JP4260038B2 - Aperture antenna - Google Patents

Aperture antenna Download PDF

Info

Publication number
JP4260038B2
JP4260038B2 JP2004040382A JP2004040382A JP4260038B2 JP 4260038 B2 JP4260038 B2 JP 4260038B2 JP 2004040382 A JP2004040382 A JP 2004040382A JP 2004040382 A JP2004040382 A JP 2004040382A JP 4260038 B2 JP4260038 B2 JP 4260038B2
Authority
JP
Japan
Prior art keywords
antenna
reflecting mirror
primary radiator
sub
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004040382A
Other languages
Japanese (ja)
Other versions
JP2005236426A (en
Inventor
秀行 黒沢
好勝 管野
隆夫 金井
敏博 杉浦
政宗 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Maspro Denkoh Corp
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Maspro Denkoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Maspro Denkoh Corp filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2004040382A priority Critical patent/JP4260038B2/en
Publication of JP2005236426A publication Critical patent/JP2005236426A/en
Application granted granted Critical
Publication of JP4260038B2 publication Critical patent/JP4260038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

本発明は、反射鏡と一次放射器とを備えた開口面アンテナに関する。 The present invention relates to an opening surface antenna with a reflector and the primary radiator.

従来より、マイクロ波やミリ波を使った無線通信には、反射鏡と一次放射器とを備えた開口面アンテナが利用されているが、開口面アンテナは、指向特性が鋭く、特に、長距離通信のために、反射鏡の開口面積を広くして、利得を大きくすると、ビーム幅(電力半値幅)が極めて狭くなるため、アンテナ設置時の方向調整が難しいという問題があった。   Conventionally, aperture antennas equipped with reflectors and primary radiators have been used for wireless communication using microwaves and millimeter waves, but aperture antennas have sharp directivity characteristics, especially long distances. If the aperture area of the reflector is increased and the gain is increased for communication, the beam width (power half-value width) becomes extremely narrow, which makes it difficult to adjust the direction when installing the antenna.

そこで、従来より、開口面アンテナのアンテナ方向調整を簡単に行う方法として、GPS受信機を用いて、開口面アンテナを設置しようとする場所の緯度・経度・高度を実測し、その測定結果と通信相手の設置地点である目標地点の位置とから、開口面アンテナの向き(方位・仰角等)を演算し、その演算結果に基づき、開口面アンテナの向きを調整する方法が提案されている(例えば、特許文献1等参照)。   Therefore, as a conventional method for easily adjusting the antenna direction of the aperture antenna, the GPS receiver is used to measure the latitude, longitude, and altitude of the location where the aperture antenna is to be installed, and to communicate with the measurement results. A method has been proposed in which the orientation (azimuth / elevation angle, etc.) of the aperture antenna is calculated from the position of the target location, which is the installation location of the other party, and the orientation of the aperture antenna is adjusted based on the calculation result (for example, , See Patent Document 1).

また、この提案の調整方法では、方向調整の調整対象となる開口面アンテナが通信相手となるアンテナの方向を向いているか否かを確認することができないことから、これら一対のアンテナの内、一方のアンテナには、アンテナの中心軸と同方向にビーム光(レーザ光)を出射する光源を設け、他方のアンテナには、そのビーム光を受光する受光板を設けて、光源から出射されたビーム光が受光板の所定位置にて受光できるようにアンテナ方向を調整する、といったことも提案されている(例えば、特許文献2等参照)。
特開平7−131228号公報 特開2002−271124号公報
In addition, in the proposed adjustment method, it is impossible to confirm whether the aperture antenna to be adjusted for direction adjustment faces the direction of the antenna to be communicated with. This antenna is provided with a light source that emits beam light (laser light) in the same direction as the central axis of the antenna, and the other antenna is provided with a light receiving plate that receives the beam light, and the beam emitted from the light source It has also been proposed to adjust the antenna direction so that light can be received at a predetermined position of the light receiving plate (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 7-131228 JP 2002-271124 A

しかしながら、上記従来の調整方法では、調整作業を行う際に、開口面アンテナの設置地点を測定するGPS受信機や、GPS受信機による測定結果と目標地点とから開口面アンテナの向き(方位・仰角等)を演算する演算装置、或いは、ビーム光(レーザ光)を投受光するための投受光器(光源及び受光板)、といったアンテナ方向調整用の高価な装置を準備しなければならず、その準備が面倒で、しかも、方向調整に費用がかかるという問題があった。   However, in the above-described conventional adjustment method, when performing the adjustment work, the GPS receiver that measures the installation position of the aperture antenna, and the direction of the aperture antenna (azimuth / elevation angle) from the measurement result and the target location by the GPS receiver. Etc.) or an expensive device for adjusting the antenna direction, such as a light emitting and receiving device (light source and light receiving plate) for projecting and receiving beam light (laser light), must be prepared. There was a problem that preparation was troublesome and costly to adjust the direction.

また特に、アンテナ方向の調整にビーム光(レーザ光)を使用する場合には、ビーム光の投光器(光源)と受光器(受光板)とを2つのアンテナに個々に設置して動作させる必要があるため、各アンテナの設置地点に作業員を配置しなければならず、その調整作業が極めて面倒になるという問題もある。   In particular, when beam light (laser light) is used to adjust the antenna direction, it is necessary to operate the light beam projector (light source) and light receiver (light receiving plate) separately installed on the two antennas. For this reason, workers must be arranged at the installation points of the respective antennas, and there is a problem that the adjustment work becomes extremely troublesome.

本発明は、こうした問題に鑑みなされたもので、GPS受信機や投受光器といったアンテナ方向調整用の装置を使用することなく、しかも、調整対象となるアンテナの設置地点だけでアンテナ方向を簡単に調整し得る開口面アンテナを提供することを目的とする。 The present invention has been made in view of such problems, and without using an antenna direction adjusting device such as a GPS receiver or a light projecting / receiving device, the antenna direction can be easily set only at the installation point of the antenna to be adjusted. and to provide an open surface antenna capable of adjusting.

かかる目的を達成するためになされた請求項1に記載の発明は、
電波を反射する反射鏡と、該反射鏡の焦点位置に配置された一次放射器と、を備えた開口面アンテナにおいて、
前記一次放射器を前記反射鏡の中心軸周りに回転可能に支持する支持部材を備え、
前記支持部材には、前記一次放射器を固定するボルトが設けられ、
前記一次放射器の側面には、前記ボルトの先端に係合し、当該一次放射器を前記中心軸周りに回転させた際に、当該一次放射器を前記反射鏡の中心軸方向に変位可能に案内して、当該一次放射器を、指向特性が最も鋭くなる最適通信位置から、指向特性がアンテナ方向の調整に適した特性となる最適調整位置までの間に位置決め可能な溝が設けられていることを特徴とする。
The invention according to claim 1 which has been made in order to achieve the object,
In an aperture antenna including a reflecting mirror that reflects radio waves, and a primary radiator disposed at a focal position of the reflecting mirror,
A support member that rotatably supports the primary radiator around a central axis of the reflecting mirror;
The support member is provided with a bolt for fixing the primary radiator,
The side of the primary radiator is engaged with the tip of the bolt, and when the primary radiator is rotated around the central axis, the primary radiator can be displaced in the central axis direction of the reflecting mirror. A groove is provided to guide and position the primary radiator from the optimum communication position where the directivity is the sharpest to the optimum adjustment position where the directivity is suitable for adjustment of the antenna direction. It is characterized by that.

従って、この開口面アンテナによれば、一次放射器を支持部材に装着した状態でその軸周りに回転させることによって、一次放射器を反射鏡の中心軸方向に変位させて、その位置を、開口面アンテナの指向特性が最も鋭くなる最適通信位置から、開口面アンテナの指向特性がアンテナ方向の調整に適した特性となる最適調整位置、若しくは、その逆方向へと変位させることができるようになり、延いては、アンテナの方向調整を極めて簡単に行うことが可能となる。  Therefore, according to this aperture surface antenna, the primary radiator is displaced around the axis of the reflecting mirror by rotating the primary radiator around the axis in a state where the primary radiator is mounted on the support member, and the position of the aperture antenna is changed to the aperture. It is now possible to shift from the optimal communication position where the directional characteristics of the planar antenna are the sharpest to the optimal adjustment position where the directional characteristics of the aperture antenna are suitable for adjusting the antenna direction, or vice versa. As a result, the antenna direction can be adjusted very easily.

つまり、開口面アンテナにおいて、アンテナの指向特性の鋭さを表す電力半値幅は、アンテナの利得に応じて変化し、アンテナの利得が大きいほど電力半値幅が鋭くなる。また、開口面アンテナの利得は、反射鏡の実効開口面積が大きいほど大きくなる。
このため、本発明のように、一次放射器を反射鏡の中心軸方向に変位させて、反射鏡と一次放射器との相対位置を変化させれば、反射鏡の実効開口面積が変化し、この結果、アンテナの利得、延いては、電力半値幅が変化することになる。
That is, in the aperture antenna, the half-power width representing the sharpness of the antenna directivity changes according to the antenna gain, and the half-power width becomes sharper as the antenna gain increases. Further, the gain of the aperture antenna increases as the effective aperture area of the reflector increases.
Therefore, as in the present invention, if the primary radiator is displaced in the direction of the central axis of the reflecting mirror and the relative position between the reflecting mirror and the primary radiator is changed, the effective aperture area of the reflecting mirror changes, As a result, the gain of the antenna, that is, the power half width changes.

そして、本発明の開口面アンテナによれば、一次放射器を反射鏡の中心軸方向に変位させて、一次放射器の位置を、最適通信位置から最適調整位置、若しくはその逆方向へと変位させることができることから、アンテナ方向の調整時には、まず、一次放射器の位置を最適調整位置に設定することで、アンテナのビーム幅(電力半値幅)を最適通信位置よりも一時的に広げて、通信相手からの送信電波を受信できるようにアンテナ方向を調整することにより、アンテナ方向を概略調整し、その後、一次放射器の位置を最適通信位置に設定することで、アンテナのビーム幅(電力半値幅)を本来の狭いビーム幅に戻し、アンテナ方向を微調整する、といったことができる。
従って、本発明の開口面アンテナによれば、指向特性が鋭い開口面アンテナであっても、極めて簡単に方向調整を行うことができるようになるのである。
And, according to the aperture antenna of the present invention, the primary radiator is displaced in the direction of the central axis of the reflector, the position of the primary radiator, the optimum adjustment position from the optimum communication position or displaced in the opposite direction because it can be, at the time of adjustment of the antenna direction, first, by setting the optimum adjustment position the position of the primary radiator, also spread temporarily from the optimum communication position of the antenna beamwidth (half-power beam width), By roughly adjusting the antenna direction by adjusting the antenna direction so that it can receive the transmission radio wave from the communication partner, and then setting the position of the primary radiator to the optimal communication position, it returns the width) to the original narrow beam width, to finely adjust the antenna direction may be like.
Therefore, according to the aperture antenna of the present invention , the direction can be adjusted very easily even if the aperture antenna has a sharp directivity .

また、この方向調整には、開口面アンテナによる信号の受信レベルを測定するレベル測定器を使用すればよく、従来のように、GPS受信機やビーム光の投受光器等の方向調整用の装置を別途準備する必要がないため、方向調整を簡単且つ安価に行うことが可能となる。   Further, for this direction adjustment, a level measuring device that measures the reception level of the signal by the aperture antenna may be used, and a conventional device for adjusting the direction such as a GPS receiver or a beam light projecting / receiving device is used. Since there is no need to separately prepare the direction adjustment, it is possible to easily and inexpensively adjust the direction.

ところで、開口面アンテナとしては、一つの反射鏡とその反射鏡の焦点位置に配置された一次放射器とで構成されたものと、請求項2に記載のように、反射鏡が、主反射鏡と副反射鏡とで構成され、副反射鏡が主反射鏡と一次放射器との間で電波を中継するように配置されたもの(具体的には、カセグレンアンテナ、グレゴリアンテナ等)が知られている。 By the way, as the aperture surface antenna, the one constituted by one reflecting mirror and a primary radiator disposed at the focal position of the reflecting mirror, and the reflecting mirror according to claim 2, wherein the reflecting mirror is a main reflecting mirror. And a sub-reflector, and the sub-reflector is arranged to relay radio waves between the main reflector and the primary radiator (specifically, a Cassegrain antenna, a Gregory antenna, etc.) ing.

そして、本発明は、反射鏡と一次放射器とを備えた開口面アンテナであれば、何れのタイプのものでも適用できる。 The present invention can be applied to any type of aperture antenna provided with a reflecting mirror and a primary radiator .

以下に本発明の実施形態を図面と共に説明する。
図1は本発明に関連した参考例のカセグレンアンテナ1の全体構成を表す説明図であり、(a)はカセグレンアンテナ1の主反射鏡部分を破断した一部破断側面図、(b)は主反射鏡の反射面側から見た正面図である。
Embodiments of the present invention will be described below with reference to the drawings.
1A and 1B are explanatory views showing the entire configuration of a Cassegrain antenna 1 of a reference example related to the present invention , in which FIG. 1A is a partially broken side view in which a main reflector portion of the Cassegrain antenna 1 is broken, and FIG. It is the front view seen from the reflective surface side of a reflective mirror.

図1に示す如く、本参考例のカセグレンアンテナ1は、反射面が放物面にて形成された主反射鏡10と、反射面が双曲面にて形成された副反射鏡20と、円錐ホーンからなる一次放射器30と、を備える。 As shown in FIG. 1, the Cassegrain antenna 1 of this reference example includes a main reflecting mirror 10 whose reflecting surface is a paraboloid, a sub-reflecting mirror 20 whose reflecting surface is a hyperboloid, and a conical horn. A primary radiator 30 comprising:

主反射鏡10の中心位置には、一次放射器30を配置するための孔部12が穿設されており、その孔部12の周囲には、主反射鏡10の後方にて一次放射器30を支持する支持部材14のアーム部14aが固定されている。つまり、主反射鏡10の後方には、アーム部14aを介して支持部材14が固定されている。そして、一次放射器30は、この支持部材14を介して、ホーンの開口が、主反射鏡10の孔部12から主反射鏡10の焦点を向くように位置決め固定されている。   A hole 12 for placing the primary radiator 30 is formed at the center position of the main reflector 10, and the primary radiator 30 is provided around the hole 12 behind the main reflector 10. The arm portion 14a of the support member 14 that supports the frame is fixed. That is, the support member 14 is fixed to the rear of the main reflecting mirror 10 via the arm portion 14a. The primary radiator 30 is positioned and fixed through the support member 14 so that the opening of the horn faces the focal point of the main reflecting mirror 10 from the hole 12 of the main reflecting mirror 10.

なお、支持部材14に固定された一次放射器30の後端側には、一次放射器30を介して数十GHzの電波を送受信するための送・受信機40が設けられており、その送・受信機40には、同軸ケーブル42を介して、外部から通信用の信号を入力したり、電源を供給できるようにされている。   A transmitter / receiver 40 for transmitting and receiving radio waves of several tens of GHz through the primary radiator 30 is provided on the rear end side of the primary radiator 30 fixed to the support member 14. The receiver 40 can receive a communication signal or supply power from the outside via the coaxial cable 42.

また、主反射鏡10の外周の上下左右4カ所には、主反射鏡10の焦点位置近傍に副反射鏡20を配置する支持部材16のアーム部16aが固定されている。つまり、主反射鏡10の焦点位置近傍には、一端が主反射鏡10に固定された4本のアーム部16aを介して支持部材16が固定されている。そして、副反射鏡20は、この支持部材16を介して、反射面が主反射鏡10の反射面と対向するように配置されている。   In addition, at four positions on the outer periphery of the main reflecting mirror 10, the arm portion 16 a of the support member 16 that fixes the sub reflecting mirror 20 is fixed in the vicinity of the focal position of the main reflecting mirror 10. In other words, the support member 16 is fixed in the vicinity of the focal position of the main reflecting mirror 10 via the four arm portions 16 a whose one ends are fixed to the main reflecting mirror 10. The sub-reflecting mirror 20 is arranged with the reflecting surface facing the reflecting surface of the main reflecting mirror 10 via the support member 16.

ところで、カセグレンアンテナ1においては、主反射鏡10で集波された電波を、副反射鏡20を介して効率よく一次放射器30へ中継できるようにするために、通常、副反射鏡20は、反射面を挟んで両側にある二つの焦点の内、一方が主反射鏡10の焦点に一致し、他方を一次放射器30の位相中心と一致した最適通信位置に配置される。   By the way, in the Cassegrain antenna 1, in order to relay the radio waves collected by the main reflecting mirror 10 to the primary radiator 30 through the sub reflecting mirror 20, the sub reflecting mirror 20 is usually Of the two focal points on both sides of the reflecting surface, one of the focal points coincides with the focal point of the main reflector 10 and the other coincides with the phase center of the primary radiator 30.

しかし、カセグレンアンテナ1は、指向特性が鋭く、特に、主反射鏡10の直径が数十cm以上になると、指向特性の鋭さを表す電力半値幅が数度(場合によっては1度未満)となって、アンテナ方向の調整が極めて面倒になってしまう。   However, the Cassegrain antenna 1 has a sharp directivity, and particularly when the diameter of the main reflector 10 is several tens of centimeters or more, the half-power width representing the sharpness of the directivity is several degrees (in some cases, less than 1 degree). Therefore, adjustment of the antenna direction becomes very troublesome.

例えば、図3は、主反射鏡10の直径を90cmとし、副反射鏡20の焦点が主反射鏡10の焦点に一致するように配置したカセグレンアンテナの指向特性の測定結果を表しているが、この測定結果では、アンテナの利得は約47.0dBと大きな値を確保できたものの、電力半値幅は1度以下(実際には、0.475度)となって、受信レベルを測定しながらアンテナの向きを垂直及び水平方向に変化させて方向調整を行うことは困難であることがわかる。   For example, FIG. 3 shows the measurement result of the directivity characteristics of the Cassegrain antenna arranged such that the diameter of the main reflecting mirror 10 is 90 cm and the focal point of the sub-reflecting mirror 20 coincides with the focal point of the main reflecting mirror 10. In this measurement result, although the gain of the antenna was able to secure a large value of about 47.0 dB, the half value width of the power was 1 degree or less (actually 0.475 degree), and the antenna was measured while measuring the reception level. It can be seen that it is difficult to adjust the direction by changing the direction of the vertical and horizontal directions.

なお、図3において、(a)及び(b)は、基準電波を送信する送信アンテナに向けてカセグレンアンテナを配置し、受信レベルが最大となる方位、仰角を中心(0度)として、アンテナの向きを水平方向及び垂直方向にそれぞれ変位させて、基準レベルに対する相対的なレベル変化を測定した測定結果を表している。   In FIG. 3, (a) and (b) show that the Cassegrain antenna is arranged toward the transmitting antenna that transmits the reference radio wave, and the direction and the elevation angle at which the reception level is maximum are centered (0 degrees). It shows the measurement results of measuring the relative level change with respect to the reference level by displacing the direction in the horizontal direction and the vertical direction, respectively.

そこで、本参考例では、副反射鏡20を、上述した最適通信位置と、その最適通信位置から焦点がずれた調整位置との間で任意に変更できるようにしている。
すなわち、図2に示すように、本参考例では、副反射鏡20の支持部材として、副反射鏡20の反射面とは反対側に、棒状で外周にねじ山が形成された雄ねじ部22を設け、支持部材16には、この雄ねじ部22を螺合可能な雌ねじ部18を形成することにより、これら各ねじ部22、16の螺合によって、副反射鏡20を主反射鏡10の中心軸に沿って移動させつつ、副反射鏡20を任意の位置に位置決めできるようにされている。
Therefore, in this reference example , the sub-reflecting mirror 20 can be arbitrarily changed between the above-described optimum communication position and an adjustment position whose focus is deviated from the optimum communication position.
That is, as shown in FIG. 2, in this reference example , a male threaded portion 22 having a rod shape and a thread formed on the outer periphery is provided on the side opposite to the reflecting surface of the subreflecting mirror 20 as a supporting member of the subreflecting mirror 20. The supporting member 16 is formed with a female screw portion 18 into which the male screw portion 22 can be screwed, so that the sub-reflecting mirror 20 can be screwed into the central axis of the main reflecting mirror 10 by the screwing of these screw portions 22 and 16. The sub-reflecting mirror 20 can be positioned at any position while being moved along.

また、支持部材16には、その外周から雌ねじ部18に向けてねじ孔が穿設されており、そのねじ孔に、固定部材としてのボルト19を挿通して締め付けることにより、副反射鏡20を支持部材16に対して移動不能に固定できるようにされている。   Further, a screw hole is formed in the support member 16 from the outer periphery toward the female screw portion 18, and a bolt 19 as a fixing member is inserted into the screw hole and tightened, whereby the sub-reflecting mirror 20 is attached. The support member 16 can be fixed so as not to move.

また、副反射鏡20の雄ねじ部22には、ねじ山の一部を削ることによって、副反射鏡20の通信時の最適位置とアンテナ方向調整時の最適位置を表すマーク22aが形成されている。   In addition, a mark 22a is formed on the male threaded portion 22 of the sub-reflecting mirror 20 so as to indicate the optimum position during communication of the sub-reflecting mirror 20 and the optimum position during adjustment of the antenna direction by cutting a part of the thread. .

つまり、図2に示すように、このマーク22aは、副反射鏡20の焦点が主反射鏡10の焦点に一致して通信に最適な最適通信位置とそのときの指向特性、副反射鏡20の焦点が大きくずれてアンテナ方向の概略調整を行うのに最適な概略調整位置とそのときの指向特性、及び、副反射鏡20の焦点が少しずれてアンテナ方向の微調整を行うのに最適な微調整位置とそのときの指向特性、をそれぞれ表す3種類のマークからなり、支持部材16の後端面を各マーク位置に合わせることによって、副反射鏡20の位置(延いては、当該カセグレンアンテナ1の指向特性)を、通信若しくは方向調整に最適な位置(特性)に設定できるようにされている。   That is, as shown in FIG. 2, the mark 22 a has an optimal communication position optimal for communication with the focal point of the sub-reflecting mirror 20 coincident with the focal point of the main reflecting mirror 10, the directivity characteristics at that time, and the sub-reflecting mirror 20. The optimum adjustment position and the directivity characteristics at that time for the rough adjustment of the antenna direction with the focal point greatly deviated, and the fine adjustment that is optimal for the fine adjustment of the antenna direction with the sub-reflector 20 slightly defocused. It consists of three types of marks each representing the adjustment position and the directivity characteristics at that time, and by aligning the rear end surface of the support member 16 with each mark position, the position of the sub-reflecting mirror 20 (by extension, the Cassegrain antenna 1 (Directional characteristic) can be set to a position (characteristic) optimum for communication or direction adjustment.

従って、本参考例のカセグレンアンテナ1によれば、その設置時には、まず、副反射鏡20を概略調整位置に配置することにより、電力半値幅を広げて、通信相手からの送信電波を受信できるようにアンテナ方向を概略調整し、通信相手からの送信電波を受信できるようになると、副反射鏡20を微調整位置に配置することにより、電力半値幅を狭くして、通信相手からの送信電波の受信レベルが最大となるように、アンテナ方向を微調整し、その後、副反射鏡20を最適通信位置に配置することにより、電力半値幅をアンテナ本来の狭い半値幅に戻して、ボルト19を締め付ける、といった手順でアンテナ方向の調整及び副反射鏡20の位置決め固定を行うことにより、極めて簡単にカセグレンアンテナ1を設置することができるようになる。 Therefore, according to the Cassegrain antenna 1 of the present reference example , at the time of installation, first, the sub-reflecting mirror 20 is arranged at the approximate adjustment position so that the half-power width can be widened and the transmission radio wave from the communication partner can be received. When the antenna direction is roughly adjusted and the transmission radio wave from the communication partner can be received, the sub-reflector 20 is arranged at the fine adjustment position to narrow the half-power width and transmit the radio wave from the communication counterpart. The antenna direction is finely adjusted so that the reception level is maximized, and then the sub-reflecting mirror 20 is arranged at the optimum communication position to return the half-power width to the original narrow half-width and tighten the bolt 19. By adjusting the antenna direction and positioning and fixing the sub-reflecting mirror 20 in the above procedure, the Cassegrain antenna 1 can be installed very easily. .

つまり、例えば、主反射鏡10の直径を90cmとしたカセグレンアンテナの場合、副反射鏡20を最適通信位置から主反射鏡10に向けて21mm変位させたときの指向特性は、図4に示す如くなり、アンテナの利得は上述した約47.0dBから約31.2dBへと低下するものの、電力半値幅は1度以下から3度前後へと増加した。また、副反射鏡20を最適通信位置から更に変位させれば、電力半値幅が更に大きくなる。よって、受信レベルを測定しながらアンテナの向きを垂直及び水平方向に変化させて方向調整を行う際には、上記のように、副反射鏡20の位置を変化させてカセグレンアンテナ1の指向特性を劣化させることによって、極めて簡単に方向調整を行うことができるようになるのである。   That is, for example, in the case of a Cassegrain antenna in which the diameter of the main reflecting mirror 10 is 90 cm, the directivity characteristics when the sub reflecting mirror 20 is displaced 21 mm from the optimum communication position toward the main reflecting mirror 10 are as shown in FIG. Thus, although the gain of the antenna decreased from about 47.0 dB to about 31.2 dB, the power half-width increased from less than 1 degree to around 3 degrees. Further, if the sub-reflecting mirror 20 is further displaced from the optimum communication position, the half-value width of power is further increased. Therefore, when adjusting the direction by changing the antenna direction to the vertical and horizontal directions while measuring the reception level, the directional characteristics of the Cassegrain antenna 1 are changed by changing the position of the sub-reflecting mirror 20 as described above. By deteriorating, the direction can be adjusted very easily.

また、このようにアンテナ方向を調整する際には、単に受信レベルのレベル測定器(所謂レベルチェッカ)を使用すればよく、従来のように、GPS受信機やビーム光の投受光器等の方向調整用の装置を別途準備する必要がないため、アンテナ方向の調整を簡単且つ安価に行うことが可能となる。   Further, when adjusting the antenna direction in this way, a level measuring device (so-called level checker) for the reception level may be simply used, and the direction of a GPS receiver, a beam light projector / receiver, etc., as in the past. Since there is no need to prepare a separate adjustment device, the antenna direction can be adjusted easily and inexpensively.

なお、図2において、(a)は副反射鏡20及び支持部材16を横方向から見た一部破断側面図であり、(b)は(a)の右側面図である。また、図4において、(a)、(b)は、図3の(a)、(b)と同様の手順で受信レベルを測定した測定結果を表す。   2, (a) is a partially broken side view of the sub-reflecting mirror 20 and the support member 16 as viewed from the lateral direction, and (b) is a right side view of (a). 4, (a) and (b) represent measurement results obtained by measuring the reception level in the same procedure as in (a) and (b) of FIG.

上記参考例では、主反射鏡10及び一次放射器30に対する副反射鏡20の位置を変化させることによって指向特性を調整できるように構成されたカセグレンアンテナ1について説明した。 In the above reference example, the Cassegrain antenna 1 configured so that the directivity can be adjusted by changing the position of the sub-reflector 20 with respect to the main reflector 10 and the primary radiator 30 has been described.

しかし、上記のようにカセグレンアンテナ1の指向特性を調整するには、副反射鏡20の位置を変化させる必要はなく、本発明では、一次放射器の位置を変化させる。
そこで、次に、本発明の実施例として、上記参考例のカセグレンアンテナ1において一次放射器30の位置を変化させるようにしたものについて説明する。
However, to adjust the directivity of Cassegrain antenna 1 as described above, necessary to change the position of the sub-reflecting mirror 20 is not, in the present invention, changing the position of the primary radiator.
Therefore, as an embodiment of the present invention, a case where the position of the primary radiator 30 in the Cassegrain antenna 1 of the above reference example is changed will be described.

図5に示すように、本実施例のカセグレンアンテナにおいては、一次放射器30を主反射鏡10に固定する支持部材14にボルト34を設け、一次放射器30の側面には、このボルト34の先端に係合し、一次放射器30を軸周りに回転させた際に、一次放射器30を主反射鏡10の中心軸に沿って変位可能に案内する溝32を設ける。 As shown in FIG. 5, in the Cassegrain antenna of this embodiment , a bolt 34 is provided on the support member 14 that fixes the primary radiator 30 to the main reflecting mirror 10, and the bolt 34 is provided on the side surface of the primary radiator 30. It engages the distal end, the time of rotating the primary radiator 30 about the axis, Ru a groove 32 which displaceably guided along the primary radiator 30 to the central axis of the main reflecting mirror 10.

つまり、このようにすれば、一次放射器30を支持部材14に装着した状態でその軸周りに回転させることによって、一次放射器30の開口が主反射鏡10の反射面に一致して指向特性が最も鋭くなる最適通信位置から、一次放射器30の開口が主反射鏡10の反射面から突出して指向特性がアンテナ方向の調整に適した特性となる最適調整位置、若しくは、その逆方向へと変位させることができるようになり、上記実施例と同様に、アンテナの方向調整を極めて簡単に行うことが可能となる。   That is, in this way, by rotating the primary radiator 30 around its axis in a state where the primary radiator 30 is mounted on the support member 14, the opening of the primary radiator 30 coincides with the reflecting surface of the main reflector 10 and directivity characteristics are obtained. From the optimal communication position where the sharpest point becomes the sharpest, the opening of the primary radiator 30 protrudes from the reflecting surface of the main reflector 10 and the directivity becomes a characteristic suitable for adjustment of the antenna direction, or in the opposite direction. As a result, it is possible to adjust the direction of the antenna very easily as in the above embodiment.

なお、図5において、(a)は、支持部材14に装着された一次放射器30を主反射鏡10の後方から見た状態を表す正面図であり、(b)は(a)の右側面図であり、(c)は(b)において一次放射器30を上方から見た平面図である。 Incidentally, In Fig. 5, (a) shows the is a front view showing a state viewed primary radiator 30 mounted to the support member 14 from the rear of the main reflecting mirror 10, the (b) is (a) It is a right view, (c) is the top view which looked at the primary radiator 30 from upper direction in (b).

そして、この図から明らかなように、一次放射器30の側面の内、上部半面に溝32が斜めに形成されており、一次放射器30を軸周りに回転させると、一次放射器30がこの溝に沿って回転しつつ軸方向に変位することになる。   As is apparent from this figure, a groove 32 is formed obliquely on the upper half of the side surface of the primary radiator 30, and when the primary radiator 30 is rotated around its axis, the primary radiator 30 It will be displaced along the groove while rotating along the groove.

また次に、上記実施例では、本発明が適用された開口面アンテナとして、主反射鏡10と副反射鏡20との2つの反射鏡を有するカセグレンアンテナを例に取り説明したが、本発明は、カセグレンアンテナと同様、2つの反射鏡を有するグレゴリアンテナであっても、反射鏡を一つだけ有する一般的なパラボラアンテナであっても、或いは、副反射鏡や一次放射器が主反射鏡(若しくは単一の反射鏡)の中心軸からずれたオフセット型パラボラアンテナであっても、上記実施例と同様に適用して、同様の効果を得ることができる。   Next, in the above embodiment, a cassegrain antenna having two reflecting mirrors of the main reflecting mirror 10 and the sub-reflecting mirror 20 is described as an example of the aperture antenna to which the present invention is applied. Like the Cassegrain antenna, it is a Gregory antenna having two reflecting mirrors, a general parabolic antenna having only one reflecting mirror, or a sub-reflecting mirror or primary radiator is used as a main reflecting mirror ( Even an offset parabolic antenna deviating from the central axis of a single reflecting mirror can be applied in the same manner as in the above embodiment to obtain the same effect.

例えば、図6に示すアンテナは、オフセット型で単一の反射鏡60を有するパラボラアンテナを表しているが、この種のオフセット型パラボラアンテナであれば、一端が反射鏡60に固定されたアーム部70に一次放射器30を固定するための支持部材80を、一次放射器30をその軸方向に変位可能に支持できるように構成すればよい。 For example, the antenna shown in FIG. 6 represents a parabolic antenna having an offset type and a single reflecting mirror 60. If this type of offset type parabolic antenna is used, an arm portion having one end fixed to the reflecting mirror 60 is used. What is necessary is just to comprise the supporting member 80 for fixing the primary radiator 30 to 70 so that the primary radiator 30 can be supported so that the displacement to the axial direction is possible.

参考例のカセグレンアンテナ1の全体構成を表す説明図である。It is explanatory drawing showing the whole structure of the Cassegrain antenna 1 of a reference example . 図1に示す副反射鏡及びその支持部材の構成を表す説明図である。It is explanatory drawing showing the structure of the subreflecting mirror shown in FIG. 1, and its supporting member. 副反射鏡の焦点を主反射鏡に一致させたときのカセグレンアンテナの指向特性の測定結果を表す説明図である。It is explanatory drawing showing the measurement result of the directional characteristic of a Cassegrain antenna when the focus of a subreflecting mirror is made to correspond with a main reflecting mirror. 副反射鏡の焦点を主反射鏡からずらしたときのカセグレンアンテナの指向特性の測定結果を表す説明図である。It is explanatory drawing showing the measurement result of the directional characteristic of a Cassegrain antenna when the focus of a subreflector is shifted from the main reflector. 主反射鏡に対して一次放射器を変位させる機構を説明する説明図である。It is explanatory drawing explaining the mechanism which displaces a primary radiator with respect to a main reflective mirror. 本発明をオフセット型パラボラアンテナに適用した場合の説明図である。It is explanatory drawing at the time of applying this invention to an offset type parabolic antenna.

符号の説明Explanation of symbols

1…カセグレンアンテナ、10…主反射鏡、12…孔部、14…支持部材、16…支持部材、18…雌ねじ部、19…ボルト、20…副反射鏡、22…雄ねじ部、22a…マーク、30…一次放射器、32…溝、34…ボルト、36…マーク、38…目盛、40…送・受信機、42…同軸ケーブル、60…反射鏡、70…アーム部、80…支持部材。 DESCRIPTION OF SYMBOLS 1 ... Cassegrain antenna, 10 ... Main reflector, 12 ... Hole part, 14 ... Support member, 16 ... Support member, 18 ... Female thread part, 19 ... Bolt, 20 ... Subreflector, 22 ... Male thread part, 22a ... Mark, 30 ... primary radiator, 32 ... groove, 34 ... bolt, 36 ... mark, 38 ... scale, 40 ... transmitter and receiver, 42 ... coaxial cable, 60 ... reflector, 70 ... arm portion, 80 ... support member .

Claims (2)

電波を反射する反射鏡と、該反射鏡の焦点位置に配置された一次放射器と、を備えた開口面アンテナにおいて、
前記一次放射器を前記反射鏡の中心軸周りに回転可能に支持する支持部材を備え、
前記支持部材には、前記一次放射器を固定するボルトが設けられ、
前記一次放射器の側面には、前記ボルトの先端に係合し、当該一次放射器を前記中心軸周りに回転させた際に、当該一次放射器を前記反射鏡の中心軸方向に変位可能に案内して、当該一次放射器を、指向特性が最も鋭くなる最適通信位置から、指向特性がアンテナ方向の調整に適した特性となる最適調整位置までの間に位置決め可能な溝が設けられていることを特徴とする開口面アンテナ。
In an aperture antenna having a reflecting mirror that reflects radio waves, and a primary radiator disposed at a focal position of the reflecting mirror,
A support member that rotatably supports the primary radiator around a central axis of the reflecting mirror;
The support member is provided with a bolt for fixing the primary radiator,
The side of the primary radiator is engaged with the tip of the bolt, and when the primary radiator is rotated around the central axis, the primary radiator can be displaced in the central axis direction of the reflecting mirror. A groove is provided to guide and position the primary radiator from the optimum communication position where the directivity is the sharpest to the optimum adjustment position where the directivity is suitable for adjustment of the antenna direction. An aperture antenna characterized by that .
前記反射鏡は、主反射鏡と、該主反射鏡と前記一次放射器との間で電波を中継する副反射鏡とからなることを特徴とする請求項1に記載の開口面アンテナ。 The reflector, aperture antenna as set forth in claim 1, wherein the main reflector, in that it consists of sub-reflecting mirror that relays radio waves with in between the main reflector the primary radiator.
JP2004040382A 2004-02-17 2004-02-17 Aperture antenna Expired - Fee Related JP4260038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040382A JP4260038B2 (en) 2004-02-17 2004-02-17 Aperture antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040382A JP4260038B2 (en) 2004-02-17 2004-02-17 Aperture antenna

Publications (2)

Publication Number Publication Date
JP2005236426A JP2005236426A (en) 2005-09-02
JP4260038B2 true JP4260038B2 (en) 2009-04-30

Family

ID=35018965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040382A Expired - Fee Related JP4260038B2 (en) 2004-02-17 2004-02-17 Aperture antenna

Country Status (1)

Country Link
JP (1) JP4260038B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260611A (en) * 2008-04-16 2009-11-05 Shimada Phys & Chem Ind Co Ltd Parabolic antenna
JP6563345B2 (en) * 2016-01-25 2019-08-21 京セラ株式会社 Radio relay apparatus and radio relay method
CN106066238B (en) * 2016-06-12 2018-06-26 中国科学院上海技术物理研究所 A kind of contact force controllable type speculum detects tensioner clamping device
WO2018173535A1 (en) 2017-03-22 2018-09-27 日本電気株式会社 Antenna directivity adjustment apparatus and antenna directivity adjustment method
JP7074487B2 (en) * 2018-01-31 2022-05-24 日本無線株式会社 Parabolic antenna device
CN115313063B (en) * 2022-05-30 2023-10-10 南京星航通信技术有限公司 Reflection type surface antenna

Also Published As

Publication number Publication date
JP2005236426A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
CN102576925B (en) A vehicle mounted antenna and methods for transmitting and/or receiving signals
AU2014280835C1 (en) A stabilized platform for a wireless communication link
US11476573B2 (en) Method and apparatus for beam-steerable antenna with single-drive mechanism
TWI257732B (en) Antenna carrier which allows minor adjustments of its orientation angle
US11258172B2 (en) Multi-beam shaped reflector antenna for concurrent communication with multiple satellites
US20120068880A1 (en) System and Method for Dual-Band Antenna Pointing, Acquisition, And Tracking
JP2002299940A (en) Parabolic antenna
JP4260038B2 (en) Aperture antenna
EP1050925B1 (en) Multi-primary radiator, down converter and multibeam antenna
US20220158356A1 (en) Wireless transceiver having a high gain antenna arrangement
KR101046208B1 (en) Satellite antenna apparatus
US6933903B2 (en) Receiving signals from plural satellites in one antenna
JP2009198192A (en) Emblem, correcting tool, and beam direction correcting method of radar wave
US11888228B2 (en) Prism for repointing reflector antenna main beam
JP3108453U (en) Reflector adjustment aid
JPH0572763B2 (en)
JPS6251809A (en) Satellite reception antenna system
JPH0572762B2 (en)
JP2012178793A (en) Antenna device
JPH06310933A (en) Antenna performance measurement device and antenna performance measurement method
JPH0720709U (en) Satellite antenna
KR20000018601U (en) Parabolic antenna
JP2000196348A (en) Integrated primary radiator for multi-beam
JPH09246856A (en) Horn reflector antenna system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees