as the static electricity signal A on the X and Y observation records along the time series. Represents the search space from the signal at the apex. Further, the range of triangles having the X-side signal as a vertex is a search from X to Y, and the range of triangles having the Y-side signal as a vertex is a search from Y to X. The length of the base of the triangle represents the time width of the search space. This basic time width is twice the quotient of “distance between X and Y” and “signal transmission speed”. Here, if the distance between X and Y is 300 km and the signal speed is the speed of light (300,000 km / sec), the basic time width is 0.001 × 2 = 0.002 seconds. The time synchronization error was ± 0.0005 seconds, and the search space time width was 0.002+ (0.005 × 2) = 0.003 seconds.

図2は本発明の実施例1である。
信号Aを対象信号とし、探索空間は基本探索空間のままとする。検索の結果、信号Bのみが候補となったので、確定ペアとなり、信号Bが信号Aと同一と判断される。
FIG. 2 shows a first embodiment of the present invention.
The signal A is the target signal, and the search space remains the basic search space. As a result of the search, only signal B is a candidate, so that it becomes a confirmed pair, and it is determined that signal B is the same as signal A.

図3は本発明の実施例2である。
本例では観測地点での空電の受信方角がX方向かY方向か180度単位で認識できる手段を設けている。信号Aの受信方角を地点Xで見たところ、地点Yとは反対の方角だったので、明らかに発雷地点は地点Yよりも地点Xに近いと判断できた。
FIG. 3 shows a second embodiment of the present invention.
In this example, there is provided means capable of recognizing in 180 degrees whether the static reception direction at the observation point is the X direction or the Y direction. When the receiving direction of the signal A was seen at the point X, it was a direction opposite to the point Y, so it was clearly determined that the lightning point was closer to the point X than the point Y.

したがって、探索空間は信号Aの観測された地点Xでの受信時刻より後に限定することができる。ただし、受信時刻より時刻同期誤差分の0.0005秒前までは許容する。   Therefore, the search space can be limited after the reception time at the point X where the signal A is observed. However, it is allowed up to 0.0005 seconds before the time synchronization error from the reception time.

その結果、2つの候補信号B、Cが見つかったが、信号Cは地点Xと反対の方角からの受信だったので、明らかに発雷地点が地点Xより地点Yに近い空電であり、受信時刻の矛盾により候補から外すことができる。これにより、信号Bが信号Aと同一と判断される。   As a result, two candidate signals B and C were found, but since the signal C was received from the opposite direction to the point X, the lightning point was clearly a static that was closer to the point Y than the point X. Can be removed from candidates due to time conflicts. Thereby, it is determined that the signal B is the same as the signal A.

図4は本発明の実施例3である。
本例では探索空間は基本探索空間のままとし、伝達距離に従って減衰する強度を観測地点で観測している。
FIG. 4 shows a third embodiment of the present invention.
In this example, the search space remains the basic search space, and the intensity that attenuates according to the transmission distance is observed at the observation point.

検索の結果、3つの候補信号B、C、Dが見つかった。
ここで、信号Aと信号Bが同一と仮定すると、信号強度はAの方が強かったため、発雷地点は地点X寄りと判断され、信号Aと信号Cが同一と仮定すると、発雷地点は地点Y寄りと判断され、信号Aと信号Dが同一と仮定すると、発雷地点は地点X寄りと判断された。
As a result of the search, three candidate signals B, C, and D were found.
Here, assuming that the signal A and the signal B are the same, since the signal intensity is stronger in the signal A, the lightning point is determined to be closer to the point X. If the signal A and the signal C are the same, the lightning point is Assuming that the signal A and the signal D are the same, it is determined that the lightning point is close to the point X.

ところが、信号Bと信号Dは地点Xおける信号Aの受信時刻より時刻同期誤差分である0.0005秒を許容しても、それぞれ信号Aの受信時刻より信号Bは前、信号Dは後に受信されている。したがって、矛盾の起きない信号Cが残り、これにより、信号Cが信号Aと同一と判断される。   However, even if the signal B and the signal D allow 0.0005 seconds, which is a time synchronization error, from the reception time of the signal A at the point X, the signal B is received before the signal A and the signal D is received after the reception time of the signal A, respectively. Has been. Therefore, the signal C that does not cause a contradiction remains, so that the signal C is determined to be the same as the signal A.

図5は本発明の実施例4である。
本例では探索空間は基本探索空間のままとした。
FIG. 5 shows a fourth embodiment of the present invention.
In this example, the search space remains the basic search space.

検索の結果、2つの候補信号B、Cが見つかったが、どちらの候補信号が信号Aと同一なのか決め手がない。そこで、各候補信号B、Cから地点Xに向かって逆方向に検索を行ったところ、信号Bからは新たな候補信号は見つからず、信号Cからは新たな信号Dが見つかった。したがって、信号Bと信号Aが確定ペアとなり、信号Bが信号Aと同一と判断される。   As a result of the search, two candidate signals B and C were found, but there is no determinant which candidate signal is the same as the signal A. Therefore, when searching from the candidate signals B and C toward the point X in the reverse direction, no new candidate signal was found from the signal B, and a new signal D was found from the signal C. Therefore, the signal B and the signal A are a definite pair, and the signal B is determined to be the same as the signal A.

図6は本発明の実施例5である。
本例では探索空間は基本探索空間のままとし、観測地点での空電の受信方角がX方向かY方向か180度単位で認識できるものとする。
FIG. 6 shows a fifth embodiment of the present invention.
In this example, it is assumed that the search space remains the basic search space, and the reception direction of the static electricity at the observation point can be recognized in units of 180 degrees in the X direction or the Y direction.

ここで、信号AはY方向から観測され、検索の結果、候補信号B、C、Dが見つかった。それぞれ信号BはY方向、信号C、DはX方向から観測された。この時点では矛盾はない為、どれがAと同一なのか決め手がない。そこで、各候補信号B、C、Dから地点Xに向かって逆方向に検索を行ったところ、信号Bからは新たな信号Eが、信号C、Dからは新たな信号F、G、Hが見つかった。ここで信号EはY方向からの受信され、信号Bと信号Eを同一と仮定するとその発雷地点は地点Xよりも地点Yに近いことになり、信号Eは地点Xで地点Yよりも早く観測されている事と矛盾が生じる。したがって、信号Eは候補から外れ、信号Bと信号Aが確定ペアになり、信号Bが信号Aと同一と判断される。   Here, the signal A was observed from the Y direction, and candidate signals B, C, and D were found as a result of the search. Signal B was observed from the Y direction, and signals C and D were observed from the X direction. Since there is no contradiction at this point, there is no determinant which is the same as A. Therefore, when searching in the reverse direction from each candidate signal B, C, D to the point X, a new signal E is obtained from the signal B, and new signals F, G, H are obtained from the signals C, D. found. Here, the signal E is received from the Y direction, and assuming that the signal B and the signal E are the same, the lightning point is closer to the point Y than the point X. The signal E is earlier than the point Y at the point X. A contradiction arises with what is being observed. Therefore, the signal E is excluded from the candidates, the signal B and the signal A are in a definite pair, and the signal B is determined to be the same as the signal A.

なお、信号C、Dと信号F、G、Hの組合せはこの時点では不明であるが、当初の目的は達成されているので追求する必要はない。   Note that the combination of the signals C and D and the signals F, G and H is unknown at this point, but does not need to be pursued since the original purpose has been achieved.

図7は本発明の実施例6である。
本例では探索空間は基本探索空間のままとした。
FIG. 7 shows a sixth embodiment of the present invention.
In this example, the search space remains the basic search space.

探索の結果、候補信号B、C、Dが見つかったが、どれが信号Aと同一なのか決め手がない。そこで、信号B、C、Dから地点Xに向かって逆方向に検索を行ったところ、信号E、F、Gが新たに見つかったが、ここでも確定ペアができない。   As a result of the search, candidate signals B, C, and D were found, but there is no determinant which is the same as signal A. Then, when searching in the reverse direction from the signals B, C, D to the point X, the signals E, F, G are newly found, but here also a confirmed pair cannot be made.

そこで、各信号E、F、Gから地点Yに向かって検索を行ったところ、信号Eから新たな信号Hが見つかり、他の信号からは何も見つからなかった。   Therefore, when searching from each signal E, F, G toward the point Y, a new signal H was found from the signal E, and nothing was found from other signals.

この時点で、信号Gからは信号D以外に候補がないので確定ペアとなり、続いて、信号Cと信号Fも確定ペアとなる。すると、信号Aと同一の候補であった信号B、C、Dのうち信号B以外が別のぺアとして確定しペア削除されたため、信号Bが信号Aと同一と判断される。   At this time, since there is no candidate other than the signal D from the signal G, it becomes a confirmed pair, and subsequently, the signal C and the signal F also become a confirmed pair. Then, since signals B, C, and D, which were candidates for signal A, are determined as another pair and the pair has been deleted, it is determined that signal B is the same as signal A.

次に本発明の発雷位置標定方法の実施例7について説明を行う。   Next, a seventh embodiment of the lightning location method of the present invention will be described.

空電による各信号の同定までは実施例6と同様で、空電Aと空電Bが同一の発雷からの電磁波であると確認できた。   Until the identification of each signal by static electricity was the same as in Example 6, it was confirmed that static electricity A and static electricity B were electromagnetic waves from the same lightning.

代表的な位置標定方法には2地点観測による交会法と、3地点観測による時間差法があるが、ここでは各観測地点で信号の方角を確認できるという前提の下、交会法を用いた。   The representative location method includes the meeting method by two-point observation and the time difference method by three-point observation. Here, the meeting method is used on the assumption that the direction of the signal can be confirmed at each observation point.

空電Aと空電Bの受信方角がわかっているので、それぞれ地点Xと地点Yからその方角に直線を延長した時の交点を求めれば、それが発雷地点とわかる。なお、時間差法を用いる場合は地点Zを設け、地点Xと地点Zまたは地点Yと地点Zにおいて本発明による信号同定を行なった後、各信号の各観測地点間での到達時刻の差から各観測地点と発雷地点の距離を算出する。これにより、発雷地点を特定することができる。   Since the receiving directions of the static electricity A and the static electricity B are known, if the intersection point when the straight line is extended from the point X and the point Y to the direction is obtained, it can be known as the lightning point. In the case of using the time difference method, a point Z is provided, and after signal identification according to the present invention is performed at the point X and the point Z or at the point Y and the point Z, each signal is determined from the difference in arrival time between the observation points. Calculate the distance between the observation point and the lightning point. Thereby, a thunderstorm point can be specified.

以上述べたように、本発明により多少の受信時刻のずれや時刻同期誤差があっても正確に信号同定を行なうことが出来るので、各種の位置標定、特に発雷位置標定を、高価な時刻同期装置無しに低コストで正確に実現することができる。また、この発明は発雷位置標定以外にも、地震波観測による震源地標定、神経パルス観測による生体での異常発見や、宇宙線観測による宇宙現象把握などにも適用可能である。   As described above, according to the present invention, it is possible to accurately perform signal identification even if there is a slight difference in reception time or time synchronization error. It can be realized accurately at low cost without an apparatus. In addition to lightning location localization, the present invention can also be applied to seismic source localization by seismic wave observation, detection of abnormalities in a living body by nerve pulse observation, and grasping of space phenomena by cosmic ray observation.

本発明の信号同定方法の一例を示すフロー図である。It is a flowchart which shows an example of the signal identification method of this invention. 本発明の実施例1を示す図である。It is a figure which shows Example 1 of this invention. 本発明の実施例2を示す図である。It is a figure which shows Example 2 of this invention. 本発明の実施例3を示す図である。It is a figure which shows Example 3 of this invention. 本発明の実施例4示す図である。It is a figure which shows Example 4 of this invention. 本発明の実施例5を示す図である。It is a figure which shows Example 5 of this invention. 本発明の実施例6を示す図である。It is a figure which shows Example 6 of this invention.

Claims (4)

複数の不特定信号発信源から断続的に発信されている信号を2つの地点Xと地点Yで観測し、前記地点Xの観測記録中の対象信号を前記地点Yの観測記録中の前記対象信号と同一の可能性のある候補信号とを同定する方法において、
前記地点Xにて前記対象信号が検出された同一の時刻を中心として前記地点Yの前記候補信号を検索する範囲を検索空間とし、
前記検索空間を前記地点Xと前記地点Yとの距離と信号伝達速度の商の2倍に設定し、
検索の結果により複数の前記候補信号が検出された場合に検出された前記候補信号のひとつを新たな対象信号Bとし、
前記対象信号Bの観測された地点にて、前記対象信号Bが検出された同一の時刻を中心としてもう一方の地点の前記対象信号Bに対する前記候補信号を検索する範囲を新たな検索空間として設定して再検索を行い、
前記対象信号Aと同一の可能性のある候補信号がひとつだけになるか、それぞれの観測地点での観測記録における候補信号数の辻褄が合うまで前記再検索を繰り返すことを特徴とする信号同定方法。
Signals transmitted intermittently from a plurality of unspecified signal transmission sources are observed at two points X and Y, and the target signal A in the observation record of the point X is the target in the observation record of the point Y In a method for identifying a candidate signal that may be identical to signal A ,
The search space is a range in which the candidate signal at the point Y is searched around the same time at which the target signal is detected at the point X.
The search space is set to twice the quotient of the distance between the point X and the point Y and the signal transmission speed ,
One of the candidate signals detected when a plurality of the candidate signals are detected as a result of the search is set as a new target signal B;
At a point where the target signal B is observed, a range for searching the candidate signal for the target signal B at the other point is set as a new search space around the same time when the target signal B is detected. Do a re-search,
The signal identification method characterized by repeating the re-search until there is only one candidate signal having the same possibility as the target signal A or until the number of candidate signals in observation records at each observation point matches. .
前記対象信号の発信源が前記地点Xと前記地点Yのどちらに近いかを判定する手段を有し、
どちらに近いかを判定できた場合において、前記対象信号が前記地点Xに近いときは前記対象信号の前記検索空間を前記地点Xでの受信時刻よりも後に限定して前記地点Xと前記地点Yとの距離と信号伝達速度の商の範囲で前記検索空間を設定し、
前記対象信号が前記地点Yに近いときは前記対象信号の前記検索空間を前記地点Xでの受信時刻よりも前に限定して前記地点Xと前記地点Yとの距離と信号伝達速度の商の範囲で前記検索空間を設定し、
どちらに近いかを判定できなかった場合において、前記対象信号と前記検索空間上で見つかった前記候補信号のひとつを同一と仮定して前記対象信号の発信源が前記地点Xと前記地点Yのどちらに近いか再判定を行い、
前記対象信号と前記候補信号が同一であることが矛盾する場合は前記候補信号のひとつを前記対象信号の同一信号候補から除外することを特徴とする請求項1に記載の信号同定方法。
Means for determining whether the source of the target signal is closer to the point X or the point Y;
When the target signal is close to the point X in the case where the target signal is close to the point X, the search space for the target signal is limited after the reception time at the point X, and the point X and the point Y And set the search space in the range of the distance and the quotient of the signal transmission speed,
When the target signal is close to the point Y, the search space for the target signal is limited to a point before the reception time at the point X, and the quotient of the distance between the point X and the point Y and the signal transmission speed is obtained. Set the search space by range,
When it is not possible to determine which one is close, it is assumed that the target signal and one of the candidate signals found in the search space are the same, and the source of the target signal is the point X or the point Y. Re-determine whether it is close to
2. The signal identification method according to claim 1, wherein when there is a contradiction that the target signal and the candidate signal are identical, one of the candidate signals is excluded from the same signal candidate of the target signal.
前記検索空間に前記地点X及び前記地点Yでの時間同期精度の最大ずれ幅を加えたことを特徴とする請求項1又は2に記載の信号同定方法。 The signal identification method according to claim 1, wherein a maximum deviation width of time synchronization accuracy at the point X and the point Y is added to the search space. 複数の地点で空電観測をすることによって発雷の位置標定を行なう方法において、請求項1乃至3のいずれか1項に記載の信号同定方法を用いて観測地点間の観測信号の同定を行うことを特徴とする発雷位置標定方法。 4. A method for determining the position of a lightning by performing aerial observation at a plurality of points, wherein the observation signal between observation points is identified using the signal identification method according to any one of claims 1 to 3. A lightning location method characterized by that.
JP2005009471A 2005-01-17 2005-01-17 Signal identification method and lightning location method Expired - Fee Related JP4308779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009471A JP4308779B2 (en) 2005-01-17 2005-01-17 Signal identification method and lightning location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009471A JP4308779B2 (en) 2005-01-17 2005-01-17 Signal identification method and lightning location method

Publications (2)

Publication Number Publication Date
JP2006194839A JP2006194839A (en) 2006-07-27
JP4308779B2 true JP4308779B2 (en) 2009-08-05

Family

ID=36801025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009471A Expired - Fee Related JP4308779B2 (en) 2005-01-17 2005-01-17 Signal identification method and lightning location method

Country Status (1)

Country Link
JP (1) JP4308779B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0719004D0 (en) * 2007-09-27 2008-01-02 Qinetiq Ltd Interference power measurement

Also Published As

Publication number Publication date
JP2006194839A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
CN105955258B (en) Robot global grating map construction method based on the fusion of Kinect sensor information
CN102435980B (en) Analytical solution-based acoustic emission source or micro seismic source positioning method
CN108253976B (en) Three-stage online map matching algorithm fully relying on vehicle course
CN110375753A (en) Map-matching method, device, server and storage medium
WO2021238715A1 (en) Positioning method and apparatus, robot, beacon, system, device, and medium
CN107918156B (en) Detect the method and device of subsea node acquisition earthquake data polarity
CN102129063A (en) Method for positioning micro seismic source or acoustic emission source
CN109891049A (en) Increment track estimating system based on real-time inertia sensing
CN107274679B (en) Vehicle identification method, device, equipment and computer readable storage medium
US9678195B2 (en) Method of processing positioning signals in positioning systems to accurately determine a true arrival time of each signal
CN107229033A (en) Multiple target reaching time-difference localization method based on height dimension sectioning search
CN101006346A (en) Method and apparatus for calibration
JP4308779B2 (en) Signal identification method and lightning location method
US11713965B2 (en) Method and apparatus for determining a chamfer property of a workpiece chamfer and computer program
CN110998352A (en) Method and device for determining the position of a stationary object
CN113203424B (en) Multi-sensor data fusion method and device and related equipment
CN112764102A (en) Seismic data acquisition method and device
CN113342057B (en) Track fusion method and device, unmanned aerial vehicle detection system, equipment and medium
KR102288623B1 (en) Map Data Processing and Format Change Method for Land Vehicle Simulation
TWI502514B (en) Electronic apparatus, method and system for measuring location
CN103837890B (en) Obtain the method and apparatus of geological data
US10467467B2 (en) Method, system and computer program for automatically detecting traffic circles on digital maps
CN111912897A (en) Method, device and equipment for acquiring pipeline defect information and storage medium
Cheng et al. Structural damage detection of the simple beam based on responses phase space
CN112269378B (en) Laser positioning method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees