JP4305522B2 - Powertrain control device - Google Patents

Powertrain control device Download PDF

Info

Publication number
JP4305522B2
JP4305522B2 JP2007033745A JP2007033745A JP4305522B2 JP 4305522 B2 JP4305522 B2 JP 4305522B2 JP 2007033745 A JP2007033745 A JP 2007033745A JP 2007033745 A JP2007033745 A JP 2007033745A JP 4305522 B2 JP4305522 B2 JP 4305522B2
Authority
JP
Japan
Prior art keywords
state
rotating element
controlling
rotating
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007033745A
Other languages
Japanese (ja)
Other versions
JP2008195278A (en
Inventor
達也 今村
雄二 岩瀬
淳 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007033745A priority Critical patent/JP4305522B2/en
Priority to US12/068,948 priority patent/US7794357B2/en
Publication of JP2008195278A publication Critical patent/JP2008195278A/en
Application granted granted Critical
Publication of JP4305522B2 publication Critical patent/JP4305522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/105Infinitely variable gearings of electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears
    • F16H3/48Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears
    • F16H3/52Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears
    • F16H3/54Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears one of the central gears being internally toothed and the other externally toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

A control device is provided for a power train including: a differential mechanism having a first rotating element linked to a first rotary electric machine, a second rotating element linked to a second rotary electric machine and a third rotating element linked to an internal combustion engine; a switching mechanism that switches between a first state that permits relative rotation of the first, second and third rotating elements, and a second state that prohibits relative rotation thereof; and a transmission mechanism connected to the differential mechanism which transmits torque from the differential mechanism to a wheel. The control device includes: a first control portion that controls the switching mechanism so as to switch between the first and second states; and a second control portion that compensates for an amount of change in the torque transmitted to the wheel when the switching between the two states is performed.

Description

本発明は、パワートレーンの制御装置に関し、特に、パワートレーンから車輪に伝達されるトルクを補償する技術に関する。   The present invention relates to a power train control device, and more particularly to a technique for compensating torque transmitted from a power train to a wheel.

従来より、内燃機関および回転電機を駆動源に有するハイブリッド車が知られている。このようなハイブリッド車においては、車両の走行状態に応じて内燃機関および回転電機が使い分けられる。たとえば、高速走行時などにおいては主に内燃機関を用いて走行し、中低速走行時などにおいては主に回転電機を用いて走行する。このようなハイブリッド車の一つに、回転電機を用いて無段変速機として機能する差動機構を備えたものがある。   Conventionally, hybrid vehicles having an internal combustion engine and a rotating electric machine as drive sources are known. In such a hybrid vehicle, an internal combustion engine and a rotating electric machine are selectively used according to the traveling state of the vehicle. For example, the vehicle travels mainly using an internal combustion engine when traveling at a high speed, and travels mainly using a rotating electrical machine when traveling at a medium or low speed. One of such hybrid vehicles includes a differential mechanism that functions as a continuously variable transmission using a rotating electric machine.

特開2006−22933号公報(特許文献1)は、エンジンの出力を第1電動機および伝達部材へ分配する差動機構と伝達部材から駆動輪への動力伝達経路に設けられた第2電動機とを有して電気的な無段変速機として作動可能な無段変速部を備えた車両用駆動装置の制御装置を開示する。この制御装置は、差動機構に備えられ、無段変速部を電気的な無段変速作動可能な無段変速状態と電気的な無段変速作動しない有段変速状態とに選択的に切り換えるための係合装置と、係合装置による無段変速状態から有段変速状態への切換えのときに、エンジンの出力トルク、および/または第1電動機および/または第2電動機の出力トルクの少なくとも一つを低減するトルク低減制御部とを含む。   Japanese Patent Laying-Open No. 2006-22933 (Patent Document 1) includes a differential mechanism that distributes engine output to a first electric motor and a transmission member, and a second electric motor provided in a power transmission path from the transmission member to a drive wheel. A control device for a vehicle drive device having a continuously variable transmission that has a continuously variable transmission that is operable as an electrical continuously variable transmission is disclosed. This control device is provided in a differential mechanism for selectively switching the continuously variable transmission portion between a continuously variable transmission state in which an electrical continuously variable transmission operation can be performed and a continuously variable transmission state in which an electrical continuously variable transmission operation is not performed. At least one of the output torque of the engine and / or the output torque of the first motor and / or the second motor at the time of switching from the continuously variable transmission state to the stepped transmission state by the engagement device. And a torque reduction control unit for reducing.

この公報に記載の車両用駆動装置の制御装置によれば、無段変速状態から有段変速状態への切換えのために係合装置が係合されるときに、トルク低減制御手段によりエンジンの出力トルク、および/または第1電動機および/または第2電動機の出力トルクの少なくとも一つが低減される。これにより、無段変速状態から有段変速状態への切換えに伴う切換えショックが抑制される。
特開2006−22933号公報
According to the control device for a vehicle drive device described in this publication, when the engagement device is engaged for switching from the continuously variable transmission state to the stepped transmission state, the engine output is output by the torque reduction control means. At least one of the torque and / or the output torque of the first motor and / or the second motor is reduced. Thereby, the switching shock accompanying the switching from the continuously variable transmission state to the stepped transmission state is suppressed.
JP 2006-22933 A

しかしながら、特開2006−22933号公報に記載の制御装置においては、無段変速状態から有段変速状態へ切換る際に駆動源の出力トルクが低減される。そのため、無段変速状態から有段変速状態への切換え時に回転電機の出力トルクが不足していると、車輪に伝達されるトルク、すなわち車両の走行に用いられるトルクが低下する。その結果、トルクが不連続になる。   However, in the control device described in Japanese Patent Application Laid-Open No. 2006-22933, the output torque of the drive source is reduced when switching from the continuously variable transmission state to the stepped transmission state. Therefore, if the output torque of the rotating electrical machine is insufficient at the time of switching from the continuously variable transmission state to the stepped transmission state, the torque transmitted to the wheels, that is, the torque used for running the vehicle is reduced. As a result, the torque becomes discontinuous.

本発明は、上述の課題を解決するためになされたものであって、その目的は、トルクの連続性を保つことができるパワートレーンの制御装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power train control device capable of maintaining torque continuity.

第1の発明に係るパワートレーンの制御装置は、第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、差動機構において第1の回転要素、第2の回転要素および第3の回転要素の相対的な回転を許容する第1の状態および禁止する第2の状態を切換える切換機構と、差動機構に連結され、差動機構から入力されるトルクを車輪に伝達する変速機構とを備えるパワートレーンの制御装置である。この制御装置は、第1の状態および第2の状態を切換えるように切換機構を制御するための第1の制御手段と、第1の状態および第2の状態の切換え時に、車輪へ伝達されるトルクの変化分を補償するようにパワー
トレーンを制御するための第2の制御手段とを含む。
According to a first aspect of the present invention, there is provided a power train control device comprising: a first rotating element connected to a first rotating electric machine; a second rotating element connected to a second rotating electric machine; and a first rotating element connected to an internal combustion engine. A differential mechanism having three rotational elements, a first state that allows relative rotation of the first rotational element, the second rotational element, and the third rotational element in the differential mechanism, and a second state that prohibits the second rotational element. A control apparatus for a power train, comprising: a switching mechanism that switches states; and a speed change mechanism that is connected to the differential mechanism and transmits torque input from the differential mechanism to wheels. The control device transmits the first control means for controlling the switching mechanism so as to switch between the first state and the second state, and is transmitted to the wheel at the time of switching between the first state and the second state. Second control means for controlling the power train so as to compensate for the change in torque.

第1の発明によると、パワートレーンは、第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、差動機構において第1の回転要素、第2の回転要素および第3の回転要素の相対的な回転を許容する第1の状態および禁止する第2の状態を切換える切換機構と、差動機構に連結され、差動機構から入力されるトルクを車輪に伝達する変速機構とを備える。第1の状態および第2の状態を切換える(第1の状態から第2の状態へ切換える、もしくは第2の状態から第1の状態へ切換える)ように切換機構が制御される。第1の状態および第2の状態の切換え時に、車輪へ伝達されるトルクの変化分を補償するようにパワートレーンが制御される。これにより、第1の状態および第2の状態の切換え時に、車輪に伝達されるトルクの連続性を保つことができる。そのため、トルクの連続性を保つことができるパワートレーンの制御装置を提供することができる。   According to the first invention, the power train includes the first rotating element connected to the first rotating electric machine, the second rotating element connected to the second rotating electric machine, and the third rotating element connected to the internal combustion engine. A differential mechanism having a rotating element; a first state that allows relative rotation of the first rotating element, the second rotating element, and the third rotating element in the differential mechanism; and a second state that prohibits the relative state. A switching mechanism for switching, and a transmission mechanism connected to the differential mechanism and transmitting torque input from the differential mechanism to the wheels. The switching mechanism is controlled to switch between the first state and the second state (switching from the first state to the second state, or switching from the second state to the first state). At the time of switching between the first state and the second state, the power train is controlled so as to compensate for the change in torque transmitted to the wheels. Thereby, the continuity of the torque transmitted to the wheel can be maintained when switching between the first state and the second state. Therefore, it is possible to provide a power train control device that can maintain torque continuity.

第2の発明に係るパワートレーンの制御装置は、第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、差動機構において第1の回転要素、第2の回転要素および第3の回転要素の相対的な回転を許容する第1の状態および各回転要素のうちの少なくともいずれか一つを固定する第2の状態を切換える切換機構と、差動機構に連結され、差動機構から入力されるトルクを車輪に伝達する変速機構とを備えるパワートレーンの制御装置である。この制御装置は、第1の状態および第2の状態を切換えるように切換機構を制御するための第1の制御手段と、第1の状態および第2の状態の切換え時に、車輪へ伝達されるトルクの変化分を補償するようにパワートレーンを制御するための第2の制御手段とを含む。   According to a second aspect of the present invention, there is provided a power train control apparatus comprising: a first rotating element coupled to a first rotating electrical machine; a second rotating element coupled to a second rotating electrical machine; and a first rotating element coupled to an internal combustion engine. A differential mechanism having three rotating elements, a first state in which the first rotating element, the second rotating element, and the third rotating element are allowed to rotate relative to each other in the differential mechanism; A control apparatus for a power train, comprising: a switching mechanism that switches a second state that fixes at least one of the first and second gears; and a transmission mechanism that is connected to the differential mechanism and transmits a torque input from the differential mechanism to the wheels. is there. The control device transmits the first control means for controlling the switching mechanism so as to switch between the first state and the second state, and is transmitted to the wheel at the time of switching between the first state and the second state. Second control means for controlling the power train so as to compensate for the change in torque.

第2の発明によると、パワートレーンは、第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、差動機構において第1の回転要素、第2の回転要素および第3の回転要素の相対的な回転を許容する第1の状態および各回転要素のうちの少なくともいずれか一つを固定する第2の状態を切換える切換機構と、差動機構に連結され、差動機構から入力されるトルクを車輪に伝達する変速機構とを備える。第1の状態および第2の状態を切換える(第1の状態から第2の状態へ切換える、もしくは第2の状態から第1の状態へ切換える)ように切換機構が制御される。第1の状態および第2の状態の切換え時に、車輪へ伝達されるトルクの変化分を補償するようにパワートレーンが制御される。これにより、第1の状態および第2の状態の切換え時に、車輪に伝達されるトルクの連続性を保つことができる。そのため、トルクの連続性を保つことができるパワートレーンの制御装置を提供することができる。   According to the second invention, the power train includes the first rotating element connected to the first rotating electric machine, the second rotating element connected to the second rotating electric machine, and the third rotating element connected to the internal combustion engine. A differential mechanism having a rotating element; a first state that allows relative rotation of the first rotating element, the second rotating element, and the third rotating element in the differential mechanism; and at least one of the rotating elements A switching mechanism that switches between the second states for fixing any one of them and a transmission mechanism that is connected to the differential mechanism and transmits torque input from the differential mechanism to the wheels. The switching mechanism is controlled to switch between the first state and the second state (switching from the first state to the second state, or switching from the second state to the first state). At the time of switching between the first state and the second state, the power train is controlled so as to compensate for the change in torque transmitted to the wheels. Thereby, the continuity of the torque transmitted to the wheel can be maintained when switching between the first state and the second state. Therefore, it is possible to provide a power train control device that can maintain torque continuity.

第3の発明に係るパワートレーンの制御装置においては、第1または2の発明の構成に加え、第1の制御手段は、車輪へ伝達されるトルクが最も大きい状態で第1の状態および第2の状態を切換えるように切換機構を制御するための手段を含む。   In the power train control device according to the third aspect of the invention, in addition to the configuration of the first or second aspect of the invention, the first control means has the first state and the second state with the largest torque transmitted to the wheel. Means for controlling the switching mechanism to switch the state of the.

第3の発明によると、車輪へ伝達されるトルクが最も大きい状態で第1の状態および第2の状態が切換えられる。これにより、良好な加速性を得ることができる。   According to the third invention, the first state and the second state are switched in a state where the torque transmitted to the wheel is the largest. Thereby, good acceleration can be obtained.

第4の発明に係るパワートレーンの制御装置は、第1または2の発明の構成に加え、車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合に比べて、第1の状態および第2の状態の切換え後に車輪へ伝達されるトルクがより小さくなるように、パワートレーンを制御するための手段をさらに含む。   In the power train control device according to the fourth invention, in addition to the configuration of the first or second invention, when the compensation amount of the torque transmitted to the wheels is limited, the first control device Means are further included for controlling the power train such that less torque is transmitted to the wheels after switching between the state and the second state.

第4の発明によると、車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合に比べて、第1の状態および第2の状態の切換え後に車輪へ伝達されるトルクがより小さくなるように、パワートレーンが制御される。これにより、車輪へ伝達されるトルクの補償量が制限される場合は、トルクの補償により到達すべきトルクを小さくすることができる。そのため、トルクの補償量を大きくすることができない場合であっても、車輪に伝達されるトルクの連続性を保つことができる。   According to the fourth invention, when the compensation amount of the torque transmitted to the wheel is limited, the torque transmitted to the wheel after the switching between the first state and the second state is greater than when the compensation amount is not limited. The power train is controlled to be smaller. Thereby, when the compensation amount of the torque transmitted to the wheel is limited, the torque to be reached can be reduced by the torque compensation. Therefore, even when the amount of torque compensation cannot be increased, the continuity of torque transmitted to the wheels can be maintained.

第5の発明に係るパワートレーンの制御装置においては、第1または2の発明の構成に加え、第1の制御手段は、車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合とは車輪へ伝達されるトルクが異なる状態で第1の状態および第2の状態を切換えるように切換機構を制御するための手段を含む。   In the power train control device according to the fifth invention, in addition to the configuration of the first or second invention, the first control means is not restricted when the compensation amount of the torque transmitted to the wheels is restricted. The case includes means for controlling the switching mechanism to switch between the first state and the second state in a state where the torque transmitted to the wheels is different.

第5の発明によると、車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合とは車輪へ伝達されるトルクが異なる状態で第1の状態および第2の状態が切換えられる。たとえば、車輪へ伝達されるトルクがより小さい状態で第1の状態および第2の状態が切換えられる。これにより、トルクの補償を開始する時点で車輪へ伝達されるトルク、すなわち、トルクの補償により到達すべきトルクを小さくすることができる。そのため、トルクの補償量を大きくすることができない場合であっても、車輪に伝達されるトルクの連続性を保つことができる。   According to the fifth aspect, when the compensation amount of the torque transmitted to the wheel is limited, the first state and the second state are switched in a state where the torque transmitted to the wheel is different from the case where the compensation amount is not limited. . For example, the first state and the second state are switched in a state where torque transmitted to the wheels is smaller. As a result, the torque transmitted to the wheel at the time of starting the torque compensation, that is, the torque to be reached by the torque compensation can be reduced. Therefore, even when the amount of torque compensation cannot be increased, the continuity of torque transmitted to the wheels can be maintained.

第6の発明に係るパワートレーンの制御装置においては、第5の発明の構成に加え、第1の制御手段は、車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合に比べて、車輪へ伝達されるトルクがより小さい状態で第1の状態および第2の状態を切換えるように切換機構を制御するための手段を含む。   In the power train control device according to the sixth aspect of the invention, in addition to the configuration of the fifth aspect, the first control means is provided when the amount of compensation of the torque transmitted to the wheel is limited, but not limited. In comparison, it includes means for controlling the switching mechanism to switch between the first state and the second state with a smaller torque transmitted to the wheels.

第6の発明によると、車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合に比べて、車輪へ伝達されるトルクがより小さい状態で第1の状態および第2の状態が切換えられる。これにより、トルクの補償を開始する時点で車輪へ伝達されるトルク、すなわち、トルクの補償により到達すべきトルクを小さくすることができる。そのため、トルクの補償量を大きくすることができない場合であっても、車輪に伝達されるトルクの連続性を保つことができる。   According to the sixth invention, when the compensation amount of the torque transmitted to the wheel is limited, the first state and the second state with a smaller torque transmitted to the wheel than in the case where the compensation amount is not limited. Is switched. As a result, the torque transmitted to the wheel at the time of starting the torque compensation, that is, the torque to be reached by the torque compensation can be reduced. Therefore, even when the amount of torque compensation cannot be increased, the continuity of torque transmitted to the wheels can be maintained.

第7の発明に係るパワートレーンの制御装置においては、第1〜6のいずれかの発明の構成に加え、第2の制御手段は、車輪へ伝達されるトルクの変化分を補償するように第1の回転電機および第2の回転電機のうちの少なくともいずれか一方を制御するための手段を含む。   In the power train control device according to the seventh invention, in addition to the configuration of any one of the first to sixth inventions, the second control means compensates for the change in torque transmitted to the wheels. Means for controlling at least one of the first rotating electric machine and the second rotating electric machine is included.

第7の発明によると、車輪へ伝達されるトルクの変化分を補償するように第1の回転電機および第2の回転電機のうちの少なくともいずれか一方が制御される。これにより、トルクに関して応答性のよい第1の回転電機または第2の回転電機を用いて、トルクを補償することができる。そのため、トルクの連続性を良好に保つことができる。   According to the seventh aspect, at least one of the first rotating electric machine and the second rotating electric machine is controlled so as to compensate for the change in torque transmitted to the wheels. As a result, the torque can be compensated for using the first rotating electric machine or the second rotating electric machine having good responsiveness with respect to the torque. Therefore, the continuity of torque can be kept good.

第8の発明に係るパワートレーンの制御装置は、第1〜7のいずれかの発明の構成に加え、第1の状態において電気的無段変速するようにパワートレーンを制御するための手段をさらに含む。   According to an eighth aspect of the present invention, there is provided a power train control apparatus, further comprising means for controlling the power train so as to perform an electric continuously variable transmission in the first state, in addition to the configuration of any one of the first to seventh aspects. Including.

第8の発明によると、差動機構の第1の回転要素、第2の回転要素および第3の回転要素の相対的な回転を許容する第1の状態において電気的無段変速するようにパワートレーンが制御される。これにより、パワートレーンの変速比を無段階に変化することができる。そのため、車輪へ伝達されるトルクを連続的に変化することができる。   According to the eighth aspect of the invention, the power is controlled so as to perform an electric continuously variable speed in the first state in which relative rotation of the first rotating element, the second rotating element, and the third rotating element of the differential mechanism is allowed. The train is controlled. Thereby, the gear ratio of the power train can be changed steplessly. Therefore, the torque transmitted to the wheels can be continuously changed.

以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

図1を参照して、本発明の実施の形態に係る制御装置を搭載したハイブリッド車について説明する。このハイブリッド車は、FR(Front engine Rear drive)車両である。なお、FR以外の車両であってもよい。   A hybrid vehicle equipped with a control device according to an embodiment of the present invention will be described with reference to FIG. This hybrid vehicle is an FR (Front engine Rear drive) vehicle. A vehicle other than FR may be used.

ハイブリッド車は、エンジン100と、トランスミッション200と、プロペラシャフト500と、デファレンシャルギヤ600と、後輪700と、ECU(Electronic Control Unit)800とを含む。本実施の形態に係る制御装置は、たとえばECU800のROM(Read Only Memory)802に記録されたプログラムを実行することにより実現される。本発明の実施の形態に係る制御装置であるECU800により制御されるパワートレーン1000は、エンジン100と、トランスミッション200とを含む。   The hybrid vehicle includes an engine 100, a transmission 200, a propeller shaft 500, a differential gear 600, a rear wheel 700, and an ECU (Electronic Control Unit) 800. The control device according to the present embodiment is realized, for example, by executing a program recorded in ROM (Read Only Memory) 802 of ECU 800. Power train 1000 controlled by ECU 800 that is a control device according to an embodiment of the present invention includes engine 100 and transmission 200.

エンジン100は、インジェクタ102から噴射された燃料と空気との混合気を、シリンダの燃焼室内で燃焼させる内燃機関である。燃焼によりシリンダ内のピストンが押し下げられて、クランクシャフトが回転させられる。   Engine 100 is an internal combustion engine that burns a mixture of fuel and air injected from injector 102 in a combustion chamber of a cylinder. The piston in the cylinder is pushed down by the combustion, and the crankshaft is rotated.

トランスミッション200は、エンジン100に連結される。トランスミッション200は、後述するように、第1変速部300と、第2変速部400とを含む。トランスミッション200から出力されたトルクは、プロペラシャフト500およびデファレンシャルギヤ600を介して、左右の後輪700に伝達される。   Transmission 200 is coupled to engine 100. Transmission 200 includes a first transmission unit 300 and a second transmission unit 400, as will be described later. Torque output from the transmission 200 is transmitted to the left and right rear wheels 700 via the propeller shaft 500 and the differential gear 600.

ECU800には、シフトレバー804のポジションスイッチ806と、アクセルペダル808のアクセル開度センサ810と、ブレーキペダル812の踏力センサ814と、電子スロットルバルブ816のスロットル開度センサ818と、エンジン回転数センサ820と、入力軸回転数センサ822と、出力軸回転数センサ824と、油温センサ826と、水温センサ828とがハーネスなどを介して接続されている。   The ECU 800 includes a position switch 806 for the shift lever 804, an accelerator opening sensor 810 for the accelerator pedal 808, a depression force sensor 814 for the brake pedal 812, a throttle opening sensor 818 for the electronic throttle valve 816, and an engine speed sensor 820. The input shaft speed sensor 822, the output shaft speed sensor 824, the oil temperature sensor 826, and the water temperature sensor 828 are connected via a harness or the like.

シフトレバー804の位置(ポジション)は、ポジションスイッチ806により検出され、検出結果を表す信号がECU800に送信される。シフトレバー804の位置に対応して、トランスミッション200における変速が自動で行なわれる。   The position (position) of shift lever 804 is detected by position switch 806, and a signal representing the detection result is transmitted to ECU 800. Corresponding to the position of the shift lever 804, the transmission 200 is automatically shifted.

アクセル開度センサ810は、アクセルペダル808の開度を検出し、検出結果を表す信号をECU800に送信する。踏力センサ814は、ブレーキペダル812の踏力(運転者がブレーキペダル812を踏む力)を検出し、検出結果を表す信号をECU800に送信する。   Accelerator opening sensor 810 detects the opening of accelerator pedal 808 and transmits a signal representing the detection result to ECU 800. The pedaling force sensor 814 detects the pedaling force of the brake pedal 812 (the force with which the driver steps on the brake pedal 812), and transmits a signal representing the detection result to the ECU 800.

スロットル開度センサ818は、アクチュエータにより開度が調整される電子スロットルバルブ816の開度を検出し、検出結果を表す信号をECU800に送信する。電子スロットルバルブ816により、エンジン100に吸入される空気量(エンジン100の出力)が調整される。   The throttle opening sensor 818 detects the opening of the electronic throttle valve 816 whose opening is adjusted by the actuator, and transmits a signal indicating the detection result to the ECU 800. Electronic throttle valve 816 adjusts the amount of air taken into engine 100 (engine 100 output).

なお、電子スロットルバルブ816の代わりにもしくは加えて、吸気バルブ(図示せず)や排気バルブ(図示せず)のリフト量や開閉する位相を変更することにより、エンジン100に吸入される空気量を調整するようにしてもよい。   Instead of or in addition to the electronic throttle valve 816, the amount of air taken into the engine 100 can be reduced by changing the lift amount of the intake valve (not shown) or the exhaust valve (not shown) and the opening / closing phase. You may make it adjust.

エンジン回転数センサ820は、エンジン100の出力軸(クランクシャフト)の回転数を検出し、検出結果を表す信号をECU800に送信する。入力軸回転数センサ822は、第2変速部400の入力軸回転数NIを検出し、検出結果を表す信号をECU800に送信する。出力軸回転数センサ824は、トランスミッション200(第2変速部400)の出力軸回転数NOを検出し、検出結果を表す信号をECU800に送信する。   Engine rotation speed sensor 820 detects the rotation speed of the output shaft (crankshaft) of engine 100 and transmits a signal representing the detection result to ECU 800. The input shaft speed sensor 822 detects the input shaft speed NI of the second transmission unit 400 and transmits a signal representing the detection result to the ECU 800. Output shaft rotational speed sensor 824 detects output shaft rotational speed NO of transmission 200 (second transmission unit 400), and transmits a signal representing the detection result to ECU 800.

油温センサ826は、トランスミッション200の作動や潤滑に用いられるオイル(ATF:Automatic Transmission Fluid)の温度(油温)を検出し、検出結果を表す信号をECU800に送信する。   Oil temperature sensor 826 detects the temperature (oil temperature) of oil (ATF: Automatic Transmission Fluid) used for operation and lubrication of transmission 200 and transmits a signal representing the detection result to ECU 800.

水温センサ828は、エンジン100の冷却水の温度(水温)を検出し、検出結果を表わす信号をECU800に送信する。   Water temperature sensor 828 detects the temperature (water temperature) of cooling water for engine 100 and transmits a signal representing the detection result to ECU 800.

ECU800は、ポジションスイッチ806、アクセル開度センサ810、踏力センサ814、スロットル開度センサ818、エンジン回転数センサ820、入力軸回転数センサ822、出力軸回転数センサ824、油温センサ826、水温センサ828などから送られてきた信号、ROM802に記憶されたマップおよびプログラムに基づいて、車両が所望の走行状態となるように、機器類を制御する。   The ECU 800 includes a position switch 806, an accelerator opening sensor 810, a pedaling force sensor 814, a throttle opening sensor 818, an engine speed sensor 820, an input shaft speed sensor 822, an output shaft speed sensor 824, an oil temperature sensor 826, and a water temperature sensor. Based on the signal sent from 828 or the like, the map stored in the ROM 802 and the program, the devices are controlled so that the vehicle is in a desired running state.

図2を参照して、トランスミッション200についてさらに説明する。トランスミッション200は、車体に取り付けられる非回転部材としてのケース202内において共通の軸心上に配設された入力回転部材としての入力軸204と、この入力軸204に直接もしくはダンパー(図示せず)を介して連結された第1変速部300と、第1変速部300と後輪700との間の動力伝達経路で伝達部材(伝動軸)206を介して直列に連結される第2変速部400と、第2変速部400に連結されている出力回転部材としての出力軸208とを含む。   The transmission 200 will be further described with reference to FIG. The transmission 200 includes an input shaft 204 as an input rotating member disposed on a common axis in a case 202 as a non-rotating member attached to a vehicle body, and a direct or damper (not shown) on the input shaft 204. The first transmission unit 300 coupled via the first transmission unit 300 and the second transmission unit 400 coupled in series via the transmission member (transmission shaft) 206 in the power transmission path between the first transmission unit 300 and the rear wheel 700. And an output shaft 208 as an output rotation member connected to the second transmission unit 400.

トランスミッション200はその軸心に対して対称的に構成されているため、図2のトランスミッション200を表す部分においてはその下側が省略されている。以下の各実施の形態についても同じである。   Since the transmission 200 is configured symmetrically with respect to its axis, the lower side is omitted in the portion representing the transmission 200 in FIG. The same applies to the following embodiments.

第1変速部300は、動力分割機構310と、第1MG(Motor Generator)311と、第2MG312とを含む。第1変速部300は、さらに、C0クラッチ314およびB0ブレーキ316の二つの摩擦係合要素を含む。   First transmission unit 300 includes a power split device 310, a first MG (Motor Generator) 311, and a second MG 312. First transmission unit 300 further includes two friction engagement elements, that is, C0 clutch 314 and B0 brake 316.

動力分割機構310は、入力軸204に入力されたエンジン100の出力を第1MG311および伝達部材206に分割する。動力分割機構310は、プラネタリギヤ320から構成される。   Power split device 310 splits the output of engine 100 input to input shaft 204 into first MG 311 and transmission member 206. Power split device 310 includes planetary gear 320.

プラネタリギヤ320は、サンギヤ322、ピニオンギヤ324、ピニオンギヤ324を自転および公転可能に支持するキャリア326、ピニオンギヤ324を介してサンギヤ322と噛み合うリングギヤ328を含む。   Planetary gear 320 includes a sun gear 322, a pinion gear 324, a carrier 326 that supports the pinion gear 324 so as to rotate and revolve, and a ring gear 328 that meshes with the sun gear 322 via the pinion gear 324.

動力分割機構310において、キャリア326は入力軸204すなわちエンジン100に連結される。サンギヤ322は第1MG311に連結される。リングギヤ328は伝達部材206を介して第2MG312に連結される。   In power split device 310, carrier 326 is connected to input shaft 204, that is, engine 100. Sun gear 322 is connected to first MG 311. Ring gear 328 is connected to second MG 312 via transmission member 206.

動力分割機構310は、サンギヤ322、キャリア326、リングギヤ328が相対的に回転することにより差動装置として機能する。動力分割機構310の差動機能により、エンジン100の出力が第1MG311と伝達部材206とに分配される。   Power split device 310 functions as a differential device by relatively rotating sun gear 322, carrier 326, and ring gear 328. Due to the differential function of power split device 310, the output of engine 100 is distributed to first MG 311 and transmission member 206.

分配されたエンジン100の出力の一部を用いて第1MG311が発電したり、第1MG311が発電した電力を用いて第2MG312が回転駆動したりすることにより、動力分割機構310は、無段変速機(電気的無段変速機)として機能する。   The first MG 311 generates electric power using a part of the output of the distributed engine 100, or the second MG 312 is rotationally driven using electric power generated by the first MG 311 so that the power split mechanism 310 is a continuously variable transmission. Functions as an (electrically continuously variable transmission).

第1MG311および第2MG312は、三相交流回転電機である。第1MG311は、動力分割機構310のサンギヤ322に連結される。第2MG312は、ロータが伝達部材206と一体的に回転するように設けられる。   First MG 311 and second MG 312 are three-phase AC rotating electric machines. First MG 311 is coupled to sun gear 322 of power split device 310. Second MG 312 is provided such that the rotor rotates integrally with transmission member 206.

第1MG311および第2MG312は、たとえばアクセル開度および車速などから算出されるトランスミッション200の目標出力トルクを満足し、かつエンジン100において最適な燃費を実現するように制御される。   First MG 311 and second MG 312 are controlled so as to satisfy the target output torque of transmission 200 calculated from, for example, the accelerator opening and the vehicle speed, and to realize optimal fuel consumption in engine 100.

C0クラッチ314は、サンギヤ322とキャリア326とを連結するように設けられる。B0ブレーキ316は、サンギヤ322をケース202に連結するように設けられる。なお、B0ブレーキ316を用いて、キャリア326をケース202に連結するようにしてもよい。   The C0 clutch 314 is provided so as to connect the sun gear 322 and the carrier 326. The B0 brake 316 is provided so as to connect the sun gear 322 to the case 202. The carrier 326 may be coupled to the case 202 using the B0 brake 316.

第2変速部400は、シングルピニオン型の3つのプラネタリギヤ411〜413と、C1クラッチ421、C2クラッチ422、B1ブレーキ431、B2ブレーキ432およびB3ブレーキ433の5つの摩擦係合要素を含む。   The second transmission unit 400 includes three single-pinion type planetary gears 411 to 413 and five friction engagement elements of a C1 clutch 421, a C2 clutch 422, a B1 brake 431, a B2 brake 432, and a B3 brake 433.

第1変速部300および第2変速部400の摩擦係合要素を図3に示す作動表に示す組み合わせで係合することにより、トランスミッション200において、1速ギヤ段〜5速ギヤ段の5つの前進ギヤ段が形成される。   By engaging the friction engagement elements of the first transmission unit 300 and the second transmission unit 400 in the combinations shown in the operation table shown in FIG. 3, five forwards from the first gear to the fifth gear in the transmission 200 are performed. A gear stage is formed.

C0クラッチ314およびB0ブレーキ316が解放状態である場合、サンギヤ322、キャリア326およびリングギヤ328の相対的な回転が許容される。この状態では、動力分割機構310は無段変速機として機能する。すなわち、トランスミッション200が無段変速状態になる。   When the C0 clutch 314 and the B0 brake 316 are in the released state, relative rotation of the sun gear 322, the carrier 326, and the ring gear 328 is allowed. In this state, power split device 310 functions as a continuously variable transmission. That is, the transmission 200 is in a continuously variable transmission state.

C0クラッチ314が係合状態である場合、サンギヤ322、キャリア326およびリングギヤ328の相対的な回転が禁止される。この状態では、動力分割機構310は無段変速機として機能しない。すなわち、トランスミッション200においてステップ的に変速比が変化する有段変速状態になる。   When the C0 clutch 314 is engaged, relative rotation of the sun gear 322, the carrier 326, and the ring gear 328 is prohibited. In this state, power split device 310 does not function as a continuously variable transmission. That is, the transmission 200 enters a stepped speed change state in which the speed ratio changes stepwise.

B0ブレーキ316が係合状態である場合、サンギヤ322がケース202に固定される。この状態では、動力分割機構310は無段変速機として機能しない。すなわち、トランスミッション200が有段変速状態になる。   When the B0 brake 316 is in the engaged state, the sun gear 322 is fixed to the case 202. In this state, power split device 310 does not function as a continuously variable transmission. That is, the transmission 200 is in the stepped speed change state.

トランスミッション200における変速(無段変速状態と有段変速状態との切換えを含む)は、たとえば図4に示す変速線図に基づいて制御される。本実施の形態における変速線図は、アクセル開度および車速などから算出される目標出力トルクと、車速とをパラメータとして定められる。なお、変速線図のパラメータはこれらに限らない。   Shifting in the transmission 200 (including switching between a continuously variable transmission state and a stepped transmission state) is controlled based on, for example, a shift diagram shown in FIG. The shift map in the present embodiment is determined by using the target output torque calculated from the accelerator opening and the vehicle speed, and the vehicle speed as parameters. Note that the parameters of the shift map are not limited to these.

図4における実線がアップシフト線であって、破線がダウンシフト線である。図4において太い実線で囲まれる領域は、エンジン100の駆動力を用いずに、第2MG312の駆動力のみを用いて走行する領域を示す。図4における一点鎖線は、無段変速状態から有段変速状態に切換える切換線である。図4における二点鎖線は、有段変速状態から無段変速状態に切換える切換線である。   A solid line in FIG. 4 is an upshift line, and a broken line is a downshift line. In FIG. 4, a region surrounded by a thick solid line indicates a region where the vehicle 100 travels using only the driving force of the second MG 312 without using the driving force of the engine 100. A dashed line in FIG. 4 is a switching line for switching from the continuously variable transmission state to the stepped transmission state. A two-dot chain line in FIG. 4 is a switching line for switching from the stepped speed change state to the continuously variable speed change state.

変速を行なう際、C0クラッチ314、B0ブレーキ316、C1クラッチ421、C2クラッチ422、B1ブレーキ431、B2ブレーキ432およびB3ブレーキ433は、油圧により作動する。本実施の形態において、ハイブリッド車には、図5に示すように、各摩擦係合要素に対して油圧を給排してその係合・解放の制御を行なう油圧制御装置900が設けられる。   When shifting, the C0 clutch 314, the B0 brake 316, the C1 clutch 421, the C2 clutch 422, the B1 brake 431, the B2 brake 432, and the B3 brake 433 are operated by hydraulic pressure. In the present embodiment, as shown in FIG. 5, the hybrid vehicle is provided with a hydraulic control device 900 that supplies / discharges hydraulic pressure to / from each friction engagement element and controls engagement / release.

この油圧制御装置900は、機械式オイルポンプ910と電動オイルポンプ920と、これらのオイルポンプ910,920で発生させた油圧をライン圧に調圧するとともに、そのライン圧を元圧として調圧した油圧を各摩擦係合要素に対して給排し、かつ適宜の箇所に潤滑のためのオイルを供給する油圧回路930とを含む。   The hydraulic control apparatus 900 adjusts the hydraulic pressure generated by the mechanical oil pump 910, the electric oil pump 920, and the oil pumps 910 and 920 to the line pressure, and the hydraulic pressure adjusted using the line pressure as the original pressure. And a hydraulic circuit 930 that supplies oil for lubrication to an appropriate location.

機械式オイルポンプ910は、エンジン100によって駆動されて油圧を発生するポンプである。機械式オイルポンプ910は、キャリア326と同軸上に配置され、エンジン100からトルクを受けて動作するようになっている。すなわち、キャリア326が回転することにより機械式オイルポンプ910が駆動せしめられて、油圧が発生する。   Mechanical oil pump 910 is a pump that is driven by engine 100 to generate hydraulic pressure. The mechanical oil pump 910 is arranged coaxially with the carrier 326 and is operated by receiving torque from the engine 100. That is, when the carrier 326 rotates, the mechanical oil pump 910 is driven, and hydraulic pressure is generated.

これに対して電動オイルポンプ920は、モータ(図示せず)によって駆動されるポンプである。電動オイルポンプ920は、ケース202の外部などの適宜の箇所に取り付けられる。電動オイルポンプ920は、所望の油圧を発生するように、ECU800により制御される。たとえば、電動オイルポンプ920の回転数等がフィードバック制御される。   On the other hand, the electric oil pump 920 is a pump driven by a motor (not shown). The electric oil pump 920 is attached to an appropriate location such as the outside of the case 202. Electric oil pump 920 is controlled by ECU 800 to generate a desired oil pressure. For example, the rotational speed of the electric oil pump 920 is feedback-controlled.

電動オイルポンプ920の回転数は、回転数センサ830により検出され、検出結果を表す信号がECU800に送信される。また、電動オイルポンプ920からの吐出圧は、油圧センサ832により検出され、検出結果を表す信号がECU800に送信される。   The rotational speed of electric oil pump 920 is detected by rotational speed sensor 830, and a signal representing the detection result is transmitted to ECU 800. Further, the discharge pressure from the electric oil pump 920 is detected by the hydraulic sensor 832, and a signal indicating the detection result is transmitted to the ECU 800.

電動オイルポンプ920は、DC/DCコンバータ940を介してバッテリ942から供給される電力により作動する。バッテリ942の電力は、電動オイルポンプ920の他、第1MG311および第2MG312に供給される。   The electric oil pump 920 is operated by electric power supplied from the battery 942 via the DC / DC converter 940. The electric power of battery 942 is supplied to first MG 311 and second MG 312 in addition to electric oil pump 920.

油圧回路930は、複数のソレノイドバルブや切換バルブあるいは調圧バルブ(それぞれ図示せず)を備え、調圧や油圧の給排を電気的に制御できるように構成されている。その制御は、ECU800により行なわれる。   The hydraulic circuit 930 includes a plurality of solenoid valves, switching valves, or pressure regulating valves (each not shown), and is configured to be able to electrically control pressure regulation and hydraulic supply / discharge. The control is performed by the ECU 800.

なお、各オイルポンプ910,920の吐出側には、それぞれのオイルポンプ910,920の吐出圧で開き、これとは反対方向には閉じる逆止弁912,922が設けられ、かつ油圧回路930に対してこれらのオイルポンプ910,920は互いに並列に接続されている。また、ライン圧を調圧するバルブ(図示せず)は、吐出量を増大させてライン圧を高くし、これとは反対に吐出量を減じてライン圧を低くする二つの状態にライン圧を制御するように構成されている。   In addition, check valves 912 and 922 that open at the discharge pressure of the oil pumps 910 and 920 and close in the opposite direction are provided on the discharge side of the oil pumps 910 and 920, and the hydraulic circuit 930 includes On the other hand, these oil pumps 910 and 920 are connected in parallel to each other. In addition, a valve (not shown) that regulates the line pressure increases the discharge amount to increase the line pressure, and conversely controls the line pressure to reduce the discharge amount to lower the line pressure. Is configured to do.

図6を参照して、本実施の形態に係る制御装置であるECU800の機能について説明する。なお、以下に説明するECU800の機能はハードウェアにより実現するようにしてもよく、ソフトウェアにより実現するようにしてもよい。   With reference to FIG. 6, the function of ECU 800 serving as the control apparatus according to the present embodiment will be described. The functions of ECU 800 described below may be realized by hardware or may be realized by software.

ECU800は、変速制御部840と、補償制御部842と、エンジントルク制御部844と、電気的無段変速部846とを含む。   ECU 800 includes a shift control unit 840, a compensation control unit 842, an engine torque control unit 844, and an electrical continuously variable transmission unit 846.

変速制御部840は、前述した変速線図に基づいて変速を行なうようにトランスミッシ
ョン200を制御する。たとえば、図7に示すように、無段変速状態から有段変速状態への切換える変速は、後輪700へ伝達されるトルクがピーク(最も大きい状態)になる車速V(1)で行なわれる。
The shift control unit 840 controls the transmission 200 to perform a shift based on the shift diagram described above. For example, as shown in FIG. 7, the shift from the continuously variable transmission state to the stepped transmission state is performed at a vehicle speed V (1) at which the torque transmitted to the rear wheel 700 reaches a peak (maximum state).

なお、図7における実線は、無段変速状態において後輪700に伝達されるトルクを示す。図7における一点鎖線は、有段変速状態での1速ギヤ段において、第1MG311および第2MG312によるトルクアシストがない場合に後輪700に伝達されるトルクを示す。すなわち、図7における一点鎖線は、有段変速状態での1速ギヤ段において、エンジン100のみから後輪700に伝達されるトルクを示す。図7における二点鎖線は、出力がたとえば200kwになるようなトルクを示す。   7 indicates the torque transmitted to the rear wheel 700 in the continuously variable transmission state. A one-dot chain line in FIG. 7 indicates the torque transmitted to the rear wheel 700 when there is no torque assist by the first MG 311 and the second MG 312 in the first gear in the stepped speed change state. That is, the alternate long and short dash line in FIG. 7 indicates the torque transmitted from only engine 100 to rear wheel 700 in the first gear in the stepped speed change state. A two-dot chain line in FIG. 7 indicates a torque such that the output is 200 kW, for example.

また、変速制御部840は、第1MG311および第2MG312の出力トルクが制限されている場合、制限されていない場合に比べてトランスミッション200から後輪700に伝達されるトルクが小さい状態で変速を行なうようにトランスミッション200を制御する。たとえば、図7に示すように、車速V(1)よりもトルクが低くなる車速V(2)にて、無段変速状態から有段変速状態への切換える変速が行なわれる。 In addition, when the output torque of first MG 311 and second MG 312 is limited, shift control unit 840 performs a shift with a smaller torque transmitted from transmission 200 to rear wheel 700 than when it is not limited. The transmission 200 is controlled. For example, as shown in FIG. 7, a shift is performed to switch from a continuously variable transmission state to a stepped transmission state at a vehicle speed V (2) where the torque is lower than the vehicle speed V (1).

第1MG311および第2MG312の出力トルクが制限されている場合に変速を行なう車速V(2)、すなわち変速を開始する時点でのトルクは、第1MG311および第2MG312の出力トルクの制限の度合いに応じて定められる。   The vehicle speed V (2) at which shifting is performed when the output torque of the first MG 311 and the second MG 312 is limited, that is, the torque at the time of starting the shifting depends on the degree of limitation of the output torque of the first MG 311 and the second MG 312. Determined.

たとえば、第1MG311および第2MG312の出力トルクの制限の度合いが小さい場合は、大きい場合に比べてトルクがより高い車速において変速が行なわれる。すなわち、第1MG311および第2MG312の出力可能なトルクの最大値が大きいほど、トルクがより高い車速において変速が行なわれる。   For example, when the degree of restriction of the output torque of first MG 311 and second MG 312 is small, gear shifting is performed at a higher vehicle speed than when it is large. That is, as the maximum value of torque that can be output by first MG 311 and second MG 312 is larger, gear shifting is performed at a higher vehicle speed.

バッテリ942からの放電が制限されていたり、第1MG311および第2MG312自体の状態が予め定められた状態にある場合、第1MG311および第2MG312の出力トルクが制限される。   When the discharge from battery 942 is restricted or the state of first MG 311 and second MG 312 itself is in a predetermined state, the output torque of first MG 311 and second MG 312 is restricted.

補償制御部842は、変速時に(変速の完了後から)、後輪700に伝達されるトルクの変化分を補償するように、第1MG311または第2MG312を制御する。たとえば、図8に示すように、変速後に後輪700に伝達されるトルクが、変速前に後輪700に伝達されるトルクと同じになるようにトルクが補償される。   The compensation control unit 842 controls the first MG 311 or the second MG 312 so as to compensate for a change in torque transmitted to the rear wheel 700 at the time of shifting (after completion of shifting). For example, as shown in FIG. 8, the torque is compensated so that the torque transmitted to the rear wheel 700 after the shift becomes the same as the torque transmitted to the rear wheel 700 before the shift.

エンジントルク制御部844は、第1MG311および第2MG312の出力トルクが制限されている場合、すなわちトルクの補償量が制限されている場合、制限されていない場合に比べて、変速後にトランスミッション200から後輪700に伝達されるトルクがより小さくなるように、エンジン100を制御する。   The engine torque control unit 844 determines that the output torque of the first MG 311 and the second MG 312 is limited, that is, when the torque compensation amount is limited, when compared with the case where the torque compensation amount is limited, the rear wheel Engine 100 is controlled so that the torque transmitted to 700 becomes smaller.

たとえば、図9に示すように、トルクの補償量が制限されている場合、制限されていない場合に比べて、変速後にエンジン100から後輪700に伝達されるトルクのピーク、すなわち変速後に最終的に後輪700に伝達されるトルクがより小さくなるように、エンジン100が制御される。   For example, as shown in FIG. 9, when the torque compensation amount is limited, the peak of the torque transmitted from the engine 100 to the rear wheel 700 after the shift, that is, the final after the shift, compared to the case where the torque compensation amount is not limited. The engine 100 is controlled so that the torque transmitted to the rear wheel 700 becomes smaller.

変速後にエンジン100から後輪700に伝達されるトルクの変化特性は、第1MG311および第2MG312の出力トルクの制限の度合い、すなわちトルクの補償量の制限の度合いに応じて定められる。   The change characteristic of the torque transmitted from engine 100 to rear wheel 700 after the shift is determined according to the degree of restriction of the output torque of first MG 311 and second MG 312, that is, the degree of restriction of the torque compensation amount.

たとえば、第1MG311および第2MG312の出力トルクの制限の度合いが小さい
場合は、大きい場合に比べて、変速後にエンジン100から後輪700に伝達されるトルクのピークが大きくなるように、トルクの変化特性が定められる。すなわち、第1MG311および第2MG312の出力トルクの最大値が大きいほど、変速後にエンジン100から後輪700に伝達されるトルクのピークがより大きくなるように、エンジン100が制御される。
For example, when the degree of restriction of the output torque of first MG 311 and second MG 312 is small, the torque change characteristic is such that the peak of the torque transmitted from engine 100 to rear wheel 700 after the shift is larger than when the limit is large. Is determined. That is, the engine 100 is controlled such that the peak value of torque transmitted from the engine 100 to the rear wheel 700 after the gear shift increases as the maximum value of the output torque of the first MG 311 and the second MG 312 increases.

電気的無段変速部846は、無段変速状態において、電気的無段変速を行なうように、第1MG311および第2MG312を制御する。電気的無段変速においては、たとえばアクセル開度および車速などから算出されるトランスミッション200の目標出力トルクを満足し、かつエンジン100において最適な燃費を実現するように、第1MG311および第2MG312を用いて第1変速部における変速比が無段階に変化される。   Electrical continuously variable transmission unit 846 controls first MG 311 and second MG 312 to perform electrical continuously variable transmission in the continuously variable transmission state. In the electric continuously variable transmission, the first MG 311 and the second MG 312 are used so as to satisfy the target output torque of the transmission 200 calculated from the accelerator opening and the vehicle speed, for example, and to realize the optimum fuel consumption in the engine 100. The transmission ratio in the first transmission unit is changed steplessly.

図10を参照して、本実施の形態に係る制御装置であるECU800が実行するプログラムの制御構造について説明する。なお、以下に説明するプログラムは予め定められた周期で繰り返し実行される。   With reference to FIG. 10, a control structure of a program executed by ECU 800 serving as the control apparatus according to the present embodiment will be described. The program described below is repeatedly executed at a predetermined cycle.

ステップ(以下、ステップをSと略す)100にて、ECU800は、アクセル開度が全開にされた加速時に無段変速状態から有段変速状態に切換える状況であるか否かを判断する。無段変速状態から有段変速状態に切換えるか否かは、前述した図4に示す変速線図に基づいて判断される。   In step (hereinafter, step is abbreviated as S) 100, ECU 800 determines whether or not it is in a state of switching from a continuously variable transmission state to a stepped transmission state during acceleration when the accelerator opening is fully opened. Whether or not to switch from the continuously variable transmission state to the stepped transmission state is determined based on the shift diagram shown in FIG.

なお、無段変速状態から有段変速状態に切換えることは、C0クラッチ314を係合状態にして、サンギヤ322、キャリア326およびリングギヤ328の相対的な回転を禁止すること、およびB0ブレーキ316を係合状態にして、サンギヤ322をケース202に固定することの両方を含む。無段変速状態から有段変速状態に切換える状況であると(S100にてYES)、処理はS110に移される。もしそうでないと(S100にてNO)、処理はS180に移される。   Note that switching from the continuously variable transmission state to the stepped transmission state causes the C0 clutch 314 to be in the engaged state, prohibiting relative rotation of the sun gear 322, the carrier 326, and the ring gear 328, and the B0 brake 316 to be engaged. This includes both fixing the sun gear 322 to the case 202 in the combined state. If the current state is a state in which the stepless speed change state is switched to the stepped speed change state (YES in S100), the process proceeds to S110. If not (NO in S100), the process proceeds to S180.

S110にて、ECU800は、第1MG311または第2MG312によるトルクの補償、すなわちトルクアシストが可能であるか否かを判断する。第1MG311および第2MG312の出力トルクが制限されていないと、第1MG311または第2MG312によるトルクの補償が可能であると判断される。   In S110, ECU 800 determines whether torque compensation by first MG 311 or second MG 312 is possible, that is, whether torque assist is possible. If the output torque of first MG 311 and second MG 312 is not limited, it is determined that torque compensation by first MG 311 or second MG 312 is possible.

第1MG311または第2MG312によるトルクの補償が可能であると(S110にてYES)、処理はS120に移される。もしそうでないと(S110にてNO)、処理はS140に移される。   If torque compensation by first MG 311 or second MG 312 is possible (YES in S110), the process proceeds to S120. If not (NO in S110), the process proceeds to S140.

S120にて、ECU800は、トルクの補償方法を決定する。たとえば、変速前に後輪700に伝達されるトルクと同じトルクが変速後に後輪700に継続的に伝達されるようにトルクを補償する方法または後輪700に伝達されるトルクが漸減するようにトルクを補償する方法のいずれか一方が決定される。   In S120, ECU 800 determines a torque compensation method. For example, a method of compensating torque so that the same torque as the torque transmitted to the rear wheel 700 before the shift is continuously transmitted to the rear wheel 700 after the shift or the torque transmitted to the rear wheel 700 gradually decreases. One of the methods for compensating the torque is determined.

S130にて、ECU800は、無段変速状態から有段変速状態への切換えを行なうとともに、決定された方法で、第1MG311または第2MG312によるトルクの補償を行なう。   In S130, ECU 800 switches from the continuously variable transmission state to the stepped transmission state, and compensates for torque by first MG 311 or second MG 312 using the determined method.

S140にて、ECU800は、第1MG311および第2MG312の出力トルクが制限されている場合におけるトルクの補償方法を決定する。すなわち、無段変速状態から有段変速状態への切換える車速が決定される。   In S140, ECU 800 determines a torque compensation method when the output torque of first MG 311 and second MG 312 is limited. That is, the vehicle speed for switching from the continuously variable transmission state to the stepped transmission state is determined.

S150にて、ECU800は、無段変速状態から有段変速状態への切換え後にエンジン100から後輪700に伝達されるトルクの変化特性を決定する。たとえば、第1MG311および第2MG312の出力トルクの制限の度合いが小さい場合は、大きい場合に比べて、変速後にエンジン100から後輪700に伝達されるトルクのピークが大きくなるように、トルクの変化特性が決定される。   In S150, ECU 800 determines a change characteristic of torque transmitted from engine 100 to rear wheel 700 after switching from the continuously variable transmission state to the stepped transmission state. For example, when the degree of restriction of the output torque of first MG 311 and second MG 312 is small, the torque change characteristic is such that the peak of torque transmitted from engine 100 to rear wheel 700 after the shift is larger than when the output torque is large. Is determined.

S160にて、ECU800は、決定された車速において無段変速状態から有段変速状態への切換えを行なうとともに、第1MG311または第2MG312の制限の範囲内で、トルクの補償を行なう。S170にて、ECU800は、エンジン100から後輪700に伝達されるトルクの変化特性が決定された変化特性になるようにエンジン100を制御する。   In S160, ECU 800 switches from the continuously variable transmission state to the stepped transmission state at the determined vehicle speed, and performs torque compensation within the range of restriction of first MG 311 or second MG 312. In S170, ECU 800 controls engine 100 so that the change characteristic of the torque transmitted from engine 100 to rear wheel 700 becomes the determined change characteristic.

S180にて、ECU800は、無段変速状態であるか否かを判断する。無段変速状態であるか否かは、前述した図4に示す変速線図に基づいて判断される。無段変速状態であると(S180にてYES)、処理はS190に移される。もしそうでないと(S180にてNO)、この処理は終了する。   In S180, ECU 800 determines whether or not it is a continuously variable transmission state. Whether or not it is in a continuously variable transmission state is determined based on the shift diagram shown in FIG. If it is a continuously variable transmission state (YES in S180), the process proceeds to S190. If not (NO in S180), this process ends.

S190にて、ECU800は、電気的無段変速を行なうように、第1MG311および第2MG312を制御する。   In S190, ECU 800 controls first MG 311 and second MG 312 so as to perform an electric continuously variable transmission.

以上のような構造、およびフローチャートに基づく、本実施の形態に係る制御装置であるECU800の動作について説明する。   An operation of ECU 800 serving as the control device according to the present embodiment based on the above-described structure and flowchart will be described.

アクセル開度が全開にされた加速時に無段変速状態から有段変速状態に切換える状況であると(S100にてYES)、第1MG311または第2MG312によるトルクの補償が可能であるか否かが判断される(S110)。   When the accelerator opening is fully opened and the state is a state in which the stepless speed change state is switched to the stepped speed change state (YES in S100), it is determined whether torque compensation by the first MG 311 or the second MG 312 is possible. (S110).

第1MG311または第2MG312によるトルクの補償が可能であると(S110にてYES)、トルクの補償方法が決定される(S120)。ここでは、変速前に後輪700に伝達されるトルクと同じトルクが変速後に後輪700に継続的に伝達されるようにトルクを補償する方法が決定されたと想定する。   If torque compensation by first MG 311 or second MG 312 is possible (YES in S110), a torque compensation method is determined (S120). Here, it is assumed that a method for compensating for torque is determined so that the same torque as that transmitted to rear wheel 700 before shifting is continuously transmitted to rear wheel 700 after shifting.

この場合、図11に示す時間T(1)において無段変速状態から有段変速状態への切換えを行なうとともに、前述した図8に示すように、変速前に後輪700に伝達されるトルクと同じトルクが変速後に後輪700に継続的に伝達されるようにトルクが補償される(S130)。これにより、トルクの連続性を保つことができる。   In this case, at time T (1) shown in FIG. 11, switching from the continuously variable transmission state to the stepped transmission state is performed, and, as shown in FIG. The torque is compensated so that the same torque is continuously transmitted to the rear wheel 700 after the shift (S130). Thereby, the continuity of torque can be maintained.

一方、第1MG311および第2MG312の出力トルクが制限されていると(S110にてNO)、第1MG311および第2MG312の出力トルクが制限されている場合におけるトルクの補償方法が決定される(S140)。すなわち、無段変速状態から有段変速状態への切換える車速が決定される。さらに、無段変速状態から有段変速状態への切換え後にエンジン100から後輪700に伝達されるトルクの変化特性が決定される(S150)。   On the other hand, if the output torques of first MG 311 and second MG 312 are limited (NO in S110), a torque compensation method when the output torques of first MG 311 and second MG 312 are limited is determined (S140). That is, the vehicle speed for switching from the continuously variable transmission state to the stepped transmission state is determined. Further, a change characteristic of torque transmitted from engine 100 to rear wheel 700 after switching from the continuously variable transmission state to the stepped transmission state is determined (S150).

前述した図9に示すように、決定された車速において無段変速状態から有段変速状態への切換えが行なわれるとともに、第1MG311または第2MG312の制限の範囲内で、トルクの補償が行なわれる(S160)。さらに、エンジン100から後輪700に伝達されるトルクの変化特性が決定された変化特性になるようにエンジン100が制御される(S170)。   As shown in FIG. 9 described above, switching from the continuously variable transmission state to the stepped transmission state is performed at the determined vehicle speed, and torque compensation is performed within the limits of the first MG 311 or the second MG 312 ( S160). Further, engine 100 is controlled so that the change characteristic of the torque transmitted from engine 100 to rear wheel 700 becomes the determined change characteristic (S170).

すなわち、第1MG311および第2MG312の出力トルクが制限されていない場合よりも低いトルクが後輪700に伝達されている状態で無段変速状態から有段変速状態への切換えが行なわれる。さらに、切換え後に最終的に後輪700に伝達されるトルクが小さくされる。   That is, switching from the continuously variable transmission state to the stepped transmission state is performed in a state where lower torque is transmitted to the rear wheel 700 than when the output torque of the first MG 311 and the second MG 312 is not limited. Further, the torque finally transmitted to the rear wheel 700 after switching is reduced.

これにより、第1MG311および第2MG312の出力トルクが制限される場合、すなわちトルクの補償量が制限される場合は、トルクの補償により到達すべきトルクを小さくすることができる。そのため、トルクの補償量を大きくすることができない場合であっても、後輪700に伝達されるトルクの連続性を保つことができる。   Thereby, when the output torque of first MG 311 and second MG 312 is limited, that is, when the amount of torque compensation is limited, the torque to be reached can be reduced by torque compensation. For this reason, even when the amount of torque compensation cannot be increased, the continuity of the torque transmitted to the rear wheel 700 can be maintained.

ところで、トランスミッション200が無段変速状態であると(S180にてYES)、電気的無段変速を行なうように、第1MG311および第2MG312が制御される。これにより、第1変速部300の変速比を無段階に変化することができる。そのため、後輪700に伝達されるトルクを連続的に変化することができる。   By the way, when transmission 200 is in a continuously variable transmission state (YES in S180), first MG 311 and second MG 312 are controlled so as to perform electrical continuously variable transmission. Thereby, the gear ratio of the first transmission unit 300 can be changed steplessly. Therefore, the torque transmitted to the rear wheel 700 can be continuously changed.

以上のように、本実施の形態に係る制御装置であるECUによれば、無段変速状態から有段変速状態への切換え時に、後輪へ伝達されるトルクの変化分を補償するように、第1MGまたは第2MGが制御される。これにより、トルクの連続性を保つことができる。   As described above, according to the ECU that is the control device according to the present embodiment, at the time of switching from the continuously variable transmission state to the stepped transmission state, so as to compensate for the change in torque transmitted to the rear wheels, The first MG or the second MG is controlled. Thereby, the continuity of torque can be maintained.

なお、トランスミッション200において5つの前進ギヤ段を形成可能にする代わりに、1速ギヤ段〜4速ギヤ段の4つの前進ギヤ段を形成可能であるようにしてもよい。4つの前進ギヤ段を形成可能であるようにトランスミッション200を構成する場合、図12に示すように、第2変速部400は、シングルピニオン型の2つのプラネタリギヤ441,442と、C1クラッチ451、C2クラッチ452、B1ブレーキ461およびB2ブレーキ462の4つの摩擦係合要素とを含む。図13に示す作動表に示す組み合わせで摩擦係合要素を係合することにより、1速ギヤ段〜4速ギヤ段の4つの前進ギヤ段が形成される。   In addition, instead of making it possible to form five forward gears in the transmission 200, four forward gears from the first gear to the fourth gear may be formed. When the transmission 200 is configured such that four forward gears can be formed, as shown in FIG. 12, the second transmission unit 400 includes two single-pinion type planetary gears 441 and 442, and C1 clutches 451 and C2. 4 friction engagement elements of the clutch 452, B1 brake 461, and B2 brake 462. By engaging the friction engagement elements in the combinations shown in the operation table shown in FIG. 13, four forward gears from the first gear to the fourth gear are formed.

また、変速線図において定められる切換線に基づいて無段変速状態と有段変速状態とを切換える代わりに、図14に示すように、エンジン100の出力トルクとエンジン回転数NEとをパラメータに持つマップに基づいて無段変速状態と有段変速状態とを切換えるようにしてもよい。   Further, instead of switching between the continuously variable transmission state and the stepped transmission state based on the switching line defined in the shift diagram, as shown in FIG. 14, the output torque of the engine 100 and the engine speed NE are used as parameters. The stepless speed change state and the stepped speed change state may be switched based on the map.

また、無段変速状態から有段変速状態へ切換える変速の他、有段変速状態における変速(特にアップシフト)時に、後輪700に伝達されるトルクの変化分を補償するようにしてもよい。また、有段変速状態から無段変速状態へ切換える際に、後輪700に伝達されるトルクの変化分を補償するようにしてもよい。   Further, in addition to a shift that switches from a continuously variable transmission state to a stepped transmission state, a change in torque transmitted to the rear wheel 700 may be compensated during a shift (particularly upshift) in a stepped transmission state. Further, when changing from the stepped speed change state to the continuously variable speed change state, a change in torque transmitted to the rear wheel 700 may be compensated.

また、図15に示すように、第1変速部302を、二つのプラネタリギヤ330,340から構成するようにしてもよい。プラネタリギヤ330のサンギヤ332に、第1MG311が連結される。プラネタリギヤ340のサンギヤ342に、第2MG312が連結される。プラネタリギヤ330のキャリア334と、プラネタリギヤ340のキャリア344とは、シャフト350により連結される。   Further, as shown in FIG. 15, the first transmission unit 302 may be configured by two planetary gears 330 and 340. First MG 311 is coupled to sun gear 332 of planetary gear 330. Second MG 312 is connected to sun gear 342 of planetary gear 340. The carrier 334 of the planetary gear 330 and the carrier 344 of the planetary gear 340 are connected by a shaft 350.

プラネタリギヤ330のリングギヤ336は、クラッチを介してエンジン100に連結される。プラネタリギヤ340のリングギヤ346は、クラッチを介して第1MG311もしくはケース202に連結される。   Ring gear 336 of planetary gear 330 is connected to engine 100 via a clutch. Ring gear 346 of planetary gear 340 is connected to first MG 311 or case 202 via a clutch.

なお、この構成において、たとえばプラネタリギヤ340のサンギヤ342とキャリア344との相対的な回転を禁止したり許容したりするクラッチを設けるようにしてもよい
。また、プラネタリギヤ330のサンギヤ332、リングギヤ336、プラネタリギヤ340のサンギヤ342のうちの少なくともいずれか一つを回転不能に固定するブレーキを設けるようにしてもよい。
In this configuration, for example, a clutch that prohibits or allows relative rotation between the sun gear 342 of the planetary gear 340 and the carrier 344 may be provided. Further, a brake that fixes at least one of the sun gear 332 of the planetary gear 330, the ring gear 336, and the sun gear 342 of the planetary gear 340 in a non-rotatable manner may be provided.

今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の実施の形態に係る制御装置を搭載したハイブリッド車を示す概略構成図である。It is a schematic block diagram which shows the hybrid vehicle carrying the control apparatus which concerns on embodiment of this invention. トランスミッションを示す図(その1)である。FIG. 3 is a first diagram illustrating a transmission. 作動表を示す図(その1)である。It is a figure (the 1) which shows an operation | movement table | surface. 変速線図を示す図である。It is a figure which shows a shift map. 油圧制御装置を示す図である。It is a figure which shows a hydraulic control apparatus. ECUの機能ブロック図である。It is a functional block diagram of ECU. 無段変速状態において後輪に伝達されるトルクおよび有段変速状態において後輪に伝達されるトルクを示す図(その1)である。FIG. 6 is a diagram (No. 1) showing torque transmitted to a rear wheel in a continuously variable transmission state and torque transmitted to a rear wheel in a stepped transmission state. 無段変速状態において後輪に伝達されるトルクおよび有段変速状態において後輪に伝達されるトルクを示す図(その2)である。FIG. 11 is a diagram (No. 2) showing torque transmitted to the rear wheel in the continuously variable transmission state and torque transmitted to the rear wheel in the stepped transmission state. 無段変速状態において後輪に伝達されるトルクおよび有段変速状態において後輪に伝達されるトルクを示す図(その3)である。FIG. 11 is a diagram (No. 3) illustrating torque transmitted to the rear wheel in the continuously variable transmission state and torque transmitted to the rear wheel in the stepped transmission state. ECUが実行するプログラムの制御構造を示すフローチャートである。It is a flowchart which shows the control structure of the program which ECU performs. 無段変速状態から有段変速状態へ切換えるタイミングおよびトルクの補償を開始するタイミングを示すタイミングチャートである。It is a timing chart which shows the timing which starts compensation of the timing which switches from a continuously variable transmission state to a stepped transmission state, and torque. トランスミッションを示す図(その2)である。FIG. 6 is a second diagram illustrating the transmission. 作動表を示す図(その2)である。It is a figure (the 2) which shows an operation | movement table | surface. 無段変速状態および有段変速状態の制御領域を示す図である。It is a figure which shows the control area | region of a continuously variable transmission state and a stepped transmission state. トランスミッションを示す図(その3)である。FIG. 9 is a third diagram illustrating the transmission.

符号の説明Explanation of symbols

100 エンジン、200 トランスミッション、300,302 第1変速部、310 動力分割機構、311 第1MG、312 第2MG、314 C0クラッチ、316 B0ブレーキ、322,332,342 サンギヤ、324 ピニオンギヤ、326,334,344 キャリア、328,336,346 リングギヤ、400 第2変速部、500 プロペラシャフト、600 デファレンシャルギヤ、700 後輪、800
ECU、802 ROM、840 変速制御部、842 補償制御部、844 エンジントルク制御部、846 電気的無段変速部、1000 パワートレーン。
100 engine, 200 transmission, 300, 302 first transmission unit, 310 power split mechanism, 311 first MG, 312 second MG, 314 C0 clutch, 316 B0 brake, 322, 332, 342 sun gear, 324 pinion gear, 326, 334, 344 Carrier, 328, 336, 346 Ring gear, 400 Second speed change part, 500 Propeller shaft, 600 Differential gear, 700 Rear wheel, 800
ECU, 802 ROM, 840 shift control unit, 842 compensation control unit, 844 engine torque control unit, 846 electric continuously variable transmission unit, 1000 power train.

Claims (11)

第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、前記差動機構において前記第1の回転要素、前記第2の回転要素および前記第3の回転要素の相対的な回転を許容する第1の状態および禁止する第2の状態を切換える切換機構と、前記差動機構に連結され、前記差動機構から入力されるトルクを車輪に伝達する変速機構とを備えるパワートレーンの制御装置であって、
前記第1の状態において変速比が無段階に変化するように前記パワートレーンを制御するための手段と、
前記第2の状態において変速比がステップ的に変化するように前記変速機構を制御するための手段と、
前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための第1の制御手段と、
前記第1の状態および前記第2の状態の切換え時に、前記車輪へ伝達されるトルクの低下分を補償するように前記第1の回転電機および前記第2の回転電機のうちの少なくともいずれか一方を制御するための第2の制御手段と
前記車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合に比べて、前記第1の状態および前記第2の状態の切換え後に前記車輪へ伝達されるトルクがより小さくなるように、前記パワートレーンを制御するための手段とを含む、パワートレーンの制御装置。
A differential mechanism having a first rotating element coupled to the first rotating electrical machine, a second rotating element coupled to the second rotating electrical machine, and a third rotating element coupled to the internal combustion engine; A switching mechanism that switches between a first state that allows relative rotation of the first rotating element, the second rotating element, and the third rotating element and a second state that prohibits relative rotation of the first rotating element, the second rotating element, and the third rotating element in the moving mechanism; A power train control device including a transmission mechanism coupled to a dynamic mechanism and transmitting a torque input from the differential mechanism to a wheel,
Means for controlling the power train such that the gear ratio changes continuously in the first state;
Means for controlling the transmission mechanism such that the transmission ratio changes stepwise in the second state;
First control means for controlling the switching mechanism to switch between the first state and the second state;
At least one of the first rotating electric machine and the second rotating electric machine so as to compensate for a decrease in torque transmitted to the wheel at the time of switching between the first state and the second state. and second control means for controlling,
When the compensation amount of the torque transmitted to the wheel is limited, the torque transmitted to the wheel becomes smaller after switching between the first state and the second state than when the compensation amount is not limited. And a means for controlling the power train.
第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、前記差動機構において前記第1の回転要素、前記第2の回転要素および前記第3の回転要素の相対的な回転を許容する第1の状態および各前記回転要素のうちの少なくもいずれか一つを固定する第2の状態を切換える切換機構と、前記差動機構に連結され、前記差動機構から入力されるトルクを車輪に伝達する変速機構とを備えるパワートレーンの制御装置であって、
前記第1の状態において変速比が無段階に変化するように前記パワートレーンを制御するための手段と、
前記第2の状態において変速比がステップ的に変化するように前記変速機構を制御するための手段と、
前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための第1の制御手段と、
前記第1の状態および前記第2の状態の切換え時に、前記車輪へ伝達されるトルクの低下分を補償するように前記第1の回転電機および前記第2の回転電機のうちの少なくともいずれか一方を制御するための第2の制御手段と
前記車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合に比べて、前記第1の状態および前記第2の状態の切換え後に前記車輪へ伝達されるトルクがより小さくなるように、前記パワートレーンを制御するための手段とを含む、パワートレーンの制御装置。
A differential mechanism having a first rotating element coupled to the first rotating electrical machine, a second rotating element coupled to the second rotating electrical machine, and a third rotating element coupled to the internal combustion engine; A first state in which a relative rotation of the first rotating element, the second rotating element, and the third rotating element is allowed in the moving mechanism, and at least one of the rotating elements; A power train control device comprising: a switching mechanism that switches a second state to be fixed; and a transmission mechanism that is connected to the differential mechanism and transmits torque input from the differential mechanism to a wheel.
Means for controlling the power train such that the gear ratio changes continuously in the first state;
Means for controlling the transmission mechanism such that the transmission ratio changes stepwise in the second state;
First control means for controlling the switching mechanism to switch between the first state and the second state;
At least one of the first rotating electric machine and the second rotating electric machine so as to compensate for a decrease in torque transmitted to the wheel at the time of switching between the first state and the second state. and second control means for controlling,
When the compensation amount of the torque transmitted to the wheel is limited, the torque transmitted to the wheel becomes smaller after switching between the first state and the second state than when the compensation amount is not limited. And a means for controlling the power train.
前記第1の制御手段は、前記車輪へ伝達されるトルクが最も大きい状態で前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための手段を含む、請求項1または2に記載のパワートレーンの制御装置。   The first control means includes means for controlling the switching mechanism to switch between the first state and the second state in a state where the torque transmitted to the wheel is the largest. Or the control apparatus of the power train of 2. 前記第2の制御手段は、車速に応じた補償量でトルクの低下分を補償するように前記第1の回転電機および前記第2の回転電機のうちの少なくともいずれか一方を制御するための手段を含む、請求項1〜のいずれかに記載のパワートレーンの制御装置。 The second control means is means for controlling at least one of the first rotating electric machine and the second rotating electric machine so as to compensate for a decrease in torque by a compensation amount corresponding to the vehicle speed. The control apparatus of the power train in any one of Claims 1-3 containing these. 第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、前記差動機構において前記第1の回転要素、前記第2の回転要素および前記第3の回転要素の相対的な回転を許容する第1の状態および禁止する第2の状態を切換える切換機構と、前記第1の回転要素、前記第2の回転要素および前記第3の回転要素のうちのいずれか一つに連結され、前記第1の回転要素、前記第2の回転要素および前記第3の回転要素のうちのいずれか一つから入力されるトルクを車輪に伝達する変速機構とを備えるパワートレーンの制御装置であって、
前記第1の状態において変速比が無段階に変化するように前記パワートレーンを制御するための手段と、
前記第2の状態において変速比がステップ的に変化するように前記変速機構を制御するための手段と、
前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための第1の制御手段と、
前記第1の状態および前記第2の状態の切換え時に、前記車輪へ伝達されるトルクの低下分を補償するように前記第1の回転電機および前記第2の回転電機のうちの少なくともいずれか一方を制御するための第2の制御手段と
前記車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合に比べて、前記第1の状態および前記第2の状態の切換え後に前記車輪へ伝達されるトルクがより小さくなるように、前記パワートレーンを制御するための手段とを含む、パワートレーンの制御装置。
A differential mechanism having a first rotating element coupled to the first rotating electrical machine, a second rotating element coupled to the second rotating electrical machine, and a third rotating element coupled to the internal combustion engine; A switching mechanism that switches between a first state that allows relative rotation of the first rotating element, the second rotating element, and the third rotating element, and a second state that prohibits the first rotating element, and a second state that is prohibited; One rotating element, the second rotating element, and the third rotating element, connected to any one of the first rotating element, the second rotating element, and the third rotating element. A power train control device including a transmission mechanism that transmits torque input from any one of the wheels to a wheel,
Means for controlling the power train such that the gear ratio changes continuously in the first state;
Means for controlling the transmission mechanism such that the transmission ratio changes stepwise in the second state;
First control means for controlling the switching mechanism to switch between the first state and the second state;
At least one of the first rotating electric machine and the second rotating electric machine so as to compensate for a decrease in torque transmitted to the wheel at the time of switching between the first state and the second state. and second control means for controlling,
When the compensation amount of the torque transmitted to the wheel is limited, the torque transmitted to the wheel becomes smaller after switching between the first state and the second state than when the compensation amount is not limited. And a means for controlling the power train.
前記第1の制御手段は、前記第1の状態および前記第2の状態を切換える条件を変更して前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための手段を含む、請求項1,2,のいずれかに記載のパワートレーンの制御装置。 The first control means is means for controlling the switching mechanism so as to switch the first state and the second state by changing a condition for switching the first state and the second state. including, according to claim 1, the power train control apparatus according to any one of 5. 前記第2の制御手段は、前記第1の状態から前記第2の状態への切換え時に、前記車輪へ伝達されるトルクの低下分を補償するように前記第1の回転電機および前記第2の回転電機のうちの少なくともいずれか一方を制御するための手段を含む、請求項1,2,のいずれかに記載のパワートレーンの制御装置。 The second control means is configured to compensate for a decrease in torque transmitted to the wheels at the time of switching from the first state to the second state. comprising means for controlling at least one of the rotary electric machine, according to claim 1, the power train control apparatus according to any one of 5. 第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、前記差動機構において前記第1の回転要素、前記第2の回転要素および前記第3の回転要素の相対的な回転を許容する第1の状態および禁止する第2の状態を切換える切換機構と、前記差動機構に連結され、前記差動機構から入力されるトルクを車輪に伝達する変速機構とを備えるパワートレーンの制御装置であって、A differential mechanism having a first rotating element coupled to the first rotating electrical machine, a second rotating element coupled to the second rotating electrical machine, and a third rotating element coupled to the internal combustion engine; A switching mechanism that switches between a first state that allows relative rotation of the first rotating element, the second rotating element, and the third rotating element and a second state that prohibits relative rotation of the first rotating element, the second rotating element, and the third rotating element in the moving mechanism; A power train control device including a transmission mechanism coupled to a dynamic mechanism and transmitting a torque input from the differential mechanism to a wheel,
前記第1の状態において変速比が無段階に変化するように前記パワートレーンを制御するための手段と、Means for controlling the power train such that the gear ratio changes continuously in the first state;
前記第2の状態において変速比がステップ的に変化するように前記変速機構を制御するための手段と、Means for controlling the transmission mechanism such that the transmission ratio changes stepwise in the second state;
前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための第1の制御手段と、First control means for controlling the switching mechanism to switch between the first state and the second state;
前記第1の状態および前記第2の状態の切換え時に、前記車輪へ伝達されるトルクの低下分を補償するように前記第1の回転電機および前記第2の回転電機のうちの少なくともいずれか一方を制御するための第2の制御手段とを含み、At least one of the first rotating electric machine and the second rotating electric machine so as to compensate for a decrease in torque transmitted to the wheel at the time of switching between the first state and the second state. Second control means for controlling
前記第1の制御手段は、前記車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合とは前記車輪へ伝達されるトルクが異なる状態で前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための手段を含む、パワートレーンの制御装置。When the compensation amount of the torque transmitted to the wheel is limited, the first control means is configured so that the torque transmitted to the wheel is different from the case where the compensation amount is not limited and the first state and the second state are different. A control apparatus for a power train, comprising means for controlling the switching mechanism to switch the state of the power train.
第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、前記差動機構において前記第1の回転要素、前記第2の回転要素および前記第3の回転要素の相対的な回転を許容する第1の状態および各前記回転要素のうちの少なくもいずれか一つを固定する第2の状態を切換える切換機構と、前記差動機構に連結され、前記差動機構から入力されるトルクを車輪に伝達する変速機構とを備えるパワートレーンの制御装置であって、A differential mechanism having a first rotating element coupled to the first rotating electrical machine, a second rotating element coupled to the second rotating electrical machine, and a third rotating element coupled to the internal combustion engine; A first state in which a relative rotation of the first rotating element, the second rotating element, and the third rotating element is allowed in the moving mechanism, and at least one of the rotating elements; A power train control device comprising: a switching mechanism that switches a second state to be fixed; and a transmission mechanism that is connected to the differential mechanism and transmits torque input from the differential mechanism to a wheel.
前記第1の状態において変速比が無段階に変化するように前記パワートレーンを制御するための手段と、Means for controlling the power train such that the gear ratio changes continuously in the first state;
前記第2の状態において変速比がステップ的に変化するように前記変速機構を制御するための手段と、Means for controlling the transmission mechanism such that the transmission ratio changes stepwise in the second state;
前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための第1の制御手段と、First control means for controlling the switching mechanism to switch between the first state and the second state;
前記第1の状態および前記第2の状態の切換え時に、前記車輪へ伝達されるトルクの低下分を補償するように前記第1の回転電機および前記第2の回転電機のうちの少なくともいずれか一方を制御するための第2の制御手段とを含み、At least one of the first rotating electric machine and the second rotating electric machine so as to compensate for a decrease in torque transmitted to the wheel at the time of switching between the first state and the second state. Second control means for controlling
前記第1の制御手段は、前記車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合とは前記車輪へ伝達されるトルクが異なる状態で前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための手段を含む、パワートレーンの制御装置。When the compensation amount of the torque transmitted to the wheel is limited, the first control means is configured so that the torque transmitted to the wheel is different from the case where the compensation amount is not limited and the first state and the second state are different. A control apparatus for a power train, comprising means for controlling the switching mechanism to switch the state of the power train.
第1の回転電機に連結される第1の回転要素、第2の回転電機に連結される第2の回転要素および内燃機関に連結される第3の回転要素を有する差動機構と、前記差動機構において前記第1の回転要素、前記第2の回転要素および前記第3の回転要素の相対的な回転を許容する第1の状態および禁止する第2の状態を切換える切換機構と、前記第1の回転要素、前記第2の回転要素および前記第3の回転要素のうちのいずれか一つに連結され、前記第1の回転要素、前記第2の回転要素および前記第3の回転要素のうちのいずれか一つから入力されるトルクを車輪に伝達する変速機構とを備えるパワートレーンの制御装置であって、A differential mechanism having a first rotating element coupled to the first rotating electrical machine, a second rotating element coupled to the second rotating electrical machine, and a third rotating element coupled to the internal combustion engine; A switching mechanism that switches between a first state that allows relative rotation of the first rotating element, the second rotating element, and the third rotating element, and a second state that prohibits the first rotating element, and a second state that is prohibited; One rotating element, the second rotating element, and the third rotating element, connected to any one of the first rotating element, the second rotating element, and the third rotating element. A power train control device comprising a transmission mechanism that transmits torque input from any one of the wheels to a wheel,
前記第1の状態において変速比が無段階に変化するように前記パワートレーンを制御するための手段と、Means for controlling the power train such that the gear ratio changes continuously in the first state;
前記第2の状態において変速比がステップ的に変化するように前記変速機構を制御するための手段と、Means for controlling the transmission mechanism such that the transmission ratio changes stepwise in the second state;
前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための第1の制御手段と、First control means for controlling the switching mechanism to switch between the first state and the second state;
前記第1の状態および前記第2の状態の切換え時に、前記車輪へ伝達されるトルクの低下分を補償するように前記第1の回転電機および前記第2の回転電機のうちの少なくともいずれか一方を制御するための第2の制御手段とを含み、At least one of the first rotating electric machine and the second rotating electric machine so as to compensate for a decrease in torque transmitted to the wheel at the time of switching between the first state and the second state. Second control means for controlling
前記第1の制御手段は、前記車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合とは前記車輪へ伝達されるトルクが異なる状態で前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための手段を含む、パワートレーンの制御装置。When the compensation amount of the torque transmitted to the wheel is limited, the first control means is configured so that the torque transmitted to the wheel is different from the case where the compensation amount is not limited and the first state and the second state are different. A control apparatus for a power train, comprising means for controlling the switching mechanism to switch the state of the power train.
前記第1の制御手段は、前記車輪へ伝達されるトルクの補償量が制限される場合は、制限されない場合に比べて、前記車輪へ伝達されるトルクがより小さい状態で前記第1の状態および前記第2の状態を切換えるように前記切換機構を制御するための手段を含む、請求項8〜10のいずれかに記載のパワートレーンの制御装置。 When the compensation amount of the torque transmitted to the wheel is limited, the first control means is configured so that the torque transmitted to the wheel is smaller than that in the first state when the compensation amount of the torque is limited. The power train control device according to claim 8, comprising means for controlling the switching mechanism so as to switch the second state.
JP2007033745A 2007-02-14 2007-02-14 Powertrain control device Active JP4305522B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007033745A JP4305522B2 (en) 2007-02-14 2007-02-14 Powertrain control device
US12/068,948 US7794357B2 (en) 2007-02-14 2008-02-13 Control device for power train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033745A JP4305522B2 (en) 2007-02-14 2007-02-14 Powertrain control device

Publications (2)

Publication Number Publication Date
JP2008195278A JP2008195278A (en) 2008-08-28
JP4305522B2 true JP4305522B2 (en) 2009-07-29

Family

ID=39684870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033745A Active JP4305522B2 (en) 2007-02-14 2007-02-14 Powertrain control device

Country Status (2)

Country Link
US (1) US7794357B2 (en)
JP (1) JP4305522B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7822524B2 (en) * 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
JP4600421B2 (en) * 2007-04-25 2010-12-15 トヨタ自動車株式会社 Control device for vehicle power transmission device
JP2008296610A (en) * 2007-05-29 2008-12-11 Toyota Motor Corp Control device of transmission system for vehicle
US20110212804A1 (en) * 2008-11-20 2011-09-01 Toyota Jidosha Kabushiki Kaisha Control device for vehicle power transmission device
JP5143170B2 (en) * 2010-03-17 2013-02-13 日立オートモティブシステムズ株式会社 Control method for internal combustion engine
US8444516B2 (en) * 2010-09-15 2013-05-21 Chrysler Group Llc Multi-speed drive unit
JP5849908B2 (en) * 2012-09-06 2016-02-03 三菱自動車エンジニアリング株式会社 Transmission control device
KR101509706B1 (en) * 2013-10-07 2015-04-08 현대자동차 주식회사 Transmission system of hybrid electric vehicle
KR102383223B1 (en) * 2016-12-12 2022-04-05 현대자동차 주식회사 Power transmission system of hybrid electric vehicle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646966B2 (en) 1998-02-03 2005-05-11 富士重工業株式会社 Hybrid car
JP2000295709A (en) 1999-04-06 2000-10-20 Toyota Motor Corp Speed change time control equipment of electric automobile
JP3952651B2 (en) 1999-12-06 2007-08-01 トヨタ自動車株式会社 Vehicle deceleration control device
JP4211209B2 (en) 2000-08-25 2009-01-21 トヨタ自動車株式会社 Power output device and automobile equipped with the same
JP4050002B2 (en) 2001-02-28 2008-02-20 ジヤトコ株式会社 Parallel hybrid vehicle
JP4686898B2 (en) 2001-05-18 2011-05-25 トヨタ自動車株式会社 Power transmission device for vehicle
JP3900134B2 (en) 2003-10-20 2007-04-04 日産自動車株式会社 Mode change control device for hybrid transmission
JP4306597B2 (en) * 2004-02-25 2009-08-05 トヨタ自動車株式会社 Control device for vehicle drive device
JP4114643B2 (en) 2004-06-25 2008-07-09 トヨタ自動車株式会社 Control device for vehicle drive device
JP4214963B2 (en) 2004-07-09 2009-01-28 トヨタ自動車株式会社 Control device for vehicle drive device
US7318787B2 (en) 2004-07-01 2008-01-15 Toyota Jidosha Kabushiki Kaisha Control device for vehicular drive system
DE112005002717B4 (en) * 2004-10-27 2019-07-18 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive system
WO2006129841A1 (en) * 2005-05-30 2006-12-07 Toyota Jidosha Kabushiki Kaisha Vehicle drive device controller
JP4244966B2 (en) * 2005-06-22 2009-03-25 トヨタ自動車株式会社 Control device for vehicle drive device
JP4215032B2 (en) 2005-06-24 2009-01-28 トヨタ自動車株式会社 Control device for vehicle drive device
US7670258B2 (en) * 2006-06-15 2010-03-02 Toyota Jidosha Kabushiki Kaisha Control device for vehicle drive apparatus

Also Published As

Publication number Publication date
US7794357B2 (en) 2010-09-14
US20080190676A1 (en) 2008-08-14
JP2008195278A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP4305522B2 (en) Powertrain control device
JP4349416B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP6003592B2 (en) Vehicle control device
JP4007387B2 (en) Vehicle control device
US8172721B2 (en) Powertrain and method of controlling the same
JP4113919B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP2010241329A (en) Power transmission controller for vehicle
JP2011037331A (en) Power train for vehicle
JP4224098B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP4786553B2 (en) Rotational speed prediction apparatus, prediction method, program for realizing the method, and recording medium recording the program
JP4940991B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP2011161975A (en) Power train of vehicle
JP2010065697A (en) Method for controlling internal combustion engine for drive train of automobile and control device
JP2008189243A (en) Control apparatus and control method for power train, program for implementing the method, and recording medium with the program recorded thereon
JP5212308B2 (en) Vehicle power train
JP2010149707A (en) Power train of vehicle
JP4845780B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP4909134B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP2008162348A (en) Apparatus and method for controlling power train, program for implementing the method, and recording medium with the program recorded
JP4909118B2 (en) Automatic transmission shift determination device, shift determination method, program for realizing the method, and recording medium recording the program
JP2008168810A (en) Control device and method of power train, program for realizing method, and recording medium with program recorded thereon
JP2008128204A (en) Control device and control method for vehicle, program for implementing the method, and recording medium recording the program
JP4751843B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP4390814B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP2008280968A (en) Control device for vehicle, control method, program materializing method thereof, and recording medium recording program thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R151 Written notification of patent or utility model registration

Ref document number: 4305522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4