JP4266858B2 - Local heavy rain monitoring system - Google Patents

Local heavy rain monitoring system Download PDF

Info

Publication number
JP4266858B2
JP4266858B2 JP2004073155A JP2004073155A JP4266858B2 JP 4266858 B2 JP4266858 B2 JP 4266858B2 JP 2004073155 A JP2004073155 A JP 2004073155A JP 2004073155 A JP2004073155 A JP 2004073155A JP 4266858 B2 JP4266858 B2 JP 4266858B2
Authority
JP
Japan
Prior art keywords
rainfall
data
cloud
time
cloud discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004073155A
Other languages
Japanese (ja)
Other versions
JP2005257639A (en
Inventor
健一 星
伸一郎 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2004073155A priority Critical patent/JP4266858B2/en
Publication of JP2005257639A publication Critical patent/JP2005257639A/en
Application granted granted Critical
Publication of JP4266858B2 publication Critical patent/JP4266858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/951Radar or analogous systems specially adapted for specific applications for meteorological use ground based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、雲を観測することによって降雨を予測するシステムに関し、特に雷雲の雲放電現象を観測して局地的な豪雨を予測するシステムに関する。   The present invention relates to a system for predicting rainfall by observing clouds, and more particularly to a system for predicting local heavy rain by observing a cloud discharge phenomenon of a thundercloud.

従来、雲放電を計測することによって落雷を検知又は予測する方法として、非特許文献1に示されているように、雲放電に伴って発生する電磁波を計測する方法がある。また、雷雲域を観測する方法として、特許文献1に示されているように、レーダエコーの強度を計測する方法がある。   Conventionally, as a method of detecting or predicting a lightning strike by measuring cloud discharge, there is a method of measuring electromagnetic waves generated with cloud discharge as shown in Non-Patent Document 1. Moreover, as a method of observing a thundercloud region, there is a method of measuring the intensity of a radar echo as disclosed in Patent Document 1.

渡辺永作、「新しい雷観測システム」、電気評論、1998年7月号、P.45−49Eisaku Watanabe, “New Lightning Observation System”, Electric Review, July 1998, P.I. 45-49

特開平8−122433号公報JP-A-8-122433

しかし、上述した従来の落雷検知又は予測方法や、雷雲域の観測方法では、局地的な降雨の地点や時間、さらに雨量等を予測することは不可能である。
そこで、本発明は、雷雲の雲放電量及びレーダエコーを計測することによって即時的に雷雲の成長段階を判断し、その成長段階から降雨までの時間を予測すると共に雷雲の位置,移動状況,雨量を予測することを目的とする。
However, the conventional lightning strike detection or prediction method and the thundercloud region observation method described above cannot predict a local rainfall point, time, and rainfall.
Therefore, the present invention immediately determines the thundercloud growth stage by measuring the thundercloud discharge amount and radar echo, predicts the time from the growth stage to the rain, and also determines the thundercloud position, movement status, and rainfall amount. The purpose is to predict.

雲放電によって発生する電磁波を取得することによって雲放電量を検出する雲放電検出手段と、雲の位置を検出するためのレーダエコー検出手段と、前記雲放電検出手段によって取得された雲放電量から雷雲の成長段階を解析して降雨開始までの時間を予測する降雨時間予測手段と、地上雨量計測手段と、前記地上雨量計測手段によって計測した過去の地上雨量データと前記レーダエコー検出手段によって検出したレーダエコーデータと前記雲放電量との比較データの統計に基づいて降雨量を予測する降雨量予測手段と、前記雲放電検出手段と前記レーダエコー検出手段とによって雷雲位置情報を検出する雷雲位置検出手段と、前記降雨時間予測手段による予測降雨時間と前記降雨量予測手段による予測降雨量と前記雷雲位置情報とを地図データに合成する手段と、を有することを特徴とする。 And cloud discharge detection means for detecting the cloud discharge amount by obtaining the electromagnetic waves generated by the cloud discharge, and the radar echo detecting means for detecting the position of the cloud, the cloud discharge quantity obtained by the cloud discharge detecting means Rainfall time prediction means for analyzing the thundercloud growth stage and predicting the time to start rainfall, ground rain measurement means, past ground rain data measured by the ground rain measurement means, and radar radar detection means Rainfall prediction means for predicting rainfall based on statistics of comparison data between radar echo data and cloud discharge, and thundercloud position detection for detecting thundercloud position information by the cloud discharge detection means and the radar echo detection means map means, the predicted rainfall by the prediction rainfall time and the rainfall prediction means according to the rainfall time predicting means and said thundercloud position information de And having means for combining the data, the.

統計的に得られた雷雲の成長サイクルと雲放電量又はレーダエコー強度との関係を基に、降雨開始までの時間及び降雨量を算出することによって局地的豪雨が発生する位置と時間を予測して、正確な局地的豪雨警戒情報を多くの人に通知することができる。   Predict the location and time of local heavy rain by calculating the time to rainfall and the amount of rainfall based on the relationship between the thundercloud growth cycle and cloud discharge or radar echo intensity obtained statistically Thus, accurate local heavy rain warning information can be notified to many people.

次に、本発明の実施の形態について図面を参照して詳細に説明する。
図1は、本発明の一実施の形態を示す構成図である。
図1において、局地的豪雨監視システム4は、雷放電検出部1から雲放電データを、気象レーダ部2からレーダエコーデータ、地上雨量計測部から地上雨量データを収集し、収集した3つのデータを解析して局地的豪雨発生の時間と位置と雨量を予測し、その予測結果をWEB配信する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention.
In FIG. 1, the local heavy rain monitoring system 4 collects cloud discharge data from the lightning discharge detection unit 1, radar echo data from the weather radar unit 2, and ground rainfall data from the ground rainfall measurement unit. To predict the time, position and rainfall of local heavy rain, and distribute the prediction results to the web.

局地的豪雨監視システム4の構成は、雲放電データとレーダエコーデータと地上雨量計データの入力を解析用データとして出力するデータ入出力部5と、解析用データに基づいて局地的豪雨発生までの時間や位置を予測し、その予測値を表示用データとして出力する総合解析部6と、表示用データを編集して局地的豪雨警戒表示し、さらにWEB表示用データとして出力する局地的豪雨警戒表示部7と、WEB表示用データをWEB配信するWEBサーバ8とから成る。   The configuration of the local heavy rain monitoring system 4 consists of a data input / output unit 5 that outputs the input of cloud discharge data, radar echo data, and ground rain gauge data as analysis data, and a local heavy rain occurrence based on the analysis data. The total analysis unit 6 that predicts the time and position until output, and outputs the predicted value as display data, and the local heavy rain warning display by editing the display data and further outputting as WEB display data The torrential rain warning display unit 7 and a WEB server 8 for WEB distribution of WEB display data.

雷放電検出部1は、複数地点に配置された複数の干渉計やアンテナ等の雲放電検出装置によって計測された放電数(密度)と雲放電発生位置及びその時刻を雲放電データとしてデータ入出力部5へ送信する。ここでの放電数(密度)と放電発生位置の計測方法は、雲放電に伴って発生する電磁波を複数地点で計測し、複数地点から送信されてきた同時刻に計測された同一スペクトルの複数の電磁波データを基に、電磁波の発生地点と放電数(密度)を割り出す方法である。なお、放電数(密度)とは、一定時間内において所定の区域で雲放電に伴って発生する電磁波の計測回数である。例えば、放電数(密度)は1分間当たり1平方km内の電磁波の計測回数とする。
気象レーダ部2は、雷雲に対してレーダを発信して戻ってきたレーダエコーデータをデータ入出力部5に送信する。地上雨量計測部3は、地上雨量計データを取得してデータ入出力部5に送信する。
The lightning discharge detector 1 inputs / outputs the number of discharges (density) measured by cloud discharge detectors such as a plurality of interferometers and antennas arranged at a plurality of points, the cloud discharge occurrence position and the time as cloud discharge data. Transmit to part 5. Here, the number of discharges (density) and the method of measuring the discharge occurrence position are measured at a plurality of points for electromagnetic waves generated in association with cloud discharge, and a plurality of the same spectrum measured at the same time transmitted from a plurality of points. In this method, the generation point of electromagnetic waves and the number of discharges (density) are determined based on electromagnetic wave data. Note that the number of discharges (density) is the number of times of electromagnetic waves generated in association with cloud discharge in a predetermined area within a fixed time. For example, the number of discharges (density) is the number of times of electromagnetic wave measurement within 1 square km per minute.
The weather radar unit 2 transmits radar echo data returned from the thundercloud to the data input / output unit 5. The ground rainfall measuring unit 3 acquires the ground rain gauge data and transmits it to the data input / output unit 5.

次に、図2,7,8を参照しながら本発明の動作について説明する。
図2は、本発明の動作を示すシーケンス図である。まず、データ入出力部5にて、雷放電検出部1,気象レーダ部2,地上雨量計測部3からそれぞれ雲放電データ,レーダエコーデータ,地上雨量計データを、計測した時点の時刻データと共に取得する(S1,S2,S3)。3つのデータは、総合解析部6に入力され、3つのデータを基に定期的に局地的豪雨発生の位置と時間の予測と、各地点の降雨量の解析が行われる(S4)。局地的豪雨警戒表示部7では、総合解析部6で解析された結果を地図上に合成することによって画像編集して図7,8のように表示する(S5)。WEBサーバ8では、局地的豪雨警戒表示部7で編集された画像データをWEBデータに変換してWEB配信を行う(S6)。
Next, the operation of the present invention will be described with reference to FIGS.
FIG. 2 is a sequence diagram showing the operation of the present invention. First, in the data input / output unit 5, cloud discharge data, radar echo data, and ground rain gauge data are obtained from the lightning discharge detection unit 1, weather radar unit 2, and ground rainfall measurement unit 3, respectively, together with time data at the time of measurement. (S1, S2, S3). The three data are input to the comprehensive analysis unit 6, and the location and time of the occurrence of local heavy rain are regularly estimated based on the three data, and the rainfall amount at each point is analyzed (S4). The local heavy rain warning display unit 7 synthesizes the results analyzed by the comprehensive analysis unit 6 on a map and displays the images as shown in FIGS. 7 and 8 (S5). The WEB server 8 converts the image data edited by the local heavy rain warning display unit 7 into WEB data and performs WEB distribution (S6).

次に図2の局地的豪雨予測処理(S4)について図3〜6を参照しながら詳細に説明する。ここで、図3は雲放電データ,レーダエコーデータ,地上雨量計データ,各種予測値をプロットした座標図を示し、図4は雷雲の成長サイクルを示し、図5は雲放電の放電数(密度)の時間変化と雷雲の成長段階の関係を示し、図6はレーダエコー強度の時間変化と雷雲の成長段階の関係を示している。   Next, the local heavy rain prediction process (S4) of FIG. 2 will be described in detail with reference to FIGS. 3 shows a coordinate diagram in which cloud discharge data, radar echo data, ground rain gauge data, and various predicted values are plotted, FIG. 4 shows a thundercloud growth cycle, and FIG. 5 shows the number of discharges (density) of cloud discharge. ) And the thundercloud growth stage, and FIG. 6 shows the relation between the time change of the radar echo intensity and the thundercloud growth stage.

まず、気象レーダ部2が取得したレーダエコーデータから得られたエコー強度と雷雲位置を図3のように座標上に時系列にプロットしていく。そして、雷放電検出部1が取得した雲放電の放電数(密度)とその雲放電が発生した位置とを図3のレーダエコーデータがプロットされた座標上に時系列に重ね合わせていく。レーダエコーデータと放電数(密度)を重ね合わせた図3に示す座標上のデータを基に、現在の時刻と以前の時刻の差分から、雲放電データの移動方向と放電数(密度)の変化、レーダエコーデータの移動方向と強さの変化を予測する。   First, the echo intensity and thundercloud position obtained from radar echo data acquired by the weather radar unit 2 are plotted in time series on coordinates as shown in FIG. Then, the number of discharges (density) of the cloud discharge acquired by the lightning discharge detector 1 and the position where the cloud discharge occurred are superimposed on the coordinates on which the radar echo data of FIG. 3 is plotted in time series. Based on the data on the coordinates shown in Fig. 3 where radar echo data and the number of discharges (density) are superimposed, the movement direction of cloud discharge data and the change in the number of discharges (density) from the difference between the current time and the previous time Predict changes in the direction and intensity of radar echo data.

雲放電データは、次に雷雲の成長段階を割り出すために利用する。雷雲の成長サイクルは図4に示すように段階に分けられる。このような雷雲の成長に応じて雲放電の放電数(密度)が図5のように増加していく。そして、図5のような統計的に得られた放電数(密度)と雷雲の成長段階の相関関係と計測した放電数(密度)を基に、成熟期に到達するまでの時間を算定して降雨開始までの時間を予測する。さらに、放電数(密度)が局地的豪雨の警戒点に達したとき、雲放電データで警戒点に達している時点のレーダエコー強度も、図6に示すレーダエコー強度の局地的豪雨警戒点以上の値であれば、図3の座標上に局地的豪雨警戒情報としてプロットする。 The cloud discharge data is then used to determine the thundercloud growth stage. The thundercloud growth cycle is divided into four stages as shown in FIG. As the thundercloud grows, the number of discharges (density) of the cloud discharge increases as shown in FIG. Then, based on the correlation between the statistically obtained number of discharges (density) as shown in FIG. 5 and the thundercloud growth stage and the measured number of discharges (density), the time to reach maturity is calculated. Predict the time until the start of rainfall. Further, when the number of discharges (density) reaches the warning point for local heavy rain, the radar echo intensity at the time when the warning point is reached in the cloud discharge data is also the local heavy rain warning of the radar echo intensity shown in FIG. If the value is greater than or equal to a point, it is plotted as local heavy rain warning information on the coordinates of FIG.

降雨量は、過去の地上雨量計データとレーダエコーデータのエコー強度及び雲放電データの放電数(密度)との比較データの統計により予測する。地上雨量計データは、レーダエコーデータ及び雲放電データと共に蓄積され、降雨量予測にフィードバックする。   The rainfall is predicted by statistics of comparison data between the past ground rain gauge data and the echo intensity of radar echo data and the number of discharges (density) of cloud discharge data. Ground rain gauge data is stored together with radar echo data and cloud discharge data, and fed back to rainfall prediction.

次に局地的豪雨警戒表示部7の動作(図2の処理S5)を図7,8を参照しながら詳細に説明する。総合解析部6から入力された座標値と組合わされたエコー強度,放電数(密度),地上雨量計データを、図7に示すように座標値を基に地図上に合成する。このとき夫々のデータはレベルに応じて色分けして表示される。
また、雲放電データとレーダエコーデータを基に予測された各地の降水開始の予測時刻と予測降雨量を図7に示す地図上に表示してもよい。
さらに、雲放電データとレーダエコーデータを基に予測された局地的豪雨警戒情報は、図8に示すよう局地的豪雨警戒区域として表示する。
Next, the operation of the local heavy rain warning display unit 7 (processing S5 in FIG. 2) will be described in detail with reference to FIGS. The echo intensity, the number of discharges (density), and the ground rain gauge data combined with the coordinate value input from the comprehensive analysis unit 6 are synthesized on the map based on the coordinate value as shown in FIG. At this time, each data is displayed in different colors according to the level.
Further, the predicted precipitation start time and predicted rainfall amount in each place predicted based on cloud discharge data and radar echo data may be displayed on the map shown in FIG.
Further, the local heavy rain warning information predicted based on the cloud discharge data and the radar echo data is displayed as a local heavy rain warning area as shown in FIG.

以上のように本発明は、統計的に得られた雷雲の成長サイクルと放電数(密度)又はエコー強度との関係を基に、降雨開始までの時間及び降水量を算出することによって、局地的豪雨が発生する位置と時間を予測して正確な局地的豪雨警戒情報を多くの人に通知することできる。   As described above, the present invention calculates the time until rainfall starts and the amount of precipitation based on the relationship between the thundercloud growth cycle and the number of discharges (density) or echo intensity obtained statistically. It is possible to predict the location and time at which a torrential rain will occur and to notify accurate local torrential rain alert information to many people.

本発明の一実施形態の全体構成図である。1 is an overall configuration diagram of an embodiment of the present invention. 本発明の一実施形態の動作を示したシーケンス図である。It is the sequence diagram which showed the operation | movement of one Embodiment of this invention. 本発明の一実施形態における雲放電データ,レーダエコーデータ,地上雨量計データ,各種予測値を時系列にプロットした座標図である。FIG. 6 is a coordinate diagram in which cloud discharge data, radar echo data, ground rain gauge data, and various predicted values are plotted in time series in an embodiment of the present invention. 雷雲の成長サイクルを示した図である。It is the figure which showed the growth cycle of the thundercloud. 雲放電の放電数(密度)の時間変化と雷雲の成長段階との関係を示した図である。It is the figure which showed the relationship between the time change of the discharge number (density) of cloud discharge, and the growth stage of a thundercloud. レーダエコー強度の時間変化と雷雲の成長段階との関係を示した図である。It is the figure which showed the relationship between the time change of a radar echo intensity | strength, and the growth stage of a thundercloud. 本発明の一実施形態における雲放電データ,レーダエコーデータ,地上雨量計データの分布を示す表示画面の一例である。It is an example of the display screen which shows distribution of the cloud discharge data in one embodiment of this invention, radar echo data, and ground rain gauge data. 本発明の一実施形態における局地的豪雨警戒表示画面の一例である。It is an example of the local heavy rain warning display screen in one Embodiment of this invention.

符号の説明Explanation of symbols

1 雷放電検出部
2 気象レーダ部
3 地上雨量計測部
4 局地的豪雨監視システム
5 データ入出力部
6 総合解析部
7 局地的豪雨警戒表示部
8 WEBサーバ
DESCRIPTION OF SYMBOLS 1 Lightning discharge detection part 2 Weather radar part 3 Ground rainfall measurement part 4 Local heavy rain monitoring system 5 Data input / output part 6 Comprehensive analysis part 7 Local heavy rain warning display part 8 WEB server

Claims (3)

雲放電によって発生する電磁波を取得することによって雲放電量を検出する雲放電検出手段と、
雲の位置を検出するためのレーダエコー検出手段と、
前記雲放電検出手段によって取得された雲放電量から雷雲の成長段階を解析して降雨開始までの時間を予測する降雨時間予測手段と、
地上雨量計測手段と、
前記地上雨量計測手段によって計測した過去の地上雨量データと前記レーダエコー検出手段によって検出したレーダエコーデータと前記雲放電量との比較データの統計に基づいて降雨量を予測する降雨量予測手段と、
前記雲放電検出手段と前記レーダエコー検出手段とによって雷雲位置情報を検出する雷雲位置検出手段と、
前記降雨時間予測手段による予測降雨時間と前記降雨量予測手段による予測降雨量と前記雷雲位置情報とを地図データに合成する手段と、
を有することを特徴とする局地的豪雨監視システム。
Cloud discharge detecting means for detecting the amount of cloud discharge by acquiring electromagnetic waves generated by cloud discharge;
Radar echo detection means for detecting the position of the cloud;
And rainfall time predicting means for predicting the time to rain start by analyzing the growth stage of the thundercloud from cloud discharge quantity obtained by the cloud discharge detecting means,
Ground rainfall measurement means,
Precipitation prediction means for predicting rainfall based on statistics of comparison data between past ground rainfall data measured by the ground rainfall measurement means, radar echo data detected by the radar echo detection means, and cloud discharge amount;
Thundercloud position detection means for detecting thundercloud position information by the cloud discharge detection means and the radar echo detection means;
Means for synthesizing the predicted rainfall time by the rainfall time prediction means, the predicted rainfall by the rainfall prediction means, and the thundercloud position information into map data;
A local heavy rain monitoring system characterized by comprising:
前記地上雨量計測手段によって取得した地上雨量データを前記地図データに合成する手段を有することを特徴とする請求項1記載の局地的豪雨監視システム。 2. The local heavy rain monitoring system according to claim 1, further comprising means for synthesizing the ground rainfall data acquired by the ground rainfall measuring means with the map data. 前記降雨時間予測手段は、雷雲の成長段階と雲放電量との統計上の相関関係に基づいて、計測された雲放電量から降雨時間を算定することを特徴とする請求項1乃至2何れか記載の局地的豪雨監視システム。 3. The rain time prediction means calculates a rain time from a measured cloud discharge amount based on a statistical correlation between a thundercloud growth stage and a cloud discharge amount . The local heavy rain monitoring system described.
JP2004073155A 2004-03-15 2004-03-15 Local heavy rain monitoring system Expired - Fee Related JP4266858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073155A JP4266858B2 (en) 2004-03-15 2004-03-15 Local heavy rain monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073155A JP4266858B2 (en) 2004-03-15 2004-03-15 Local heavy rain monitoring system

Publications (2)

Publication Number Publication Date
JP2005257639A JP2005257639A (en) 2005-09-22
JP4266858B2 true JP4266858B2 (en) 2009-05-20

Family

ID=35083483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073155A Expired - Fee Related JP4266858B2 (en) 2004-03-15 2004-03-15 Local heavy rain monitoring system

Country Status (1)

Country Link
JP (1) JP4266858B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526708A (en) * 2016-09-21 2017-03-22 广东奥博信息产业有限公司 Intelligent early-warning analysis method for meteorological severe convection weather based on machine learning

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8836518B2 (en) 2011-07-06 2014-09-16 Earth Networks, Inc. Predicting the potential for severe weather
KR101097947B1 (en) 2011-10-19 2011-12-22 대한민국(기상청장) Heavy rain prediction method and system thereof
JP6441276B2 (en) 2016-01-08 2018-12-19 株式会社東芝 Estimation apparatus, estimation method, and estimation program
JP7165973B2 (en) * 2017-11-28 2022-11-07 国立研究開発法人防災科学技術研究所 Cumulonimbus prediction system
FR3086765B1 (en) * 2018-10-01 2021-12-10 Selerys METHOD OF EVALUATING THE MATURITY OF A CLOUD CELL AND ASSOCIATED SYSTEM
CN111090132B (en) * 2019-12-18 2022-09-27 亿水泰科(北京)信息技术有限公司 Rainfall radar intelligent detection control system based on multisource rainfall information
CN113740935B (en) * 2021-07-26 2023-09-19 东风汽车集团股份有限公司 Rain detection system and method based on reversing radar system
CN114063082A (en) * 2021-11-15 2022-02-18 最美天气(上海)科技有限公司 Weather short-term prediction method and weather prediction system based on time sequence radar echo intensity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526708A (en) * 2016-09-21 2017-03-22 广东奥博信息产业有限公司 Intelligent early-warning analysis method for meteorological severe convection weather based on machine learning

Also Published As

Publication number Publication date
JP2005257639A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US6850183B2 (en) Slope monitoring system
Emmanuel et al. Temporal and spatial variability of rainfall at the urban hydrological scale
US6405134B1 (en) Method and apparatus for predicting lightning threats based on radar and temperature data
JP5414413B2 (en) Partial discharge diagnostic method and partial discharge diagnostic device for gas insulated switchgear
AU2002218070A1 (en) Slope monitoring system
JP4266858B2 (en) Local heavy rain monitoring system
JP4217728B2 (en) Lightning strike advanced evaluation apparatus and method, lightning charge evaluation apparatus and method, lightning charge advanced evaluation program
CN114397636B (en) Method, system and equipment for evaluating uniformity of reflectivity factor of ground-based radar
Kuster et al. Rapid-update radar observations of ZDR column depth and its use in the warning decision process
EP2937689A1 (en) Adaptive baseline damage detection system and method
JP2009020024A (en) Water leak state monitoring device and method
JP2009075017A (en) Surface flow rate estimation method, device, and program
Kuster et al. Using ZDR columns in forecaster conceptual models and warning decision-making
Le Marshall et al. Error characterisation of atmospheric motion vectors
JP2022000651A (en) Thunder estimation system and method
JP5362493B2 (en) Radar signal processing device
Hartung et al. An intercomparison of UW cloud-top cooling rates with WSR-88D radar data
Linow et al. An assessment of the reliability of sea-ice motion and deformation retrieval using SAR images
JP4171752B2 (en) Lightning strike electric field amount calculation device and method, program, computer-readable recording medium
US8022864B2 (en) Detection of transient signals in doppler spectra
KR20130049521A (en) Apparatus and method for predicting precipitation echo route
JP2008157713A (en) Radar rain gage operation control system
TWI625537B (en) Meteorological phenomenon occurrence possibility determination system and method
US11300681B2 (en) Weather radar apparatus and severe rain prediction method
CN113447724B (en) Lightning activity distinguishing method and system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees