JP4280356B2 - Deaerator - Google Patents

Deaerator Download PDF

Info

Publication number
JP4280356B2
JP4280356B2 JP13662999A JP13662999A JP4280356B2 JP 4280356 B2 JP4280356 B2 JP 4280356B2 JP 13662999 A JP13662999 A JP 13662999A JP 13662999 A JP13662999 A JP 13662999A JP 4280356 B2 JP4280356 B2 JP 4280356B2
Authority
JP
Japan
Prior art keywords
liquid
gas
tank
separation tank
circulation pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13662999A
Other languages
Japanese (ja)
Other versions
JP2000325703A (en
Inventor
荘一郎 大崎
謙二 鶴岡
幸雄 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikuni KK
Original Assignee
Nikuni KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikuni KK filed Critical Nikuni KK
Priority to JP13662999A priority Critical patent/JP4280356B2/en
Publication of JP2000325703A publication Critical patent/JP2000325703A/en
Application granted granted Critical
Publication of JP4280356B2 publication Critical patent/JP4280356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絞り手段を有する脱気装置に関するものである。
【0002】
【従来の技術】
特開平7−328316号公報に示されるように、従来の脱気装置は、液体を収容した液槽にフィルタを経て絞り手段を接続し、この絞り手段に送液ポンプの吸込口を接続し、この送液ポンプの吐出口に、液体と気体とを分離する上部開放形の気液分離槽を接続したものである。
【0003】
そして、送液ポンプの運転により絞り手段と送液ポンプとの間で液体が減圧され、液体中の溶存気体が液体から気泡となって析出する。この気泡は送液ポンプ内を通過する間に膨張と結合により粗大化するため、気液分離槽に送られた後に速やかに浮上分離される。
【0004】
【発明が解決しようとする課題】
この従来の装置においては、絞り手段と気液分離槽との間に送液ポンプが位置し、絞り手段で発生した気泡が送液ポンプ内を通過するため、ポンプ吸引能力が低下し、脱気効果も落ちる問題がある。
【0005】
さらに、通過する気泡によるキャビテーションの影響を受けやすい送液ポンプには、耐キャビテーション性が要求される問題もある。
【0006】
本発明は、このような点に鑑みなされたもので、減圧形の脱気装置におけるポンプ吸引能力の低下やキャビテーションの問題を解決することを目的とするものである。
【0007】
【課題を解決するための手段】
発明は、液体を収容した液槽と、この液槽に接続された絞り手段と、この絞り手段に接続され液体と気体とを分離して収容する密閉形の気液分離槽と、この気液分離槽の液溜部に吸込口を接続するとともに吐出口を前記液槽に接続した液循環ポンプと、液循環ポンプが液槽内の液体を気液分離槽を経ずに直接吸込む液体吸込用の管路と、液循環ポンプから吐出された液体を気液分離槽に供給する液体供給用の管路と、気液分離槽内に供給された液体を気液分離槽の上端部から液槽内に戻す液体戻し用の管路とを具備した脱気装置である。
【0008】
そして、液循環ポンプの吸込減圧力は、密閉形の気液分離槽を介して、絞り手段に作用するので、絞り手段と気液分離槽との間で液体より析出された溶存気体の気泡は、気液分離槽に入ってから下部の液溜部に対する上部の負圧空間に分離解放され、液循環ポンプに到達しない。このため、液体より析出された気泡がポンプを通過する際に生ずるポンプ吸引能力の低下やキャビテーションの問題が生じない。さらに、気液分離槽内に多量の気体が溜った時点で、前記各管路を機能させ、脱気時と共通の液循環ポンプを用いて、液体吸込用の管路および液体供給用の管路により、液槽内の液体を気液分離槽に吐出供給し、これにより気液分離槽内の液面を上昇させ、その液体を液体戻し用の管路を経て液槽内へ排出することにより、気液分離槽内に溜った気体を押出すように排気する。
【0009】
【発明の実施の形態】
以下、本発明を図1に示された実施の一形態を参照しながら説明する。
【0010】
11は、脱気処理される液体を収容した液槽である。この液槽11の下部に、開閉弁12および電磁式3方切換弁13を介して絞り手段としての絞り弁14が接続されている。この絞り弁14は可変絞りであるが、絞り手段としては固定オリフィスを用いても良い。
【0011】
この絞り弁14を持つ管路15は、液体と気体とを分離して収容する密閉形の気液分離槽16の下部に接続されている。
【0012】
この気液分離槽16は、槽内の比較的下部に位置する液溜部16a に収容された液体Lの液面レベルを管理するための液面センサ17と、その槽内の比較的上部内に形成される負圧空間16b の圧力を測定するための真空計18とを備えている。
【0013】
この気液分離槽16の液溜部16a からは管路21が引出され、この管路21中の電磁式開閉弁22を介して液循環ポンプ23の吸込口23a が接続されている。この液循環ポンプ23は、例えば渦流ポンプを用いる。
【0014】
この液循環ポンプ23の吐出口23b は、チェック弁24、電磁式3方切換弁25、管路26および開閉弁27を介して前記液槽11の上部に接続されている。
【0015】
また、前記電磁式3方切換弁13と前記液循環ポンプ23の吸込口23a との間には、液循環ポンプ23が液槽11内の液体を気液分離槽16を経ずに直接吸込む液体吸込用の管路31が配設されている。
【0016】
さらに、前記電磁式3方切換弁25と前記管路21との間には、液循環ポンプ23から吐出された液体を気液分離槽16に供給する液体供給用の管路32が配設されている。
【0017】
その上、前記気液分離槽16の上端部と前記管路26との間には、気液分離槽16内に供給された液体を気液分離槽16の上端部から液槽11内に戻す液体戻し用の管路33が配設され、この管路33中には電磁式開閉弁34が設けられている。
【0018】
なお、図1にて、二つの電磁式3方切換弁13,25は、白3角印の側が開き状態を表わすとともに、黒3角印の側が閉じ状態を表わし、また、二つの電磁式開閉弁22,34は、白印が管路連通状態を表わすとともに、黒印が管路閉鎖状態を表わす。
【0019】
次に、図示された実施形態の作用を説明する。
【0020】
先ず、脱気運転時の弁状態は、図1に示されたように、液循環ポンプ23の吸込口23a が、電磁式開閉弁22、気液分離槽16の液溜部16a 、絞り弁14、電磁式3方切換弁13および開閉弁12を経て液槽11の下部に連通し、また、液循環ポンプ23の吐出口23b は、チェック弁24、電磁式3方切換弁25、管路26および開閉弁27を経て液槽11の上部に連通している。このとき、液体戻し用の管路33は、電磁式開閉弁34により管路閉鎖状態にある。
【0021】
これにより、脱気運転時は、液循環ポンプ23の吸込減圧力が、電磁式開閉弁22および密閉形の気液分離槽16を介して、絞り弁14に作用するので、絞り弁14と気液分離槽16との間で液体中から溶存気体が気泡として析出される。すなわち脱泡される。
【0022】
この溶存気体の気泡は、気液分離槽16に入ってから下部の液溜部16a に対する上部の負圧空間16b に分離解放され、液循環ポンプ23に到達しない。このため、液体より析出された気泡がポンプを通過する際に生ずるポンプ吸引能力の低下やキャビテーションの問題が生じない。
【0023】
一方、気液分離槽16内に気体が溜まるにしたがって液面が下降し、多量の気体溜まりにより液面の下降限界で液面センサ17が作動すると、そのセンサ信号により前記二つの電磁式3方切換弁13,25がそれぞれ自動的に方向切換し、同時に電磁式開閉弁22が自動的に管路閉鎖状態に切換わるとともに、電磁式開閉弁34が自動的に管路連通状態に切換わる。
【0024】
すなわち、液循環ポンプ23の吸込口23a は、液体吸込用の管路31、電磁式3方切換弁13および開閉弁12を経て液槽11の下部に連通し、また、液循環ポンプ23の吐出口23b は、チェック弁24、電磁式3方切換弁25、液体供給用の管路32を経て気液分離槽16の下部に連通する。
【0025】
さらに、気液分離槽16の上端部が、管路連通状態に切換わった電磁式開閉弁34を持つ液体戻し用の管路33および開閉弁27を経て液槽11の上部に連通する。
【0026】
これにより、脱気時と共通の液循環ポンプ23を用いて、液体吸込用の管路31および液体供給用の管路32により、液槽11内の液体を気液分離槽16に吐出供給することで、気液分離槽16内の液面を上昇させ、その液体を液体戻し用の管路33を経て液槽11内へ排出することにより、気液分離槽16の負圧空間16b 内に溜った気体を押出すように排気し、密閉形の気液分離槽16を運転初期状態に戻すようにする。
【0027】
なお、前記液体Lは、例えば前記液槽11が超音波洗浄槽の場合は洗浄液であるが、それに限定されるものではなく、例えば溶存酸素などを低下させる必要のある液体などでも良い。
【0028】
【発明の効果】
発明によれば、液循環ポンプの吸込減圧力は、密閉形の気液分離槽を介して絞り手段に作用するので、絞り手段と気液分離槽との間で液体より析出された溶存気体の気泡は、気液分離槽に入ってから下部の液溜部に対する上部の負圧空間に分離解放され、液循環ポンプに到達しないから、気泡がポンプを通過する際に生ずるポンプ吸引能力の低下やキャビテーションの問題を解決でき、強力なポンプ吸引能力により優れた脱気効果が得られるとともに、高度な耐キャビテーション性を要求されない既存の液循環ポンプを用いることができる。さらに、気液分離槽内に多量の気体が溜った時点で、液体吸込用の管路、液体供給用の管路、および液体戻し用の管路を機能させ、脱気時と共通の液循環ポンプを用いて、液槽内の液体を気液分離槽に吐出供給することにより気液分離槽内の液面を上昇させ、気液分離槽内に溜った気体を押出すように液体戻し用の管路を経て排気することができ、密閉形の気液分離槽を運転初期状態に簡単に戻すことができる。
【図面の簡単な説明】
【図1】 本発明に係る脱気装置の実施の一形態を示す配管図である。
【符号の説明】
11 液槽
14 絞り手段としての絞り弁
16 気液分離槽
23 液循環ポンプ
23a 吸込口
23b 吐出口
31 液体吸込用の管路
32 液体供給用の管路
33 液体戻し用の管路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deaeration device having a throttle means.
[0002]
[Prior art]
As shown in Japanese Patent Laid-Open No. 7-328316, a conventional deaeration device connects a throttling means through a filter to a liquid tank containing a liquid, and a suction port of a liquid feed pump is connected to the throttling means, An upper open type gas-liquid separation tank for separating liquid and gas is connected to the discharge port of the liquid feed pump.
[0003]
Then, the liquid is depressurized between the throttling means and the liquid feed pump by the operation of the liquid feed pump, and the dissolved gas in the liquid is deposited as bubbles from the liquid. Since these bubbles are coarsened by expansion and coupling while passing through the liquid feed pump, they are quickly levitated and separated after being sent to the gas-liquid separation tank.
[0004]
[Problems to be solved by the invention]
In this conventional apparatus, a liquid feed pump is located between the throttle means and the gas-liquid separation tank, and bubbles generated by the throttle means pass through the liquid feed pump. There is a problem that the effect is also reduced.
[0005]
Furthermore, there is a problem that a liquid feed pump that is easily affected by cavitation caused by air bubbles passing through is required to have cavitation resistance.
[0006]
The present invention has been made in view of these points, and an object of the present invention is to solve the problem of reduction in pump suction capability and cavitation in a decompression type deaeration device.
[0007]
[Means for Solving the Problems]
The present invention includes a liquid tank containing a liquid, a throttle means connected to the liquid tank, a sealed gas-liquid separation tank connected to the throttle means for separating and storing the liquid and gas, and the gas A liquid circulation pump in which a suction port is connected to the liquid reservoir of the liquid separation tank and a discharge port is connected to the liquid tank, and a liquid suction in which the liquid circulation pump directly sucks the liquid in the liquid tank without going through the gas-liquid separation tank Liquid supply line, a liquid supply pipe for supplying the liquid discharged from the liquid circulation pump to the gas-liquid separation tank, and a liquid supplied to the gas-liquid separation tank from the upper end of the gas-liquid separation tank. It is a deaeration device provided with a conduit for returning liquid into the tank.
[0008]
And since the suction decompression force of the liquid circulation pump acts on the throttle means via the sealed gas-liquid separation tank, the bubbles of dissolved gas precipitated from the liquid between the throttle means and the gas-liquid separation tank are After entering the gas-liquid separation tank, it is separated and released into the upper negative pressure space with respect to the lower liquid reservoir, and does not reach the liquid circulation pump. For this reason, the problem of the fall of the pump suction capability and the cavitation which arise when the bubble deposited from the liquid passes a pump does not arise. Further, when a large amount of gas accumulates in the gas-liquid separation tank, the above-mentioned pipelines are made to function, and a liquid circulation pump common to that used for deaeration is used, and a liquid suction pipe and a liquid supply pipe are used. The liquid in the liquid tank is discharged and supplied to the gas-liquid separation tank by the channel, thereby raising the liquid level in the gas-liquid separation tank, and discharging the liquid into the liquid tank through the liquid return conduit Thus, the gas accumulated in the gas-liquid separation tank is exhausted so as to be pushed out.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to an embodiment shown in FIG.
[0010]
11 is a liquid tank containing a liquid to be degassed. A throttle valve 14 as a throttle means is connected to the lower part of the liquid tank 11 via an on-off valve 12 and an electromagnetic three-way switching valve 13. The throttle valve 14 is a variable throttle, but a fixed orifice may be used as the throttle means.
[0011]
The pipe line 15 having the throttle valve 14 is connected to a lower part of a sealed gas-liquid separation tank 16 that separates and stores liquid and gas.
[0012]
The gas-liquid separation tank 16 includes a liquid level sensor 17 for managing the liquid level of the liquid L accommodated in a liquid reservoir 16a located in a relatively lower part of the tank, and a relatively upper part of the tank. And a vacuum gauge 18 for measuring the pressure in the negative pressure space 16b.
[0013]
A pipe 21 is drawn out from the liquid reservoir 16a of the gas-liquid separation tank 16, and a suction port 23a of the liquid circulation pump 23 is connected through an electromagnetic on-off valve 22 in the pipe 21. As this liquid circulation pump 23, for example, a vortex pump is used.
[0014]
The discharge port 23b of the liquid circulation pump 23 is connected to the upper portion of the liquid tank 11 via a check valve 24, an electromagnetic three-way switching valve 25, a pipe line 26 and an on-off valve 27.
[0015]
Between the electromagnetic three-way switching valve 13 and the suction port 23a of the liquid circulation pump 23, the liquid circulation pump 23 directly sucks the liquid in the liquid tank 11 without passing through the gas-liquid separation tank 16. A suction conduit 31 is provided.
[0016]
Further, a liquid supply line 32 for supplying the liquid discharged from the liquid circulation pump 23 to the gas-liquid separation tank 16 is disposed between the electromagnetic three-way switching valve 25 and the line 21. ing.
[0017]
In addition, between the upper end of the gas-liquid separation tank 16 and the pipe line 26, the liquid supplied into the gas-liquid separation tank 16 is returned from the upper end of the gas-liquid separation tank 16 into the liquid tank 11. A liquid return conduit 33 is provided, and an electromagnetic on-off valve 34 is provided in the conduit 33.
[0018]
In FIG. 1, the two electromagnetic three-way switching valves 13 and 25 indicate that the white triangle mark side indicates an open state, the black triangle mark side indicates a closed state, and two electromagnetic open / close states. In the valves 22 and 34, the white mark represents the pipe line communication state, and the black mark represents the pipe line closed state.
[0019]
Next, the operation of the illustrated embodiment will be described.
[0020]
First, as shown in FIG. 1, the valve state during the deaeration operation is such that the suction port 23a of the liquid circulation pump 23 is an electromagnetic on-off valve 22, the liquid reservoir 16a of the gas-liquid separation tank 16, the throttle valve 14 The discharge port 23b of the liquid circulation pump 23 is connected to the lower part of the liquid tank 11 through the electromagnetic three-way switching valve 13 and the on-off valve 12, and the check port 24, the electromagnetic three-way switching valve 25, the pipeline 26 Further, it communicates with the upper part of the liquid tank 11 via the on-off valve 27. At this time, the liquid return conduit 33 is closed by the electromagnetic on-off valve 34.
[0021]
Thus, during the deaeration operation, the suction pressure reduction force of the liquid circulation pump 23 acts on the throttle valve 14 via the electromagnetic on-off valve 22 and the sealed gas-liquid separation tank 16, and therefore the throttle valve 14 and the gas Dissolved gas is precipitated as bubbles from the liquid between the liquid separation tank 16 and the liquid separation tank 16. That is, it is degassed.
[0022]
The dissolved gas bubbles enter the gas-liquid separation tank 16 and are separated and released into the upper negative pressure space 16b with respect to the lower liquid reservoir 16a, and do not reach the liquid circulation pump 23. For this reason, the problem of the fall of the pump suction capability and the cavitation which arise when the bubble deposited from the liquid passes a pump does not arise.
[0023]
On the other hand, as the gas accumulates in the gas-liquid separation tank 16, the liquid level drops, and when the liquid level sensor 17 is activated at the lower limit of the liquid level due to a large amount of gas accumulation, the two electromagnetic three-way directions are generated by the sensor signal. The direction of the switching valves 13 and 25 is automatically switched, and at the same time, the electromagnetic on-off valve 22 is automatically switched to the closed line state, and the electromagnetic on-off valve 34 is automatically switched to the pipe line communicating state.
[0024]
That is, the suction port 23a of the liquid circulation pump 23 communicates with the lower part of the liquid tank 11 via the liquid suction pipe 31, the electromagnetic three-way switching valve 13 and the on-off valve 12, and the liquid circulation pump 23 discharges. The outlet 23b communicates with the lower portion of the gas-liquid separation tank 16 via a check valve 24, an electromagnetic three-way switching valve 25, and a liquid supply conduit 32.
[0025]
Further, the upper end portion of the gas-liquid separation tank 16 communicates with the upper part of the liquid tank 11 via the liquid return pipe 33 and the on-off valve 27 having the electromagnetic on-off valve 34 switched to the pipe communication state.
[0026]
Accordingly, the liquid in the liquid tank 11 is discharged and supplied to the gas-liquid separation tank 16 through the liquid suction pipe 31 and the liquid supply pipe 32 using the liquid circulation pump 23 common to the degassing. As a result, the liquid level in the gas-liquid separation tank 16 is raised, and the liquid is discharged into the liquid tank 11 through the conduit 33 for returning the liquid to the negative pressure space 16b of the gas-liquid separation tank 16. The accumulated gas is exhausted to extrude, and the sealed gas-liquid separation tank 16 is returned to the initial operation state.
[0027]
The liquid L is, for example, a cleaning liquid when the liquid tank 11 is an ultrasonic cleaning tank, but is not limited thereto, and may be, for example, a liquid that needs to reduce dissolved oxygen or the like.
[0028]
【The invention's effect】
According to the present invention, the suction pressure reduction force of the liquid circulation pump acts on the throttle means via the sealed gas-liquid separation tank, so the dissolved gas precipitated from the liquid between the throttle means and the gas-liquid separation tank After the gas bubble enters the gas-liquid separation tank, it is separated and released into the upper negative pressure space with respect to the lower liquid reservoir, and does not reach the liquid circulation pump. In addition, it is possible to solve the problem of cavitation and cavitation, and it is possible to use an existing liquid circulation pump that does not require a high degree of cavitation resistance as well as providing a superior degassing effect due to its powerful pump suction capability. Furthermore, when a large amount of gas accumulates in the gas-liquid separation tank, the liquid suction line, the liquid supply line, and the liquid return line are made to function, and the same liquid circulation as that during degassing Using a pump, the liquid in the liquid tank is discharged and supplied to the gas-liquid separation tank to raise the liquid level in the gas-liquid separation tank, and to return the liquid so that the gas accumulated in the gas-liquid separation tank is pushed out. It is possible to exhaust the gas through the pipe line, and the sealed gas-liquid separation tank can be easily returned to the initial operation state.
[Brief description of the drawings]
FIG. 1 is a piping diagram showing an embodiment of a deaeration device according to the present invention.
[Explanation of symbols]
11 Liquid tank
14 Throttle valve as throttling means
16 Gas-liquid separation tank
23 Liquid circulation pump
23a Suction port
23b Discharge port
31 Pipeline for liquid suction
32 Pipeline for liquid supply
33 Liquid return line

Claims (1)

液体を収容した液槽と、
この液槽に接続された絞り手段と、
この絞り手段に接続され液体と気体とを分離して収容する密閉形の気液分離槽と、
この気液分離槽の液溜部に吸込口を接続するとともに吐出口を前記液槽に接続した液循環ポンプと、
液循環ポンプが液槽内の液体を気液分離槽を経ずに直接吸込む液体吸込用の管路と、
液循環ポンプから吐出された液体を気液分離槽に供給する液体供給用の管路と、
気液分離槽内に供給された液体を気液分離槽の上端部から液槽内に戻す液体戻し用の管路と
を具備したことを特徴とする脱気装置。
A liquid tank containing a liquid;
Throttle means connected to the liquid tank;
A sealed gas-liquid separation tank connected to the throttling means and separating and storing liquid and gas; and
A liquid circulation pump having a suction port connected to the liquid reservoir of the gas-liquid separation tank and a discharge port connected to the liquid tank;
A liquid circulation pump for directly sucking the liquid in the liquid tank without going through the gas-liquid separation tank;
A liquid supply conduit for supplying the liquid discharged from the liquid circulation pump to the gas-liquid separation tank;
Degasser you characterized by comprising a pipe for gas-liquid supplied to the separation tank liquid from the upper end of the gas-liquid separation tank back liquid back into the liquid tank passage.
JP13662999A 1999-05-18 1999-05-18 Deaerator Expired - Lifetime JP4280356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13662999A JP4280356B2 (en) 1999-05-18 1999-05-18 Deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13662999A JP4280356B2 (en) 1999-05-18 1999-05-18 Deaerator

Publications (2)

Publication Number Publication Date
JP2000325703A JP2000325703A (en) 2000-11-28
JP4280356B2 true JP4280356B2 (en) 2009-06-17

Family

ID=15179785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13662999A Expired - Lifetime JP4280356B2 (en) 1999-05-18 1999-05-18 Deaerator

Country Status (1)

Country Link
JP (1) JP4280356B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2514240C (en) * 2003-02-13 2012-04-10 Masayuki Fukagawa Method, device, and system for controlling dissolved amount of gas
US7379155B2 (en) 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101403622B1 (en) 2012-03-06 2014-06-05 대우조선해양 주식회사 Waste heat recovery system for ship that can remove dissolved oxygen by minimizing steam consumption
CN110022958B (en) * 2016-11-29 2022-10-04 田村稔 Degasser for removing gas components dissolved in liquid

Also Published As

Publication number Publication date
JP2000325703A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
US8381324B2 (en) Vacuum sewage system
JP4903147B2 (en) Fuel filter for internal combustion engine
JP4280356B2 (en) Deaerator
JP3973052B2 (en) Devices for filtering and deaerating body fluids, especially blood filters
US5022114A (en) Device for suctioning up and removing a contaminated liquid
JP3713621B2 (en) Horizontal shaft pump
JP3682431B2 (en) Deaerator
JP2008062196A (en) Air diffuser, activated sludge-used water treatment facility and method for cleaning pipeline of air diffuser
US5832870A (en) Manifold for aerating and circulating aquarium water
JP4162894B2 (en) Vacuum pump device
JPS59147900A (en) Fluid suction-discharge device
JPH1018394A (en) Aqueduct bridge of vacuum type sewerage and water pouring method
JP3938465B2 (en) Pump device
CN219699835U (en) Base station and cleaning system
JP2571476B2 (en) Nozzle blockage prevention device for sand lifting equipment
JP3943803B2 (en) Liquid injection device
JP3851011B2 (en) Sewage water feeding device and vacuum sewage collection system to vacuum sewage pipe
JPH09264499A (en) Draining method in gas pipe
JPS5969019A (en) Washing apparatus for endoscope
KR200230737Y1 (en) A siphon pipe for filter-bed of a filtration plant
JPS59201983A (en) Air-bleed device of pump suction pipe system
JPH0438160Y2 (en)
KR950026783A (en) Reservoir for Water Tank
JPH1177040A (en) Purifying apparatus
KR860003111Y1 (en) Check valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term