JP4272767B2 - Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same - Google Patents

Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same Download PDF

Info

Publication number
JP4272767B2
JP4272767B2 JP25601099A JP25601099A JP4272767B2 JP 4272767 B2 JP4272767 B2 JP 4272767B2 JP 25601099 A JP25601099 A JP 25601099A JP 25601099 A JP25601099 A JP 25601099A JP 4272767 B2 JP4272767 B2 JP 4272767B2
Authority
JP
Japan
Prior art keywords
short fibers
molded body
conductive molded
conductor circuit
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25601099A
Other languages
Japanese (ja)
Other versions
JP2001081202A (en
Inventor
恒久 木村
正文 山登
雅之 飛田
秀明 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP25601099A priority Critical patent/JP4272767B2/en
Publication of JP2001081202A publication Critical patent/JP2001081202A/en
Application granted granted Critical
Publication of JP4272767B2 publication Critical patent/JP4272767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱伝導性が良好な熱伝導性成形体およびその製造方法ならびに導体回路用樹脂基板に関する。
【0002】
【従来の技術】
最近、電子機器の高性能化、小型化、軽量化にともなう半導体パッケージの高密度実装化やLSIの高集積化、高速化などによって、電子機器から発生する熱対策が非常に重要な課題になっている。通常、発熱する素子の熱を拡散させるには、熱伝導性が良い金属やセラミックス製のプリント配線基板を使用する方法、基板内に熱を放散させるサーマルビアホールを形成する方法、半導体パッケージ材料として熱伝導性が良い金属やセラミックスあるいは樹脂を使用する方法、発熱源と放熱器の間や熱源と金属製伝熱板の間に接触熱抵抗を下げる目的で熱伝導率の大きなグリスや柔軟性のある熱伝導性ゴム材料を介在させる方法、冷却ファンやヒートパイプ、熱拡散板を使用する方法などが実施されている。
【0003】
半導体パッケージなどの電子部品を実装する配線基板に使用される従来の樹脂基板、すなわちガラスクロスエポキシ基板などは、他の金属基板やセラミック基板と比較すると、機械的性質や寸法精度、スルーホール加工性、多層化などは比較的に良好であるけれども、熱伝導性が劣ることが一つの欠点であった。
【0004】
そこで、高い熱伝導性を要求される樹脂基板には、樹脂中に熱伝導率が大きい酸化アルミニウムや窒化ホウ素、窒化アルミニウム、酸化マグネシウム、酸化亜鉛、炭化ケイ素、石英、水酸化アルミニウムなどの金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの電気絶縁性充填剤を充填する方法が検討されていたが、必ずしも充分な熱伝導性は得られていなかった。
【0005】
【発明が課題しようとする課題】
特開平9−255871号公報によれば、ポリベンザゾール短繊維を含有する熱可塑性樹脂組成物および成形品が提唱されている。この発明は、耐衝撃性、強靭性、電気絶縁性、熱伝導性を備える硬質の樹脂組成物および基板材料やケース材料などの成形品である。しかし、この成形品はポリベンザゾール短繊維をランダムに分散させたものであるため、ポリベンザゾール短繊維の特徴である繊維方向に大きい熱伝導率を生かしていない。そのため、ポリベンザゾール短繊維を多量に添加しても、得られる成形品の熱伝導率はさほど向上しなかった。
【0006】
また、本出願人による特願平11−166089号公報のポリベンザゾール短繊維を含有する熱硬化性樹脂組成物およびそれを用いた熱伝導成形品もポリベンザゾール短繊維をランダムに分散させたものであり、同様にポリベンザゾール短繊維の繊維方向に大きい熱伝導率を十分に生かせなかった。
【0007】
一方、特開平11−17369号公報は、有機繊維を合成樹脂中に、その樹脂の長さ方向に配した一定直径の合成樹脂線材からなる放熱材である。この放熱材は、プルトルージョンロッドからなる直径5mm以下で、長さが4mm以上の合成樹脂線材を配置するものであり、本発明の目的とする熱伝導性成形体や導体回路用樹脂基板を得ることができない。
【0008】
本出願人による特願平11−79228号公報によれば、特開平11−17369号公報では得られなかった板状などの熱伝導性成形体が製造できるけれども、ポリベンザゾール長繊維を高分子中に長繊維状として配列しているので、後工程の切断加工が困難なことが問題であった。
【0009】
なお、本出願人による特願平11−87483号公報では、熱伝導率が20W/m・K以上の反磁性充填材を高分子中に一定方向に配向させているけれども、反磁性充填材としてポリベンザゾール短繊維は対象として考えられていなかった。
【0010】
【課題を解決するための手段】
これらの課題を解決するために鋭意検討した結果、ポリベンザゾール短繊維が高分子中に一定方向に配向されてなることを特徴とする熱伝導性成形体が、熱伝導性に異方性があり、かつ熱伝導性にすぐれること、および、ポリベンザゾール短繊維が磁場中で磁力線に沿って配向する性質を有することを応用し、容易に製造できる熱伝導性成形体の製造方法を見出し本発明に到達した。
【0011】
【発明の実施の形態】
すなわち、本発明は、ポリベンザゾール短繊維が高分子中に一定方向に配向されてなることを特徴とする熱伝導性成形体、さらに、ポリベンザゾール短繊維を含む高分子組成物に磁場を印加させて組成物中のポリベンザゾール短繊維を一定方向に配向させたのちに固化させることを特徴とする熱伝導性成形体の製造方法、ならびに厚み方向にポリベンザゾール短繊維が磁場配向された導体回路用樹脂基板である。
【0012】
本発明で使用するポリベンザゾール短繊維は、ポリベンザゾールポリマーより構成される短繊維であり、ポリベンザゾール(PBZ)とは、ポリベンゾオキサゾールホモポリマー(PBO)、ポリベンゾチアゾールホモポリマー(PBT)およびそれらPBO、PBTのランダムコポリマー、シーケンシャルコポリマー、ブロックコポリマーあるいはグラフトコポリマーを意味するものである。ポリベンザゾール短繊維の直径、断面形状等については特定するものではないけれども、ポリベンザゾール短繊維の長さは3mm以下であることが好ましい。3mmよりも長いポリベンザゾール短繊維を用いると、高分子に均一に分散しにくく、組成物としての粘度が上昇して成形性が悪化するので好ましくない。より好ましいポリベンザゾール短繊維の長さは2mm以下、さらに好ましくは1mm以下、さらに好ましくは0.5mm以下である。
【0013】
高分子に含有させるポリベンザゾール短繊維の量は、高分子100重量部に対して0.1〜50重量部が好ましい。0.1重量部よりも少ないと熱伝導性の向上効果が小さく、50重量部を越えて含有させると組成物の粘度が増大して流動性が損なわれて成形加工が困難になり、かつ気泡の混入が避けられないので不適である。さらに好ましいポリベンザゾール短繊維の添加量は0.5〜30重量部、さらに好ましくは1〜20重量部である。
【0014】
ポリベンザゾール短繊維は、ポリベンザゾール長繊維を一定長さに切断する方法などによって製造することが可能であり、市販品(東洋紡績株式会社製 商品名=ザイロン)を容易に入手することができる。ポリベンザゾール短繊維の引張強度については、4GPa以上で、かつ初期引張弾性率が140GPa以上を有することが好ましい。引張強度、初期引張弾性率がこの範囲であるポリベンザゾール短繊維を使用することによって、本発明の熱伝導性成形体および導体回路用樹脂基板はより高い熱伝導性およびその異方性を発現することができる。
【0015】
なお、ポリベンザゾール短繊維以外の繊維として、少量のアラミド繊維やポリエステル繊維、脂肪族ポリアミド繊維、ビニロン繊維などの有機繊維、天然繊維、炭素繊維、金属繊維、さらにこれらの繊維を複合した複合繊維からなる短繊維や長繊維、あるいはそれらの少量の織布や不織布などを混在させることも可能である。
【0016】
本発明で用いる高分子の種類は特に限定するものではない。目的とする熱伝導性成形体および配線基板の硬さや熱伝導率、機械的強度、耐熱性、電気的特性、耐久性、信頼性などの要求性能に応じて熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂、架橋ゴムなどを選択できる。ポリベンザゾール短繊維を高濃度で充填する場合に使用する原料となる高分子としては、液状物あるいは溶融状態での粘度が低い高分子が好ましい。また、高分子を溶剤で溶解して低粘度化することによって、ポリベンザゾール短繊維の濃度を大きくしたり、磁場雰囲気での配向を促したりすることもできる。
【0017】
高分子として使用する熱可塑性樹脂や熱可塑性エラストマーとしては、ポリエチレン、ポリプロピレン、エチレンプロピレン共重合体などのエチレンαオレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレンアクリロニトリル共重合体、ABS樹脂、ポリフェニレンエーテルおよび変性PPE樹脂、脂肪族および芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸およびそのメチルエステルなどのポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等の熱可塑性樹脂、スチレンブタジエンまたはスチレンイソプレンブロック共重合体とその水添ポリマーおよびスチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等の熱可塑性エラストマー等が挙げられる。
【0018】
熱硬化性樹脂や架橋ゴムとしては、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ウレタン樹脂、ポリイミドシリコーン樹脂、熱硬化型ポリフェニレンエーテルおよび変性PPE樹脂、天然ゴム、ブタジエンゴム、イソプレンゴム、スチレンブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴムおよびハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴム等の架橋ゴム等が挙げられる。
【0019】
本発明の熱伝導性成形体は、これらの高分子のなかでもシリコーンゴム、エポキシ樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フッ素樹脂、ポリフェニレンエーテル樹脂より選ばれる少なくとも1種の高分子を用いることが耐熱性や電気的信頼性の観点から好ましい。
【0020】
さらに、これらの高分子は、ポリベンザゾール短繊維を混合する際には低粘度の液体、または加熱溶融時には低粘度化することが可能で、かつ磁場を印加したときにポリベンザゾール短繊維が配向しやすい。誘電率、誘電正接が小さくて高周波領域での特性を要求される配線基板用途などには、フッ素樹脂や熱硬化型ポリフェニレンエーテル樹脂や変性PPE樹脂、ポリオレフィン系樹脂が好ましい。さらに、これらの高分子から選択される複数の高分子からなるポリマーアロイを使用しても差し支えない。また、架橋性高分子についての架橋方法については熱硬化性に限定せず、光硬化性、湿気硬化性などの公知の架橋方法による高分子を使用することができる。
【0021】
本発明の熱伝導性成形体に、さらに他の熱伝導性充填剤として熱伝導率が大きい酸化アルミニウムや窒化ホウ素、窒化アルミニウム、酸化亜鉛、炭化ケイ素、水酸化アルミニウムなどの金属酸化物、金属窒化物、金属炭化物、金属水酸化物などの金属や合金からなる球状、粉状、繊維状、針状、鱗片状、ウィスカー状などの少量の充填剤を併用しても差し支えない。
【0022】
高分子中にポリベンザゾール短繊維を一定方向に配向させる方法としては、流動場あるいはせん断場を利用する方法、磁場を利用する方法、電場を利用する方法などが挙げられる。いずれの方法によってもポリベンザゾール短繊維を高分子中で一定方向に配向させることができ、本発明の熱伝導性成形体を得ることができる。けれども、本発明ではポリベンザゾール短繊維の磁化率の異方性を利用し、磁場を印加してポリベンザゾール短繊維を配向させる方法が、特に任意の方向にポリベンザゾール短繊維を配向させることができ、すぐれた熱伝導性およびその異方性を有す熱伝導性成形体を製造する方法として適している。なお、本発明者らがポリベンザゾール繊維(東洋紡績株式会社製 ザイロンHM)の異方性磁化率χを磁気異方性トルク計(株式会社玉川製作所)で測定したところ、6.1×10−7であった。
【0023】
すなわち、ポリベンザゾール短繊維を含む高分子組成物に磁場を印加させて組成物中のポリベンザゾール短繊維を一定方向に配向させて固化させることが本発明の熱伝導性成形体の製造方法の特徴である。
【0024】
外部から磁場を印加して高分子組成物中のポリベンザゾール短繊維を磁力線に沿って一定方向に配向させ、配向したポリベンザゾール短繊維の繊維方向の高熱伝導性を生かし、一定方向の熱伝導率を著しく向上させた熱伝導性成形体を得ることができる。
【0025】
例えば、板状の熱伝導性成形体の厚み方向にポリベンザゾール短繊維を揃えて配向させるには、厚み方向に永久磁石や電磁石のN極とS極を対向させ磁力線の向きが所望のポリベンザゾール短繊維の配向方向に対応するように設置する。一方、板状の熱伝導性成形体の面内の縦方向と横方向あるいは縦横の水平方向に一定方向の熱伝導性を向上させる場合には、厚み方向に対して垂直の方向に磁石のN極とS極を対向させればポリベンザゾール短繊維を面内の方向に揃えて配向させることができる。あるいは、磁石のN極とN極、またはS極とS極を厚み方向に対向させてもポリベンザゾール短繊維を面内方向に揃えることができる。
【0026】
また、磁力線は必ずしも直線状でなくても良く、曲線状や矩形、あるいは2方向以上であってもかまわない。すなわち、任意の一定方向にポリベンザゾール短繊維を配向させて熱伝導性の異方性を付与させることが可能である。また、磁石については必ずしも両側に対向させる必要はなく、片側のみに配置した磁石によっても原料組成物中のポリベンザゾール短繊維を配向させることが可能である。
【0027】
外部磁場として使用する磁場発生手段としては永久磁石でも電磁石でもコイルでも差し支えないけれども、磁束密度としては0.05テスラ〜30テスラの範囲が実用的なポリベンザゾール短繊維の配向が達成できる。また、本発明はポリベンザゾール短繊維の非常に弱い異方性磁化率を利用するので、より強い磁場雰囲気で、ポリベンザゾール短繊維を十分に配向させてから、熱硬化反応や冷却させることによってマトリックスの高分子を固化させる必要がある。配向しやすい好ましい磁束密度は0.5テスラ以上、さらに好ましくは1テスラ以上である。
【0028】
ポリベンザゾール短繊維と高分子との濡れ性や接着性を向上させるために、ポリベンザゾール短繊維の表面をあらかじめ脱脂や洗浄処理したり、紫外線照射処理、コロナ放電処理、プラズマ処理、火炎処理、イオン注入などの活性化処理を施すことが好ましい。さらに、これらの表面処理後にシラン系やチタン系、アルミニウム系などの通常のカップリング剤で処理することによって、さらに多量のポリベンザゾール短繊維を容易に分散混合しやすくなり、得られる成形品の一層の高熱伝導率化が達成できる。
【0029】
本発明の熱伝導性成形体は、高い熱伝導性が要求される放熱板や配線基板、放熱ゴムシート、半導体パッケージ用部品、ヒートシンク、ヒートスプレッダー、筐体などに応用することができる。
【0030】
本発明の導体回路用樹脂基板は、基板の厚み方向にポリベンザゾール短繊維が磁場配向されたことを特徴とする。この基板上に導体回路を形成する方法としては、基板と導体箔を張り合わせて回路を形成する方法、あらかじめ回路が形成されている導体回路を基板と張り合わせる方法、導体回路を印刷などで直接形成する方法など公知の方法で得ることができる。
【0031】
なお、ポリベンザゾール短繊維は電気絶縁性にすぐれ、本発明の配線基板に用いる樹脂基板も電気絶縁性が良好なために、導体回路を積層する際に使用する接着剤は、公知の電気絶縁性の接着剤を用いれば良い。接着剤中に、酸化アルミニウムや窒素ホウ素などの熱伝導性充填剤を配合すると放熱特性がさらに向上する。
【0032】
図8〜図11は、発熱する半導体素子と伝熱部材である放熱器、配線基板、ヒートシンク、筐体などの間に、本発明で得られる板状の熱伝導性成形体を介在させた例である。 図8はボールグリッドアレイ型半導体パッケージ8aと放熱器9の間隙に本発明の熱伝導性成形体1を配置し、さらに本発明の導体回路樹脂基板7を用いた例である。
【0033】
図9は本発明の熱伝導性成形体1をチップサイズ半導体パッケージ8bと導体回路樹脂基板7の間隙に配置した例である。
【0034】
図10は本発明の熱伝導性成形体1をピングリッドアレイ型半導体パッケージ8cとヒートシンク10の間隙に配置し、さらに本発明の導体回路樹脂基板7を用いた例である。
【0035】
図11は本発明の熱伝導性成形体1を発熱する複数の半導体素子11と筐体12の間隙に配置し、さらに本発明の導体回路樹脂基板7を用いた例である。
【0036】
以下、実施例に基づき本発明をさらに詳しく説明する。なお、下記の実施例、比較例の熱伝導率は、レーザーフラッシュ式熱伝導率計(真空理工株式会社製 TC−7000)で測定して算出した値である。
【0037】
比較例1、比較例2はポリベンザゾール短繊維を配向させずに高分子中に充填した従来の成形体であり熱伝導率は小さい。本発明の実施例1〜実施例7の熱伝導成形体は、ポリベンザゾール短繊維を含む高分子組成物に磁場を印加させて組成物中のポリベンザゾール短繊維を一定方向に配向させて固化させた熱伝導成形体であり、その配向させた繊維方向の熱伝導率が大きい特徴がある。実施例8は本発明の導体回路樹脂基板の例であり、比較例3の配線基板よりも熱抵抗が小さく放熱特性が良い。
【0038】
【実施例1】
不飽和ポリエステル樹脂(株式会社日本触媒製 エポラックG157)100重量部に、ポリベンザゾール短繊維(東洋紡績株式会社製 ザイロンHM:直径11μm、長さ0.5mm)5重量部を混合し真空脱泡した組成物aを調製した。アルミニウム製の厚み1.5mm、縦20mm、横20mmの板状の金型内に組成物aを充填し、図4(1)、図4(2)、図4(3)に示すように厚み方向に磁束密度6テスラのN極とS極が対向する磁場雰囲気で、ポリベンザゾール短繊維を十分に配向させた後に加熱硬化させ、板状の熱伝導性成形体を得た。得られた熱伝導性成形体の厚み方向および面内方向の熱伝導率はそれぞれ2.5W/m・K、0.3W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は図1のように厚み方向に揃って配向していた。
【0039】
【実施例2】
実施例1と同様に調整した組成物aをアルミニウム製の厚み1.5mm、縦20mm、横20mmの板状の金型内に充填し、図5(1)、図5(2)、図5(3)に示すように厚み方向に対して垂直方向に磁石のN極とS極が対向する磁束密度6テスラの磁場雰囲気でポリベンザゾール短繊維を十分に配向させた後に加熱硬化させ、板状の熱伝導性成形体を得た。
得られた熱伝導性成形体の厚み方向および面内X方向、面内Y方向の熱伝導率はそれぞれ0.3W/m・K、2.2W/m・K、0.4W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は図2のように面内方向に揃って配向していた。
【0040】
【実施例3】
液状エポキシ樹脂(スリーボンド株式会社製 TB2280C)100重量部に、ポリベンザゾール短繊維(東洋紡績株式会社製 ザイロンHM:直径11μm、長さ1mm)3重量部を混合し真空脱泡して組成物bを調製した。組成物bをアルミニウム製の厚み3mm、縦20mm、横20mmの板状の金型内に充填し、図4(1)、図4(2)、図4(3)に示すように厚み方向に磁束密度10テスラのN極とS極が対向する磁場雰囲気でポリベンザゾール短繊維を十分に配向させた後に加熱硬化させ、板状の熱伝導性成形体を得た。得られた熱伝導性成形体の厚み方向および面内方向の熱伝導率はそれぞれ1.1W/m・K、0.3W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は図1のように厚み方向に揃って配向していた。
【0041】
【実施例4】
実施例3と同様に調整した組成物bをアルミニウム製の厚み3mm、縦20mm、横20mmの板状の金型内に充填し、図5(1)、図5(2)、図5(3)に示すように厚み方向に対して垂直方向に磁石のN極とS極が対向する磁束密度10テスラの磁場雰囲気でポリベンザゾール短繊維を十分に配向させた後に加熱硬化させ、板状の熱伝導性成形体を得た。得られた熱伝導性成形体の厚み方向および面内X方向、面内Y方向の熱伝導率はそれぞれ0.3W/m・K、1.2W/m・K、0.3W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は図2のように面内方向に揃って配向していた。
【0042】
【実施例5】
液状シリコーンゴム(GE東芝シリコーン株式会社製 TSE3070)100重量部に、ポリベンザゾール短繊維(東洋紡績株式会社製 ザイロンHM:直径11μm、長さ0.1mm)20重量部、酸化アルミニウム粉末(昭和電工株式会社製 AS−20)50重量部を混合し真空脱泡した組成物cを調製した。アルミニウム製の厚み0.5mm、縦20mm、横20mmの板状の金型内に組成物cを充填し、図4(1)、図4(2)、図4(3)に示すように厚み方向に磁束密度10テスラのN極とS極が対向する磁場雰囲気でポリベンザゾール短繊維を十分に配向させた後に加熱硬化させ、柔軟なゴムシート状の熱伝導性成形体を得た。得られた熱伝導性成形体の厚み方向および面内方向の熱伝導率はそれぞれ4.1W/m・K、0.5W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は図1のように厚み方向に揃って配向していた。
【0043】
【実施例6】
実施例1と同様に調整した組成物cをアルミニウム製の厚み0.5mm、縦20mm、横20mmの板状の金型内に充填し、図5(1)、図5(2)、図5(3)に示すように厚み方向に対して垂直方向に磁石のN極とS極が対向する磁束密度10テスラの磁場雰囲気でポリベンザゾール短繊維を十分に配向させた後に加熱硬化させ、柔軟なゴムシート状の熱伝導性成形体を得た。得られた熱伝導性成形体の厚み方向および面内X方向、面内Y方向の熱伝導率はそれぞれ0.5W/m・K、3.8W/m・K、0.5W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は図2のように面内方向に揃って配向していた。
【0044】
【実施例7】
スチレン系熱可塑性エラストマー(旭化成工業株式会社製 タフテックH1053)100重量部に、溶剤としてトルエン2000重量部を加えて溶解し、ポリベンザゾール短繊維(東洋紡績株式会社製 ザイロンHM:直径11μm、長さ1mm)5重量部を混合して溶液状の組成物dを調製した。組成物dをアルミニウム製の縦20mm、横20mm、深さ40mmの箱状の金型内に充填し、図4(1)、図4(2)、図4(3)に示すように厚み方向に磁束密度6テスラのN極とS極が対向する磁場雰囲気でポリベンザゾール短繊維を十分に配向させた後に溶剤のトルエンを揮発させ加熱乾燥後、ゴムシート状の熱伝導性成形体を得た。得られた熱伝導性成形体の厚み方向および面内方向の熱伝導率はそれぞれ1.2W/m・K、0.3W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は図1のように厚み方向に揃って配向していた。
【0045】
【比較例1】
不飽和ポリエステル樹脂(株式会社日本触媒製 エポラックG157)100重量部に、ポリベンザゾール短繊維(東洋紡績株式会社製 ザイロンHM:直径11μm、長さ0.5mm)5重量部を混合し真空脱泡して組成物aを調製した。アルミニウム製の厚み1.5mm、縦20mm、横20mmの板状の金型内に組成物aを充填して加熱硬化させ、板状の熱伝導性成形体を得た。得られた熱伝導性成形体の厚み方向および面内方向の熱伝導率はそれぞれ0.3W/m・K、0.4W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は配向せず図3のようにランダムに分散していた。
【0046】
【比較例2】
液状シリコーンゴム(GE東芝シリコーン株式会社製 TSE3070)100重量部に、ポリベンザゾール短繊維(東洋紡績株式会社製 ザイロンHM:直径11μm、長さ0.1mm)20重量部、酸化アルミニウム粉末(昭和電工株式会社製 AS−20)50重量部を混合し真空脱泡した組成物cを調製した。アルミニウム製の厚み0.5mm、縦20mm、横20mmの板状の金型内に組成物cを充填し加熱硬化させ、柔軟なゴムシート状の熱伝導性成形体を得た。得られた熱伝導性成形体の厚み方向および面内方向の熱伝導率はそれぞれ0.2W/m・K、0.3W/m・Kであった。熱伝導性成形体のポリベンザゾール短繊維は配向せず図3のようにランダムに分散していた。
【0047】
【実施例8】
実施例1にて得られた板状の熱伝導性成形体にエポキシ系接着剤を塗布後、35μmの銅箔をプレスで加圧接着し、銅箔をエッチングして導体回路5を形成して、図6のような配線基板6を作製した。トランジスター(株式会社東芝製 TO−220)を半田付けし、反対面を冷却ファンで冷却しながら通電し、トランジスターと導体回路樹脂基板の温度差より熱抵抗を求めたところ、0.35℃/Wであった。
【0048】
【比較例3】
比較例1にて得られた板状の熱伝導性成形体にエポキシ系接着剤を塗布後、35μmの銅箔をプレスで加圧接着し、銅箔をエッチングして導体回路6を形成して、図7のような配線基板14を作製した。トランジスター(株式会社東芝製 TO−220)を半田付けし、反対面を冷却ファンで冷却しながら通電し、トランジスターと配線基板の温度差より熱抵抗を求めたところ、0.68℃/Wであった。
【0049】
【発明の効果】
本発明の熱伝導性成形体の製造方法によれば、ポリベンザゾール短繊維を高分子中で一定方向に配向させて固化させてあるので、その任意に配向した繊維方向の熱伝導性がすぐれた熱伝導性成形体を容易に製造することができる。さらに、本発明の導体回路用樹脂基板は、基板の厚み方向にポリベンザゾール短繊維が磁場配向しているのでその方向の熱抵抗が小さい。従って、発熱量が大きいCPU(中央演算素子)や電源、プラズマディスプレイ用などの様々なデバイスを実装する際に放熱特性にすぐれる有用な電気製品を提供することができる。
【図面の簡単な説明】
【図1】厚み方向にポリベンザゾール短繊維を配向した本発明の熱伝導性成形体
【図2】面方向にポリベンザゾール短繊維を配向した本発明の熱伝導性成形体
【図3】従来の成形体中のポリベンザゾール短繊維の分散状態を示す概観図
【図4】本発明の熱伝導性成形体の製造方法を示す図
【図5】本発明の熱伝導性成形体の他の製造方法を示す図
【図6】本発明の熱伝導性成形体を使用した配線基板
【図7】従来の熱伝導性成形体を使用した配線基板
【図8】本発明の熱伝導性成形体および導体回路用樹脂基板を使用した例
【図9】本発明の熱伝導性成形体および導体回路用樹脂基板を使用した例
【図10】本発明の熱伝導性成形体および導体回路用樹脂基板を使用した例
【図11】本発明の熱伝導性成形体および導体回路用樹脂基板を使用した例
【符号の説明】
1 熱伝導性成形体
2 ポリベンザゾール短繊維
3 金型
4 磁石
5 導体回路
6 本発明の導体回路用樹脂基板
7 導体回路樹脂基板
8a、8b、8c 半導体素子
9 放熱器
10 ヒートシンク
11 半導体素子
12 筐体
13 従来のポリベンザゾール短繊維を含む成形体
14 従来の配線基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermally conductive molded article having good thermal conductivity, a method for producing the same, and a resin substrate for conductor circuits.
[0002]
[Prior art]
In recent years, countermeasures against heat generated by electronic devices have become very important issues due to high-density mounting of semiconductor packages, high integration of LSIs, and high speeds associated with high performance, miniaturization, and weight reduction of electronic devices. ing. Usually, in order to diffuse the heat of the element that generates heat, a method using a printed wiring board made of a metal or ceramic having good thermal conductivity, a method of forming a thermal via hole in the board to dissipate heat, or heat as a semiconductor package material Use of highly conductive metal, ceramics or resin, grease with high thermal conductivity or flexible heat conduction to reduce contact thermal resistance between heat source and radiator or between heat source and metal heat transfer plate A method of interposing a functional rubber material, a method of using a cooling fan, a heat pipe, a heat diffusion plate, and the like have been implemented.
[0003]
Conventional resin substrates used for wiring boards for mounting electronic components such as semiconductor packages, ie glass cloth epoxy substrates, have mechanical properties, dimensional accuracy, and through-hole processability compared to other metal substrates and ceramic substrates. Although multi-layering and the like are relatively good, one disadvantage is that the thermal conductivity is inferior.
[0004]
Therefore, resin substrates that require high thermal conductivity include metal oxides such as aluminum oxide, boron nitride, aluminum nitride, magnesium oxide, zinc oxide, silicon carbide, quartz, and aluminum hydroxide, which have high thermal conductivity in the resin. A method of filling an electrically insulating filler such as a metal, a metal nitride, a metal carbide, or a metal hydroxide has been studied, but sufficient thermal conductivity has not been obtained.
[0005]
[Problems to be solved by the invention]
According to Japanese Patent Laid-Open No. 9-255871, a thermoplastic resin composition and a molded product containing polybenzazole short fibers are proposed. The present invention is a hard resin composition having impact resistance, toughness, electrical insulation and thermal conductivity, and molded articles such as a substrate material and a case material. However, since this molded article is obtained by randomly dispersing polybenzazole short fibers, it does not take advantage of the large thermal conductivity in the fiber direction, which is a feature of polybenzazole short fibers. Therefore, even when polybenzazole short fibers are added in a large amount, the thermal conductivity of the obtained molded product has not been improved so much.
[0006]
In addition, the thermosetting resin composition containing the polybenzazole short fibers of Japanese Patent Application No. 11-166089 and the heat conductive molded product using the same of the present applicant also have polybenzazole short fibers dispersed randomly. Similarly, the large thermal conductivity in the fiber direction of the polybenzazole short fibers could not be fully utilized.
[0007]
On the other hand, Japanese Patent Application Laid-Open No. 11-17369 is a heat dissipating material made of a synthetic resin wire having a constant diameter in which organic fibers are disposed in a synthetic resin in the length direction of the resin. This heat dissipating material is a synthetic resin wire having a diameter of 5 mm or less and a length of 4 mm or more made of a pultrusion rod, and obtains a heat conductive molded body and a conductor circuit resin substrate which are the object of the present invention. I can't.
[0008]
According to Japanese Patent Application No. 11-79228 filed by the applicant of the present application, although a thermally conductive molded product such as a plate shape that was not obtained in Japanese Patent Application Laid-Open No. 11-17369 can be produced, polybenzazole long fibers are polymerized. Since they are arranged in the form of long fibers therein, it is a problem that it is difficult to perform a subsequent cutting process.
[0009]
In Japanese Patent Application No. 11-87483 by the present applicant, a diamagnetic filler having a thermal conductivity of 20 W / m · K or more is oriented in a certain direction in the polymer. Polybenzazole staple fibers were not considered as targets.
[0010]
[Means for Solving the Problems]
As a result of diligent studies to solve these problems, a thermally conductive molded body characterized in that polybenzazole short fibers are oriented in a certain direction in a polymer has anisotropy in thermal conductivity. We have found a method for manufacturing a thermally conductive molded body that can be easily manufactured by applying the fact that it has excellent thermal conductivity and that polybenzazole short fibers have the property of being oriented along magnetic field lines in a magnetic field. The present invention has been reached.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
That is, the present invention relates to a thermally conductive molded product characterized in that polybenzazole short fibers are oriented in a certain direction in a polymer, and further to applying a magnetic field to a polymer composition containing polybenzazole short fibers. A method for producing a thermally conductive molded article characterized by solidifying a polybenzazole short fiber in a composition after being applied in a certain direction, and a magnetic orientation of the polybenzazole short fiber in the thickness direction It is a resin substrate for a conductor circuit.
[0012]
The polybenzazole short fiber used in the present invention is a short fiber composed of a polybenzazole polymer. Polybenzazole (PBZ) is a polybenzoxazole homopolymer (PBO), a polybenzothiazole homopolymer (PBT). ) And their PBO, PBT random copolymer, sequential copolymer, block copolymer or graft copolymer. Although the diameter, cross-sectional shape and the like of the polybenzazole short fiber are not specified, the length of the polybenzazole short fiber is preferably 3 mm or less. Use of short polybenzazole fibers longer than 3 mm is not preferable because it is difficult to uniformly disperse in the polymer and the viscosity of the composition is increased to deteriorate the moldability. More preferably, the length of the polybenzazole short fiber is 2 mm or less, more preferably 1 mm or less, and still more preferably 0.5 mm or less.
[0013]
The amount of the polybenzazole short fiber contained in the polymer is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the polymer. If the amount is less than 0.1 part by weight, the effect of improving the thermal conductivity is small. If the amount exceeds 50 parts by weight, the viscosity of the composition increases, the fluidity is impaired, and the molding process becomes difficult, and air bubbles It is unsuitable because it is unavoidable. The addition amount of the polybenzazole short fiber is more preferably 0.5 to 30 parts by weight, and further preferably 1 to 20 parts by weight.
[0014]
Polybenzazole short fibers can be produced by a method of cutting polybenzazole long fibers into a certain length, and a commercially available product (trade name = Zylon, manufactured by Toyobo Co., Ltd.) can be easily obtained. it can. The tensile strength of the polybenzazole short fiber is preferably 4 GPa or more and the initial tensile elastic modulus is 140 GPa or more. By using polybenzazole short fibers whose tensile strength and initial tensile elastic modulus are within this range, the thermally conductive molded product and the resin circuit board for conductor circuits of the present invention exhibit higher thermal conductivity and its anisotropy. can do.
[0015]
In addition, as fibers other than polybenzazole short fibers, a small amount of organic fibers such as aramid fibers, polyester fibers, aliphatic polyamide fibers, vinylon fibers, natural fibers, carbon fibers, metal fibers, and composite fibers obtained by combining these fibers It is also possible to mix short fibers and long fibers made of or a small amount of woven or non-woven fabrics.
[0016]
The kind of polymer used in the present invention is not particularly limited. Thermoplastic resin, thermoplastic elastomer, heat depending on required performance such as hardness, thermal conductivity, mechanical strength, heat resistance, electrical characteristics, durability, reliability, etc. A curable resin, a crosslinked rubber, or the like can be selected. As a polymer used as a raw material for filling polybenzazole short fibers at a high concentration, a liquid material or a polymer having a low viscosity in a molten state is preferable. Further, by dissolving the polymer with a solvent to lower the viscosity, the concentration of the polybenzazole short fibers can be increased, or the orientation in a magnetic field atmosphere can be promoted.
[0017]
Examples of thermoplastic resins and thermoplastic elastomers used as polymers include ethylene α-olefin copolymers such as polyethylene, polypropylene, and ethylene propylene copolymers, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, and ethylene. Vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetal, fluororesin such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene acrylonitrile copolymer, ABS resin, Polyphenylene ether and modified PPE resin, aliphatic and aromatic polyamides, polyimide, polyamideimide, polymethacrylic acid and its methyl Polymethacrylates such as stealth, polyacrylic acids, polycarbonate, polyphenylene sulfide, polysulfone, polyethersulfone, polyethernitrile, polyetherketone, polyketone, liquid crystal polymer, silicone resin, ionomer and other thermoplastic resins, styrene butadiene Or styrene isoprene block copolymer and its hydrogenated polymer and styrene thermoplastic elastomer, olefin thermoplastic elastomer, vinyl chloride thermoplastic elastomer, polyester thermoplastic elastomer, polyurethane thermoplastic elastomer, polyamide thermoplastic elastomer, etc. These thermoplastic elastomers can be mentioned.
[0018]
Thermosetting resins and cross-linked rubbers include epoxy resins, polyimide resins, bismaleimide resins, benzocyclobutene resins, phenol resins, unsaturated polyester resins, diallyl phthalate resins, silicone resins, urethane resins, polyimide silicone resins, and thermosetting types. Polyphenylene ether and modified PPE resin, natural rubber, butadiene rubber, isoprene rubber, styrene butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber and halogenated Examples thereof include cross-linked rubbers such as butyl rubber, fluoro rubber, urethane rubber, and silicone rubber.
[0019]
Among these polymers, the thermally conductive molded body of the present invention is composed of silicone rubber, epoxy resin, urethane resin, unsaturated polyester resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, fluorine resin, and polyphenylene ether resin. It is preferable to use at least one selected polymer from the viewpoints of heat resistance and electrical reliability.
[0020]
Furthermore, these polymers can be made into a low-viscosity liquid when mixing polybenzazole short fibers, or a low viscosity when heated and melted, and when polybenzazole short fibers are applied when a magnetic field is applied. Easy to align. Fluorine resin, thermosetting polyphenylene ether resin, modified PPE resin, and polyolefin resin are preferable for wiring board applications that require low dielectric constant and dielectric loss tangent and characteristics in a high frequency range. Further, a polymer alloy composed of a plurality of polymers selected from these polymers may be used. In addition, the crosslinking method for the crosslinkable polymer is not limited to thermosetting, and a polymer obtained by a known crosslinking method such as photocuring property or moisture curing property can be used.
[0021]
In addition to the metal oxide, metal nitride, such as aluminum oxide, boron nitride, aluminum nitride, zinc oxide, silicon carbide, and aluminum hydroxide having high thermal conductivity as the heat conductive filler of the present invention. A small amount of fillers such as spheres, powders, fibers, needles, scales, whiskers and the like made of metals and alloys such as metal, metal carbides and metal hydroxides may be used together.
[0022]
Examples of methods for orienting polybenzazole short fibers in a polymer in a certain direction include a method using a flow field or a shear field, a method using a magnetic field, and a method using an electric field. By any method, the polybenzazole short fibers can be oriented in a certain direction in the polymer, and the thermally conductive molded article of the present invention can be obtained. However, in the present invention, the method of orienting the polybenzazole short fiber by applying the magnetic field using the anisotropy of the magnetic susceptibility of the polybenzazole short fiber, in particular, orienting the polybenzazole short fiber in an arbitrary direction. Therefore, it is suitable as a method for producing a heat conductive molded article having excellent heat conductivity and its anisotropy. Note that the present inventors have reported that the anisotropic magnetic susceptibility χ of polybenzazole fiber (Zylon HM manufactured by Toyobo Co., Ltd.) a Was measured with a magnetic anisotropy torque meter (Tamagawa Seisakusho Co., Ltd.), 6.1 × 10 -7 Met.
[0023]
That is, by applying a magnetic field to a polymer composition containing polybenzazole short fibers, the polybenzazole short fibers in the composition are oriented in a certain direction and solidified, thereby producing the thermally conductive molded article of the present invention. It is the feature.
[0024]
Applying a magnetic field from the outside to orient the polybenzazole short fibers in the polymer composition in a certain direction along the lines of magnetic force, taking advantage of the high thermal conductivity in the fiber direction of the oriented polybenzazole short fibers, and heat in a certain direction It is possible to obtain a thermally conductive molded body with significantly improved conductivity.
[0025]
For example, in order to align and align polybenzazole short fibers in the thickness direction of a plate-like thermally conductive molded body, the N and S poles of permanent magnets and electromagnets face each other in the thickness direction, and the direction of the lines of magnetic force is desired. It is installed so as to correspond to the orientation direction of benzazole short fibers. On the other hand, in the case where the thermal conductivity in a certain direction is improved in the longitudinal direction and the transverse direction or the longitudinal and transverse horizontal directions in the plane of the plate-like thermally conductive molded body, the N of the magnet is perpendicular to the thickness direction. If the pole and the S pole are opposed, the polybenzazole short fibers can be aligned in the in-plane direction. Alternatively, the polybenzazole short fibers can be aligned in the in-plane direction even when the N-pole and N-pole of the magnet or the S-pole and S-pole are opposed to each other in the thickness direction.
[0026]
Further, the lines of magnetic force are not necessarily linear, but may be curved, rectangular, or two or more directions. That is, it is possible to orient the polybenzazole short fibers in an arbitrary fixed direction to impart thermal conductivity anisotropy. Further, the magnets do not necessarily have to be opposed to both sides, and the polybenzazole short fibers in the raw material composition can be oriented by a magnet arranged only on one side.
[0027]
The magnetic field generating means used as the external magnetic field may be a permanent magnet, an electromagnet, or a coil, but a practical polybenzazole short fiber orientation can be achieved when the magnetic flux density is in the range of 0.05 Tesla to 30 Tesla. In addition, since the present invention utilizes the very weak anisotropic magnetic susceptibility of the polybenzazole short fibers, the polybenzazole short fibers can be sufficiently oriented in a stronger magnetic field atmosphere before being subjected to a thermosetting reaction or cooling. It is necessary to solidify the matrix polymer. A preferred magnetic flux density that is easily oriented is 0.5 Tesla or more, more preferably 1 Tesla or more.
[0028]
In order to improve the wettability and adhesion between the polybenzazole short fibers and the polymer, the surface of the polybenzazole short fibers is previously degreased and washed, UV irradiation treatment, corona discharge treatment, plasma treatment, flame treatment It is preferable to perform an activation treatment such as ion implantation. Furthermore, by treating with a normal coupling agent such as silane, titanium, or aluminum after these surface treatments, it becomes easier to disperse and mix a larger amount of polybenzazole short fibers, and the resulting molded product Higher thermal conductivity can be achieved.
[0029]
The heat conductive molded body of the present invention can be applied to a heat radiating plate, a wiring board, a heat radiating rubber sheet, a semiconductor package component, a heat sink, a heat spreader, a housing, and the like that require high heat conductivity.
[0030]
The resin substrate for a conductor circuit according to the present invention is characterized in that polybenzazole short fibers are magnetically oriented in the thickness direction of the substrate. As a method of forming a conductor circuit on this substrate, a method of forming a circuit by bonding a substrate and a conductor foil, a method of bonding a conductor circuit on which a circuit has been formed in advance to a substrate, or forming a conductor circuit directly by printing, etc. It can obtain by well-known methods, such as the method of doing.
[0031]
Since the polybenzazole short fiber has excellent electrical insulation, and the resin substrate used for the wiring board of the present invention also has good electrical insulation, the adhesive used when laminating the conductor circuits is known electrical insulation. May be used. When a heat conductive filler such as aluminum oxide or nitrogen boron is added to the adhesive, the heat dissipation characteristics are further improved.
[0032]
8 to 11 show examples in which a plate-like thermally conductive molded body obtained by the present invention is interposed between a semiconductor element that generates heat and a radiator, a wiring board, a heat sink, a housing, and the like that are heat transfer members. It is. FIG. 8 shows an example in which the thermally conductive molded body 1 of the present invention is disposed in the gap between the ball grid array type semiconductor package 8a and the radiator 9, and the conductor circuit resin substrate 7 of the present invention is used.
[0033]
FIG. 9 shows an example in which the thermally conductive molded body 1 of the present invention is disposed in the gap between the chip size semiconductor package 8b and the conductor circuit resin substrate 7.
[0034]
FIG. 10 shows an example in which the thermally conductive molded body 1 of the present invention is disposed in the gap between the pin grid array type semiconductor package 8c and the heat sink 10, and the conductor circuit resin substrate 7 of the present invention is used.
[0035]
FIG. 11 shows an example in which the thermally conductive molded body 1 of the present invention is disposed in a gap between a plurality of semiconductor elements 11 that generate heat and a housing 12, and the conductor circuit resin substrate 7 of the present invention is used.
[0036]
Hereinafter, the present invention will be described in more detail based on examples. In addition, the thermal conductivity of a following example and a comparative example is the value calculated by measuring with a laser flash type thermal conductivity meter (TC-7000 manufactured by Vacuum Riko Co., Ltd.).
[0037]
Comparative Example 1 and Comparative Example 2 are conventional molded bodies in which polybenzazole short fibers are filled in a polymer without orientation, and the thermal conductivity is small. Examples 1 to 1 of the present invention Example 7 The heat conductive molded body is a heat conductive molded body obtained by applying a magnetic field to a polymer composition containing polybenzazole short fibers and orienting the polybenzazole short fibers in the composition in a certain direction to solidify, There is a feature that the thermal conductivity in the direction of the oriented fibers is large. Example 8 Is an example of the conductor circuit resin substrate of the present invention, and has a smaller thermal resistance and better heat dissipation characteristics than the wiring substrate of Comparative Example 3.
[0038]
[Example 1]
100 parts by weight of unsaturated polyester resin (Eporac G157 manufactured by Nippon Shokubai Co., Ltd.) and 5 parts by weight of polybenzazole short fiber (Zylon HM manufactured by Toyobo Co., Ltd .: diameter 11 μm, length 0.5 mm) are mixed and vacuum defoamed. Composition a was prepared. An aluminum plate having a thickness of 1.5 mm, a length of 20 mm, and a width of 20 mm is filled with the composition a, and the thickness is as shown in FIGS. 4 (1), 4 (2), and 4 (3). In a magnetic field atmosphere in which the N pole and S pole with a magnetic flux density of 6 Tesla face each other, the polybenzazole short fibers were sufficiently oriented and then heat cured to obtain a plate-like thermally conductive molded body. The thermal conductivity in the thickness direction and in-plane direction of the obtained heat conductive molded body was 2.5 W / m · K and 0.3 W / m · K, respectively. The polybenzazole short fibers of the thermally conductive molded body were aligned in the thickness direction as shown in FIG.
[0039]
[Example 2]
The composition a prepared in the same manner as in Example 1 was filled in a plate-shaped mold made of aluminum having a thickness of 1.5 mm, a length of 20 mm, and a width of 20 mm, and FIG. 5 (1), FIG. 5 (2), FIG. 3) As shown in 3), the polybenzazole short fibers are sufficiently oriented in a magnetic field atmosphere with a magnetic flux density of 6 Tesla in which the N and S poles of the magnet face each other in the direction perpendicular to the thickness direction, and are then heat-cured and plate The heat conductive molded object of this was obtained.
The thermal conductivity in the thickness direction, in-plane X direction, and in-plane Y direction of the obtained heat conductive molded body was 0.3 W / m · K, 2.2 W / m · K, and 0.4 W / m · K, respectively. Met. The polybenzazole short fibers of the thermally conductive molded body were aligned in the in-plane direction as shown in FIG.
[0040]
[Example 3]
Composition 100 b by mixing 100 parts by weight of a liquid epoxy resin (TB2280C manufactured by ThreeBond Co., Ltd.) and 3 parts by weight of polybenzazole short fibers (Zylon HM manufactured by Toyobo Co., Ltd .: diameter 11 μm, length 1 mm) Was prepared. The composition b is filled in a plate-shaped mold made of aluminum having a thickness of 3 mm, a length of 20 mm, and a width of 20 mm, and is arranged in the thickness direction as shown in FIGS. 4 (1), 4 (2), and 4 (3). The polybenzazole short fibers were sufficiently oriented in a magnetic field atmosphere with a magnetic flux density of 10 Tesla facing the north and south poles, and then cured by heating to obtain a plate-like thermally conductive molded body. The thermal conductivity in the thickness direction and in-plane direction of the obtained heat conductive molded body was 1.1 W / m · K and 0.3 W / m · K, respectively. The polybenzazole short fibers of the thermally conductive molded body were aligned in the thickness direction as shown in FIG.
[0041]
[Example 4]
The composition b prepared in the same manner as in Example 3 was filled in a plate-shaped mold made of aluminum having a thickness of 3 mm, a length of 20 mm, and a width of 20 mm, and FIG. 5 (1), FIG. 5 (2), FIG. ), The polybenzazole short fibers are sufficiently oriented in a magnetic field atmosphere having a magnetic flux density of 10 Tesla in which the N and S poles of the magnet face each other in the direction perpendicular to the thickness direction, and then heat-cured to obtain a plate-like shape. A thermally conductive molded body was obtained. The thermal conductivity in the thickness direction, in-plane X direction, and in-plane Y direction of the obtained heat conductive molded body was 0.3 W / m · K, 1.2 W / m · K, and 0.3 W / m · K, respectively. It was. The polybenzazole short fibers of the thermally conductive molded body were aligned in the in-plane direction as shown in FIG.
[0042]
[Example 5]
100 parts by weight of liquid silicone rubber (GE Toshiba Silicone Co., Ltd. TSE3070), 20 parts by weight of polybenzazole short fiber (Toyobo Co., Ltd., Zylon HM: diameter 11 μm, length 0.1 mm), aluminum oxide powder (Showa Denko Co., Ltd.) AS-20) 50 parts by weight were mixed and vacuum defoamed composition c was prepared. An aluminum plate having a thickness of 0.5 mm, a length of 20 mm, and a width of 20 mm is filled with the composition c, and the thickness direction is as shown in FIGS. 4 (1), 4 (2), and 4 (3). The polybenzazole short fibers were sufficiently oriented in a magnetic field atmosphere in which the N pole and S pole with a magnetic flux density of 10 Tesla face each other, and then heat-cured to obtain a flexible rubber sheet-like thermally conductive molded body. The thermal conductivity in the thickness direction and in-plane direction of the obtained heat conductive molded body was 4.1 W / m · K and 0.5 W / m · K, respectively. The polybenzazole short fibers of the thermally conductive molded body were aligned in the thickness direction as shown in FIG.
[0043]
[Example 6]
The composition c prepared in the same manner as in Example 1 was filled into a plate-shaped mold made of aluminum having a thickness of 0.5 mm, a length of 20 mm, and a width of 20 mm, and FIG. 5 (1), FIG. 5 (2), FIG. 3) As shown in 3), the polybenzazole short fibers are sufficiently oriented in a magnetic field atmosphere having a magnetic flux density of 10 Tesla in which the N and S poles of the magnet face each other in the direction perpendicular to the thickness direction, and are then heat-cured and flexible. A rubber sheet-like thermally conductive molded body was obtained. The thermal conductivity in the thickness direction, in-plane X direction, and in-plane Y direction of the obtained heat conductive molded body was 0.5 W / m · K, 3.8 W / m · K, and 0.5 W / m · K, respectively. . The polybenzazole short fibers of the thermally conductive molded body were aligned in the in-plane direction as shown in FIG.
[0044]
[Example 7]
To 100 parts by weight of a styrene-based thermoplastic elastomer (Taftec H1053 manufactured by Asahi Kasei Kogyo Co., Ltd.), 2000 parts by weight of toluene as a solvent was added and dissolved. 1 mm) 5 parts by weight were mixed to prepare a solution-like composition d. The composition d is filled in a box-shaped mold made of aluminum with a length of 20 mm, a width of 20 mm, and a depth of 40 mm, as shown in FIGS. 4 (1), 4 (2), and 4 (3). After the polybenzazole short fibers are sufficiently oriented in a magnetic field atmosphere with a magnetic flux density of 6 Tesla facing the north and south poles, the solvent toluene is volatilized and dried by heating to obtain a rubber sheet-like thermally conductive molded body. It was. The thermal conductivity in the thickness direction and in-plane direction of the obtained heat conductive molded body was 1.2 W / m · K and 0.3 W / m · K, respectively. The polybenzazole short fibers of the thermally conductive molded body were aligned in the thickness direction as shown in FIG.
[0045]
[Comparative Example 1]
100 parts by weight of unsaturated polyester resin (Eporac G157 manufactured by Nippon Shokubai Co., Ltd.) and 5 parts by weight of polybenzazole short fibers (Zylon HM manufactured by Toyobo Co., Ltd .: diameter 11 μm, length 0.5 mm) are mixed and vacuum degassed. A composition a was prepared. A plate-like mold made of aluminum having a thickness of 1.5 mm, a length of 20 mm, and a width of 20 mm was filled with the composition a and cured by heating to obtain a plate-like thermally conductive molded body. The thermal conductivity in the thickness direction and in-plane direction of the obtained heat conductive molded body was 0.3 W / m · K and 0.4 W / m · K, respectively. The polybenzazole short fibers of the thermally conductive molded body were not oriented and were randomly dispersed as shown in FIG.
[0046]
[Comparative Example 2]
100 parts by weight of liquid silicone rubber (GE Toshiba Silicone Co., Ltd. TSE3070), 20 parts by weight of polybenzazole short fiber (Toyobo Co., Ltd., Zylon HM: diameter 11 μm, length 0.1 mm), aluminum oxide powder (Showa Denko Co., Ltd.) AS-20) 50 parts by weight were mixed and vacuum defoamed composition c was prepared. The composition c was filled in an aluminum plate having a thickness of 0.5 mm, a length of 20 mm, and a width of 20 mm and cured by heating to obtain a flexible rubber sheet-like thermally conductive molded body. The thermal conductivity in the thickness direction and in-plane direction of the obtained heat conductive molded body was 0.2 W / m · K and 0.3 W / m · K, respectively. The polybenzazole short fibers of the thermally conductive molded body were not oriented and were randomly dispersed as shown in FIG.
[0047]
[Example 8]
After applying an epoxy adhesive to the plate-like thermally conductive molded body obtained in Example 1, a 35 μm copper foil is pressure-bonded with a press, and the copper foil is etched to form a conductor circuit 5. A wiring substrate 6 as shown in FIG. 6 was produced. The transistor (TOSHIBA Corporation TO-220) was soldered and energized while cooling the opposite surface with a cooling fan. The thermal resistance was determined from the temperature difference between the transistor and the conductor circuit resin substrate, and found to be 0.35 ° C / W. It was.
[0048]
[Comparative Example 3]
After applying an epoxy adhesive to the plate-like thermally conductive molded body obtained in Comparative Example 1, a 35 μm copper foil was pressure-bonded with a press, and the copper foil was etched to form a conductor circuit 6. A wiring board 14 as shown in FIG. 7 was produced. The transistor (TOSHIBA Corporation TO-220) was soldered and energized while cooling the opposite surface with a cooling fan. The thermal resistance was determined from the temperature difference between the transistor and the wiring board, and found to be 0.68 ° C./W.
[0049]
【The invention's effect】
According to the method for producing a thermally conductive molded body of the present invention, since the polybenzazole short fibers are oriented and solidified in a certain direction in a polymer, the heat conductivity in the arbitrarily oriented fiber direction is excellent. In addition, it is possible to easily manufacture a thermally conductive molded body. Furthermore, the resin circuit board for conductor circuits of the present invention has a low thermal resistance in that direction because the polybenzazole short fibers are magnetically oriented in the thickness direction of the substrate. Therefore, it is possible to provide a useful electrical product having excellent heat dissipation characteristics when mounting various devices such as a CPU (central processing element), a power source, and a plasma display that generate a large amount of heat.
[Brief description of the drawings]
FIG. 1 is a thermally conductive molded article of the present invention in which polybenzazole short fibers are oriented in the thickness direction.
FIG. 2 is a thermally conductive molded article of the present invention in which polybenzazole short fibers are oriented in the plane direction.
FIG. 3 is an overview diagram showing a dispersion state of polybenzazole short fibers in a conventional molded body.
FIG. 4 is a view showing a method for producing a thermally conductive molded body of the present invention.
FIG. 5 is a view showing another method for producing the thermally conductive molded body of the present invention.
FIG. 6 is a wiring board using the thermally conductive molded body of the present invention.
FIG. 7 is a wiring board using a conventional heat conductive molded body.
FIG. 8 shows an example in which the thermally conductive molded body and the resin substrate for a conductor circuit according to the present invention are used.
FIG. 9 shows an example in which the thermally conductive molded body and the resin substrate for a conductor circuit according to the present invention are used.
FIG. 10 shows an example in which the thermally conductive molded body and the resin substrate for a conductor circuit according to the present invention are used.
FIG. 11 shows an example in which the thermally conductive molded body and the resin substrate for a conductor circuit according to the present invention are used.
[Explanation of symbols]
1 Thermally conductive molded body
2 Polybenzazole staple fiber
3 Mold
4 Magnet
5 Conductor circuit
6 Resin substrate for conductor circuit of the present invention
7 Conductor circuit resin board
8a, 8b, 8c Semiconductor element
9 Heatsink
10 Heat sink
11 Semiconductor elements
12 Case
13 Molded articles containing conventional polybenzazole short fibers
14 Conventional wiring board

Claims (9)

ポリベンザゾール短繊維を含む高分子組成物からなり、ポリベンザゾール短繊維が、板状の成形体の厚み方向に磁場配向されてなることを特徴とする熱伝導性成形体 A heat conductive molded body comprising a polymer composition containing polybenzazole short fibers , wherein the polybenzazole short fibers are magnetically oriented in the thickness direction of the plate-shaped molded body. ポリベンザゾール短繊維の長さが、3mm以下、含有量が、高分子100重量部に対して0.1〜50重量部である請求項1に記載の熱伝導性成形体  2. The thermally conductive molded article according to claim 1, wherein the polybenzazole short fibers have a length of 3 mm or less and a content of 0.1 to 50 parts by weight with respect to 100 parts by weight of the polymer. 高分子が、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂、架橋ゴムのいずれかであることを特徴とする請求項1に記載の熱伝導成形体。The thermally conductive molded article according to claim 1, wherein the polymer is any one of a thermoplastic resin, a thermoplastic elastomer, a thermosetting resin, and a crosslinked rubber. 上面に導体回路を有し、基板として用いる請求項1に記載の熱伝導性成形体 The thermally conductive molded article according to claim 1, which has a conductor circuit on its upper surface and is used as a substrate . ポリベンザゾール短繊維を含む高分子組成物に、磁場を印加させ、組成物中のポリベンザゾール短繊維を板状の成形体の厚み方向に配向させたのちに、固化させることを特徴とする熱伝導性成形体の製造方法。A magnetic composition is applied to a polymer composition containing polybenzazole short fibers, and the polybenzazole short fibers in the composition are oriented in the thickness direction of the plate-shaped molded body, and then solidified. Manufacturing method of heat conductive molded object. ポリベンザゾール短繊維を含む高分子組成物からなり、ポリベンザゾール短繊維が、板状の成形体の厚み方向に磁場配向されたことを特徴とする導体回路用樹脂基板。 A resin substrate for a conductor circuit , comprising a polymer composition containing polybenzazole short fibers , wherein the polybenzazole short fibers are magnetically oriented in the thickness direction of a plate-like molded product . ポリベンザゾール短繊維を含む高分子組成物に、磁場を印加させ、組成物中のポリベンザゾール短繊維を板状の成形体の厚み方向に配向させたのちに、固化させることを特徴とする導体回路用樹脂基板の製造方法 A magnetic composition is applied to a polymer composition containing polybenzazole short fibers, and the polybenzazole short fibers in the composition are oriented in the thickness direction of the plate-shaped molded body, and then solidified. A method for producing a resin substrate for a conductor circuit . 導体回路用樹脂基板の上に、さらに銅箔を接着し、さらにその銅箔をエッチングして導体回路を形成することを特徴とする請求項7に記載の導体回路用樹脂基板の製造方法 8. The method of manufacturing a resin substrate for a conductor circuit according to claim 7, wherein a copper foil is further bonded onto the conductor circuit resin substrate, and the copper foil is further etched to form a conductor circuit . 導体回路用樹脂基板の上に、さらに印刷によって導体回路を形成することを特徴とする請求項7に記載の導体回路用樹脂基板の製造方法 8. The method for producing a resin substrate for a conductor circuit according to claim 7, further comprising forming a conductor circuit on the resin substrate for the conductor circuit by printing .
JP25601099A 1999-09-09 1999-09-09 Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same Expired - Lifetime JP4272767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25601099A JP4272767B2 (en) 1999-09-09 1999-09-09 Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25601099A JP4272767B2 (en) 1999-09-09 1999-09-09 Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001081202A JP2001081202A (en) 2001-03-27
JP4272767B2 true JP4272767B2 (en) 2009-06-03

Family

ID=17286666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25601099A Expired - Lifetime JP4272767B2 (en) 1999-09-09 1999-09-09 Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same

Country Status (1)

Country Link
JP (1) JP4272767B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709339B2 (en) * 1999-09-09 2011-06-22 ポリマテック株式会社 Thermally conductive adhesive, bonding method, and electronic component
FR2824068B1 (en) * 2001-04-27 2005-05-20 Pascal Tournier MATERIAL ANTI-SLIP WITH IMPROVED ADHERENCE, PNEUMATIC AND SHOE SOLE INTEGRATING SUCH MATERIAL
JP4667856B2 (en) * 2004-12-27 2011-04-13 ポリマテック株式会社 Method for producing polybenzazole complex and polybenzazole complex
US20080099129A1 (en) 2006-10-27 2008-05-01 Canon Kabushiki Kaisha Method and apparatus for forming a continuous oriented structure of a polymer
JP4881453B2 (en) * 2010-03-17 2012-02-22 ポリマテック株式会社 Polybenzazole complex and method for producing the same
JP5979160B2 (en) 2014-01-06 2016-08-24 株式会社村田製作所 amplifier
JP6892794B2 (en) * 2017-06-28 2021-06-23 株式会社Kri Thermally conductive sheet-like resin composition and laminated sheet
JP7252530B2 (en) * 2018-08-30 2023-04-05 株式会社クラレ Heat dissipation material

Also Published As

Publication number Publication date
JP2001081202A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
US7264869B2 (en) Thermally conductive molded article and method of making the same
KR102438540B1 (en) Heat transfer member and heat dissipation structure including the same
US6660566B2 (en) Heat conductive molded body and manufacturing method thereof and semiconductor device
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
JP4833398B2 (en) Method for producing thermally conductive molded body
KR20070003626A (en) Heat radiation member and production method for the same
JP2001172398A (en) Thermal conduction molded product and its production method
US7041535B2 (en) Power module and method of manufacturing the same
JP4528397B2 (en) Bonding method and electronic component
JP2002121404A (en) Heat-conductive polymer sheet
US6663969B2 (en) Heat conductive adhesive film and manufacturing method thereof and electronic component
JP5759191B2 (en) Power module
JP2000273196A (en) Heat-conductive resin substrate and semiconductor package
JP4791146B2 (en) Thermally conductive member and manufacturing method thereof
JP2002080617A (en) Thermoconductive sheet
JP4657816B2 (en) Method for producing thermally conductive molded body and thermally conductive molded body
JP2000195998A (en) Heat conductive sheet, its manufacture, and semiconductor device
JP2000281995A (en) Thermally conductive adhesive film and semiconductor device
JP4272767B2 (en) Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same
JP2000191987A (en) Thermally conductive adhesive film and semiconductive device
JP2002086464A (en) Thermal conductive molded body and method for producing the same
JP2001081418A (en) Heat conductive adhesive film and its production and electronic part
JP2002020501A (en) Thermo-conductive resin substrate and semiconductor package
JP2000191998A (en) Thermally conductive adhesive, method of adhesion and semiconductor device
JP4709339B2 (en) Thermally conductive adhesive, bonding method, and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060807

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080723

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081002

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090302

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120306

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4