JP4296839B2 - Eddy current reducer - Google Patents

Eddy current reducer Download PDF

Info

Publication number
JP4296839B2
JP4296839B2 JP2003144797A JP2003144797A JP4296839B2 JP 4296839 B2 JP4296839 B2 JP 4296839B2 JP 2003144797 A JP2003144797 A JP 2003144797A JP 2003144797 A JP2003144797 A JP 2003144797A JP 4296839 B2 JP4296839 B2 JP 4296839B2
Authority
JP
Japan
Prior art keywords
annular casing
magnetic member
eddy current
magnetic
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003144797A
Other languages
Japanese (ja)
Other versions
JP2004350411A (en
Inventor
徹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003144797A priority Critical patent/JP4296839B2/en
Publication of JP2004350411A publication Critical patent/JP2004350411A/en
Application granted granted Critical
Publication of JP4296839B2 publication Critical patent/JP4296839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主に大型車両において補助ブレーキとして使用される渦電流式減速装置に関するものである。
【0002】
【従来の技術】
トラック等の大型車両では一般に、補助ブレーキとして渦電流式減速装置(リターダ)が使用されている。
【0003】
渦電流式減速装置の一例を、図15及び図16を用いて説明する。
【0004】
この渦電流式減速装置は、車両のプロペラシャフト等の回転軸1に結合されたドラム状の制動ロータ2と、その制動ロータ2の径方向内方でミッションケース等の固定側に取り付けられたステータ4(磁力源)とを備え、ステータ4からロータ2へ磁気を供給することでロータ2に渦電流を生じさせて回転軸1を減速制動し、磁気をステータ4内に遮蔽することで減速制動を解除するものである。
【0005】
ステータ4は、固定側に支持され、アルミニウム等の非磁性体からなる環状ケーシング3と、環状ケーシング3内に制動ロータ2の周方向に回動自在に収容された磁石環5と、磁石環5を回動させるアクチュエータ7(例えば、エアシリンダ)とを備える。環状ケーシング3は、アクチュエータ7を一体的に有する一側部3aと、磁石環5を支持する他側部3bとの二分割構造である。
【0006】
磁石環5は、磁性体からなる支持リング6と、支持リング6の外周に周方向に間隔を隔てて配置された複数の永久磁石8とを有する。各永久磁石8は回転軸1の径方向両端部に磁極面を有し、径方向外側(又は径方向内側)の極性が周方向に隣接する永久磁石8と異なるように設定される。
【0007】
環状ケーシング3の外周部には、強磁性体又は軟磁性体からなるポールピース9(磁性体部材)が周方向にほぼ等間隔を隔てて複数設けられ、各ポールピース9間にはアルミニウムなどの非磁性体からなる非磁性体部材10が設けられる。つまり、環状ケーシング3の外周壁は、ポールピース9と非磁性体部材10とで構成される。ポールピース9の周方向長さは永久磁石8の周方向長さとほぼ等しく、非磁性体部材10の周方向長さは、ポールピース9及び永久磁石8の周方向長さよりも短い。
【0008】
この渦電流式減速装置の減速制動をオフするときには、エアシリンダ7で磁石環5を回動させて、図16(a)に示すように、磁石環5の各永久磁石8を二つのポールピース9,9間に位置させる。言い換えれば、各永久磁石8を非磁性体部材10と対向させる。すると、隣接する二つの永久磁石8、ポールピース9及び支持リング6との間で短絡的な磁気回路w1が形成される。よって、制動ロータ2には磁気が作用せず、渦電流が生じない。つまり、減速制動は生じない。
【0009】
他方、減速制動をオンするときには、磁石環5を回動して、図16(b)に示すように、磁石環5の各永久磁石8をポールピース9と対向させる。すると、隣接する二つの永久磁石8,8と、それら永久磁石8,8と対向する二つのポールピース9,9と、支持リング6と、制動ドラム2との間で磁気回路w2が形成される。これによって、制動ドラム2に渦電流が発生して制動力が作用する。
【0010】
このように、非磁性体からなる環状ケーシング3に磁性体からなるポールピース9を複数設けた渦電流式減速装置は、特許文献1〜3等にも記載されている。
【0011】
【特許文献1】
特開平1−298948号公報
【特許文献2】
特公平6−14782号公報
【特許文献3】
特公平6−83571号公報
【0012】
【発明が解決しようとする課題】
ところで、このような渦電流式減速装置では、アルミ製の環状ケーシング3を鋳造する際にポールピース9を鋳ぐるんで一体的に製造するのが一般的であった。つまり、環状ケーシング3と非磁性体部材10とを同一部材とし、それら環状ケーシング3及び非磁性体部材10とポールピース9とを一体的に製造していた。
【0013】
しかしながら、この結果、型が大型化してしまい、製造コストが高くなってしまうという問題があった。
【0014】
そこで、本発明の目的は、上記課題を解決し、製造コストの低い渦電流式減速装置を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成するために本発明は、回転軸に結合された制動ロータと、該制動ロータに対向させて固定側に取り付けられ、非磁性体からなる環状ケーシングと、該環状ケーシングの上記制動ロータと対向する部分に、上記制動ロータの周方向に間隔を隔てて複数配置された磁性体部材と、それら磁性体部材の間に配置された非磁性体部材とを備えた渦電流式減速装置であって、上記環状ケーシング、磁性体部材及び非磁性体部材をそれぞれ別体に形成し、上記磁性体部材及び非磁性体部材を交互に並べて上記環状ケーシングに組み付けるようにしたものである。
【0016】
ここで、上記制動ロータがドラム状であり、上記環状ケーシングが、上記制動ロータの径方向内方又は径方向外方に配置され、上記磁性体部材及び非磁性体部材が、上記環状ケーシングの外周部又は内周部に設けられるようにしても良い。
【0017】
また、上記制動ロータがディスク状であり、上記環状ケーシングが、上記制動ロータの側方に配置され、上記磁性体部材及び非磁性体部材が、上記環状ケーシングの側部に設けられるようにしても良い。
【0018】
また、上記磁性体部材及び上記非磁性体部材の周方向両端部に、互いに係合可能な凸部又は凹部をそれぞれ形成しても良い。
【0019】
また、上記非磁性体部材が、上記環状ケーシングに組み付ける際の組付方向前方側のサイズが組付方向後方側と等しいかそれよりも縮小した形状であり、上記環状ケーシングに上記複数の磁性体部材を周方向に間隔を隔てて組み付けた後、上記非磁性体部材を各磁性体部材間に挿入して組み付け可能であるようにしても良い。
【0020】
また、上記磁性体部材が電磁鋼板の積層体からなっても良い。
【0021】
更に本発明は、回転軸に結合された制動ロータと、該制動ロータに対向させて固定側に取り付けられ、非磁性体からなる環状ケーシングと、該環状ケーシングの上記制動ロータと対向する部分に設けられ、上記制動ロータの周方向に交互に複数形成された厚肉部と薄肉部とを有するリング状の磁性体部材とを備えた渦電流式減速装置であって、上記磁性体部材を、周方向に複数分割して形成し、それら各分割部材を互いに周方向に連結してリング状とするようにしたものである。
【0022】
ここで、上記制動ロータがドラム状であり、上記環状ケーシングが、上記制動ロータの径方向内方又は径方向外方に配置され、上記磁性体部材が、上記環状ケーシングの外周部又は内周部に設けられるようにしても良い。
【0023】
また、上記制動ロータがディスク状であり、上記環状ケーシングが、上記制動ロータの側方に配置され、上記磁性体部材が、上記環状ケーシングの側部に設けられるようにしても良い。
【0024】
また、上記各分割部材が、厚肉部及び/又は薄肉部を複数有するようにしても良い。
【0025】
また、上記各分割部材の周方向両端部に、互いに係合可能な凸部又は凹部をそれぞれ形成しても良い。
【0026】
また、上記磁性体部材が電磁鋼板の積層体からなっても良い。
【0027】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0028】
図1は本実施形態に係る渦電流式減速装置の部分正面断面図であり、図2はそのステータの側面断面図である。本実施形態の渦電流式減速装置は、図15及び図16に示したものと基本的な構成は同様であるので、同一要素には同一の符号を付してその説明を省略する。
【0029】
本実施形態の渦電流式減速装置の特徴は、環状ケーシング3と、ポールピース9(磁性体部材)と、非磁性体部材10とをそれぞれ別体に形成し、ポールピース9及び非磁性体部材10を交互に並べて環状ケーシング3の外周部に組み付けて構成した点にある。
【0030】
具体的に説明すると、環状ケーシング3の外周部には、周方向全域に渡って空隙が形成されており、その空隙内にポールピース9及び非磁性体部材10が交互に並べて組み付けられる。本実施形態の環状ケーシング3は、アクチュエータ7を一体的に有する一側部3aと、磁石環5を支持する他側部3bとの二分割構造であり、それら一側部3aと他側部3bとを互いに接続すると、それらの外周部に空隙が形成されるようになっている。
【0031】
図1に示すように、ポールピース9及び非磁性体部材10の周方向両端部には、互いに係合可能な凸部11又は凹部12がそれぞれ形成されており、それら凸部11と凹部12とを係合させることで、ポールピース9と非磁性体部材10とを周方向に連結できるようになっている。即ち、本実施形態のポールピース9の周方向両端部には、径方向ほぼ中央部から周方向外側に突出した凸部11が形成されており、非磁性体部材10の周方向両端部には、径方向ほぼ中央部からポールピース9の凸部11とほぼ同形状で窪んだ凹部12が形成されている。ポールピース9の凸部11を非磁性体部材10の凹部12内に挿入することでポールピース9と非磁性体部材10とを周方向に連結できる。本実施形態では、非磁性体部材10の凹部12がポールピース9の凸部11よりも若干小さく形成されており、ポールピース9の凸部11を非磁性体部材10の凹部12内に圧入するようになっている。従って、ポールピース9と非磁性体部材10とを比較的強固に連結できる。各ポールピース9と非磁性体部材10との間には適切なシール剤又は接着剤(例えばロックタイト)が設けられており、環状ケーシング3内に収容される永久磁石8を水などから保護できるようになっている。
【0032】
図2に示すように、環状ケーシング3における空隙の側部を形成する部分の径方向内側部分には、軸方向内側に突出した係合突起13がそれぞれ形成されており、ポールピース9及び非磁性体部材10の軸方向両端部(図中左右両端)の径方向外側部分には、軸方向外側に突出した係合突起14がそれぞれ形成されている。なお、図2ではポールピース9の係合突起14のみが示されているが、非磁性体部材10の係合突起もポールピース9の係合突起14と同形状である。ポールピース9及び非磁性体部材10を環状ケーシング3の空隙内に組み付けると、環状ケーシング3の係合突起13と、ポールピース9及び非磁性体部材10の係合突起14とが係合し、ポールピース9及び非磁性体部材10が環状ケーシング3の内部に脱落することが防止される。
【0033】
ポールピース9及び非磁性体部材10は、通しボルト15により環状ケーシング3に対して一体的に固定される。なお、本実施形態ではポールピース9と非磁性体部材10とが、凸部11及び凹部12とによって周方向に連結されるため、ポールピース9又は非磁性体部材10のどちらか一方のみを通しボルト15で固定するようにしても良い。また、非磁性体部材10を固定する通しボルト15は非磁性体からなるものを用い、ポールピース9を固定する通しボルト15は磁性体からなるものを用いることが好ましい。
【0034】
係る渦電流式減速装置の組立方法の一例を説明すると、先ず、各ポールピース9と非磁性体部材10とを周方向に交互に並べて連結してリング状に組み立てる。そのリング体を環状ケーシング3の一側部3aに側方から組み付ける。このとき、治具等を用いてリング体の形状を保持するようにしても良い。その後、一側部3aとリング体とに対して、環状ケーシング3の他側部3bを側方から組み付け、それら一側部3a、リング体、他側部3bを通しボルト15により一体的に固定する。
【0035】
このように、本実施形態の渦電流式減速装置では、環状ケーシング3と、ポールピース9と、非磁性体部材10とがそれぞれ別体に形成されるため、環状ケーシング3の製造に用いる金型を従来と比較して小型化でき、生産性及び製造コストが向上する。
【0036】
ポールピース9及び非磁性体部材10の形状は様々な変形例が考えられる。図3〜図5にポールピース9及び非磁性体部材10の変形例を示す。
【0037】
図3(a)の例は、非磁性体部材10の周方向両端部に、図1に示したポールピース9の凸部11とほぼ同形状の凸部17を形成し、ポールピース9の周方向両端部に、凸部17とほぼ同形状で窪んだ凹部18を形成したものである。
【0038】
図3(b)の例は、ポールピース9の周方向両端部に径方向両端部から径方向中央部に向かうにつれて徐々に周方向に突出したく字状の凸部19を形成し、非磁性体部材10の周方向両端部に、凸部19とほぼ同形状で窪んだ凹部20を形成したものである。
【0039】
図3(c)の例は、非磁性体部材10の周方向両端部に、図3(b)に示した凸部19とほぼ同形状の凸部21を形成し、ポールピース9の周方向両端部に、凸部21とほぼ同形状で窪んだ凹部22を形成したものである。
【0040】
図3(d)の例は、非磁性体部材10の周方向両端部に、径方向内側端部から径方向外側に向かうにつれて徐々に周方向に突出したテーパー部23と、テーパー部23に連続して形成され周方向に延出した頂部24と、頂部24に連続して形成され周方向に延出した係合部25とを有する凸部26を形成し、ポールピース9の周方向両端部に、凸部26とほぼ同形状で窪んだ凹部27を形成したものである。
【0041】
図4(a)の例は、ポールピース9の周方向両端部に逆W状に突出した凸部28を形成し、非磁性体部材10の周方向両端部に凸部28とほぼ同形状で窪んだ凹部29を形成したものである。
【0042】
図4(b)の例は、ポールピース9の周方向両端部に、径方向内側端部から径方向外側に向かうにつれて徐々に周方向に突出した第1テーパー部30と、第1テーパー部30に連続して形成され径方向に延出した頂部31と、頂部31に連続して形成され、径方向外側端部から頂部31に向かうにつれて徐々に周方向に突出した第2テーパー部32とを有する凸部33を形成し、非磁性体部材10の周方向両端部に凸部33とほぼ同形状で窪んだ凹部34を形成したものである。
【0043】
図4(c)の例は、非磁性体部材10の周方向両端部に、図4(b)に示した凸部33とほぼ同形状の凸部35を形成し、ポールピース9の周方向両端部に凸部35とほぼ同形状で窪んだ凹部36を形成したものである。
【0044】
図4(d)の例は、ポールピース9の周方向両端部に、径方向に間隔を隔てて配置された二つの凸部37a,37bを形成し、非磁性体部材10の周方向両端部に、それら凸部37a,37bと同形状で窪んだ二つの凹部38a,38bを形成したものである。
【0045】
図5(a)の例は、非磁性体部材10の周方向両端部に、図4(d)に示した凸部37a,37bとほぼ同形状の凸部39a,39bを形成し、ポールピース9の周方向両端部に凸部39a,39bとほぼ同形状で窪んだ凹部40a,40bを形成したものである。
【0046】
図5(b)の例は、ポールピース9の周方向両端部に、径方向ほぼ中央部から半円状に突出した凸部41を形成し、非磁性体部材10の周方向両端部に凸部41とほぼ同形状で窪んだ凹部42を形成したものである。
【0047】
図5(c)の例は、非磁性体部材10の周方向両端部に、図5(b)に示した凸部41とほぼ同形状の凸部43を形成し、ポールピース9の周方向両端部に凸部43とほぼ同形状で窪んだ凹部44を形成したものである。
【0048】
本発明は、他にも様々な変形例が考えられるものである。
【0049】
例えば、各ポールピース9は一体成形品であっても、電磁鋼板を多数積層した構造としても良い。電磁鋼板の積層体には、周方向への磁束が流れやすい、製造コストが低い等のメリットがある。ポールピース9を電磁鋼板の積層体で構成する場合、電磁鋼板の重ね合わせ部の外表面に耐熱性を有する防水剤を塗布して、耐浸水性の向上を図っても良い。
【0050】
また、上記実施形態では、環状ケーシング3の内部に、周方向に回動自在に設けられた一つの磁石環5を備えたタイプを説明したが、本発明は、磁石環が環状ケーシングの内部で軸方向に移動可能に設けられたタイプ(例えば、特許文献2参照)にも適用できる。また、環状ケーシングの内部に、二つの磁石環を収容したタイプにも適用可能である。
【0051】
また、磁石環を固定として、環状ケーシングを周方向に回動させるタイプにも適用可能である。
【0052】
また、環状ケーシング3が制動ロータ2の径方向外方に配置されたタイプにも適用可能である。その場合、ポールピース9及び非磁性体部材10は、環状ケーシング3の内周部に設けられることになる。
【0053】
また、図6に示すように、制動ロータ2がディスク状である渦電流式減速装置にも適用できる。この場合、環状ケーシング3は制動ロータ2に対向するように制動ロータ2の側方に配置され、ポールピース9及び非磁性体部材10は環状ケーシング3の側部に設けられる。ディスク状の制動ロータ2を備えた渦電流式減速装置に適用する場合、非磁性体からなる薄板などをポールピース9及び非磁性体部材10の側部を覆うように取り付けても良い。なお、図6では、ディスク状の制動ロータ2を2枚備えたタイプを示したが、制動ロータ2を1枚のみ備えたものにも適用可能であることは勿論である。
【0054】
さて、このように本実施形態の渦電流式減速装置は、ポールピース9と、非磁性体部材10と、環状ケーシング3とを別部品とすることにより製造コストの低減を図るものであるが、ポールピース9と非磁性体部材10との連結部の形状を適切にすることで、渦電流式減速装置の組み立てが容易になるという更なる効果を得ることができる。以下、この点について説明する。
【0055】
まず、従来のようにポールピース9をアルミ製の環状ケーシング3に鋳ぐるんだ渦電流式減速装置では、図15に示すように、環状ケーシング3の一側部3aと他側部3bとを互いに接続した後、各永久磁石8を環状ケーシング3の外側から着磁しようとすると、各ポールピース9の外側を囲むように形成された非磁性体領域(非磁性体部材10及び環状ケーシング3)に電流が流れて、着磁磁界に対する反抗磁界が発生してしまう。このため、充分な着磁ができないおそれがある。
【0056】
そこで、図7に示すように、各永久磁石8を着磁した後に、環状ケーシング3の一側部3aと他側部3bとを接続しようとすると、永久磁石8とポールピース9との間に働く吸引力によって一側部3aが変形してしまうなどの問題があった。これらの理由により、ポールピース9をアルミ製の環状ケーシング3に鋳ぐるんだ渦電流式減速装置は組み立てが困難であった。
【0057】
これに対して、ポールピース9と非磁性体部材10と環状ケーシング3とが別体に形成された本実施形態の渦電流式減速装置において、ポールピース9のみを環状ケーシング3に組み付けた後に、非磁性体部材10を各ポールピース9間に挿入できるような形状とすることによって、組立性を向上させることができる。
【0058】
具体的な組立方法を説明すると、まず、着磁前の永久磁石8を備えた磁石環5を他側部3bに取り付け、その他側部3bと一側部3aとを連結して環状ケーシング3を形成する(図8(a)参照)。次に、図8(b)に示すように、環状ケーシング3の外周部の空隙に、ポールピース9のみを周方向に間隔を隔てて組み付ける。この状態で、各永久磁石8を環状ケーシング3の外側から着磁する。このとき、各ポールピース9の間は空気層となるため、各ポールピース9の周りに電流は流れず、上記したような反抗磁界は発生しない。従って、良好な着磁が実行できる。その後、各ポールピース9間に非磁性体部材10を挿入して組み付けることで、図1及び図2に示すような渦電流式減速装置を組み立てることができる。従って、永久磁石8の着磁及び渦電流式減速装置の組み立てを容易に行うことができる。
【0059】
上述したように、組立作業性の向上を図るためには、ポールピース9と非磁性体部材10との連結部の形状を、ポールピース9の組付後に、非磁性体部材10を各ポールピース9間に挿入できるような形状とする必要がある。以下、図9を用いてそのような形状の例を説明する。
【0060】
先ず、図9(a)に示す例は、ポールピース9の周方向両端部の径方向内側端部に、周方向外側に突出した凸部50を形成し、非磁性体部材10の周方向両端部の径方向内側端部に凸部50とほぼ同形状で窪んだ凹部51を形成したものである。この形状であれば、環状ケーシング3にポールピース9を組み付けた後、各ポールピース9間に非磁性体部材10を環状ケーシング3の径方向外側から挿入することができる。
【0061】
図9(b)の例は、ポールピース9の周方向両端部の径方向内側端部に、周方向外側にテーパ状に突出した凸部52を形成し、非磁性体部材10の周方向両端部の径方向内側端部に凸部52とほぼ同形状で窪んだ凹部53を形成したものである。
【0062】
図9(c)の例は、ポールピース9の周方向両端部の径方向内側端部に、周方向外側に突出した凸部54を形成し、非磁性体部材10の周方向長さを、隣接する二つのポールピース9の凸部54と係合する長さとし、かつその径方向長さを、非磁性体部材10がポールピース9の凸部54と係合したときに、径方向外側端部がポールピース9の径方向外側端部とほぼ等しくなるような長さにしたものである。つまり、この形態では、非磁性体部材10の径方向長さはポールピース9の径方向長さよりも短くなる。
【0063】
図9(d)の例は、ポールピース9の周方向両端部の径方向中間部に、周方向外側に突出した凸部55を形成し、非磁性体部材10の周方向長さを、隣接する二つのポールピース9の凸部55と係合する長さとし、かつその径方向長さを、非磁性体部材10がポールピース9の凸部55と係合したときに、径方向外側端部がポールピース9の径方向外側端部とほぼ等しくなるような長さにしたものである。
【0064】
図9(a)〜図9(d)いずれの例においても、環状ケーシング3にポールピース9を組み付けた後、各ポールピース9間に非磁性体部材10を環状ケーシング3の径方向外側から挿入することが可能である。このように、非磁性体部材10を後組みできるようにするためには、非磁性体部材10の組付方向前方側(環状ケーシング3の径方向内側)の周方向長さ及び軸方向長さを、組付方向後方側の長さと等しいかそれよりも短くする必要がある。
【0065】
ここで、図9(a)〜図9(d)の例では、各ポールピース9と非磁性体部材10との周方向の連結力が比較的弱いため、ポールピース9と非磁性体部材10の両方とも、通しボルト15により環状ケーシング3に対して固定することが好ましい。なお、各ポールピース9と非磁性体部材10との連結部を接着剤などにより固定して連結力を向上させるようにしても良い。
【0066】
本発明の更に他の実施形態を説明する。
【0067】
以下説明する実施形態は、本発明者が先に出願したものであり、特開2000−236655号公報に記載されたタイプの渦電流式減速装置に適用したものである。この渦電流式減速装置は、図10に示すように、環状ケーシング3の制動ロータ2と対向する部分(図10の例では外周部)に、制動ロータ2の周方向に交互に複数形成された厚肉部58と薄肉部59とを有するリング状の磁性体部材57を設けたものである。磁性体部材57は、軟磁性体又は強磁性体からなり、その厚肉部58が、図1及び図2に示した形態におけるポールピース9と同じ機能を有している。薄肉部59の径方向外側には空気層が存在することになり、この空気層が図1及び図2に示した形態における非磁性体部材10と同じ機能を有する。
【0068】
この渦電流式減速装置に適用した実施形態は、図11に示すように、磁性体部材57を、周方向に複数分割して形成し、それら各分割部材57’を互いに周方向に連結してリング状とするものである。図11に示した形態では、各分割部材57’はそれぞれ厚肉部58と薄肉部59とを一つずつ有している。また、各分割部材57’の周方向両端部には互いに係合可能な凸部又は凹部がそれぞれ形成されている。即ち、分割部材57’の周方向一端部(薄肉部59側端部)には、薄肉部59に連続して形成され、薄肉部59とほぼ同形状で周方向外側に突出した凸部60が形成され、分割部材57’の周方向他端部の径方向中間部には凸部60とほぼ同形状で窪んだ凹部61が形成されている。分割部材57’の凸部60を他の分割部材57’の凹部61に係合させることで、分割部材57’を周方向に連結することができる。なお、各分割部材57’の連結部は、接着剤で固定したり、溶接接合しても良い。
【0069】
この形態においても、各分割部材57’の製造に用いる型が小さくなるので、製造コストを低減できる。つまり、リング状の磁性体部材57を一体成型品とした場合、磁性体部材57の製造に用いる型が大型化してしまい製造コストは高くなるが、磁性体部材57を周方向に分割することで型の大型化及び製造コストの上昇を回避している。
【0070】
図12を用いて、この形態の変形例を説明する。
【0071】
図12(a)に示した例は、薄肉部59及び凸部60と、凹部61とを分割部材57’の径方向内側端部に形成したものである。
【0072】
図12(b)に示した例は、各分割部材57’の周方向他端部(厚肉部58側)の径方向中間部に周方向外側に突出したリブ62を形成し、そのリブ62から厚肉部58にかけて凹部61を形成したものである。
【0073】
図12(c)に示した例は、凸部60を先端側に向かって拡大するようにテーパ状に形成し、凹部61を凸部60と同形状で窪ませたものである。この例では、各分割部材57’の凸部60を制動ロータ2の軸方向(紙面裏表方向)から凹部61内に挿入する。この例では、各分割部材57’を周方向に連結した後、各分割部材57’同士が周方向にずれて外れることを防止できる。
【0074】
図12(d)に示した例は、各分割部材57’が二つの厚肉部58,58と薄肉部59,59とを備えたものである。このように、各分割部材57’が厚肉部58及び/又は薄肉部59を複数備えるようにしても良い。
【0075】
ここで、図13に示すように、少なくとも薄肉部59の内部に棒状の補強部材64を埋設して薄肉部59の強度を向上させるようにしても良い。補強部材64の断面形状は丸に限定されず、四角などでも良い。また、補強部材64の本数は1本でも、複数本でも良い。また、補強部材64は、厚肉部58の内部にも設けても良く、周方向に分割して複数設けても良い。更に、薄肉部59の内部に埋設する補強部材64は非磁性体で形成することが好ましい。
【0076】
この実施形態において、各分割部材57’は一体成形品であってもよいし、図14に示すように、電磁鋼板65を多数積層した構造としても良い。分割部材57’を電磁鋼板65の積層体で構成する場合、電磁鋼板65の重ね合わせ部の外表面に耐熱性を有する防水剤を塗布して、耐浸水性の向上を図っても良い。
【0077】
また、図10では、ドラム状の制動ロータ2を備えたタイプを示したが、図6に示したようなディスク状の制動ロータ2を備えたタイプにもこの実施形態を適用することができる。その場合、環状ケーシング3が制動ロータ2に対向するように制動ロータ2の側部に配置され、磁性体部材57は環状ケーシング3の側部に設けられる。
【0078】
【発明の効果】
以上要するに本発明によれば、製造コストを低減できるという優れた効果を発揮するものである。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る渦電流式減速装置の部分拡大正面断面図である。
【図2】図1の渦電流式減速装置のステータの側面断面図である。
【図3】(a)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(b)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(c)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(d)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
【図4】(a)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(b)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(c)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(d)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
【図5】(a)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(b)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(c)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
【図6】ディスク状の制動ロータを備えた渦電流式減速装置の上半分側面断面図である。
【図7】渦電流式減速装置の組み立てを説明する部分側面断面図である。
【図8】(a)は本発明の一実施形態に係る渦電流式減速装置の組み立てを説明する部分側面断面図である。
(b)は本発明の一実施形態に係る渦電流式減速装置の組み立てを説明する部分正面断面図である。
【図9】(a)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(b)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(c)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
(d)はポールピース及び非磁性体部材の変形例を示す部分正面断面図である。
【図10】本発明者が先に出願した渦電流式減速装置の部分正面断面図である。
【図11】図10の渦電流式減速装置に本発明を適用した例を示す部分正面断面図である。
【図12】(a)は分割部材の変形例を示す部分正面断面図である。
(b)は分割部材の変形例を示す部分正面断面図である。
(c)は分割部材の変形例を示す部分正面断面図である。
(d)は分割部材の変形例を示す部分正面断面図である。
【図13】分割部材の部分側面断面図である。
【図14】電磁鋼板の積層体からなる分割部材の部分斜視図である。
【図15】従来の渦電流式減速装置の上半分側面断面図である。
【図16】(a)は図15の渦電流式減速装置の部分正面断面図であり、制動オフ時を示している。
(b)は図15の渦電流式減速装置の部分正面断面図であり、制動オン時を示している。
【符号の説明】
1 回転軸
2 制動ドラム
3 環状ケーシング
8 永久磁石
9 磁性体部材(ポールピース)
10 非磁性体部材
57 磁性体部材
57’分割部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an eddy current type reduction gear used mainly as an auxiliary brake in a large vehicle.
[0002]
[Prior art]
In large vehicles such as trucks, an eddy current reduction device (retarder) is generally used as an auxiliary brake.
[0003]
An example of the eddy current type speed reducer will be described with reference to FIGS. 15 and 16.
[0004]
This eddy current type reduction device includes a drum-shaped braking rotor 2 coupled to a rotating shaft 1 such as a propeller shaft of a vehicle, and a stator attached to a fixed side of a transmission case or the like radially inward of the braking rotor 2. 4 (magnetic force source), and by supplying magnetism from the stator 4 to the rotor 2, an eddy current is generated in the rotor 2 to decelerate and brake the rotating shaft 1 and shield the magnetism in the stator 4 to decelerate and brake. Is to cancel.
[0005]
The stator 4 is supported on the fixed side, and includes an annular casing 3 made of a nonmagnetic material such as aluminum, a magnet ring 5 accommodated in the annular casing 3 so as to be rotatable in the circumferential direction of the brake rotor 2, and a magnet ring 5. And an actuator 7 (for example, an air cylinder). The annular casing 3 has a two-divided structure of one side 3 a that integrally includes the actuator 7 and the other side 3 b that supports the magnet ring 5.
[0006]
The magnet ring 5 includes a support ring 6 made of a magnetic material, and a plurality of permanent magnets 8 arranged on the outer periphery of the support ring 6 at intervals in the circumferential direction. Each permanent magnet 8 has a magnetic pole surface at both ends in the radial direction of the rotating shaft 1, and is set so that the polarity on the radially outer side (or radially inner side) is different from that of the permanent magnet 8 adjacent in the circumferential direction.
[0007]
A plurality of pole pieces 9 (magnetic members) made of a ferromagnetic material or a soft magnetic material are provided at substantially equal intervals in the circumferential direction on the outer peripheral portion of the annular casing 3, and aluminum or the like is provided between the pole pieces 9. A nonmagnetic member 10 made of a nonmagnetic material is provided. That is, the outer peripheral wall of the annular casing 3 is composed of the pole piece 9 and the nonmagnetic member 10. The circumferential length of the pole piece 9 is substantially equal to the circumferential length of the permanent magnet 8, and the circumferential length of the nonmagnetic member 10 is shorter than the circumferential length of the pole piece 9 and the permanent magnet 8.
[0008]
When the deceleration braking of this eddy current type reduction device is turned off, the magnet ring 5 is rotated by the air cylinder 7 so that each permanent magnet 8 of the magnet ring 5 has two pole pieces as shown in FIG. It is located between 9,9. In other words, each permanent magnet 8 is opposed to the nonmagnetic member 10. Then, a short circuit magnetic circuit w <b> 1 is formed between the two adjacent permanent magnets 8, the pole piece 9 and the support ring 6. Therefore, no magnetism acts on the braking rotor 2 and no eddy current is generated. That is, deceleration braking does not occur.
[0009]
On the other hand, when the deceleration braking is turned on, the magnet ring 5 is rotated so that each permanent magnet 8 of the magnet ring 5 faces the pole piece 9 as shown in FIG. Then, a magnetic circuit w <b> 2 is formed between the two adjacent permanent magnets 8, 8, the two pole pieces 9, 9 opposed to the permanent magnets 8, the support ring 6, and the braking drum 2. . As a result, an eddy current is generated in the braking drum 2 and a braking force is applied.
[0010]
Thus, the eddy current type reduction gears in which a plurality of pole pieces 9 made of a magnetic material are provided in the annular casing 3 made of a non-magnetic material are also described in Patent Documents 1 to 3 and the like.
[0011]
[Patent Document 1]
JP-A-1-298948
[Patent Document 2]
Japanese Patent Publication No. 6-14782
[Patent Document 3]
Japanese Patent Publication No. 6-83571
[0012]
[Problems to be solved by the invention]
By the way, in such an eddy current type speed reducer, it is general that the pole piece 9 is cast and integrally manufactured when the aluminum casing 3 is cast. That is, the annular casing 3 and the nonmagnetic member 10 are made the same member, and the annular casing 3 and the nonmagnetic member 10 and the pole piece 9 are manufactured integrally.
[0013]
However, as a result, there is a problem that the mold becomes large and the manufacturing cost increases.
[0014]
Accordingly, an object of the present invention is to solve the above-described problems and provide an eddy current type reduction gear having a low manufacturing cost.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a braking rotor coupled to a rotating shaft, an annular casing made of a nonmagnetic material and mounted on a fixed side so as to face the braking rotor, and the braking rotor of the annular casing. An eddy current reduction device comprising a plurality of magnetic members arranged at intervals in the circumferential direction of the braking rotor, and a non-magnetic member arranged between the magnetic members. The annular casing, the magnetic member, and the nonmagnetic member are formed separately, and the magnetic member and the nonmagnetic member are alternately arranged and assembled to the annular casing.
[0016]
Here, the brake rotor has a drum shape, the annular casing is disposed radially inward or radially outward of the brake rotor, and the magnetic member and the non-magnetic member are arranged on the outer periphery of the annular casing. It may be provided in the part or the inner peripheral part.
[0017]
The brake rotor may be disc-shaped, the annular casing may be disposed on a side of the brake rotor, and the magnetic member and the nonmagnetic member may be provided on a side portion of the annular casing. good.
[0018]
Moreover, you may form the convex part or recessed part which can be mutually engaged in the circumferential direction both ends of the said magnetic body member and the said nonmagnetic body member, respectively.
[0019]
The non-magnetic member has a shape in which the size on the front side in the assembling direction when assembled to the annular casing is equal to or smaller than the size on the rear side in the assembling direction, and the plurality of magnetic bodies are mounted on the annular casing. After the members are assembled at intervals in the circumferential direction, the non-magnetic member may be inserted between the magnetic members and assembled.
[0020]
The magnetic member may be a laminate of electromagnetic steel sheets.
[0021]
Further, the present invention provides a braking rotor coupled to a rotating shaft, an annular casing made of a non-magnetic material and mounted on a fixed side so as to face the braking rotor, and a portion of the annular casing facing the braking rotor. An eddy current type speed reducer comprising a ring-shaped magnetic member having a plurality of thick and thin portions alternately formed in the circumferential direction of the braking rotor, wherein the magnetic member is A plurality of divided members are formed in the direction, and the divided members are connected in the circumferential direction to form a ring shape.
[0022]
Here, the brake rotor has a drum shape, the annular casing is disposed radially inward or radially outward of the brake rotor, and the magnetic member is an outer peripheral portion or an inner peripheral portion of the annular casing. May be provided.
[0023]
The brake rotor may be disk-shaped, the annular casing may be disposed on the side of the brake rotor, and the magnetic member may be provided on a side portion of the annular casing.
[0024]
Further, each of the divided members may have a plurality of thick portions and / or thin portions.
[0025]
Moreover, you may form the convex part or recessed part which can be mutually engaged in the circumferential direction both ends of each said division member, respectively.
[0026]
The magnetic member may be a laminate of electromagnetic steel sheets.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0028]
FIG. 1 is a partial front sectional view of an eddy current reduction device according to the present embodiment, and FIG. 2 is a side sectional view of the stator. Since the basic configuration of the eddy current type reduction gear of this embodiment is the same as that shown in FIGS. 15 and 16, the same elements are denoted by the same reference numerals and the description thereof is omitted.
[0029]
The feature of the eddy current type speed reducer of this embodiment is that the annular casing 3, the pole piece 9 (magnetic member), and the nonmagnetic member 10 are formed separately, and the pole piece 9 and the nonmagnetic member are formed separately. 10 are alternately arranged and assembled to the outer peripheral portion of the annular casing 3.
[0030]
More specifically, a gap is formed in the outer circumferential portion of the annular casing 3 over the entire circumferential direction, and the pole pieces 9 and the nonmagnetic members 10 are alternately arranged and assembled in the gap. The annular casing 3 of the present embodiment has a two-part structure of one side 3a integrally including the actuator 7 and the other side 3b that supports the magnet ring 5, and the one side 3a and the other side 3b. Are connected to each other, voids are formed in the outer peripheral portions thereof.
[0031]
As shown in FIG. 1, convex portions 11 or concave portions 12 that can be engaged with each other are formed at both ends in the circumferential direction of the pole piece 9 and the nonmagnetic member 10, respectively. By engaging with each other, the pole piece 9 and the nonmagnetic member 10 can be connected in the circumferential direction. That is, convex portions 11 are formed at both ends in the circumferential direction of the pole piece 9 of the present embodiment so as to protrude from the substantially central portion in the radial direction to the outer side in the circumferential direction, and at both circumferential ends of the nonmagnetic member 10. A concave portion 12 is formed which is recessed in substantially the same shape as the convex portion 11 of the pole piece 9 from the substantially central portion in the radial direction. By inserting the convex portion 11 of the pole piece 9 into the concave portion 12 of the nonmagnetic member 10, the pole piece 9 and the nonmagnetic member 10 can be connected in the circumferential direction. In the present embodiment, the concave portion 12 of the nonmagnetic member 10 is formed slightly smaller than the convex portion 11 of the pole piece 9, and the convex portion 11 of the pole piece 9 is press-fitted into the concave portion 12 of the nonmagnetic member 10. It is like that. Therefore, the pole piece 9 and the nonmagnetic member 10 can be connected relatively firmly. An appropriate sealant or adhesive (for example, Loctite) is provided between each pole piece 9 and the nonmagnetic member 10 so that the permanent magnet 8 accommodated in the annular casing 3 can be protected from water or the like. It has become.
[0032]
As shown in FIG. 2, engaging projections 13 projecting inward in the axial direction are formed on the radially inner portion of the portion forming the side of the air gap in the annular casing 3, respectively. Engagement projections 14 projecting outward in the axial direction are formed on the radially outer portions of both end portions in the axial direction of the body member 10 (both left and right ends in the figure). In FIG. 2, only the engaging protrusion 14 of the pole piece 9 is shown, but the engaging protrusion of the nonmagnetic member 10 has the same shape as the engaging protrusion 14 of the pole piece 9. When the pole piece 9 and the nonmagnetic member 10 are assembled in the gap of the annular casing 3, the engagement protrusion 13 of the annular casing 3 and the engagement protrusion 14 of the pole piece 9 and the nonmagnetic member 10 are engaged, The pole piece 9 and the nonmagnetic member 10 are prevented from falling into the annular casing 3.
[0033]
The pole piece 9 and the nonmagnetic member 10 are integrally fixed to the annular casing 3 by through bolts 15. In this embodiment, since the pole piece 9 and the nonmagnetic member 10 are connected in the circumferential direction by the convex portion 11 and the concave portion 12, only one of the pole piece 9 and the nonmagnetic member 10 is passed through. You may make it fix with the volt | bolt 15. FIG. Moreover, it is preferable that the through bolt 15 for fixing the nonmagnetic member 10 is made of a nonmagnetic material, and the through bolt 15 for fixing the pole piece 9 is made of a magnetic material.
[0034]
An example of the assembling method of the eddy current type speed reducer will be described. First, the pole pieces 9 and the nonmagnetic members 10 are alternately arranged in the circumferential direction and connected to be assembled in a ring shape. The ring body is assembled to the one side portion 3a of the annular casing 3 from the side. At this time, the shape of the ring body may be held using a jig or the like. Thereafter, the other side portion 3b of the annular casing 3 is assembled from the side with respect to the one side portion 3a and the ring body, and the one side portion 3a, the ring body, and the other side portion 3b are integrally fixed by the through bolts 15. To do.
[0035]
Thus, in the eddy current type speed reducer according to the present embodiment, the annular casing 3, the pole piece 9, and the nonmagnetic member 10 are formed separately, so that the mold used for manufacturing the annular casing 3 is used. Can be reduced in size as compared with the prior art, and productivity and manufacturing cost are improved.
[0036]
Various modifications can be considered for the shapes of the pole piece 9 and the non-magnetic member 10. 3 to 5 show modifications of the pole piece 9 and the nonmagnetic member 10.
[0037]
In the example of FIG. 3A, convex portions 17 having substantially the same shape as the convex portions 11 of the pole piece 9 shown in FIG. 1 are formed at both circumferential ends of the nonmagnetic member 10. Concave portions 18 having substantially the same shape as the convex portions 17 are formed at both ends in the direction.
[0038]
In the example of FIG. 3B, a pole-shaped convex portion 19 that gradually protrudes in the circumferential direction from the both ends in the radial direction toward the central portion in the radial direction is formed at both ends in the circumferential direction of the pole piece 9. Concave portions 20 having substantially the same shape as the convex portions 19 are formed at both ends in the circumferential direction of the member 10.
[0039]
In the example of FIG. 3C, convex portions 21 having substantially the same shape as the convex portions 19 shown in FIG. Concave portions 22 that are recessed in substantially the same shape as the convex portions 21 are formed at both ends.
[0040]
In the example of FIG. 3D, a taper portion 23 that gradually protrudes in the circumferential direction from the radially inner end portion toward the radially outer side at both ends in the circumferential direction of the nonmagnetic member 10, and a continuous taper portion 23. The projecting portion 26 having a top portion 24 formed in the circumferential direction and an engaging portion 25 continuously formed in the top portion 24 and extending in the circumferential direction is formed, and both end portions in the circumferential direction of the pole piece 9 are formed. In addition, a concave portion 27 having a substantially the same shape as the convex portion 26 and recessed is formed.
[0041]
In the example of FIG. 4A, convex portions 28 protruding in an inverted W shape are formed at both circumferential ends of the pole piece 9, and are substantially the same shape as the convex portions 28 at both circumferential ends of the nonmagnetic member 10. A recessed recess 29 is formed.
[0042]
In the example of FIG. 4B, a first taper portion 30 that gradually protrudes in the circumferential direction from the radially inner end portion toward the radially outer side at both circumferential end portions of the pole piece 9 and the first tapered portion 30. And a second taper portion 32 continuously formed in the top portion 31 and continuously projecting in the circumferential direction from the radially outer end portion toward the top portion 31. The convex part 33 which has it, and the recessed part 34 hollow in the substantially same shape as the convex part 33 in the circumferential direction both ends of the nonmagnetic material member 10 is formed.
[0043]
In the example of FIG. 4C, convex portions 35 having substantially the same shape as the convex portions 33 shown in FIG. 4B are formed at both ends in the circumferential direction of the nonmagnetic member 10. Concave portions 36 having substantially the same shape as the convex portions 35 and recessed at both ends are formed.
[0044]
In the example of FIG. 4D, two convex portions 37 a and 37 b are formed at both ends in the circumferential direction of the pole piece 9 so as to be spaced apart in the radial direction, and both end portions in the circumferential direction of the nonmagnetic member 10 are formed. Further, two concave portions 38a, 38b having the same shape as the convex portions 37a, 37b are formed.
[0045]
In the example of FIG. 5A, convex portions 39a and 39b having substantially the same shape as the convex portions 37a and 37b shown in FIG. 9 are formed with concave portions 40a and 40b which are recessed in substantially the same shape as the convex portions 39a and 39b at both ends in the circumferential direction.
[0046]
In the example of FIG. 5B, convex portions 41 projecting in a semicircular shape from a substantially central portion in the radial direction are formed at both ends in the circumferential direction of the pole piece 9, and convex at both circumferential ends of the nonmagnetic member 10. A recessed portion 42 is formed which is substantially the same shape as the portion 41 and is recessed.
[0047]
In the example shown in FIG. 5C, convex portions 43 having substantially the same shape as the convex portions 41 shown in FIG. Concave portions 44 having substantially the same shape as the convex portions 43 are formed at both ends.
[0048]
Various other modifications can be considered for the present invention.
[0049]
For example, each pole piece 9 may be an integrally molded product or may have a structure in which a large number of electromagnetic steel plates are laminated. The laminated body of electromagnetic steel sheets has advantages such as easy flow of magnetic flux in the circumferential direction and low manufacturing cost. When the pole piece 9 is formed of a laminated body of electromagnetic steel plates, a waterproofing agent having heat resistance may be applied to the outer surface of the overlapping portion of the electromagnetic steel plates to improve water resistance.
[0050]
Moreover, although the said embodiment demonstrated the type provided with the one magnet ring 5 provided in the inside of the annular casing 3 so that rotation in the circumferential direction was possible, this invention is a magnet ring in the inside of an annular casing. The present invention can also be applied to a type that is movable in the axial direction (see, for example, Patent Document 2). Moreover, it is applicable also to the type which accommodated two magnet rings in the inside of the annular casing.
[0051]
Moreover, it is applicable also to the type which makes a magnet ring fixed and rotates an annular casing in the circumferential direction.
[0052]
Further, the present invention can also be applied to a type in which the annular casing 3 is disposed radially outward of the braking rotor 2. In that case, the pole piece 9 and the non-magnetic member 10 are provided on the inner peripheral portion of the annular casing 3.
[0053]
Further, as shown in FIG. 6, the present invention can also be applied to an eddy current type speed reducer in which the braking rotor 2 has a disk shape. In this case, the annular casing 3 is disposed on the side of the braking rotor 2 so as to face the braking rotor 2, and the pole piece 9 and the nonmagnetic member 10 are provided on the side portion of the annular casing 3. When applied to an eddy current type speed reducer equipped with a disk-like braking rotor 2, a thin plate made of a non-magnetic material may be attached so as to cover the side portions of the pole piece 9 and the non-magnetic material member 10. Although FIG. 6 shows a type in which two disk-shaped braking rotors 2 are provided, it is needless to say that the invention can also be applied to a type having only one braking rotor 2.
[0054]
Now, in this way, the eddy current type speed reducer of the present embodiment is intended to reduce the manufacturing cost by making the pole piece 9, the non-magnetic member 10, and the annular casing 3 as separate parts. By making the shape of the connecting portion between the pole piece 9 and the non-magnetic member 10 appropriate, it is possible to obtain a further effect that the assembly of the eddy current type speed reducer is facilitated. Hereinafter, this point will be described.
[0055]
First, in the eddy current type speed reducer in which the pole piece 9 is cast in the aluminum annular casing 3 as in the prior art, as shown in FIG. 15, one side 3a and the other side 3b of the annular casing 3 are After being connected to each other, if each permanent magnet 8 is to be magnetized from the outside of the annular casing 3, a nonmagnetic region formed so as to surround the outside of each pole piece 9 (the nonmagnetic member 10 and the annular casing 3). Current flows to generate a repulsive magnetic field against the magnetized magnetic field. For this reason, there is a possibility that sufficient magnetization cannot be performed.
[0056]
Therefore, as shown in FIG. 7, after magnetizing each permanent magnet 8, if one side 3 a and the other side 3 b of the annular casing 3 are to be connected, the permanent magnet 8 is interposed between the pole piece 9. There is a problem that the one side portion 3a is deformed by the working suction force. For these reasons, it is difficult to assemble the eddy current type speed reducer in which the pole piece 9 is cast in the aluminum annular casing 3.
[0057]
On the other hand, in the eddy current type reduction gear of the present embodiment in which the pole piece 9, the nonmagnetic member 10 and the annular casing 3 are formed separately, after assembling only the pole piece 9 to the annular casing 3, By making the non-magnetic member 10 into a shape that can be inserted between the pole pieces 9, the assemblability can be improved.
[0058]
A specific assembling method will be described. First, the magnet ring 5 including the permanent magnets 8 before magnetization is attached to the other side part 3b, and the other side part 3b and the one side part 3a are connected to form the annular casing 3. It forms (refer Fig.8 (a)). Next, as shown in FIG. 8 (b), only the pole pieces 9 are assembled in the gap in the outer peripheral portion of the annular casing 3 at intervals in the circumferential direction. In this state, each permanent magnet 8 is magnetized from the outside of the annular casing 3. At this time, an air layer is formed between the pole pieces 9, so that no current flows around the pole pieces 9, and no repulsive magnetic field as described above is generated. Therefore, good magnetization can be performed. Thereafter, by inserting and assembling the non-magnetic member 10 between the pole pieces 9, it is possible to assemble an eddy current type speed reducer as shown in FIGS. Therefore, the permanent magnet 8 can be easily magnetized and the eddy current reduction device can be easily assembled.
[0059]
As described above, in order to improve the assembly workability, the shape of the connecting portion between the pole piece 9 and the non-magnetic member 10 is set so that the non-magnetic member 10 is attached to each pole piece after the pole piece 9 is assembled. The shape needs to be inserted between the nine. Hereinafter, an example of such a shape will be described with reference to FIG.
[0060]
First, in the example shown in FIG. 9A, convex portions 50 projecting outward in the circumferential direction are formed at the radially inner ends of both end portions in the circumferential direction of the pole piece 9, and both circumferential ends of the nonmagnetic member 10 are formed. The concave portion 51 is formed in the radially inner end portion of the portion in the same shape as the convex portion 50 and is recessed. With this shape, after the pole piece 9 is assembled to the annular casing 3, the nonmagnetic member 10 can be inserted between the pole pieces 9 from the outside in the radial direction of the annular casing 3.
[0061]
In the example of FIG. 9B, convex portions 52 projecting in a taper shape outward in the circumferential direction are formed at the radially inner end portions of both end portions in the circumferential direction of the pole piece 9, and both circumferential ends of the nonmagnetic member 10 are formed. A concave portion 53 that is recessed in substantially the same shape as the convex portion 52 is formed at the radially inner end of the portion.
[0062]
The example of FIG.9 (c) forms the convex part 54 which protruded in the circumferential direction outer side at the radial direction inner side edge part of the circumferential direction both ends of the pole piece 9, and the circumferential direction length of the nonmagnetic material member 10 is formed. When the non-magnetic member 10 is engaged with the convex portion 54 of the pole piece 9, the radial length is set to a length that engages with the convex portion 54 of two adjacent pole pieces 9. The length of the portion is substantially equal to the radially outer end of the pole piece 9. That is, in this embodiment, the radial length of the nonmagnetic member 10 is shorter than the radial length of the pole piece 9.
[0063]
In the example of FIG. 9D, a convex portion 55 projecting outward in the circumferential direction is formed at the radial intermediate portion of both end portions in the circumferential direction of the pole piece 9, and the circumferential length of the non-magnetic member 10 is set adjacently. When the non-magnetic member 10 is engaged with the convex portion 55 of the pole piece 9, the radial length is set to a length that engages with the convex portion 55 of the two pole pieces 9. The length of the pole piece 9 is substantially the same as the radially outer end of the pole piece 9.
[0064]
9A to 9D, after the pole piece 9 is assembled to the annular casing 3, the non-magnetic member 10 is inserted between the pole pieces 9 from the radially outer side of the annular casing 3. Is possible. Thus, in order to enable the non-magnetic member 10 to be assembled later, the circumferential length and the axial length of the non-magnetic member 10 on the front side in the assembling direction (the radially inner side of the annular casing 3). Must be equal to or shorter than the length on the rear side in the assembly direction.
[0065]
Here, in the example of FIGS. 9A to 9D, since the connecting force in the circumferential direction between each pole piece 9 and the nonmagnetic member 10 is relatively weak, the pole piece 9 and the nonmagnetic member 10. Both are preferably fixed to the annular casing 3 by through bolts 15. In addition, you may make it improve the connection force by fixing the connection part of each pole piece 9 and the nonmagnetic material member 10 with an adhesive agent.
[0066]
Still another embodiment of the present invention will be described.
[0067]
The embodiment to be described below has been filed by the present inventor and applied to an eddy current type speed reducer of the type described in Japanese Patent Application Laid-Open No. 2000-236655. As shown in FIG. 10, a plurality of the eddy current type speed reducers are alternately formed in the circumferential direction of the braking rotor 2 in a portion (the outer peripheral portion in the example of FIG. 10) facing the braking rotor 2 of the annular casing 3. A ring-shaped magnetic member 57 having a thick portion 58 and a thin portion 59 is provided. The magnetic member 57 is made of a soft magnetic material or a ferromagnetic material, and the thick portion 58 has the same function as the pole piece 9 in the embodiment shown in FIGS. An air layer exists outside the thin portion 59 in the radial direction, and this air layer has the same function as the nonmagnetic member 10 in the embodiment shown in FIGS. 1 and 2.
[0068]
In the embodiment applied to this eddy current type speed reducer, as shown in FIG. 11, the magnetic member 57 is divided into a plurality of parts in the circumferential direction, and the divided members 57 ′ are connected to each other in the circumferential direction. It is a ring. In the form shown in FIG. 11, each divided member 57 ′ has one thick portion 58 and one thin portion 59. Further, convex portions or concave portions that can be engaged with each other are formed at both ends in the circumferential direction of each divided member 57 ′. That is, at one end in the circumferential direction (the end on the thin portion 59 side) of the split member 57 ′, a convex portion 60 that is formed continuously with the thin portion 59 and has the same shape as the thin portion 59 and protrudes outward in the circumferential direction. A concave portion 61 is formed in the radially intermediate portion of the other circumferential end portion of the divided member 57 ′ that is substantially the same shape as the convex portion 60 and is recessed. By engaging the convex portion 60 of the split member 57 ′ with the concave portion 61 of the other split member 57 ′, the split member 57 ′ can be connected in the circumferential direction. The connecting portion of each divided member 57 ′ may be fixed with an adhesive or welded.
[0069]
Also in this embodiment, since the mold used for manufacturing each divided member 57 ′ becomes small, the manufacturing cost can be reduced. That is, when the ring-shaped magnetic member 57 is an integrally molded product, the mold used for manufacturing the magnetic member 57 is enlarged and the manufacturing cost is increased, but the magnetic member 57 is divided in the circumferential direction. The increase in mold size and production cost is avoided.
[0070]
A modification of this embodiment will be described with reference to FIG.
[0071]
In the example shown in FIG. 12A, the thin portion 59, the convex portion 60, and the concave portion 61 are formed at the radially inner end portion of the dividing member 57 ′.
[0072]
In the example shown in FIG. 12B, a rib 62 projecting outward in the circumferential direction is formed at the radial intermediate portion of the other circumferential end (the thick portion 58 side) of each divided member 57 ′. The concave portion 61 is formed from the thick portion 58 to the thick portion 58.
[0073]
In the example shown in FIG. 12C, the convex portion 60 is tapered so as to expand toward the tip side, and the concave portion 61 is recessed in the same shape as the convex portion 60. In this example, the convex portion 60 of each divided member 57 ′ is inserted into the concave portion 61 from the axial direction of the braking rotor 2 (back and front direction on the paper surface). In this example, after each divided member 57 ′ is connected in the circumferential direction, it is possible to prevent the divided members 57 ′ from being displaced in the circumferential direction.
[0074]
In the example shown in FIG. 12D, each divided member 57 ′ includes two thick portions 58 and 58 and thin portions 59 and 59. Thus, each division member 57 ′ may include a plurality of thick portions 58 and / or thin portions 59.
[0075]
Here, as shown in FIG. 13, at least the thin-walled portion 59 may be embedded with a rod-shaped reinforcing member 64 to improve the strength of the thin-walled portion 59. The cross-sectional shape of the reinforcing member 64 is not limited to a circle, and may be a square or the like. Further, the number of reinforcing members 64 may be one or plural. Further, the reinforcing member 64 may be provided inside the thick portion 58, or a plurality of reinforcing members 64 may be provided by being divided in the circumferential direction. Further, the reinforcing member 64 embedded in the thin portion 59 is preferably formed of a nonmagnetic material.
[0076]
In this embodiment, each divided member 57 ′ may be an integrally molded product, or may have a structure in which a large number of electromagnetic steel plates 65 are laminated as shown in FIG. In the case where the split member 57 ′ is composed of a laminated body of electromagnetic steel plates 65, a waterproofing agent having heat resistance may be applied to the outer surface of the overlapping portion of the electromagnetic steel plates 65 to improve water resistance.
[0077]
In addition, FIG. 10 shows a type including the drum-like braking rotor 2, but this embodiment can also be applied to a type including the disc-like braking rotor 2 as shown in FIG. 6. In this case, the annular casing 3 is disposed on the side of the braking rotor 2 so as to face the braking rotor 2, and the magnetic member 57 is provided on the side of the annular casing 3.
[0078]
【The invention's effect】
In short, according to the present invention, the excellent effect that the manufacturing cost can be reduced is exhibited.
[Brief description of the drawings]
FIG. 1 is a partially enlarged front sectional view of an eddy current reduction device according to an embodiment of the present invention.
2 is a side cross-sectional view of a stator of the eddy current reduction device of FIG. 1. FIG.
FIG. 3A is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(B) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(C) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(D) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
FIG. 4A is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(B) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(C) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(D) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
FIG. 5A is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(B) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(C) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
FIG. 6 is a cross-sectional side view of the upper half of the eddy current type speed reducer provided with a disk-like braking rotor.
FIG. 7 is a partial side sectional view for explaining assembly of the eddy current type reduction gear.
FIG. 8A is a partial side cross-sectional view illustrating assembly of an eddy current type speed reducer according to an embodiment of the present invention.
(B) is a fragmentary front sectional view explaining the assembly of the eddy current type speed reducer according to one embodiment of the present invention.
FIG. 9A is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(B) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(C) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
(D) is a partial front sectional view showing a modification of the pole piece and the non-magnetic member.
FIG. 10 is a partial front sectional view of an eddy current type speed reducer previously filed by the present inventor.
11 is a partial front cross-sectional view showing an example in which the present invention is applied to the eddy current type speed reducer of FIG.
FIG. 12A is a partial front sectional view showing a modified example of the dividing member.
(B) is a fragmentary front sectional view which shows the modification of a division member.
(C) is a fragmentary front sectional view which shows the modification of a division member.
(D) is a partial front sectional view showing a modified example of the divided member.
FIG. 13 is a partial side sectional view of a split member.
FIG. 14 is a partial perspective view of a split member made of a laminate of electromagnetic steel sheets.
FIG. 15 is a side sectional view of the upper half of a conventional eddy current reduction device.
16 (a) is a partial front cross-sectional view of the eddy current type speed reducer of FIG. 15 and shows a state when braking is off. FIG.
(B) is a partial front sectional view of the eddy current type speed reducer of FIG.
[Explanation of symbols]
1 Rotating shaft
2 Brake drum
3 Annular casing
8 Permanent magnet
9 Magnetic material (pole piece)
10 Non-magnetic material
57 Magnetic material
57 'split member

Claims (12)

回転軸に結合された制動ロータと、該制動ロータに対向させて固定側に取り付けられ、非磁性体からなる環状ケーシングと、該環状ケーシングの上記制動ロータと対向する部分に、上記制動ロータの周方向に間隔を隔てて複数配置された磁性体部材と、それら磁性体部材の間に配置された非磁性体部材とを備えた渦電流式減速装置であって、
上記環状ケーシング、磁性体部材及び非磁性体部材をそれぞれ別体に形成し、上記磁性体部材及び非磁性体部材を交互に並べて上記環状ケーシングに組み付けてなることを特徴とする渦電流式減速装置。
A brake rotor coupled to the rotating shaft, an annular casing made of a non-magnetic material and mounted on the fixed side so as to face the brake rotor, and a portion of the annular casing facing the brake rotor, An eddy current reduction device comprising a plurality of magnetic members arranged at intervals in a direction and a non-magnetic member arranged between the magnetic members,
The annular casing, the magnetic member, and the non-magnetic member are formed separately, and the magnetic member and the non-magnetic member are alternately arranged and assembled to the annular casing. .
上記制動ロータがドラム状であり、上記環状ケーシングは、上記制動ロータの径方向内方又は径方向外方に配置され、上記磁性体部材及び非磁性体部材は、上記環状ケーシングの外周部又は内周部に設けられる請求項1記載の渦電流式減速装置。The brake rotor has a drum shape, the annular casing is disposed radially inward or radially outward of the brake rotor, and the magnetic member and the non-magnetic member are arranged at an outer peripheral portion or an inner portion of the annular casing. The eddy current type speed reducer according to claim 1, which is provided at a peripheral portion. 上記制動ロータがディスク状であり、上記環状ケーシングは、上記制動ロータの側方に配置され、上記磁性体部材及び非磁性体部材は、上記環状ケーシングの側部に設けられる請求項1記載の渦電流式減速装置。2. The vortex according to claim 1, wherein the brake rotor is disk-shaped, the annular casing is disposed on a side of the brake rotor, and the magnetic member and the nonmagnetic member are provided on a side portion of the annular casing. Current type speed reducer. 上記磁性体部材及び上記非磁性体部材の周方向両端部に、互いに係合可能な凸部又は凹部がそれぞれ形成された請求項1〜3いずれかに記載の渦電流式減速装置。The eddy current type speed reducer according to any one of claims 1 to 3, wherein convex portions or concave portions that can be engaged with each other are formed at both ends in the circumferential direction of the magnetic member and the non-magnetic member, respectively. 上記非磁性体部材が、上記環状ケーシングに組み付ける際の組付方向前方側のサイズが組付方向後方側と等しいかそれよりも縮小した形状であり、上記環状ケーシングに上記複数の磁性体部材を周方向に間隔を隔てて組み付けた後、上記非磁性体部材を各磁性体部材間に挿入して組み付け可能である請求項1〜3いずれかに記載の渦電流式減速装置。The non-magnetic member has a shape in which the size of the front side in the assembly direction when assembled to the annular casing is equal to or smaller than the rear side in the assembly direction, and the plurality of magnetic members are attached to the annular casing. The eddy current reduction device according to any one of claims 1 to 3, wherein the non-magnetic member can be assembled by being inserted between the magnetic members after being assembled at intervals in the circumferential direction. 上記磁性体部材が電磁鋼板の積層体からなる請求項1〜5いずれかに記載の渦電流式減速装置。The eddy current reduction device according to any one of claims 1 to 5, wherein the magnetic member is made of a laminate of electromagnetic steel sheets. 回転軸に結合された制動ロータと、該制動ロータに対向させて固定側に取り付けられ、非磁性体からなる環状ケーシングと、該環状ケーシングの上記制動ロータと対向する部分に設けられ、上記制動ロータの周方向に交互に複数形成された厚肉部と薄肉部とを有するリング状の磁性体部材とを備えた渦電流式減速装置であって、
上記磁性体部材を、周方向に複数分割して形成し、それら各分割部材を互いに周方向に連結してリング状とすることを特徴とする渦電流式減速装置。
A braking rotor coupled to a rotating shaft; an annular casing made of a non-magnetic material and mounted on a fixed side facing the braking rotor; and a portion of the annular casing facing the braking rotor; An eddy current reduction device comprising a ring-shaped magnetic body member having a plurality of thick portions and thin portions alternately formed in the circumferential direction,
An eddy current type speed reducer characterized in that the magnetic member is divided into a plurality of parts in the circumferential direction, and the divided members are connected to each other in the circumferential direction to form a ring shape.
上記制動ロータがドラム状であり、上記環状ケーシングは、上記制動ロータの径方向内方又は径方向外方に配置され、上記磁性体部材は、上記環状ケーシングの外周部又は内周部に設けられる請求項7記載の渦電流式減速装置。The brake rotor has a drum shape, the annular casing is disposed radially inward or radially outward of the brake rotor, and the magnetic member is provided on an outer peripheral portion or an inner peripheral portion of the annular casing. The eddy current type speed reducer according to claim 7. 上記制動ロータがディスク状であり、上記環状ケーシングは、上記制動ロータの側方に配置され、上記磁性体部材は、上記環状ケーシングの側部に設けられる請求項7記載の渦電流式減速装置。8. The eddy current reduction device according to claim 7, wherein the brake rotor is disk-shaped, the annular casing is disposed on a side of the brake rotor, and the magnetic member is provided on a side portion of the annular casing. 上記各分割部材が、厚肉部及び/又は薄肉部を複数有する請求項7〜9いずれかに記載の渦電流式減速装置。The eddy current reduction device according to any one of claims 7 to 9, wherein each of the divided members has a plurality of thick portions and / or thin portions. 上記各分割部材の周方向両端部に、互いに係合可能な凸部又は凹部がそれぞれ形成された請求項7〜10いずれかに記載の渦電流式減速装置。The eddy current type reduction gear according to any one of claims 7 to 10, wherein convex portions or concave portions that can be engaged with each other are formed at both circumferential ends of each of the divided members. 上記磁性体部材が電磁鋼板の積層体からなる請求項7〜11いずれかに記載の渦電流式減速装置。The eddy current reduction device according to any one of claims 7 to 11, wherein the magnetic member is made of a laminate of electromagnetic steel sheets.
JP2003144797A 2003-05-22 2003-05-22 Eddy current reducer Expired - Fee Related JP4296839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144797A JP4296839B2 (en) 2003-05-22 2003-05-22 Eddy current reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144797A JP4296839B2 (en) 2003-05-22 2003-05-22 Eddy current reducer

Publications (2)

Publication Number Publication Date
JP2004350411A JP2004350411A (en) 2004-12-09
JP4296839B2 true JP4296839B2 (en) 2009-07-15

Family

ID=33532157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144797A Expired - Fee Related JP4296839B2 (en) 2003-05-22 2003-05-22 Eddy current reducer

Country Status (1)

Country Link
JP (1) JP4296839B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797528B2 (en) * 2005-09-14 2011-10-19 いすゞ自動車株式会社 Eddy current reducer
JP5825428B2 (en) * 2012-03-29 2015-12-02 新日鐵住金株式会社 Eddy current reducer
US20160006335A1 (en) * 2013-01-11 2016-01-07 Hitachi Metals, Ltd. Magnetic gear device

Also Published As

Publication number Publication date
JP2004350411A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP5108236B2 (en) Rotor for motor
JP2001204146A (en) Rotor of rotating machine and its fabrication
JP2009095087A (en) Axial gap motor
EP0566745A1 (en) Eddy current type retarder
JP2005269778A (en) Axial-gap rotating electric machine
JP4296839B2 (en) Eddy current reducer
JP4644922B2 (en) Synchronous motor rotor structure
JP2006280199A (en) Permanent magnet embedded motor
JP2003348786A (en) Small-sized motor
JP2005057955A (en) Motor and process for manufacturing its rotor
JP4752414B2 (en) Eddy current reducer
JP2008099446A (en) Outer rotor type rotary electric machine
JP2005295775A (en) Rotor of motor
JP2006314196A (en) Electric motor with embedded permanent magnet
WO2014118933A1 (en) Permanent magnet synchronous motor
JP2008017645A (en) Permanent magnet embedded motor
JP2004328891A (en) Eddy current type reduction gear unit
WO2021186767A1 (en) Motor
WO2023199963A1 (en) Rotor
JP2003047186A (en) Rotor for rotary electric machine
JP3941733B2 (en) Manufacturing method of eddy current type speed reducer
JP4396227B2 (en) In-wheel motor
JP3216667B2 (en) Eddy current type reduction gear
JP4797528B2 (en) Eddy current reducer
JP4482900B2 (en) Axial gap type motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees