JP4290282B2 - Oxide phosphor, radiation detector using the same, and X-ray CT apparatus - Google Patents

Oxide phosphor, radiation detector using the same, and X-ray CT apparatus Download PDF

Info

Publication number
JP4290282B2
JP4290282B2 JP17661999A JP17661999A JP4290282B2 JP 4290282 B2 JP4290282 B2 JP 4290282B2 JP 17661999 A JP17661999 A JP 17661999A JP 17661999 A JP17661999 A JP 17661999A JP 4290282 B2 JP4290282 B2 JP 4290282B2
Authority
JP
Japan
Prior art keywords
ray
oxide phosphor
less
scintillator
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17661999A
Other languages
Japanese (ja)
Other versions
JP2001004753A (en
JP2001004753A5 (en
Inventor
恒行 金井
一朗 三浦
佐藤  誠
孝明 古曳
敞馗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP17661999A priority Critical patent/JP4290282B2/en
Publication of JP2001004753A publication Critical patent/JP2001004753A/en
Publication of JP2001004753A5 publication Critical patent/JP2001004753A5/ja
Application granted granted Critical
Publication of JP4290282B2 publication Critical patent/JP4290282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線、γ線などを検出する放射線検出器、特にX線CT装置やポジトロンカメラなどの放射線検出器に好適な酸化物蛍光体、及びそれを用いた放射線検出器、並びにX線CT装置に関する。
【0002】
【従来の技術】
従来、X線CT装置などに用いる放射線検出器としては、キセノンのガスチェンバー、ゲルマニウム酸ビスマス(BGO単結晶)と光電子増倍管を組み合わせたもの、CsI:Tl単結晶またはCdWO4単結晶とフォトダイオードを組み合わせたものが用いられてきた。
また、近年では、放射線から光への変換効率の高い希土類系蛍光体が開発され、このような蛍光体とフォトダイオードを組み合わせた放射線検出器が実用化されている。
希土類蛍光体は、希土類酸化物或いは希土類酸硫化物を母材とした発光成分である付活剤を添加したもので、希土類酸化物蛍光体として、特開平3−50991号等に記載されている酸化イットリウムと酸化ガドリニウムを母材としたものなどが提案されている。
【0003】
【発明が解決しようとする課題】
一般に、放射線検出器に用いられるシンチレータ材料に要求される特性としては、高い発光効率、短い残光、大きいX線阻止能などが挙げられる。上記蛍光体の中には、発光効率の高いものもあるが、残光時間は比較的長い。X線CT装置の用途では、X線検出器に用いられるシンチレータの残光が大きいと、得られた情報が時間軸方向に対して不鮮明になる。
上記の従来材料においてはシンチレータ材料の特性として残光が比較的大きい。
【0004】
本発明の目的は、X線に対する発光効率が高く、残光が極めて少ない蛍光体を提供することにある。また、この蛍光体を光検出器を備えた放射線検出器のシンチレータとして用いることにより、光出力が大きな低残光放射線検出器が得られ、このX線検出器をX線CT装置に適用することによって、高解像度、高品質の断層像を提供することにある。
【0005】
【課題を解決するための手段】
本発明にかかわる蛍光体は、少なくともGd、Ce、Al、Ga及びO元素から構成されたガーネット構造で、ガーネット構造以外の異相量が2.0wt%未満、相対密度が99.0%以上、拡散透過率が50.0%以上の酸化物である。該酸化物は、発光スペクトルのメインピークが550nm近傍に存在し、励起光を絶ってから30ms後における残光の減衰率が10-3以下となり、発光効率が高く、残光の少ない蛍光体が得られることを見出し、本発明に至った。
【0006】
本発明のガーネット構造の金属イオン配置を図1に示す。ガーネット構造の金属イオンには3種類のc、a、dサイトがある。サイトの大きさはc>a>dで、イオンの大きさだけから言えば、Ce3+=1.07Å、Gd3+=0.97Å、Ga3+=0.62Å、Al3+=0.51Åであるから、cサイトはCe3+とGd3+が、aサイトはGa3+が、dサイトはAl3+がそれぞれ優先的に占め、この場合の化学組成はGd3(Ga2Al3)O12で表される。Gd、Ce、Al、Ga、O元素からなる種々の組成のガーネット構造について、X線回折法に基づく結晶学的な検討をリートベルト解析手法を用いて行った。
【0007】
この結果、これら構成元素からなるガーネット構造においては、化学量論組成である(Gd,Ce)3(Ga,Al)5O12組成からずれ、cサイトのGdはGa及び/又は空孔で置換され、a、dサイトのGa及びAlは相互に置換するばかりでなく、Gd及び/又は空孔でも置換され、更に酸素のサイトも欠損が生じていることが明らかとなった。従って、このGd、Ce、Al、Ga、O元素から構成された現実の酸化物は、厳密には化学量論組成式(Gd,Ce)3(Ga2Al3)O12であらわすことはできない。
【0008】
これらの結果をもとに、Gd、Al、Ga、O元素からなるガーネット構造を母結晶とし、Ceを発光成分とする酸化物蛍光体の種々の組成について検討した結果、Gd/(Al+Ga+Gd)の原子比が、0.33以上、0.42以下で良好なX線感度と残光特性が得られた。CeはGdに対して原子比で0.05 %以上、2.0%以下であり、この組成の範囲外であると、十分な発光強度は得られない。但し、(Gd+Ce)/(Al+Ga+Gd+Ce)が0.375の場合を除く。
【0009】
本発明の組成が必須の理由としては、Gd/(Al+Ga+Gd)の原子比が0.33未満であると、ガーネット組成に比してGd量が少なすぎ、ガーネット構造のマトリックス中にGa2O3などの異相が生成し、一方、Gd量が0.42を越えると、ペロブスカイト結晶構造のGd(Ga,Al)03やGd4(Ga,Al) 2O9相がガーネットマトリックス中に生成する。これらいずれの場合も、相対密度を99.0%以上としても異相量は2.0 wt%以上、拡散透過率は50.0%未満となってしまうためである。また、Ga/Alの原子比が0.20未満であると、結晶構造としてはガーネット構造単相になるが、Ceドープによっても十分な発光強度は得られず、また、Ga/Alの原子比が4.0を越えても十分な発光強度は得られないためである。
【0010】
本発明の蛍光体は、結晶形態には特に限定されず、単結晶であっても多結晶であっても良いが、製造の容易さ、特性ばらつきの少ない点から多結晶体が望ましい。
多結晶体は、1)シンチレーの原料となる粉末の合成プロセスと、2)この粉末を用いた焼結プロセスを経て蛍光体材料を得ることができる。所望のガーネット構造単相の酸化物を得るには、合成粉末の結晶粒径はできるだけ小さいほうが良く、1.0μm以下が望ましい。
【0011】
粉末の合成方法としては、1)通常の酸化物混合法を主体とした方法、2)共沈法、ゾルゲル法といった液相を介する方法、3)更には酸化物混合法を主体として合成した粉末を再度機械的に微細化する方法、がある。
【0012】
通常の酸化物混合法では、例えば次のようにして製造できる。原料粉末としてGd2O3、Ce2O3、Al2O3、及びGa2O3を所定量秤量した後、例えば自動乳鉢等によって30分程度、湿式混合する。この混合粉末を1400℃〜1700℃の大気中で数時間焼成してシンチレータ合成粉末を作製する。必要によっては、フラックスとしてK2SO4等のカリウム化合物、BaF2等の弗化物等を用いて、Gd-Ce-Al-Ga-O系ガーネット構造の生成を促進させることもできる。
【0013】
共沈法を用いたプロセスでは、例えば一例として次のように合成できる。硝酸ガドリニウム、硝酸アルミナ、硝酸ガリウム、硝酸セリウムを所定量秤量して複合硝酸塩水溶液とし、金属イオン濃度の合計量の15倍相当の尿素を硫酸イオンと共存させる。この水溶液を70〜100℃に加熱して尿素を加水分解し、Gd-Ce-Al-Ga-O前駆体を沈殿させる。沈殿物の洗浄を繰り返し、沈殿物中の無関係陰イオン濃度を1000ppm未満に低下させた後、120℃程度での乾燥、1200℃程度での仮焼成を行いシンチレータ粉末とする。乾燥温度は、水分が蒸発する90℃以上であれば良く、仮焼温度はガーネット構造が生成される900℃以上であれば良い。生成したガーネット構造の結晶粒が成長するような高温での熱処理は避けなければならない。
【0014】
共沈法の原料としては、硝酸塩に限らず、各種金属の塩酸塩、硫酸塩、蓚酸塩等も用いることができる。また、場合によってこれら金属塩を数種類混合して用いることもできる。また、尿素の代わりに炭酸水素アンモニウムを用いることもできる。
【0015】
更に、別の方法としては、複合金属溶液中に、1)尿素と乳酸アンモニウム、2)炭酸水素アンモニウムとアンモニア水、或いは3)硫酸アンモニウムとアンモニア水、4)マスキング剤としての過酸化水素水と、アンモニア水と硫酸アンモニウム、等の添加によってもGd-Ce-Al-Ga-O前駆体を沈殿できる。
【0016】
また、原料粉末を機械的に微細化することも、焼結によってガーネット構造を得るのに適した手法である。即ち、前述の酸化物混合法と同様に、構成金属成分の酸化物を所定量秤量した後、自動乳鉢で30分程度混合する。この混合粉末を1500℃前後の温度で仮焼成したのち、機械的な粉砕を行う。ボールミル、より好ましくは遊星ボールミルなど、より粉砕エネルギーの高い粉砕手法がよい。これにより、粉末粒径が約0.01〜0.5μm程度の粉末を容易に得ることができる。
【0017】
このようにして合成した粉末の焼結は、ホットプレス法、HIP法、常圧焼結法、更には常圧焼結法とHIP法との併用法、等で行うことができる。ホットプレス法では、前述の合成粉末を600kgf/cm2程度の圧力で金型成型して成型体とした後、ホットプレス型にセットし、真空中、大気中、或いは酸素中の雰囲気下で、1400℃から1700℃の焼結温度で数時間、300kgf/cm2程度の加圧力で焼結する。これによって相対密度99.0%以上の蛍光体を容易に得ることができる。一方、HIP法では、鉄、或いはW、Mo等の金属製カプセル中に合成粉末を入れ、真空封止して、1400℃前後の温度で2000atm程度の圧力で焼結を行う。
【0018】
また、常圧焼結法では、合成粉末を600kgf/cm2程度の圧力で金型成型した後、3000kgf/cm2程度の圧力で静水圧プレス(CIP)を行った後、1600〜1700℃前後の大気中、或いは純酸素中で数〜数十時間の焼結を行う。1700℃を越えると試料が溶解し、1600℃未満であると焼結密度は90%程度となり十分ではない。雰囲気は大気中、或いは純酸素中が望ましく、Ar、N2などの不活性雰囲気中或いは真空雰囲気では、焼結体中のボイドを少なくできない。
【0019】
常圧焼結法によって、相対密度が99.0%以上の焼結体を得るには、合成粉末として、1)焼結助剤を添加した粉末を用いる、2)サブミクロンサイズの微細粉を用いる。また、常圧焼結によって93.0%程度以上の相対密度のものができれば閉気孔となるため、必要に応じて金属製カプセルが不要なカプセルフリーHIP法を追加することによって、相対密度が99.0%以上の蛍光体を容易に得ることができる。
【0020】
本発明によって、マトリックスがガーネット構造を有し、これ以外の結晶相が2.0wt%未満、相対密度が99.0%以上、拡散透過率が50.0%以上の酸化物蛍光体を得ることができる。この蛍光体は、発光出力が高く、残光が極めて小さいので、X線などを検出する放射線検出器、特にX線CT装置やポジトロンカメラなどの放射線検出器に好適である。
【0021】
本発明の放射線検出器は、セラミックスシンチレータと、このシンチレータの発光を検知するための光検出器とを備え、セラミックスシンチレータとして上述の蛍光体を用いたものである。光検出器としてはPIN型ダイオードを用いる。このフォトダイオ−ドは感度が高く、応答時間が速く、かつ波長感度が可視光から近赤外領域にあるので、本発明の蛍光体の発光波長とのマッチングがよい。
【0022】
また、本発明のX線CT装置は、X線源と、このX線源に対向して配置されたX線検出器と、これらX線源及びX線検出器を保持し被検体の周りで回転駆動させる回転体と、X線検出器で検出されたX線の強度に基づき被検体の断層像を画像構成する画像再構成手段とを備えたX線CT装置において、X線検出器として上述した蛍光体とフォトダイオードを組み合わせた放射線検出器を用いる。
このX線検出器を用いることにより、X線を高い検出効率で検出できるので、従来のシンチレータ(例えばCdWO4)を用いたX線CT装置に比べ感度を約2倍向上でき、又残光が極めて少ないため、高画質、高分解能の画像を得ることができる。
【0023】
【発明の実施の形態】
以下、本発明の実施例について説明する。
【0024】
(実施例1)
原料粉末として、Gd2O3、Ce2O3、Al2O3、及びGa2O3を用いて、試料No.1〜6を製造した。粉末を原子量比で表1のように秤量して、自動乳鉢等によって30分、エタノールを用いて湿式混合した。この混合粉末に、フラックス成分としてK2SO4を加え、これらの混合物をアルミナるつぼに充填し、1650℃の大気中で3時間焼成した。
【0025】
フラックス成分を除去するため、純水中で6回水洗いしてシンチレータ用合成粉末を得た。この合成粉末を、600kgf/cm2の圧力で金型成型して成型体とした後、ホットプレスダイス型にセットして、真空中雰囲気下で、1550℃で3時間、300kgf/cm2の圧力でホットプレス焼結を行った。相対密度はいずれも99.9%以上であった。これら焼結体を、大気中、1300℃での3時間のアニールを施した後、厚さ1.8mmに機械加工してセラミックスシンチレータを作製した。この試料の異相量と拡散透過率とを、X線回折装置、並びに分光光度計を用いて測定した。また、これら試料とフォトダイオードとを組み合わせて検出器を作り、X線源(120kV、150mA)から110cm離れたところに検出器を置き、発光強度、並びに残光を評価した。発光強度はCdWO4の値を1としたときの相対値で、残光はX線を遮断してから30ms後の減衰率で示した。
表1の結果から、試料No.1〜4の組成からなるシンチレータは発光強度が高く、しかも残光の小さい優れたシンチレータ特性を有することが分かる。
【0026】
(実施例2)
原料粉末として硝酸ガドリニウム、硝酸アルミニウム、硝酸ガリウム、硝酸セリウムを用いて、表2に示す試料No.7〜19を作製した。各粉末を秤量して、500ccの複合硝酸塩水溶液とした。金属イオン濃度の合計量の14.5倍相当の尿素を添加し、更に濃硫酸を用いて1.2倍量の硫酸イオンを共存させて、90℃に加熱して撹拌しながら6時間反応させた後、室温まで冷却した。このようにして沈殿させたGd-Ce-Al-Ga-O前駆体を、ろ過と水洗のサイクルを6回繰り返した後に150℃で12時間乾燥させた。得られた沈殿物中の硫酸イオン濃度は、いずれの試料においても900ppm以下であった。この沈殿を、大気中、1200℃で3時間仮焼して、合成粉末を製造した。SEMで観察したところ、いずれの試料においても平均一次粒子径は0.1μm前後の値であった。
これら合成粉末を、φ60の金型を用いて600kgf/cm2の圧力で成型した後、3000kgf/cm2の圧力で静水圧プレス(CIP)を行った後、純酸素中、1650℃で3時間の常圧焼結を行った。実施例1と同様の方法で、機械加工を行いシンチレータウェハーとした後、異相量、拡散透過率といった材料特性、並びに発光強度、残光といったシンチレータとしての特性を評価した。
【表2】

Figure 0004290282
【0027】
表2の結果から、試料No.9〜16の材料組成においては、発光強度、残光ともに優れた特性を示すことが分かる。なお、尿素の代わりに炭酸水素アンモニウムを用いて沈殿させた前駆体を使用しても同様の結果が得られた。また、複合金属溶液中に、1)尿素と乳酸アンモニウム、2)炭酸水素アンモニウムとアンモニア水、或いは3)硫酸アンモニウムとアンモニア水、4)マスキング剤としての過酸化水素水にアンモニア水と硫酸アンモニウム、等の添加、によって合成した粉末でも、いずれもサブミクロンサイズの粉末が得られ、良好なシンチレータ特性を示した。
【0028】
(実施例3)
実施例1と同様の構成金属成分の酸化物粉末を用いて、試料No.20〜31を製造した。粉末を秤量した後、自動乳鉢で30分程度混合した。この混合粉末を大気中、1500℃、3時間、仮焼成した。この仮焼粉をアルミナ製自動乳鉢を用いて、30分間乾式粉砕して0.5mm以下の粉末とした。この粉末を、さらに遠心ボールミルを用いて機械的な粉砕を行った。粉砕媒体としてはZrO2ボールを用いた。粉砕後の粉末の平均粒子径は、いずれの試料もほぼ同じで約0.08μmであった。この粉末中へのZrO2の混入が懸念されるため、No.22の試料の化学分析を行った結果、Zrの含有量は0.002wt%で、不純物の混入量としては極めて僅かな値であった。これら合成粉末を用いて、実施例2と同様の方法で成型体を作製し、常圧焼結によってシンチレータ材料を製造した。その結果を表3に示す。
表3の結果から、試料No.22〜24の組成範囲の材料では、いずれも良好なシンチレータ特性を示した。
【0029】
(実施例4)
図2に本発明のシンチレータを用いたX線検出器の一例を示す。シンチレータ11はフォトダイオード13と接着し、更にシンチレータの発光を外部に逃がさないための遮蔽12で覆う。遮蔽12はX線を透過し、光を反射する材料であるアルミニウム等を用いる。
本発明のシンチレータ11がX線を吸収すると、従来のシンチレータに比較して高い発光出力を有し、Siフォトダイオードの感度波長に比較的近い波長である550nm近傍に発光ピークを有するので、高い効率でフォトダイオードによって光電変換された。また、残光も従来シンチレータに比して極めて少なく、X線検出器として優れた特性を示した。
【0030】
(実施例5)
図3に本発明のX線CT装置の概略を示す。この装置はガントリ部18と画像再構成部22とを備え、ガントリ部18には、被検体が搬入される開口部20を備えた回転円板19と、この回転円板に搭載されたX線管16と、X線管に取りつけられX線の放射方向を制御するコリメータ17と、X線管に対向して回転円板に搭載されたX線検出器15と、X線検出器15で検出されたX線を特定の信号に変換する検出器回路21と、回転円板の回転及びX線束の幅を制御するスキャン制御回路24とを備えている。開口部20に設置された寝台に被検者を寝かせた状態で、X線管からX線が照射される。このX線はコリメータによって指向性を得て、X線検出器によって前記被検体の透過X線を検出する。回転円板を被検体の周りを回転させることによって、X線の照射方向を変えながらX線を検出し、画像再構成部22で断層像を作成し、モニター23に表示する。
【0031】
【発明の効果】
本発明によれば、X線に対する発光効率が高く、残光が極めて少ない蛍光体を提供できる。また、この蛍光体を光検出器を備えた放射線検出器のシンチレータとして用いることにより光出力が大きな低残光放射線検出器が得られ、このX線検出器をX線CT装置に適用することによって、高解像度、高品質の断層像が得られる。
【図面の簡単な説明】
【図1】(a)はガーネット構造の金属イオンの配置図、(b)はガーネット構造の金属イオン周囲の酸素の配置図。
【図2】本発明のシンチレータを用いたX線検出器の概略図。
【図3】本発明のX線CT装置の概略図。
【符号の説明】
1…ガーネット構造におけるcサイト
2…ガーネット構造におけるaサイト
3…ガーネット構造におけるdサイト
4…酸素イオン
11…シンチレータ
12…遮蔽板
13…フォトダイオード
16…X線管
17…コリメータ
18…ガントリ
19…回転円板
20…開口部
21…検出器回路
22…画像再構成部
23…モニタ
24…スキャン制御回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation detector for detecting X-rays, γ-rays, etc., particularly an oxide phosphor suitable for a radiation detector such as an X-ray CT apparatus and a positron camera, a radiation detector using the same, and an X-ray. The present invention relates to a CT apparatus.
[0002]
[Prior art]
Conventionally, as a radiation detector used in an X-ray CT apparatus, a xenon gas chamber, a combination of bismuth germanate (BGO single crystal) and a photomultiplier tube, CsI: Tl single crystal or CdWO 4 single crystal and photo A combination of diodes has been used.
In recent years, rare earth phosphors having high conversion efficiency from radiation to light have been developed, and radiation detectors combining such phosphors and photodiodes have been put into practical use.
Rare earth phosphors are those obtained by adding an activator, which is a light-emitting component based on rare earth oxides or rare earth oxysulfides, and are described in JP-A-3-50991 as rare earth oxide phosphors. A material based on yttrium oxide and gadolinium oxide has been proposed.
[0003]
[Problems to be solved by the invention]
In general, characteristics required for a scintillator material used for a radiation detector include high luminous efficiency, short afterglow, large X-ray blocking ability, and the like. Some of the phosphors have high luminous efficiency, but the afterglow time is relatively long. In the use of the X-ray CT apparatus, when the afterglow of the scintillator used for the X-ray detector is large, the obtained information becomes unclear in the time axis direction.
In the above conventional materials, afterglow is relatively large as a characteristic of the scintillator material.
[0004]
An object of the present invention is to provide a phosphor having high emission efficiency with respect to X-rays and extremely little afterglow. Further, by using this phosphor as a scintillator of a radiation detector equipped with a photodetector, a low afterglow radiation detector having a large light output is obtained, and this X-ray detector is applied to an X-ray CT apparatus. Therefore, it is to provide a high-resolution, high-quality tomographic image.
[0005]
[Means for Solving the Problems]
The phosphor according to the present invention has a garnet structure composed of at least Gd, Ce, Al, Ga and O elements, the amount of different phases other than the garnet structure is less than 2.0 wt%, the relative density is 99.0% or more, and the diffuse transmittance is It is an oxide of 50.0% or more. The oxide has a main peak in the emission spectrum near 550 nm, the decay rate of afterglow after 10 ms after the excitation light is cut off is 10 -3 or less, and the phosphor has high luminous efficiency and little afterglow. As a result, the present invention was found.
[0006]
The metal ion arrangement of the garnet structure of the present invention is shown in FIG. There are three types of c, a, and d sites in garnet-structured metal ions. The size of the site is c>a> d, and speaking only from the size of the ion, Ce 3+ = 1.07Å, Gd 3+ = 0.97Å, Ga 3+ = 0.62Å, Al 3+ = 0.51Å Therefore, the c site is predominately occupied by Ce 3+ and Gd 3+ , the a site is predominately occupied by Ga 3+ , and the d site is predominately occupied by Al 3+ . In this case, the chemical composition is Gd 3 (Ga 2 Al 3 ) O. It is represented by 12 . A garnet structure of various compositions composed of Gd, Ce, Al, Ga, and O was subjected to a crystallographic study based on an X-ray diffraction method using a Rietveld analysis method.
[0007]
As a result, in the garnet structure composed of these constituent elements, the composition is shifted from the stoichiometric composition (Gd, Ce) 3 (Ga, Al) 5 O 12 , and Gd at the c site is replaced with Ga and / or vacancies. It was revealed that Ga and Al at the a and d sites were not only substituted for each other, but were also substituted with Gd and / or vacancies, and oxygen sites were also deficient. Therefore, the actual oxide composed of the elements Gd, Ce, Al, Ga, and O cannot be expressed strictly by the stoichiometric composition formula (Gd, Ce) 3 (Ga 2 Al 3 ) O 12. .
[0008]
Based on these results, various compositions of oxide phosphors having a garnet structure composed of Gd, Al, Ga, and O elements as a parent crystal and Ce as a light emitting component were studied. As a result, Gd / (Al + Ga Good X-ray sensitivity and afterglow characteristics were obtained when the atomic ratio of + Gd) was 0.33 or more and 0.42 or less. Ce has an atomic ratio of 0.05% or more and 2.0% or less with respect to Gd, and if it is out of the range of this composition, sufficient emission intensity cannot be obtained. However, the case where (Gd + Ce) / (Al + Ga + Gd + Ce) is 0.375 is excluded.
[0009]
The reason why the composition of the present invention is essential is that if the atomic ratio of Gd / (Al + Ga + Gd) is less than 0.33, the amount of Gd is too small compared to the garnet composition, and Ga 2 in the matrix of the garnet structure. O 3 different phase, such as to produce, on the other hand, when the Gd content is more than 0.42, Gd perovskite crystal structure (Ga, Al) 0 3 and Gd 4 (Ga, Al) 2 O 9 phase is produced during the garnet matrix . In either case, even if the relative density is 99.0% or more, the amount of the different phase is 2.0 wt% or more and the diffuse transmittance is less than 50.0%. If the Ga / Al atomic ratio is less than 0.20, the crystal structure is a single phase garnet structure, but Ce emission does not provide sufficient emission intensity, and the Ga / Al atomic ratio is 4.0. This is because sufficient light emission intensity cannot be obtained even if the temperature exceeds.
[0010]
The phosphor of the present invention is not particularly limited to a crystal form, and may be a single crystal or a polycrystal, but a polycrystal is desirable from the viewpoint of ease of production and little variation in characteristics.
The polycrystalline material can be obtained through 1) a process for synthesizing a powder used as a raw material for scintillation and 2) a sintering process using this powder. In order to obtain a desired single-phase garnet structure oxide, the crystal grain size of the synthetic powder should be as small as possible, preferably 1.0 μm or less.
[0011]
As a powder synthesis method, 1) a method mainly composed of an ordinary oxide mixing method, 2) a method via a liquid phase such as a coprecipitation method and a sol-gel method, and 3) a powder synthesized mainly based on an oxide mixing method There is a method of refining mechanically again.
[0012]
In the ordinary oxide mixing method, for example, it can be produced as follows. A predetermined amount of Gd 2 O 3 , Ce 2 O 3 , Al 2 O 3 , and Ga 2 O 3 as raw material powders is weighed and then wet-mixed for about 30 minutes using, for example, an automatic mortar. This mixed powder is fired for several hours in the atmosphere of 1400 ° C. to 1700 ° C. to produce a scintillator synthetic powder. If necessary, the production of a Gd—Ce—Al—Ga—O-based garnet structure can be promoted by using a potassium compound such as K 2 SO 4 or a fluoride such as BaF 2 as a flux.
[0013]
In the process using the coprecipitation method, for example, it can be synthesized as follows as an example. A predetermined amount of gadolinium nitrate, alumina nitrate, gallium nitrate, and cerium nitrate is weighed to form a composite nitrate aqueous solution, and urea equivalent to 15 times the total amount of metal ion concentration coexists with sulfate ions. This aqueous solution is heated to 70 to 100 ° C. to hydrolyze urea and precipitate a Gd—Ce—Al—Ga—O precursor. After washing the precipitate repeatedly, the irrelevant anion concentration in the precipitate is reduced to less than 1000 ppm, followed by drying at about 120 ° C. and calcination at about 1200 ° C. to obtain a scintillator powder. The drying temperature may be 90 ° C. or higher at which moisture evaporates, and the calcining temperature may be 900 ° C. or higher at which a garnet structure is generated. Heat treatment at a high temperature at which the produced garnet crystal grains grow must be avoided.
[0014]
The raw material for the coprecipitation method is not limited to nitrate, and various metal hydrochlorides, sulfates, oxalates, and the like can also be used. In some cases, several kinds of these metal salts may be mixed and used. Further, ammonium hydrogen carbonate can be used instead of urea.
[0015]
Furthermore, as another method, in the composite metal solution, 1) urea and ammonium lactate, 2) ammonium bicarbonate and ammonia water, or 3) ammonium sulfate and ammonia water, 4) hydrogen peroxide water as a masking agent, The Gd—Ce—Al—Ga—O precursor can also be precipitated by adding ammonia water and ammonium sulfate.
[0016]
Further, mechanically refining the raw material powder is also a method suitable for obtaining a garnet structure by sintering. That is, in the same manner as the above-described oxide mixing method, a predetermined amount of the constituent metal component oxide is weighed and then mixed for about 30 minutes in an automatic mortar. This mixed powder is temporarily fired at a temperature of about 1500 ° C. and then mechanically pulverized. A pulverization method with higher pulverization energy such as a ball mill, more preferably a planetary ball mill, is preferable. Thereby, a powder having a powder particle size of about 0.01 to 0.5 μm can be easily obtained.
[0017]
The powder synthesized as described above can be sintered by a hot press method, a HIP method, a normal pressure sintering method, a combined method of a normal pressure sintering method and a HIP method, or the like. In the hot press method, after molding the above-mentioned synthetic powder at a pressure of about 600 kgf / cm 2 to form a molded body, it is set in a hot press mold, in a vacuum, in the atmosphere, or in an atmosphere of oxygen, Sintering is performed at a sintering temperature of 1400 ° C to 1700 ° C for several hours with a pressing force of about 300 kgf / cm 2 . Thereby, a phosphor having a relative density of 99.0% or more can be easily obtained. On the other hand, in the HIP method, a synthetic powder is put in a metal capsule such as iron, W, or Mo, vacuum sealed, and sintered at a temperature of about 1400 ° C. and a pressure of about 2000 atm.
[0018]
Further, in the atmospheric pressure sintering, synthetic powder after molding at 600 kgf / cm 2 pressure of about, after the isostatic pressing (CIP) at 3000 kgf / cm 2 pressure of about, 1600-1,700 ° C. before and after Sintering in the atmosphere or pure oxygen for several to several tens of hours. When the temperature exceeds 1700 ° C, the sample is melted. When the temperature is lower than 1600 ° C, the sintered density is about 90%, which is not sufficient. The atmosphere is preferably air or pure oxygen, and voids in the sintered body cannot be reduced in an inert atmosphere such as Ar or N 2 or in a vacuum atmosphere.
[0019]
In order to obtain a sintered body having a relative density of 99.0% or more by a normal pressure sintering method, 1) a powder to which a sintering aid is added is used as a synthetic powder, and 2) a submicron-sized fine powder is used. In addition, if the relative density of about 93.0% or more can be obtained by atmospheric pressure sintering, closed pores will be formed. By adding a capsule-free HIP method that does not require metal capsules as required, the relative density will be 99.0% or more. The phosphor can be easily obtained.
[0020]
According to the present invention, an oxide phosphor having a garnet structure, a crystal phase other than 2.0% by weight, a relative density of 99.0% or more, and a diffuse transmittance of 50.0% or more can be obtained. Since this phosphor has a high light emission output and extremely small afterglow, it is suitable for a radiation detector that detects X-rays, particularly a radiation detector such as an X-ray CT apparatus or a positron camera.
[0021]
The radiation detector of the present invention includes a ceramic scintillator and a photodetector for detecting light emitted from the scintillator, and uses the above-described phosphor as the ceramic scintillator. A PIN diode is used as the photodetector. Since this photodiode has high sensitivity, quick response time, and wavelength sensitivity is in the visible to near infrared region, it matches well with the emission wavelength of the phosphor of the present invention.
[0022]
The X-ray CT apparatus according to the present invention includes an X-ray source, an X-ray detector disposed opposite to the X-ray source, and the X-ray source and the X-ray detector. An X-ray CT apparatus comprising: a rotating body that is rotationally driven; and an image reconstruction unit that forms a tomographic image of a subject based on the intensity of X-rays detected by the X-ray detector. A radiation detector in which the phosphor and the photodiode are combined is used.
By using this X-ray detector, X-rays can be detected with high detection efficiency, so that the sensitivity can be improved by a factor of about 2 compared to conventional X-ray CT apparatuses using a scintillator (for example, CdWO 4 ), and afterglow is reduced. Since the number is extremely small, an image with high image quality and high resolution can be obtained.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
[0024]
Example 1
Sample Nos. 1 to 6 were manufactured using Gd 2 O 3 , Ce 2 O 3 , Al 2 O 3 , and Ga 2 O 3 as raw material powders. The powder was weighed by atomic weight ratio as shown in Table 1, and wet mixed with ethanol using an automatic mortar for 30 minutes. To this mixed powder, K 2 SO 4 was added as a flux component, and the mixture was filled in an alumina crucible and fired in an atmosphere of 1650 ° C. for 3 hours.
[0025]
In order to remove the flux component, it was washed with pure water 6 times to obtain a synthetic powder for scintillator. This synthetic powder is molded at a pressure of 600 kgf / cm 2 to form a molded body, then set in a hot press die, and under a vacuum atmosphere at 1550 ° C. for 3 hours at a pressure of 300 kgf / cm 2 The hot press sintering was performed. The relative densities were all 99.9% or more. These sintered bodies were annealed in the atmosphere at 1300 ° C. for 3 hours and then machined to a thickness of 1.8 mm to produce a ceramic scintillator. The amount of different phases and the diffuse transmittance of this sample were measured using an X-ray diffractometer and a spectrophotometer. Moreover, a detector was made by combining these samples and a photodiode, and the detector was placed 110 cm away from the X-ray source (120 kV, 150 mA), and the emission intensity and afterglow were evaluated. The emission intensity is a relative value when the value of CdWO 4 is 1, and the afterglow is indicated by an attenuation rate 30 ms after the X-ray is cut off.
From the results in Table 1, it can be seen that the scintillators having the compositions of Sample Nos. 1 to 4 have excellent scintillator characteristics with high emission intensity and low afterglow.
[0026]
(Example 2)
Sample Nos. 7 to 19 shown in Table 2 were prepared using gadolinium nitrate, aluminum nitrate, gallium nitrate, and cerium nitrate as the raw material powder. Each powder was weighed into a 500 cc aqueous composite nitrate solution. Add urea equivalent to 14.5 times the total concentration of metal ions, and coexist with 1.2 times the amount of sulfate ions using concentrated sulfuric acid. Until cooled. The Gd—Ce—Al—Ga—O precursor thus precipitated was dried at 150 ° C. for 12 hours after 6 cycles of filtration and water washing. The sulfate ion concentration in the obtained precipitate was 900 ppm or less in any sample. This precipitate was calcined in the atmosphere at 1200 ° C. for 3 hours to produce a synthetic powder. When observed by SEM, the average primary particle diameter was a value around 0.1 μm in any sample.
These synthetic powders, after molded at a pressure of 600 kgf / cm 2 using a mold of [phi] 60, after the isostatic pressing (CIP) at a pressure of 3000 kgf / cm 2, in pure oxygen, 3 hours at 1650 ° C. Was subjected to normal pressure sintering. After machining into a scintillator wafer by the same method as in Example 1, the material properties such as the amount of different phases and diffuse transmittance, and the properties as a scintillator such as emission intensity and afterglow were evaluated.
[Table 2]
Figure 0004290282
[0027]
From the results of Table 2, it can be seen that the material compositions of Sample Nos. 9 to 16 exhibit excellent characteristics in both emission intensity and afterglow. Similar results were obtained when a precursor precipitated with ammonium hydrogen carbonate instead of urea was used. Also, in the composite metal solution, 1) urea and ammonium lactate, 2) ammonium hydrogen carbonate and aqueous ammonia, or 3) ammonium sulfate and aqueous ammonia, 4) aqueous hydrogen peroxide as a masking agent, aqueous ammonia and ammonium sulfate, etc. Even if the powder was synthesized by addition, submicron-sized powder was obtained, and good scintillator characteristics were exhibited.
[0028]
(Example 3)
Sample Nos. 20 to 31 were produced using oxide powders of the same constituent metal components as in Example 1. After weighing the powder, it was mixed for about 30 minutes in an automatic mortar. This mixed powder was calcined in the atmosphere at 1500 ° C. for 3 hours. This calcined powder was dry-ground for 30 minutes using an automatic mortar made of alumina to obtain a powder of 0.5 mm or less. This powder was further mechanically pulverized using a centrifugal ball mill. ZrO 2 balls were used as the grinding media. The average particle size of the powder after pulverization was almost the same in all samples, and was about 0.08 μm. Since there is concern about the contamination of ZrO 2 in this powder, the chemical analysis of the sample No. 22 was conducted. As a result, the Zr content was 0.002 wt%, and the amount of impurities was very small. It was. Using these synthetic powders, a molded body was produced in the same manner as in Example 2, and a scintillator material was produced by atmospheric pressure sintering. The results are shown in Table 3.
From the results in Table 3 , all the materials having the composition ranges of Sample Nos. 22 to 24 showed good scintillator characteristics.
[0029]
(Example 4)
FIG. 2 shows an example of an X-ray detector using the scintillator of the present invention. The scintillator 11 is bonded to the photodiode 13 and further covered with a shield 12 for preventing the light emitted from the scintillator from escaping to the outside. The shield 12 uses aluminum or the like which is a material that transmits X-rays and reflects light.
When the scintillator 11 of the present invention absorbs X-rays, it has a high light emission output as compared with the conventional scintillator, and has a light emission peak near 550 nm, which is a wavelength relatively close to the sensitivity wavelength of the Si photodiode, and thus has high efficiency. The photoelectric conversion was performed by a photodiode. In addition, the afterglow was extremely small compared to the conventional scintillator, and it showed excellent characteristics as an X-ray detector.
[0030]
(Example 5)
FIG. 3 shows an outline of the X-ray CT apparatus of the present invention. This apparatus includes a gantry unit 18 and an image reconstruction unit 22. The gantry unit 18 includes a rotating disk 19 having an opening 20 into which a subject is carried, and an X-ray mounted on the rotating disk. Detected by a tube 16, a collimator 17 attached to the X-ray tube to control the X-ray radiation direction, an X-ray detector 15 mounted on a rotating disk facing the X-ray tube, and an X-ray detector 15 A detector circuit 21 that converts the X-rays into a specific signal and a scan control circuit 24 that controls the rotation of the rotating disk and the width of the X-ray bundle are provided. X-rays are irradiated from the X-ray tube in a state where the subject is laid on a bed installed in the opening 20. The X-ray obtains directivity by a collimator, and the transmitted X-ray of the subject is detected by an X-ray detector. By rotating the rotating disk around the subject, X-rays are detected while changing the X-ray irradiation direction, and a tomographic image is created by the image reconstruction unit 22 and displayed on the monitor 23.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the fluorescent substance with the high luminous efficiency with respect to a X-ray, and very little afterglow can be provided. Further, by using this phosphor as a scintillator of a radiation detector provided with a photodetector, a low afterglow radiation detector having a large light output can be obtained. By applying this X-ray detector to an X-ray CT apparatus, High-resolution, high-quality tomographic images can be obtained.
[Brief description of the drawings]
FIG. 1A is an arrangement diagram of metal ions having a garnet structure, and FIG. 1B is an arrangement diagram of oxygen around the metal ions having a garnet structure.
FIG. 2 is a schematic view of an X-ray detector using the scintillator of the present invention.
FIG. 3 is a schematic view of the X-ray CT apparatus of the present invention.
[Explanation of symbols]
1 ... c-site in garnet structure
2 ... a site in garnet structure
3 ... d site in garnet structure
4… Oxygen ion
11 ... Scintillator
12 ... Shield plate
13 ... Photodiode
16 ... X-ray tube
17 ... Collimator
18 ... Gantry
19 ... Rotating disc
20 ... Opening
21. Detector circuit
22… Image reconstruction unit
23… Monitor
24 ... Scan control circuit

Claims (6)

少なくともGd、Ce、Al、Ga、0元素から構成された酸化物であり、該酸化物の結晶構造がガーネット構造である酸化物蛍光体において、
ガーネット構造以外の異相量が2.0wt%未満で、焼結密度を理論密度で除した値を百分率で表した相対密度が99.0%以上、拡散透過率が50.0%以上であることを特徴とする酸化物蛍光体。
In an oxide phosphor composed of at least Gd, Ce, Al, Ga, and 0 element, and the crystal structure of the oxide is a garnet structure,
The amount of heterogeneous phase other than the garnet structure is less than 2.0 wt% , the relative density expressed as a percentage obtained by dividing the sintered density by the theoretical density is 99.0% or more, and the diffusion transmittance is 50.0% or more. An oxide phosphor characterized by the following.
請求項1に記載の酸化物蛍光体において、発光スペクトルのメインピークが550nm近傍に存在し、励起光を絶ってから30ms後における残光の減衰率が10−3以下であることを特徴とする酸化物蛍光体。2. The oxide phosphor according to claim 1, wherein the main peak of the emission spectrum exists in the vicinity of 550 nm, and the decay rate of afterglow after 30 ms after the excitation light is cut off is 10 −3 or less. Oxide phosphor. 請求項1または2に記載の酸化物蛍光体において、Gd/(Al+Ga+Gd)の原子比が0.33以上、0.42以下であることを特徴とする酸化物蛍光体。但し、CeはGdに対して原子比で0.05%以上、2.00%以下であり、(Gd+Ce)/(Al+Ga+Gd+Ce)の原子比が0.375の組成を除く。  3. The oxide phosphor according to claim 1, wherein the atomic ratio of Gd / (Al + Ga + Gd) is 0.33 or more and 0.42 or less. However, Ce is 0.05% or more and 2.00% or less in atomic ratio with respect to Gd, and the composition in which the atomic ratio of (Gd + Ce) / (Al + Ga + Gd + Ce) is 0.375 is excluded. 請求項1乃至3のいずれか一項に記載の酸化物蛍光体において、Ga/Alの原子比が0.20以上、4.0以下であることを特徴とする酸化物蛍光体。  The oxide phosphor according to any one of claims 1 to 3, wherein an atomic ratio of Ga / Al is 0.20 or more and 4.0 or less. セラミックスシンチレータと、このシンチレータの発光を検出するための光検出器を備えた放射線検出器において、該セラミックスシンチレータとして請求項1乃至4のいずれか一項に記載の酸化物蛍光体を用いたことを特徴とする放射線検出器。  A radiation detector comprising a ceramic scintillator and a photodetector for detecting light emitted from the scintillator, wherein the oxide phosphor according to any one of claims 1 to 4 is used as the ceramic scintillator. Characteristic radiation detector. X線源と、このX線源に対向して置かれたX線検出器と、これらX線源及びX線源検出器を保持し、被検体の周りを回転駆動される回転円板と、前記X線検出器で検出されたX線の強度に基づき該被検体の断層像を画像再構成する画像再構成手段とを備えたX線CT装置において、該X線検出器として請求項5に記載の放射線検出器を用いたことを特徴とするX線CT装置。  An X-ray source, an X-ray detector placed opposite to the X-ray source, a rotating disk that holds the X-ray source and the X-ray source detector, and is driven to rotate around the subject; 6. An X-ray CT apparatus comprising image reconstruction means for reconstructing a tomographic image of the subject based on the intensity of the X-ray detected by the X-ray detector. An X-ray CT apparatus using the radiation detector described above.
JP17661999A 1999-06-23 1999-06-23 Oxide phosphor, radiation detector using the same, and X-ray CT apparatus Expired - Lifetime JP4290282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17661999A JP4290282B2 (en) 1999-06-23 1999-06-23 Oxide phosphor, radiation detector using the same, and X-ray CT apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17661999A JP4290282B2 (en) 1999-06-23 1999-06-23 Oxide phosphor, radiation detector using the same, and X-ray CT apparatus

Publications (3)

Publication Number Publication Date
JP2001004753A JP2001004753A (en) 2001-01-12
JP2001004753A5 JP2001004753A5 (en) 2006-08-10
JP4290282B2 true JP4290282B2 (en) 2009-07-01

Family

ID=16016752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17661999A Expired - Lifetime JP4290282B2 (en) 1999-06-23 1999-06-23 Oxide phosphor, radiation detector using the same, and X-ray CT apparatus

Country Status (1)

Country Link
JP (1) JP4290282B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683719B2 (en) * 2000-12-21 2011-05-18 株式会社日立メディコ Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
JP4087093B2 (en) * 2001-10-15 2008-05-14 株式会社日立メディコ Phosphor element, radiation detector using the same, and medical image diagnostic apparatus
US10499465B2 (en) 2004-02-25 2019-12-03 Lynk Labs, Inc. High frequency multi-voltage and multi-brightness LED lighting devices and systems and methods of using same
US10575376B2 (en) 2004-02-25 2020-02-25 Lynk Labs, Inc. AC light emitting diode and AC LED drive methods and apparatus
WO2011143510A1 (en) 2010-05-12 2011-11-17 Lynk Labs, Inc. Led lighting system
JP5233119B2 (en) * 2004-12-21 2013-07-10 日立金属株式会社 Fluorescent material and manufacturing method thereof, radiation detector using fluorescent material, and X-ray CT apparatus
CN100347267C (en) * 2005-03-21 2007-11-07 南昌大学 Garnet type gadolinium aluminate based fluorescent powder and method for making same
JP4972957B2 (en) * 2005-04-18 2012-07-11 三菱化学株式会社 Phosphor, light-emitting device using the same, image display device, and lighting device
JP4899623B2 (en) 2005-05-24 2012-03-21 日立化成工業株式会社 Inorganic scintillator, and radiation detector and PET apparatus using the same
US8410446B2 (en) 2007-02-02 2013-04-02 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
US11317495B2 (en) 2007-10-06 2022-04-26 Lynk Labs, Inc. LED circuits and assemblies
US11297705B2 (en) 2007-10-06 2022-04-05 Lynk Labs, Inc. Multi-voltage and multi-brightness LED lighting devices and methods of using same
JP5521412B2 (en) 2008-07-31 2014-06-11 日立金属株式会社 Fluorescent material, scintillator and radiation detector using the same
WO2010095737A1 (en) * 2009-02-23 2010-08-26 株式会社東芝 Solid-state scintillator, radiation detector, and x-ray tomographic imaging device
JP5712768B2 (en) 2010-05-10 2015-05-07 信越化学工業株式会社 Wavelength conversion member, light emitting device, and method of manufacturing wavelength conversion member
JP5498908B2 (en) * 2010-09-29 2014-05-21 株式会社東芝 Solid scintillator material, solid scintillator, radiation detector and radiation inspection apparatus using the same
CN102869748B (en) 2010-10-29 2015-01-07 日立金属株式会社 Polycrystalline scintillator for detecting soft x-rays and manufacturing method
US8969812B2 (en) 2011-01-31 2015-03-03 Furukawa Co., Ltd. Garnet-type crystal for scintillator and radiation detector using the same
JP2012180399A (en) * 2011-02-28 2012-09-20 Furukawa Co Ltd Garnet-type crystal for scintillator, and radiation detector using the same
JP2013002882A (en) * 2011-06-14 2013-01-07 Furukawa Co Ltd Radiation detector
WO2013026053A1 (en) 2011-08-18 2013-02-21 Lynk Labs, Inc. Devices and systems having ac led circuits and methods of driving the same
WO2013082609A1 (en) 2011-12-02 2013-06-06 Lynk Labs, Inc. Color temperature controlled and low thd led lighting devices and systems and methods of driving the same
JP6186732B2 (en) * 2013-01-29 2017-08-30 堺化学工業株式会社 Method for producing composition for stress luminescent material, composition for stress luminescent material obtained by the method, and stress luminescent material produced from the composition
US11079077B2 (en) 2017-08-31 2021-08-03 Lynk Labs, Inc. LED lighting system and installation methods

Also Published As

Publication number Publication date
JP2001004753A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
JP4290282B2 (en) Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
JP3938470B2 (en) Phosphor, radiation detector using the same, and X-ray CT apparatus
JP4683719B2 (en) Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
US8431042B2 (en) Solid state scintillator material, solid state scintillator, radiation detector, and radiation inspection apparatus
US6793848B2 (en) Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage
US5116560A (en) Method of forming rare earth oxide ceramic scintillator with ammonium dispersion of oxalate precipitates
US20040084655A1 (en) Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
JP3777486B2 (en) Phosphor, radiation detector using the same, and X-ray CT apparatus
JPS5930883A (en) Rare earth element-added yttria-gadolinia ceramic scintillator and manufacture
CN104169392A (en) Solid scintillator, radiation detector and radiographic examination device
JP4623403B2 (en) Ceramics, ceramic powder production method and ceramic production method.
Ji et al. La2Hf2O7: Ti4+ ceramic scintillator for x-ray imaging
WO2010095737A1 (en) Solid-state scintillator, radiation detector, and x-ray tomographic imaging device
JPH0517224A (en) Preparation of yttria-gadolinia ceramic scintillator using hydroxide coprecipitation method
JP4521929B2 (en) Phosphor and radiation detector and X-ray CT apparatus using the same
JP2001294853A (en) Oxide fluorescent substance, radiation detector using the same, and x-ray ct apparatus
JPH0262596B2 (en)
JP4429444B2 (en) Scintillator, radiation detector and X-ray CT apparatus using the same
JP2003119070A (en) Phosphor element, radiation detector using the same and medical diagnostic imaging device
JPH0585824A (en) Process for producing yttria-gadolinia ceramic scintillator from coprecipitated oxalate dispersed with ammonium
JP2001181043A (en) Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same
JP2005095514A (en) Radiation detector and x-ray ct apparatus using the same
WO2022202500A1 (en) Scintillator and radiation detector
JPS6359435B2 (en)
WO2021132494A1 (en) Scintillator and radiation detector

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Ref document number: 4290282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term