JP4284591B2 - LPG heat exchanger - Google Patents

LPG heat exchanger Download PDF

Info

Publication number
JP4284591B2
JP4284591B2 JP2003082285A JP2003082285A JP4284591B2 JP 4284591 B2 JP4284591 B2 JP 4284591B2 JP 2003082285 A JP2003082285 A JP 2003082285A JP 2003082285 A JP2003082285 A JP 2003082285A JP 4284591 B2 JP4284591 B2 JP 4284591B2
Authority
JP
Japan
Prior art keywords
heat exchanger
lpg
liquid
main
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003082285A
Other languages
Japanese (ja)
Other versions
JP2004285987A (en
Inventor
真一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Co Ltd
Original Assignee
Nikki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Co Ltd filed Critical Nikki Co Ltd
Priority to JP2003082285A priority Critical patent/JP4284591B2/en
Publication of JP2004285987A publication Critical patent/JP2004285987A/en
Application granted granted Critical
Publication of JP4284591B2 publication Critical patent/JP4284591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体のLPG(液化石油ガス)を加熱気化するとともに所定圧力に調整して吸気管路に送出することによりエンジンに供給するLPG供給装置に用いられるLPGの熱交換器に関する。
【0002】
【従来の技術】
LPGを火花点火エンジンの燃料に使用することは広く知られており、ベーパライザ(レギュレータ)とミキサとを使用して大気圧程度に減圧した気化ガスを吸気管路に吸引させてエンジンに供給する、という方式が従前から行われている。一方、この周知の方式に代えて、実開昭59−43659号公報などに記載されているように、液体のまま吸気管路に噴射させる方式も提案されているが、液体のLPGは温度の影響を受けやすく容易に気化して噴射量が不安定になるという問題があり、実用化が極めて困難である。
【0003】
これに対し、特開平6−17709号公報などに記載されているようにLPGを所定正圧の気化ガスに調整して吸気管路に噴射させる方式は、噴射量を不安定にしないという利点をもっているため実用化に有利である。そして、液体のLPGを加熱気化させる手段として、エンジン冷却水を利用した熱交換器をレギュレータに内蔵させるか或いはその入口側に配置し、エンジン冷却水によりLPGを加熱気化させることが慣用されている。
【0004】
しかし、このようなエンジン冷却水を使用する加熱気化手段は、冷機時において冷却水が低温であるために液体LPGを充分に気化できない、という不都合がある。
そこで、例えば特開平5−223014号公報や特開平11−324813号公報に記載されているように、LPGを気化して大気圧程度に減圧するベーパライザについて、エンジン冷却水の熱を利用することに加えて、LPG経路中に電気ヒータ(PTCヒータ)を配置し、冷却水が低温の場合においてもLPGを気化できるようにすることが提案されている。
【0005】
ところが、自動車エンジンの場合、蓄電池や発電機で得られる電力を利用する電気ヒータの加熱能力は冷却水の加熱能力に比べて著しく低い。従って、エンジン冷却水で加熱気化されるLPGの同一経路中に電気ヒータを設置した前記手段では、低温始動直後のエンジン運転状態によっては、電気ヒータの気化能力を超えた流量のLPGが液体のまま吸気管路に送出される場合がある。即ち、エンジン冷却水が低温の場合に、電気ヒータの気化能力を超えるLPG流量になると、液体のLPGが吸気管路に送出されて混合気過剰となり、エンジンが停止して再始動が不能になるという問題を生じる。その対策として、電気ヒータの大型化或いは多数化が考えられるが、レギュレータや熱交換器の高価格化、さらには、これに伴う電力消費量の大幅な増加を招いたり、或いは電源から得られる電力によっては加熱能力不足が解消されない、という不都合を伴う。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような問題点を解決しようとするものであり、液体のLPGを加熱気化するとともに所定圧力に調整して吸気管路に供給するLPG供給装置に用いられるエンジン冷却水と電気ヒータとを併用したLPGの熱交換器について、低温時などのLPGの気化が不可能または不十分となりやすい場合に、少ない電力消費量で確実に気化させて吸気管路に送出し、低温始動性を高めることを課題とする。
【0007】
【課題を解決するための手段】
そこで、本発明は、液体LPGを加熱気化するとともに所定圧力に調整してエンジンの吸気管路に送出するLPG供給装置における圧力調整器の入口側に配置されるLPGの熱交換器であって、並列に配置されて液体LPGをエンジン冷却水により加熱気化する主熱交換器および電気ヒータにより加熱気化する副熱交換器と、ボンベから送出された液体LPGを前記二つの熱交換器に選択的に流入させる流路切換手段と、前記副熱交換器の流入側に設けた流入量制限手段とを具え、前記流路切換手段はエンジン冷却水温度が所定温度よりも高いとき液体LPGを前記主熱交換器に流入させ、所定温度よりも低いとき液体LPGを前記副熱交換器に流入させるように作動し、前記流入量制限手段は液体LPGの流入量を前記副熱交換器の気化能力内に制限するものとした。
【0008】
これにより、主熱交換器に流入するエンジン冷却水の温度が低くLPGの気化に不十分な場合でも、流路切換手段を用いて液体LPGを副熱交換器に流入させることにより電気ヒータを用いて気化可能な温度にまで加熱することができる。また、始動時のエンジン要求燃料流量は比較的少量であるので、副熱交換器のLPG流入側に流入量制限手段を設けて、気化能力を超えるLPGを流入させないようにしたことにより、小形或いは少数の電気ヒータで、しかも少ない消費電力量で完全に気化させ、良好に始動させることができる。
【0009】
また、前述の熱交換器において、副熱交換器を主熱交換器内に収装すれば、熱交換器全体がコンパクトなものとなり、加えて副熱交換器の余熱を主熱交換器における加熱に利用することができるため、エネルギ効率が高いものとなる。
【0010】
さらに、前述の熱交換器において、副熱交換器をその全外周に主熱交換室を形成する空間を有して主熱交換器のハウジングに収装されるようにして、電気ヒータをその全外周に副熱交換室を形成する空間を有して副熱交換器のハウジングに収装されるようにすれば、電気ヒータの全外周から副熱交換室のLPGに伝熱されるとともに、副熱交換器のハウジングの全外周から主熱交換室のLPGに伝熱されるようになって発生した熱の大気中への放散を少なくして最大限に利用することができるため、さらにエネルギ効率を高めることができる。
【0011】
さらに、前述の熱交換器における流路切換手段を、ボンベから延びる液体LPG流路が分岐して主熱交換器に液体LPGを流入させる主流入路に設けた主開閉弁、および副熱交換器に液体LPGを流入させる副流入路に設けた副開閉弁を具えたものとして、前記二つの開閉弁は一方が開弁しているときもう一方が閉弁していることに加えて、ともに開弁することができるものとした。
【0012】
このことにより、例えばエンジン始動後に副熱交換器による加熱から主熱交換器による加熱に切り換える際に、双方を並列的に同時に経由させるオーバラップ時間を設けることが可能となり、流路切換時に発生する燃料供給の途切れを防止することができる。また、高負荷運転時に主熱交換器だけでは燃料供給量が不足するような場合を生じても、副熱交換器を併用させることにより容易に対応できるようになる。
【0013】
さらにまた、LPGはその組成によって気化温度が異なるが、このLPG組成はLPGの温度および圧力をもとに所定の計算方法を用いて推定することができる。そこで、前述の流路切換手段について、ボンベの温度および圧力に基づいてLPGの組成を推定し前記推定結果に基づいて算出したLPGを気化可能なエンジン冷却水温度を基準に、主熱交換器および副熱交換器のいずれかに液体LPGを流入させるように作動するものとした。このことにより、LPGの組成に応じて加熱気化に使用する熱交換器を選択して切り換えることが可能となるため、より確実なLPGの気化を実現することができる。
【0014】
【発明の実施の形態】
本発明の実施の形態について、以下に図面を用いながら詳細に説明すると、図1に概略の配置を示した燃料供給装置において、本実施の形態では、流路切換手段を切換器6、流入量制限手段をオリフィス22hとしている。そして、ボンベ5に貯留されたLPGは液体LPG流路9A,気体LPG流路9Bを通ってエンジン4の吸気管路4bに設置した燃料噴射弁7に供給され、その経路中に切換器6、熱交換器2、圧力調整器3が配置されている。
【0015】
ボンベ5に液体の状態で貯留されているLPGは、液体LPG流路9Aを通って切換器6に送られる。ボンベ5には、温度センサ11aと圧力センサ12とが配置され、これが検出したボンベ5内の液体LPGの温度と圧力とは電子式制御装置10に入力されるようになっている。
【0016】
切換器6は、液体LPG流路9Aが2つに分岐されてなる主流入路9aおよび副流入路9bにそれぞれ電磁駆動式の主開閉弁6aと副開閉弁6bとを設けたものであり、主流入路9aは後述する熱交換器2の主熱交換器21の底部に設けた流入口21aに接続され、副流入路9bは後述する熱交換器2の副熱交換器22の底部に設けた流入口22aに接続されている。また、これらの開閉弁6a,6bは電子式制御装置10により開閉制御されるようになっている。
【0017】
熱交換器2は主熱交換器21と副熱交換器22とからなり、主熱交換器21の内部に副熱交換器22を収装した二重構造とされている。主熱交換器21はその周囲を囲んでジャケット状に配置されエンジン冷却水が通過する冷却水室23を具えているとともに、液体LPGの流入口21aと内部で気化した気体LPGを圧力調整器3に送出する流出口21bとを対角線上の反対端部に備えている。
【0018】
エンジン4に設けられた冷却水ジャケット4a内のエンジン冷却水は、冷却水送出路8aを経由して前述の熱交換器2の冷却水室23に送出されるようになっている。そして、熱交換器2における主熱交換器21を加熱したエンジン冷却水は、冷却水戻し路8bを経由して冷却水ジャケット4aに戻され循環するようになっている。
【0019】
図2,図3を参照して、主熱交換器21は方形のハウジング21Bを有し、副熱交換器22は主熱交換器21のハウジング21Bとほぼ相似形状の方形のハウジング22Bを有し、副熱交換器22がその全外周に空間を有して主熱交換器21に収装されて、この空間が主熱交換室21Aを形成している。主熱交換器21内に収装された副熱交換器22は、主熱交換器21の流入口21aにほぼ隣接させて設けた流入口22aと、主熱交換器21の流出口21b内に開口させた流出口22bとを具え、二つの熱交換器21,22で生成した気体LPGは一つの出口から圧力調整器3の流入口3aに送られるようになっている。
【0020】
また、流入口22aにはLPG流入量制限手段であるオリフィス22hが配置され、副熱交換器22の気化能力を超える液体LPGが流入しないようになっている。そして、副熱交換器22の内部には電気ヒータである2枚のPTCヒータ24c,24dがそれぞれ前後面を伝熱壁24e,24fの各内壁面に密着して具えられた気・液密構造の電熱器24が収装されている。伝熱壁24e,24dは電極を兼ねておりPTCヒータ24c,24dに通電するものである。電熱器24はその全外周に空間を有して収装されており、この空間が副熱交換室22Bを形成する。
【0021】
熱交換器2は以上のようなコンパクトで簡易な構成であり、流入口21a,22aと流出口21b,22bとがそれぞれ対角線上に配置されているため、LPGが長い経路を流れてその間に充分な熱交換を行って完全に気化することができる。殊に、副熱交換器22においては電熱器24の伝熱壁24e,24fおよび周壁24gの全表面で熱交換を行うため高効率であり、このため、PTCヒータ24c,24dは小形或いは少数で済むことから、消費電力量が少ないという利点がある。尚、流入口21a,22aが各熱交換器21,22の底部に配置され、流出口21b,22bが頂部に配置されていることにより、比重の重い液体LPGが液体のまま流出口21b,22bから送出されにくくなっている。
【0022】
そして、熱交換器2の出口に接続して配置されている圧力調整器3は、ダイヤフラム3eにより区画された調圧室3cおよび背室3dを有し、調圧室3cの圧力が設定圧力よりも低くなるとダイヤフラム3eが入口弁3fを開いて流出口21b,22bを接続した流入口3aから熱交換器2で生成した気体LPGを調圧室3cに流入させ、設定圧力よりも高くなると入口弁3fを閉じて調圧室3cへの流入を停止させることにより、調圧室3cに一定の正圧に減圧された気体LPGを保有させる、という従来のものと同様の装置である。圧力調整器3の流出口3bから送出された気体LPGは気体LPG流路9Bを経て、吸気管路4bに設置した燃料噴射弁7から噴射されるようになっている。
【0023】
次に、本実施の形態ではボンベ5内の液体LPGの温度および圧力を温度センサ11a,圧力センサ12により検出して、これらの値を基に電子式制御装置10が所定の計算方法でLPGの組成を算出できるようになっている。即ち、LPGを構成するプロパンとブタンはそれぞれ気化温度が異なることから、LPG性状(プロパンとブタンの比率)によってその気化温度が変化するため、所定の方法で燃料性状を推定することにより流路切り換えのためのエンジン冷却水の基準温度を算出できるようにした。
【0024】
例えば、エンジン始動時において、100%プロパンの場合はエンジン冷却水温度が−10℃でも主熱交換器21を用いてこれを気化することが可能である。一方、20%プロパンの場合は、エンジン冷却水温度が−10℃のときに主熱交換器21では気化できないため電気ヒータで加熱する必要があり、この場合は副熱交換器22を使用して始動させ、その後エンジン冷却水温度が10〜30℃に上昇したときから主熱交換器21を使用するように切り換える。
【0025】
本実施の形態においては、電気式制御装置10でボンベ5内の液体LPGの温度と圧力を基にして所定温度・圧力におけるプロパンとブタンの比率を求め、その比率を基に基準温度を決定するようにしている。即ち、電子式制御装置10は、ボンベ5に設けた温度センサ11aと圧力センサ12により検出されたLPGの温度および圧力から切り換え基準温度を算出し、冷却水ジャケット4aに設けた温度センサ11bで検出したエンジン冷却水温度と比較して、切り換えの要否を判断する。
【0026】
そして、エンジン冷却水がLPGの気化に不可能または不十分な温度の場合、液体LPGを副熱交換器22に流入させPTCヒータ24c,24dで加熱気化して、圧力調整器3に向けてLPGを送出させる。このとき、副熱交換器22の流入口22aには、流入量制限手段としてのオリフィス22hが設けられているため、副熱交換器22の気化能力を超える量のLPGは流入しない。従って、エンジンの低温始動直後に通常高負荷運転を行うことはできないが、熱交換器2への必要以上のLPGの流入を制限して吸気管路4bに液状のLPGが送出されて混合気過濃を招くという不都合を防止することができる。
【0027】
そして、冷却水ジャケット4aの温度センサ11bで検出したエンジン冷却水の温度が気化に適した温度に達したら、電子式制御装置10の指令により副開閉弁6bを閉弁し主開閉弁6aを開弁させる。その際、副開閉弁6bを閉弁する前に主開閉弁6aを開弁して、液体LPGが両熱交換器を同時に経由するオーバラップ時間が設けられるようになっている。
【0028】
即ち、切換器6は1個の方向切換弁による完全切り換え方式でも本発明の目的を達成することができるが、主熱交換器21および副熱交換器22の流入口側に主開閉弁6a,副開閉弁6bをそれぞれ具えたものとした本実施の形態によると、切り換え時にオーバラップ時間を設けることにより、燃料の供給途切れを防止できるという利点がある。さらに、高負荷運転時に主熱交換器21による熱交換では燃料供給が不足する事態を生じた場合、主熱交換器21に加えて副熱交換器22による熱交換を行って要求燃料流量を確保することも可能となる。
【0029】
そして、エンジン始動後にエンジン冷却水が所定温度まで上昇したとき、LPG流路は主熱交換器21経由に切り換えられるが、副熱交換器22の余熱が大気中に放出されずに主熱交換器21内部を加熱するので、エンジン冷却水が所定温度に達しているが比較的低温度の段階であっても完全に気化させることができ、エンジン運転を不調にすることなくエンジン冷却水温度が充分に上昇して安定した気化をおこなわせる状態に移行することができる。尚、主熱交換器21の外部に副熱交換器22を並列設置してもよいが、本実施の形態のように収装させた場合は、LPG流路を主熱交換器21におけるLPGの気化を完全なものとすることができる点で有利である。
【0030】
尚、本発明の熱交換器は気体LPGを所定正圧に調整して燃料噴射弁に送るシステムにおけるレギュレータの入口側に配置されるものに限らず、大気圧程度に調整してミキサに送り吸気管路に吸引させるシステムについても、レギュレータの設定圧力を変更することによりそのまま適用することができる。
【0031】
【発明の効果】
以上述べたように、本発明によると、液体LPGを加熱気化するとともに所定圧力に調整して吸気管路に供給するLPG供給装置に用いられるエンジン冷却水と電気ヒータとを併用したLPGの熱交換器において、低温時などのLPGの気化が不可能または不十分となりやすい場合に少ない電力消費量で確実に気化させて吸気管路に送出し低温始動性を高めたものとすることができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態のLPGの熱交換器が配置された燃料供給装置の配置図。
【図2】図1におけるLPGの熱交換器の拡大縦断面図。
【図3】図2のX−X線に沿う断面図
【符号の説明】
2 熱交換器、3 圧力調整器、3a,21a,22a 流入口、3b,21b,22b 流出口、3c 調圧室、3d 背室、3e ダイヤフラム、3f 入口弁、4 エンジン、4a 冷却水ジャケット、4b 吸気管路、5 ボンベ、6 切換器、6a 主開閉弁、6b 副開閉弁、7 燃料噴射弁、8a 冷却水送出路、8b 冷却水戻し路、9A 液体LPG流路、9B 気体LPG流路、9a 主流入路、9b 副流入路、10 電子式制御装置、11a,11b 温度センサ、12 圧力センサ、21 主熱交換器、21A 主熱交換室、21B,22B ハウジング、22 副熱交換器、22A 副熱交換室、22h オリフィス、23 冷却水室、24 電熱器、24c,24d PTCヒータ、24e,24f 伝熱壁、24g 周壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an LPG heat exchanger used in an LPG supply device that supplies liquid LPG (liquefied petroleum gas) to an engine by heating and vaporizing the liquid LPG (liquefied petroleum gas), adjusting the pressure to a predetermined pressure, and sending it to an intake pipe.
[0002]
[Prior art]
The use of LPG as a fuel for spark ignition engines is widely known, and vaporized gas decompressed to about atmospheric pressure using a vaporizer (regulator) and a mixer is sucked into an intake pipe and supplied to the engine. This method has been used for some time. On the other hand, instead of this well-known method, as described in Japanese Utility Model Publication No. 59-43659, a method of injecting liquid as it is into the intake pipe has been proposed. There is a problem that it is easily affected and vaporizes easily, and the injection amount becomes unstable.
[0003]
On the other hand, as described in JP-A-6-17709 and the like, the method of adjusting LPG to vapor gas having a predetermined positive pressure and injecting it into the intake pipe has an advantage that the injection amount is not unstable. Therefore, it is advantageous for practical use. As a means for heating and vaporizing the liquid LPG, it is customary to incorporate a heat exchanger using engine cooling water in the regulator or arrange it on the inlet side to heat and vaporize the LPG with engine cooling water. .
[0004]
However, the heating and vaporizing means using such engine cooling water has a disadvantage that the liquid LPG cannot be sufficiently vaporized because the cooling water is at a low temperature when cold.
Therefore, for example, as described in JP-A-5-223014 and JP-A-11-324813, a vaporizer that vaporizes LPG and reduces the pressure to about atmospheric pressure uses heat of engine cooling water. In addition, it has been proposed to arrange an electric heater (PTC heater) in the LPG path so that LPG can be vaporized even when the cooling water is at a low temperature.
[0005]
However, in the case of an automobile engine, the heating capacity of an electric heater that uses electric power obtained from a storage battery or a generator is significantly lower than that of cooling water. Therefore, in the above-mentioned means in which the electric heater is installed in the same path of the LPG that is heated and vaporized by the engine cooling water, depending on the engine operating state immediately after the low temperature start, the LPG having a flow rate exceeding the vaporizing ability of the electric heater remains liquid. May be delivered to the intake line. That is, when the engine coolant is at a low temperature and the LPG flow rate exceeds the vaporization capacity of the electric heater, the liquid LPG is sent to the intake pipe and the air-fuel mixture becomes excessive, and the engine stops and cannot be restarted. This causes a problem. As countermeasures, it is conceivable to increase the size or number of electric heaters. However, the price of regulators and heat exchangers will increase, and the power consumption associated with this will increase significantly. In some cases, the shortage of heating capacity is not solved.
[0006]
[Problems to be solved by the invention]
The present invention is intended to solve the above-described problems. The engine cooling water and the electric power used in the LPG supply device that heats and vaporizes the liquid LPG and adjusts the liquid LPG to a predetermined pressure and supplies it to the intake pipe. For LPG heat exchangers that are used in combination with a heater, when LPG vaporization tends to be impossible or insufficient at low temperatures, it is surely vaporized with a small amount of power consumption and sent to the intake pipe, and cold startability The challenge is to increase
[0007]
[Means for Solving the Problems]
Therefore, the present invention is an LPG heat exchanger that is disposed on the inlet side of a pressure regulator in an LPG supply device that heats and vaporizes liquid LPG, adjusts the liquid LPG to a predetermined pressure, and sends the liquid LPG to the intake pipe of the engine. A main heat exchanger that is arranged in parallel to heat and vaporize the liquid LPG with engine cooling water, a sub heat exchanger that heats and vaporizes the liquid LPG with an electric heater, and the liquid LPG delivered from the cylinder are selectively used as the two heat exchangers. A flow path switching means for flowing in, and an inflow amount limiting means provided on the inflow side of the auxiliary heat exchanger, wherein the flow path switching means causes the liquid LPG to flow through the main heat when the engine coolant temperature is higher than a predetermined temperature. The liquid LPG is operated to flow into the auxiliary heat exchanger when the temperature is lower than a predetermined temperature, and the inflow amount limiting means converts the inflow amount of the liquid LPG into the vaporization capacity of the auxiliary heat exchanger. It was limited to the inside.
[0008]
Thereby, even when the temperature of the engine cooling water flowing into the main heat exchanger is low and insufficient for vaporizing LPG, the electric heater is used by flowing the liquid LPG into the sub heat exchanger using the flow path switching means. And can be heated to a vaporizable temperature. In addition, since the required engine fuel flow rate at the time of starting is relatively small, an inflow amount limiting means is provided on the LPG inflow side of the auxiliary heat exchanger so that LPG exceeding the vaporization capacity is not allowed to flow. With a small number of electric heaters, the gas can be completely vaporized with a small amount of power consumption and can be started well.
[0009]
In addition, in the above heat exchanger, if the sub heat exchanger is accommodated in the main heat exchanger, the entire heat exchanger becomes compact, and in addition, the residual heat of the sub heat exchanger is heated in the main heat exchanger. Therefore, the energy efficiency is high.
[0010]
Further, in the above heat exchanger, the sub-heat exchanger has a space for forming a main heat exchange chamber on the entire outer periphery thereof, and is accommodated in the housing of the main heat exchanger, so that the electric heater If there is a space for forming the auxiliary heat exchange chamber on the outer periphery and is accommodated in the housing of the auxiliary heat exchanger, heat is transferred from the entire outer periphery of the electric heater to the LPG of the auxiliary heat exchange chamber, and Since the heat generated in the heat transfer from the entire outer periphery of the exchanger housing to the LPG in the main heat exchange chamber can be used to the full by reducing the amount of heat released to the atmosphere, energy efficiency is further increased. be able to.
[0011]
Furthermore, the flow switching means in the heat exchanger described above includes a main on-off valve provided in a main inflow passage through which the liquid LPG flow path extending from the cylinder branches to allow the liquid LPG to flow into the main heat exchanger, and a sub heat exchanger It is assumed that the two on-off valves are provided in a sub-inflow passage through which the liquid LPG flows into the two on-off valves. In addition to the fact that one of the two on-off valves is open, the other is closed. It was possible to speak.
[0012]
As a result, for example, when switching from heating by the auxiliary heat exchanger to heating by the main heat exchanger after engine startup, it is possible to provide an overlap time for passing both in parallel at the same time, which occurs when the flow path is switched. It is possible to prevent the fuel supply from being interrupted. Further, even when the fuel supply amount is insufficient with only the main heat exchanger during high load operation, it can be easily handled by using the auxiliary heat exchanger in combination.
[0013]
Furthermore, although the vaporization temperature of LPG varies depending on its composition, this LPG composition can be estimated using a predetermined calculation method based on the temperature and pressure of LPG. Therefore, with respect to the flow path switching means described above, the main heat exchanger and the main heat exchanger, based on the engine coolant temperature that can estimate the LPG composition based on the cylinder temperature and pressure and vaporize the LPG calculated based on the estimation result, The liquid LPG was operated to flow into one of the auxiliary heat exchangers. This makes it possible to select and switch the heat exchanger used for heat vaporization according to the composition of LPG, so that more reliable vaporization of LPG can be realized.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described in detail below with reference to the drawings. In the fuel supply apparatus schematically shown in FIG. 1, in the present embodiment, the flow path switching means is a switching device 6, an inflow amount. The limiting means is the orifice 22h. Then, the LPG stored in the cylinder 5 is supplied to the fuel injection valve 7 installed in the intake pipe 4b of the engine 4 through the liquid LPG flow path 9A and the gas LPG flow path 9B. A heat exchanger 2 and a pressure regulator 3 are arranged.
[0015]
The LPG stored in a liquid state in the cylinder 5 is sent to the switch 6 through the liquid LPG flow path 9A. A temperature sensor 11 a and a pressure sensor 12 are arranged in the cylinder 5, and the temperature and pressure of the liquid LPG in the cylinder 5 detected by the cylinder 5 are input to the electronic control device 10.
[0016]
The switching device 6 is provided with an electromagnetically driven main on / off valve 6a and a sub on / off valve 6b in a main inflow passage 9a and a sub inflow passage 9b formed by dividing the liquid LPG passage 9A into two, The main inflow passage 9a is connected to an inlet 21a provided at the bottom of the main heat exchanger 21 of the heat exchanger 2 described later, and the sub inflow passage 9b is provided at the bottom of the sub heat exchanger 22 of the heat exchanger 2 described later. Connected to the inlet 22a. These on-off valves 6 a and 6 b are controlled to be opened and closed by an electronic control device 10.
[0017]
The heat exchanger 2 includes a main heat exchanger 21 and a sub heat exchanger 22, and has a double structure in which the sub heat exchanger 22 is accommodated inside the main heat exchanger 21. The main heat exchanger 21 has a cooling water chamber 23 which is arranged in a jacket shape surrounding the periphery of the main heat exchanger 21 and through which the engine cooling water passes, and the pressure regulator 3 converts the liquid LPG inflow port 21a and the gas LPG vaporized therein. Are provided at the opposite end on the diagonal line.
[0018]
The engine cooling water in the cooling water jacket 4a provided in the engine 4 is sent to the cooling water chamber 23 of the heat exchanger 2 via the cooling water delivery path 8a. And the engine cooling water which heated the main heat exchanger 21 in the heat exchanger 2 is returned and circulated to the cooling water jacket 4a via the cooling water return path 8b.
[0019]
2 and 3, the main heat exchanger 21 has a rectangular housing 21B, and the auxiliary heat exchanger 22 has a rectangular housing 22B having a shape substantially similar to the housing 21B of the main heat exchanger 21. The sub heat exchanger 22 has a space on the entire outer periphery thereof and is accommodated in the main heat exchanger 21, and this space forms a main heat exchange chamber 21A. The sub heat exchanger 22 accommodated in the main heat exchanger 21 is provided in an inlet 22 a provided substantially adjacent to the inlet 21 a of the main heat exchanger 21 and in an outlet 21 b of the main heat exchanger 21. The gas LPG generated by the two heat exchangers 21 and 22 is sent from one outlet to the inlet 3 a of the pressure regulator 3.
[0020]
In addition, an orifice 22h, which is an LPG inflow amount limiting means, is arranged at the inlet 22a so that liquid LPG exceeding the vaporization capacity of the auxiliary heat exchanger 22 does not flow in. The auxiliary heat exchanger 22 has two PTC heaters 24c and 24d, which are electric heaters, with the front and rear surfaces thereof being in close contact with the inner wall surfaces of the heat transfer walls 24e and 24f, respectively. The electric heater 24 is housed. The heat transfer walls 24e and 24d also serve as electrodes and energize the PTC heaters 24c and 24d. The electric heater 24 is accommodated with a space on the entire outer periphery thereof, and this space forms a sub heat exchange chamber 22B.
[0021]
The heat exchanger 2 has a compact and simple configuration as described above, and the inflow ports 21a and 22a and the outflow ports 21b and 22b are arranged diagonally. Complete heat vaporization and complete vaporization. In particular, the auxiliary heat exchanger 22 is highly efficient because heat is exchanged on the entire surfaces of the heat transfer walls 24e and 24f and the peripheral wall 24g of the electric heater 24. Therefore, the PTC heaters 24c and 24d are small or small in number. Therefore, there is an advantage that power consumption is small. The inflow ports 21a and 22a are arranged at the bottom of the heat exchangers 21 and 22, and the outflow ports 21b and 22b are arranged at the top, so that the liquid LPG having a high specific gravity remains in the liquid state. It is hard to be sent out from.
[0022]
And the pressure regulator 3 arrange | positioned connected to the exit of the heat exchanger 2 has the pressure regulation chamber 3c and the back chamber 3d divided by the diaphragm 3e, and the pressure of the pressure regulation chamber 3c is more than a setting pressure. When the pressure becomes lower, the diaphragm 3e opens the inlet valve 3f and the gas LPG generated by the heat exchanger 2 flows into the pressure regulating chamber 3c from the inlet 3a connected to the outlets 21b and 22b. By closing 3f and stopping the inflow to the pressure regulating chamber 3c, the pressure regulating chamber 3c has the gas LPG decompressed to a constant positive pressure, and is similar to the conventional device. The gas LPG delivered from the outlet 3b of the pressure regulator 3 is injected from the fuel injection valve 7 installed in the intake pipe 4b via the gas LPG channel 9B.
[0023]
Next, in the present embodiment, the temperature and pressure of the liquid LPG in the cylinder 5 are detected by the temperature sensor 11a and the pressure sensor 12, and based on these values, the electronic control unit 10 uses the predetermined calculation method to calculate the LPG. The composition can be calculated. That is, since propane and butane composing LPG have different vaporization temperatures, the vaporization temperature changes depending on the LPG properties (propantobutane ratio). Therefore, the flow path can be switched by estimating the fuel properties using a predetermined method. The reference temperature of engine cooling water for can be calculated.
[0024]
For example, at the time of starting the engine, in the case of 100% propane, it is possible to vaporize this using the main heat exchanger 21 even if the engine coolant temperature is −10 ° C. On the other hand, in the case of 20% propane, when the engine coolant temperature is −10 ° C., the main heat exchanger 21 cannot evaporate, so it is necessary to heat with an electric heater. In this case, the auxiliary heat exchanger 22 is used. After the engine is started, the main heat exchanger 21 is switched to use after the engine coolant temperature rises to 10 to 30 ° C.
[0025]
In the present embodiment, the electric controller 10 determines the ratio of propane and butane at a predetermined temperature and pressure based on the temperature and pressure of the liquid LPG in the cylinder 5 and determines the reference temperature based on the ratio. I am doing so. That is, the electronic control device 10 calculates the switching reference temperature from the temperature and pressure of the LPG detected by the temperature sensor 11a and the pressure sensor 12 provided in the cylinder 5, and detects by the temperature sensor 11b provided in the cooling water jacket 4a. Compared with the engine coolant temperature, the necessity of switching is determined.
[0026]
When the engine cooling water has a temperature that is impossible or insufficient for vaporizing the LPG, the liquid LPG flows into the auxiliary heat exchanger 22 and is heated and vaporized by the PTC heaters 24c and 24d, and the LPG is directed toward the pressure regulator 3. Is sent out. At this time, the inlet 22a of the auxiliary heat exchanger 22 is provided with the orifice 22h as the inflow amount limiting means, so that an amount of LPG exceeding the vaporization capacity of the auxiliary heat exchanger 22 does not flow. Therefore, normally, a high-load operation cannot be performed immediately after the engine is started at a low temperature, but the flow of excess LPG to the heat exchanger 2 is restricted, and liquid LPG is sent to the intake pipe 4b to cause excess mixture. The inconvenience of inducing darkness can be prevented.
[0027]
When the temperature of the engine coolant detected by the temperature sensor 11b of the coolant jacket 4a reaches a temperature suitable for vaporization, the sub-open / close valve 6b is closed and the main open / close valve 6a is opened according to a command from the electronic control unit 10. Let me speak. At that time, before the sub on-off valve 6b is closed, the main on-off valve 6a is opened, and an overlap time is provided in which the liquid LPG passes through both heat exchangers at the same time.
[0028]
That is, the switching device 6 can achieve the object of the present invention even with a complete switching system using a single directional switching valve, but the main on-off valve 6a on the inlet side of the main heat exchanger 21 and the auxiliary heat exchanger 22 According to the present embodiment in which each of the sub open / close valves 6b is provided, there is an advantage that the fuel supply interruption can be prevented by providing an overlap time at the time of switching. Furthermore, when a situation occurs in which fuel supply is insufficient in heat exchange by the main heat exchanger 21 during high load operation, heat exchange is performed by the sub heat exchanger 22 in addition to the main heat exchanger 21 to ensure the required fuel flow rate. It is also possible to do.
[0029]
When the engine cooling water rises to a predetermined temperature after the engine is started, the LPG flow path is switched via the main heat exchanger 21, but the residual heat of the auxiliary heat exchanger 22 is not released into the atmosphere, but the main heat exchanger. Since the inside of the engine 21 is heated, the engine cooling water reaches a predetermined temperature, but it can be completely vaporized even at a relatively low temperature stage, and the engine cooling water temperature is sufficient without causing malfunction of the engine. It is possible to shift to a state where the vaporization rises to stable vaporization. In addition, although the sub heat exchanger 22 may be installed in parallel outside the main heat exchanger 21, when it is installed as in the present embodiment, the LPG flow path is connected to the LPG in the main heat exchanger 21. This is advantageous in that the vaporization can be completed.
[0030]
The heat exchanger of the present invention is not limited to the one arranged on the inlet side of the regulator in the system in which the gas LPG is adjusted to a predetermined positive pressure and sent to the fuel injection valve. The system for sucking into the pipeline can be applied as it is by changing the set pressure of the regulator.
[0031]
【The invention's effect】
As described above, according to the present invention, heat exchange of LPG using both the engine cooling water and the electric heater used in the LPG supply device that heats and vaporizes the liquid LPG and adjusts the liquid LPG to a predetermined pressure and supplies it to the intake pipe. When the vaporization of LPG is difficult or insufficient at low temperatures, it can be reliably vaporized with low power consumption and sent to the intake pipe to improve the cold startability. is there.
[Brief description of the drawings]
FIG. 1 is a layout view of a fuel supply device in which an LPG heat exchanger according to an embodiment of the present invention is disposed.
FIG. 2 is an enlarged longitudinal sectional view of the LPG heat exchanger in FIG.
3 is a cross-sectional view taken along line XX of FIG.
2 heat exchanger, 3 pressure regulator, 3a, 21a, 22a inlet, 3b, 21b, 22b outlet, 3c pressure regulating chamber, 3d back chamber, 3e diaphragm, 3f inlet valve, 4 engine, 4a cooling water jacket, 4b Intake pipe, 5 cylinder, 6 switch, 6a main on-off valve, 6b sub on-off valve, 7 fuel injection valve, 8a cooling water delivery path, 8b cooling water return path, 9A liquid LPG flow path, 9B gas LPG flow path 9a Main inflow passage, 9b Sub inflow passage, 10 Electronic control device, 11a, 11b Temperature sensor, 12 Pressure sensor, 21 Main heat exchanger, 21A Main heat exchange chamber, 21B, 22B Housing, 22 Sub heat exchanger, 22A Sub heat exchange chamber, 22h Orifice, 23 Cooling water chamber, 24 Electric heater, 24c, 24d PTC heater, 24e, 24f Heat transfer wall, 24g Perimeter wall

Claims (6)

液体LPGを加熱気化するとともに所定圧力に調整してエンジンの吸気管路に送出するLPG供給装置における圧力調整器の入口側に配置されるLPGの熱交換器であって、
並列に配置されて液体LPGをエンジン冷却水により加熱気化する主熱交換器および電気ヒータにより加熱気化する副熱交換器と、ボンベから送出された液体LPGを前記二つの熱交換器に選択的に流入させる流路切換手段と、前記副熱交換器の流入側に設けた流入量制限手段とを具え、
前記流路切換手段はエンジン冷却水温度が所定温度よりも高いとき液体LPGを前記主熱交換器に流入させ、所定温度よりも低いとき液体LPGを前記副熱交換器に流入させるように作動し、前記流入量制限手段は液体LPGの流入量を前記副熱交換器の気化能力内に制限するものとされている、
ことを特徴とするLPGの熱交換器。
An LPG heat exchanger disposed on the inlet side of a pressure regulator in an LPG supply device that heats and vaporizes liquid LPG and adjusts the liquid LPG to a predetermined pressure and sends it to an intake pipe of an engine,
A main heat exchanger that is arranged in parallel to heat and vaporize the liquid LPG with engine cooling water, a sub heat exchanger that heats and vaporizes the liquid LPG with an electric heater, and the liquid LPG delivered from the cylinder are selectively used as the two heat exchangers. A flow path switching means for inflow, and an inflow amount limiting means provided on the inflow side of the auxiliary heat exchanger,
The flow path switching means operates to cause the liquid LPG to flow into the main heat exchanger when the engine coolant temperature is higher than a predetermined temperature, and to cause the liquid LPG to flow into the sub heat exchanger when the temperature is lower than the predetermined temperature. The inflow amount limiting means limits the inflow amount of the liquid LPG within the vaporization capacity of the sub heat exchanger.
An LPG heat exchanger characterized by the above.
前記副熱交換器は前記主熱交換器内に収装されている請求項1に記載したLPGの熱交換器。The LPG heat exchanger according to claim 1, wherein the sub heat exchanger is housed in the main heat exchanger. 前記副熱交換器はその全外周に主熱交換室を形成する空間を有して前記主熱交換器のハウジングに収装され、前記電気ヒータはその全外周に副熱交換室を形成する空間を有して前記副熱交換器のハウジングに収装されている請求項2に記載したLPGの熱交換器。The sub heat exchanger has a space forming a main heat exchange chamber on the entire outer periphery thereof and is housed in a housing of the main heat exchanger, and the electric heater has a space forming a sub heat exchange chamber on the entire outer periphery thereof. The LPG heat exchanger according to claim 2, wherein the LPG heat exchanger is housed in a housing of the auxiliary heat exchanger. 前記副熱交換器の電気ヒータはPTCヒータである、請求項1,2または3に記載したLPGの熱交換器。The LPG heat exchanger according to claim 1, 2 or 3, wherein the electric heater of the auxiliary heat exchanger is a PTC heater. 前記流路切換手段は前記ボンベから延びる液体LPG流路が分岐して前記主熱交換器に液体LPGを流入させる主流入路に設けた主開閉弁、および前記副熱交換器に液体LPGを流入させる副流入路に設けた副開閉弁を具えたものであり、前記二つの開閉弁は一方が開弁しているときもう一方が閉弁していることに加えて、ともに開弁することができるものとされている請求項1,2,3または4に記載したLPGの熱交換器。The flow path switching means branches from a liquid LPG flow path extending from the cylinder, and a main on-off valve provided in a main inflow passage for allowing the liquid LPG to flow into the main heat exchanger, and the liquid LPG flows into the sub heat exchanger. A secondary on / off valve provided in the secondary inflow passage to be opened, and the two on / off valves can be opened together in addition to the other being closed when one is open. The LPG heat exchanger according to claim 1, 2, 3 or 4, wherein the heat exchanger is capable of being made. 前記流路切換手段は前記ボンベの温度および圧力に基づいてLPGの組成を推定し、前記推定結果に基づいて算出したLPGを気化可能なエンジン冷却水温度を基準に前記主熱交換器および副熱交換器のいずれかに液体LPGを流入させるように作動するものとされている、請求項5に記載したLPGの熱交換器。The flow path switching means estimates the composition of LPG based on the temperature and pressure of the cylinder, and uses the main heat exchanger and auxiliary heat based on the engine coolant temperature that can vaporize the LPG calculated based on the estimation result. 6. An LPG heat exchanger according to claim 5, wherein the LPG heat exchanger is configured to actuate liquid LPG into any of the exchangers.
JP2003082285A 2003-03-25 2003-03-25 LPG heat exchanger Expired - Fee Related JP4284591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082285A JP4284591B2 (en) 2003-03-25 2003-03-25 LPG heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082285A JP4284591B2 (en) 2003-03-25 2003-03-25 LPG heat exchanger

Publications (2)

Publication Number Publication Date
JP2004285987A JP2004285987A (en) 2004-10-14
JP4284591B2 true JP4284591B2 (en) 2009-06-24

Family

ID=33295617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082285A Expired - Fee Related JP4284591B2 (en) 2003-03-25 2003-03-25 LPG heat exchanger

Country Status (1)

Country Link
JP (1) JP4284591B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748058B1 (en) 2006-03-15 2007-08-09 민복기 Device for exhausting oil in fuel injection valve for compressed natural gas vehicle
JP5093738B2 (en) * 2007-05-17 2012-12-12 有限会社日本環境電装 Auxiliary device for improving actual combustion efficiency and startability of LPG internal combustion engine under freezing point
JP2010266178A (en) * 2009-05-18 2010-11-25 Chofu Seisakusho Co Ltd Hot-water supply system
JP2011074846A (en) * 2009-09-30 2011-04-14 Keihin Corp Ptc heater unit and pressure reducing valve for lpg fuel
US20110214644A1 (en) * 2010-03-05 2011-09-08 Woodward, Inc. Cold-Start Fuel Control System
KR101652130B1 (en) * 2011-01-20 2016-08-29 두산인프라코어 주식회사 Engine cooler
US20130306029A1 (en) * 2012-05-17 2013-11-21 Caterpillar Inc. Direct Injection Gas Engine and Method
KR101724931B1 (en) 2015-10-20 2017-04-07 현대자동차주식회사 Fuel system of bi-fuel vehicle and LPG charge method using the same

Also Published As

Publication number Publication date
JP2004285987A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US7451747B2 (en) Heating system for liquefied gas fuel supply apparatus and fuel supply appartus for liquefied gas engine
US9212643B2 (en) Dual fuel system for an internal combustion engine
US6868839B2 (en) Vaporized fuel injection system and method
JP4284591B2 (en) LPG heat exchanger
JP2010007595A (en) Fuel supply system for lpg engine
JP4199702B2 (en) Heating system for liquefied gas fuel supply system
JP4352377B2 (en) LPG heat exchanger
JP2005325686A (en) Regulator for lpg
JP2008121645A (en) Engine lpg fuel supply device
WO2001066999A1 (en) Liquefied gas evaporator
JP4478936B2 (en) Engine vaporized gas fuel supply system
JP2006046211A (en) Method and device for supplying lpg fuel to engine
JP2005214011A (en) Regulator for liquified petroleum gas
JP6351204B2 (en) Fuel gas supply system
JP2005325690A (en) Regulator for lpg
JP4099770B2 (en) Fuel heating apparatus for fuel injection type internal combustion engine
JP2009209754A (en) Start control device for internal combustion engine
JP2001116197A (en) Liquefied gas vaporizing device
JP4352376B2 (en) Engine liquefied gas fuel supply system
JP4378666B2 (en) Engine liquefied gas supply device
JP2002139198A (en) Liquefied gas feeing device
JP2004324523A (en) Fuel supply device of internal combustion engine
JPH07293345A (en) Water quantity control method in lpg vaporizer hot water circuit
KR20060019069A (en) Apparatus for supplying vaporized gas fuel to engine
JPS6226374A (en) Start assisting device for spark ignition type internal-combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees