JP4256723B2 - Continuous casting method for molten steel - Google Patents

Continuous casting method for molten steel Download PDF

Info

Publication number
JP4256723B2
JP4256723B2 JP2003160434A JP2003160434A JP4256723B2 JP 4256723 B2 JP4256723 B2 JP 4256723B2 JP 2003160434 A JP2003160434 A JP 2003160434A JP 2003160434 A JP2003160434 A JP 2003160434A JP 4256723 B2 JP4256723 B2 JP 4256723B2
Authority
JP
Japan
Prior art keywords
molten steel
immersion nozzle
mold
thickness
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003160434A
Other languages
Japanese (ja)
Other versions
JP2004358522A (en
Inventor
利明 溝口
昌伸 早川
克己 天田
裕喜 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003160434A priority Critical patent/JP4256723B2/en
Publication of JP2004358522A publication Critical patent/JP2004358522A/en
Application granted granted Critical
Publication of JP4256723B2 publication Critical patent/JP4256723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶鋼の連続鋳造方法に関し、浸漬ノズル外周部に付着するアルミナやパウダー等の介在物厚みを低減し、 浸漬ノズルから剥離する介在物を微細で、 無害な大きさとすることにより、薄鋼板におけるスリバー疵等の介在物起因の表面欠陥が極めて少ない鋼を製造する技術に関する。
【0002】
【従来の技術】
【特許文献1】
特開平06−226409号公報
【特許文献2】
特開平09−182941号公報
【特許文献3】
特開平10−296410号公報
【0003】
薄鋼板における表面疵低減方法として、表面疵の原因となる数100 μm〜数mmサイズの粗大介在物を鋳片表層部から排除するため、(1) 連続鋳造の鋳型内電磁攪拌による凝固シェルへの介在物捕捉防止や(2) 鋳片表層部の手入れによる介在物除去等が知られている。
【0004】
電磁攪拌による凝固シェルへの介在物捕捉防止方法として、例えば、特開平06−226409号公報では、連続鋳造における鋳型上部の溶鋼を水平方向に攪拌することにより、凝固シェルへの介在物の捕捉を防止して、鋳片表層介在物を低減させる方法が開示されている。また、特開平09−182941号公報では、電磁攪拌の攪拌方向を交互にして、 攪拌の反転周期を1〜10秒で、かつ旋回流速を適正範囲に制御することにより、良好な表層、内部品質を有する鋳片を得る方法が開示されている。しかしながら、これらの方法では、浸漬ノズルからの吐出流等の影響で溶鋼の攪拌が不十分な場合があり、薄鋼板における表面疵を確実に防止することができなかった。
【0005】
一方、表面手入れによる鋳片表層介在物の除去の例として、特開平10−296410号公報では、鋳片表層のスケール生成量を増加させ、デスケーリング装置でスケールと一緒に表層介在物を除去する方法が開示されている。また、鋳片表層を溶削あるいは研削によって数mm除去することにより、表層介在物を除去する方法が一般的に実施されている。粗大介在物を含む溶鋼中の介在物は鋳型内での浮上によって鋳片の表層部に多く存在する。したがって、これらの方法により薄鋼板の表面疵はある程度改善される。しかし、粗大介在物を完全に除去することは困難であり、手入れした面に粗大介在物が存在すれば、表面疵はやはり発生する。また、当然のことながら鋳片の歩留まりや生産性は悪化する。
以上の技術は、いずれも鋳片表層部分に着目した粗大介在物の除去を狙いとしており、溶鋼中の粗大介在物の量を低減するための方法については述べられていない。
【0006】
【発明が解決しようとする課題】
本発明は上記のような従来の連続鋳造法に見られる問題点を解決して、溶鋼中の粗大介在物の量を低減することによって、薄鋼板で発生するスリバー疵等の表面欠陥を低減するための連続鋳造方法の提供を課題としている。
【0007】
発明者は上記課題を解決するため、薄鋼板のスリバー疵と操業条件との関係を調査した結果、▲1▼浸漬ノズル1本当たりの累積鋳造量が増加するとスリバー疵発生率も増加すること、▲2▼浸漬ノズルを交換するとスリバー疵発生率が低減することが分かった。さらに注意深く詳細な調査を重ねた結果、浸漬ノズル外周の付着物厚みが15mm以上になるとスリバー疵発生率が急激に増加することを発見した(図1)。また、この付着物はアルミナ、ハーシナイト(Al2O3 ・FeO)、あるいは鋳型パウダーと地鉄の混合物であり、スリバー疵部の介在物形態と良く一致することが分かった。
【0008】
浸漬ノズル外周部の付着物と薄鋼板におけるスリバー疵発生は以下のような関係があると推定し、付着物厚みを減らすことで表面欠陥を防止できると考えた。すなわち、▲1▼連続鋳造の鋳型内には浸漬ノズルからの溶鋼吐出流等の流動が常に存在し、この流動により溶鋼中のアルミナや巻き込まれた鋳型パウダー等の粗大介在物が浸漬ノズル外周部に付着する。付着物厚みは鋳造時間、または鋳造量とともに増加する。▲2▼この付着物は溶鋼の湯面変動や浸漬ノズルからの吐出流の偏流が大きいと、浸漬ノズル外側から脱落して、 溶鋼中に侵入する。▲3▼脱落、侵入した浸漬ノズル付着物が鋳片表層の凝固シェルへ捕捉されると、圧延で表面に露出してスリバー疵等の表面欠陥につながる。したがって、浸漬ノズル付着物が厚いほど、表面欠陥になりやすい。
【0009】
【課題を解決するための手段】
以上の種々の検討を行った結果、 本発明を完成するに至った。本発明は、鋳型外周に電磁攪拌装置を設置して、溶鋼湯面近傍の鋳型内溶鋼を鋳型内周面に沿って水平方向に回転する流れを発生させる溶鋼流動制御を行いながら連続鋳造を行なう溶鋼の連続鋳造方法において、同一攪拌方向の累積鋳造量が浸漬ノズル1本当たりの累積鋳造量の30%〜70%となるように、少なくとも2分以上の反転周期で攪拌方向を変えることにより、浸漬ノズル外周部の付着物厚みを、溶鋼湯面から浸漬長さの1/3 までの平均厚さで、15mm以下に調整して鋳造することを特徴とするものである。
【0010】
【発明の実施の形態】
以下に本発明の好ましい実施の形態を示す。
本発明では、溶鋼の連続鋳造において、鋳型長辺に面する浸漬ノズル外周部の付着物厚みを、溶鋼湯面から浸漬長さの1/3 までの平均厚さで15mm以下とする。付着物厚みを前記した範囲に調整するには、 鋳型外周に電磁攪拌装置を設置して、溶鋼湯面近傍の鋳型内溶鋼を鋳型内周面に沿って水平方向に回転する流れを発生させる溶鋼流動制御方法において、同一攪拌方向の累積鋳造量が浸漬ノズル1本当たりの累積鋳造量の30%〜70%となるように攪拌方向を変えることにより行うものとする。さらに、このような方法で付着厚みを調整する場合、攪拌の反転周期を少なくとも2分以上とするものとする。
【0011】
浸漬ノズル外周部の付着物厚みを15mm以下とするのは、図1に示すように、15mm超になると薄鋼板表面のスリバー疵発生率が急激に増加するためである。付着物厚みの測定位置を鋳型長辺に面する側としたのは、浸漬ノズル周方向の付着物厚みがこの部分で最大であったためである。また、付着物は溶鋼湯面から浸漬長さの1/3 部分に多く、付着物厚みは浸漬深さ方向でばらつきが大きかったため、溶鋼湯面から浸漬長さの1/3 部分の平均値を付着物厚みとした。
【0012】
付着物厚みを減少させるために、 鋳型外周に電磁攪拌装置を設置して、同一攪拌方向の累積鋳造量が浸漬ノズル1本当たりの累積鋳造量の30%〜70%となるように攪拌方向を変えるのは、同一攪拌方向の累積鋳造量が30%未満、および70%超では付着物厚みを減らす効果が小さく、スリバー疵発生率もあまり減少しなかったためである。攪拌方向は周期的に変更するものとし、その反転周期を少なくとも2分以上とするのが好ましい。1サイクルの時間が2分未満では鋳片短辺の湯面の波立ちが大きく、コーナー部で割れが発生するためである。
【0013】
このように本発明では、鋳型内電磁攪拌を適正に付与して、浸漬ノズル外周部の付着物厚さを減少させることによって、溶鋼の湯面変動や浸漬ノズルからの吐出流の偏流が大きい場合にも、付着物が浸漬ノズル外周部から溶鋼中に脱落して粗大介在物となるのを防止し、圧延でのスリバー疵等の表面欠陥を大幅に低減したものである。
【0014】
【実施例】
次に本発明の実施例について説明する。
垂直曲げ型連続鋳造機により、鋳片寸法が245mm 厚×1600mm幅、鋳造速度1.7m/min、タンディッシュ内溶鋼温度が1570℃、横出し2孔タイプの浸漬ノズルを使って鋳型両短辺方向へ供給しながら極低炭素鋼の鋳片を製造した。1鍋当たり280 トンの溶鋼を4〜7鍋連続で鋳造した。その後、熱間圧延、酸洗、さらには冷間圧延を実施し、コイル表面品位の調査をした。付着物の影響が大きいノズル最終チャージのスリバー発生率で付着物厚さの影響を比較した。熱間圧延後の板厚は2.5 〜7mm、冷間圧延後の板厚は0.2 〜1.8mm であった。
【0015】
鋳造方向の有効磁場長さ400mm の電磁攪拌コイルを用い、鋳型内溶鋼を攪拌した。電磁攪拌の最大電流値は600Aとし、コイル上端と溶鋼メニスカス位置を一致させた。電磁攪拌をする場合、攪拌方向は連続攪拌、あるいは交番攪拌とした。交番攪拌の条件は一定時間で攪拌方向を変える周期攪拌とした。
【0016】
浸漬ノズル外周部の付着物厚さ、スリバー発生率や鋳片コーナー割れ発生状況は表1に示す通りであり、本発明がスリバー発生率を大幅に低減して優れた生産性を示すものであることが確認できた。
【0017】
なお、表1における*1、*2の意味は下記の通りである。
*1:鋳型長辺に面する側の付着物厚さを、溶鋼湯面位置から浸漬深さの1/3 までを10mm間隔で測定し、 全データを平均した。なお、各浸漬深さ位置での付着物厚さは下記の(1)式により算出した。
付着物厚さ=(鋳造後の浸漬ノズルの直径―鋳造前の浸漬ノズル直径)/2 (1)*2:スリバー発生率(%)=スリバー疵が発生したコイル本数/観察したコイル本数×100 。
1本当たりのコイル重量は約10トン。付着物の影響が大きいノズル最終チャージの結果を使用した。
【0018】
【表1】

Figure 0004256723
【0019】
【発明の効果】
本発明によれば、浸漬ノズル外周部の付着物脱落によって生成する粗大介在物が少ない鋳片が得られるので、圧延で発生するスリバー疵等の表面欠陥が少ない薄鋼板が確実に製造できる。また、歩留まり向上によるコスト改善、手入れ量低減による生産性向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の浸漬ノズル外周部付着物厚みとスリバー発生率の関係を説明するための図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for continuously casting molten steel, by reducing the thickness of inclusions such as alumina and powder adhering to the outer periphery of the immersion nozzle, and making the inclusions peeled from the immersion nozzle fine and harmless, thereby reducing the thickness. The present invention relates to a technique for producing steel with extremely few surface defects due to inclusions such as sliver rods in a steel plate.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 06-226409 [Patent Document 2]
JP 09-182941 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 10-296410
As a method of reducing surface flaws in thin steel sheets, to remove coarse inclusions of several hundred μm to several mm in size that cause surface flaws from the surface of the slab, (1) To solidified shells by electromagnetic stirring in the mold of continuous casting It is known to prevent inclusion inclusions and (2) to remove inclusions by cleaning the surface of the slab.
[0004]
As a method for preventing inclusion trapping in the solidified shell by electromagnetic stirring, for example, in Japanese Patent Laid-Open No. 06-226409, trapping inclusions in the solidified shell is performed by stirring the molten steel in the upper part of the mold in continuous casting in the horizontal direction. A method for preventing and reducing slab surface layer inclusions is disclosed. In JP-A-09-182941, the stirring direction of electromagnetic stirring is alternated, the reversal period of stirring is controlled within 1 to 10 seconds, and the swirling flow rate is controlled within an appropriate range, thereby achieving good surface layer and internal quality. A method of obtaining a slab having the following is disclosed. However, in these methods, the molten steel may not be sufficiently stirred due to the influence of the discharge flow from the immersion nozzle and the like, and surface flaws in the thin steel sheet cannot be reliably prevented.
[0005]
On the other hand, as an example of removal of slab surface layer inclusions by surface care, Japanese Patent Laid-Open No. 10-296410 discloses that the scale generation amount of the slab surface layer is increased and the surface layer inclusions are removed together with the scale by a descaling device. A method is disclosed. Further, a method of removing surface layer inclusions by removing several mm of the slab surface layer by means of welding or grinding is generally carried out. Many inclusions in the molten steel including coarse inclusions are present in the surface layer portion of the slab due to floating in the mold. Therefore, the surface defects of the thin steel plate are improved to some extent by these methods. However, it is difficult to completely remove coarse inclusions, and surface flaws are still generated if coarse inclusions exist on the cleaned surface. Of course, the yield and productivity of the slab deteriorate.
All of the above techniques aim to remove coarse inclusions focusing on the surface portion of the slab and do not describe a method for reducing the amount of coarse inclusions in the molten steel.
[0006]
[Problems to be solved by the invention]
The present invention solves the problems found in the conventional continuous casting method as described above, and reduces the amount of coarse inclusions in the molten steel, thereby reducing surface defects such as sliver flaws generated in the thin steel plate. Therefore, it is an object to provide a continuous casting method.
[0007]
As a result of investigating the relationship between the sliver rod of the thin steel sheet and the operating conditions in order to solve the above-mentioned problems, the inventors have found that (1) when the cumulative casting amount per submerged nozzle increases, the sliver rod generation rate also increases. (2) It was found that the occurrence rate of sliver wrinkles is reduced when the immersion nozzle is replaced. As a result of further careful and detailed investigations, it was discovered that the incidence of sliver wrinkles rapidly increases when the thickness of the deposit on the outer periphery of the immersion nozzle exceeds 15 mm (Fig. 1). In addition, this deposit was alumina, hercinite (Al 2 O 3 · FeO), or a mixture of mold powder and ground iron, and was found to be in good agreement with the inclusion form of the sliver collar.
[0008]
It was estimated that the deposit on the outer periphery of the immersion nozzle and the occurrence of sliver wrinkles in the thin steel plate had the following relationship, and it was thought that surface defects could be prevented by reducing the thickness of the deposit. That is, (1) there is always a flow of molten steel discharge flow from the immersion nozzle in the continuous casting mold, and due to this flow, coarse inclusions such as alumina and molten mold powder in the molten steel are placed on the outer periphery of the immersion nozzle. Adhere to. The deposit thickness increases with casting time or casting amount. (2) This deposit will fall off the outside of the immersion nozzle and enter the molten steel if there is a large fluctuation in the molten steel surface or a large deviation in the discharge flow from the immersion nozzle. (3) If the immersion nozzle deposits that have fallen off and enter are trapped in the solidified shell of the slab surface, they are exposed to the surface by rolling and lead to surface defects such as sliver flaws. Therefore, the thicker the immersion nozzle deposit, the more likely it becomes a surface defect.
[0009]
[Means for Solving the Problems]
As a result of the various studies described above, the present invention has been completed. In the present invention , an electromagnetic stirring device is installed on the outer periphery of the mold, and continuous casting is performed while performing molten steel flow control for generating a flow in which the molten steel in the mold near the molten steel surface rotates in a horizontal direction along the inner peripheral surface of the mold. In the continuous casting method of molten steel, by changing the stirring direction at an inversion cycle of at least 2 minutes or more so that the cumulative casting amount in the same stirring direction is 30% to 70% of the cumulative casting amount per immersion nozzle, The thickness of the deposit on the outer periphery of the immersion nozzle is adjusted to an average thickness from the molten steel surface to 1/3 of the immersion length to 15 mm or less, and cast .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
In the present invention, in the continuous casting of molten steel, the thickness of the deposit on the outer periphery of the immersion nozzle facing the long side of the mold is 15 mm or less in terms of the average thickness from the molten steel surface to 1/3 of the immersion length. In order to adjust the deposit thickness to the above-mentioned range, an electromagnetic stirring device is installed on the outer periphery of the mold, and the molten steel in the mold near the molten steel surface generates a flow that rotates horizontally along the inner peripheral surface of the mold. In the flow control method, the stirring direction is changed so that the cumulative casting amount in the same stirring direction is 30% to 70% of the cumulative casting amount per immersion nozzle. Further, when the adhesion thickness is adjusted by such a method, the inversion period of stirring is set to at least 2 minutes or more .
[0011]
The reason why the thickness of the deposit on the outer periphery of the immersion nozzle is set to 15 mm or less is that, as shown in FIG. The reason for measuring the deposit thickness on the side facing the long side of the mold is that the deposit thickness in the circumferential direction of the immersion nozzle was the maximum at this portion. In addition, the amount of deposits was large in the 1/3 part of the immersion length from the molten steel surface, and the thickness of the deposits varied greatly in the immersion depth direction, so the average value of 1/3 part of the immersion length from the molten steel surface was calculated. It was set as the deposit thickness.
[0012]
In order to reduce the deposit thickness, an electromagnetic stirrer is installed on the outer periphery of the mold, and the stirring direction is set so that the cumulative casting amount in the same stirring direction is 30% to 70% of the cumulative casting amount per immersion nozzle. The reason for the change is that when the cumulative casting amount in the same stirring direction is less than 30% and more than 70%, the effect of reducing the thickness of the deposit is small, and the occurrence rate of sliver flaws does not decrease so much. The stirring direction is periodically changed , and the inversion period is preferably at least 2 minutes. This is because if the time for one cycle is less than 2 minutes, the hot water surface of the short side of the slab is large and cracks occur at the corners.
[0013]
As described above, in the present invention, when the electromagnetic stirring in the mold is appropriately applied and the thickness of the deposit on the outer periphery of the immersion nozzle is reduced, the molten steel surface fluctuation and the deviation of the discharge flow from the immersion nozzle are large. In addition, the deposits are prevented from dropping into the molten steel from the outer peripheral portion of the immersion nozzle to become coarse inclusions, and surface defects such as sliver ridges in rolling are greatly reduced.
[0014]
【Example】
Next, examples of the present invention will be described.
With vertical bending type continuous casting machine, slab size is 245mm thickness x 1600mm width, casting speed is 1.7m / min, molten steel temperature in tundish is 1570 ℃, both sides of mold are short-sided using submerged 2-hole type immersion nozzle Slabs of ultra-low carbon steel were manufactured. 280 tons of molten steel per pan was cast continuously for 4-7 pans. Thereafter, hot rolling, pickling, and cold rolling were performed to investigate the coil surface quality. The influence of the deposit thickness was compared with the sliver generation rate of the nozzle final charge, where the effect of the deposit was large. The thickness after hot rolling was 2.5 to 7 mm, and the thickness after cold rolling was 0.2 to 1.8 mm.
[0015]
The molten steel in the mold was stirred using an electromagnetic stirring coil having an effective magnetic field length of 400 mm in the casting direction. The maximum current value of electromagnetic stirring was 600 A, and the upper end of the coil was matched with the molten steel meniscus position. In the case of electromagnetic stirring, the stirring direction was continuous stirring or alternating stirring. The condition of alternating stirring was periodic stirring in which the stirring direction was changed over a fixed time .
[0016]
The deposit thickness, sliver occurrence rate, and slab corner cracking occurrence situation on the outer periphery of the immersion nozzle are as shown in Table 1, and the present invention greatly reduces the sliver occurrence rate and exhibits excellent productivity. I was able to confirm.
[0017]
The meanings of * 1 and * 2 in Table 1 are as follows.
* 1: The thickness of the deposit on the side facing the long mold side was measured from the molten steel surface position to 1/3 of the immersion depth at 10 mm intervals, and all data were averaged. In addition, the deposit thickness in each immersion depth position was computed by the following (1) formula.
Deposit thickness = (Diameter of immersion nozzle after casting−Diameter of immersion nozzle before casting) / 2 (1) * 2: Sliver generation rate (%) = Number of coils with sliver wrinkles / Number of observed coils × 100 .
Each coil weighs about 10 tons. The result of nozzle final charge with a large influence of deposits was used.
[0018]
[Table 1]
Figure 0004256723
[0019]
【The invention's effect】
According to the present invention, a slab with less coarse inclusions generated by dropping off the adhering matter on the outer periphery of the immersion nozzle is obtained, so that a thin steel plate with few surface defects such as sliver flaws generated by rolling can be reliably produced. Further, it is possible to improve the cost by improving the yield and improve the productivity by reducing the maintenance amount.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the relationship between the thickness of a deposit on the outer periphery of an immersion nozzle according to the present invention and the occurrence rate of a sliver.

Claims (1)

鋳型外周に電磁攪拌装置を設置して、溶鋼湯面近傍の鋳型内溶鋼を鋳型内周面に沿って水平方向に回転する流れを発生させる溶鋼流動制御を行いながら連続鋳造を行なう溶鋼の連続鋳造方法において、同一攪拌方向の累積鋳造量が浸漬ノズル1本当たりの累積鋳造量の30%〜70%となるように、少なくとも2分以上の反転周期で攪拌方向を変えることにより、浸漬ノズル外周部の付着物厚みを、溶鋼湯面から浸漬長さの1/3 までの平均厚さで、15mm以下に調整して鋳造することを特徴とする溶鋼の連続鋳造方法。Continuous casting of molten steel by installing an electromagnetic stirring device on the outer periphery of the mold and performing continuous casting while controlling the molten steel flow that causes the molten steel in the mold near the molten steel surface to flow in a horizontal direction along the inner peripheral surface of the mold In the method, by changing the stirring direction at a reversal period of at least 2 minutes so that the cumulative casting amount in the same stirring direction is 30% to 70% of the cumulative casting amount per immersion nozzle, the outer periphery of the immersion nozzle A continuous casting method for molten steel, characterized in that the thickness of the deposit is adjusted to an average thickness from the molten steel surface to 1/3 of the immersion length to 15 mm or less.
JP2003160434A 2003-06-05 2003-06-05 Continuous casting method for molten steel Expired - Fee Related JP4256723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160434A JP4256723B2 (en) 2003-06-05 2003-06-05 Continuous casting method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160434A JP4256723B2 (en) 2003-06-05 2003-06-05 Continuous casting method for molten steel

Publications (2)

Publication Number Publication Date
JP2004358522A JP2004358522A (en) 2004-12-24
JP4256723B2 true JP4256723B2 (en) 2009-04-22

Family

ID=34053216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160434A Expired - Fee Related JP4256723B2 (en) 2003-06-05 2003-06-05 Continuous casting method for molten steel

Country Status (1)

Country Link
JP (1) JP4256723B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2419508C2 (en) * 2006-04-25 2011-05-27 ЭйБиБи ЭйБи Mixer

Also Published As

Publication number Publication date
JP2004358522A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4891161B2 (en) Method and apparatus for producing aluminum alloy plate for planographic printing plate
JP2008149379A (en) Cast slab with excellent solidification structure
JP4256723B2 (en) Continuous casting method for molten steel
JP3085978B2 (en) Method for manufacturing thin slab and continuous casting apparatus
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JP2003251438A (en) Method for continuously casting cast slab having little blow hole and steel material obtained by working the cast slab
JP3817188B2 (en) Thin slab manufacturing method using twin drum type continuous casting machine having scum weir and scum weir
JP2003164947A (en) Continuous casting for steel
JPH09509615A (en) Method for manufacturing rectangular thin slab and continuous casting apparatus
JP2009142876A (en) Method for continuously casting steel
JP2779194B2 (en) Continuous casting of thin cast slab
JP4654554B2 (en) Steel continuous casting method
JP3651441B2 (en) Continuous casting method of steel
JP3505142B2 (en) Casting method of high clean steel
JP3570224B2 (en) Continuous casting method for large section slabs for thick steel plates
JP2010099704A (en) Continuous casting method for steel cast slab
JP3283746B2 (en) Continuous casting mold
JP4777090B2 (en) Vertical continuous casting method for large section slabs for thick steel plates
JP4946604B2 (en) Continuous casting method of P-containing steel
JP2002178113A (en) Cast slab having excellent solidified structure and steel obtained by working the same
JP3502830B2 (en) Casting method of aluminum deoxidized steel
JP4592974B2 (en) Continuous casting method of molten steel for non-oriented electrical steel sheet and slab for non-oriented electrical steel sheet
JP4830240B2 (en) Method and apparatus for continuous casting of steel
JP2019177409A (en) Ingot, method for producing same and method for producing steel plate
JP2000334559A (en) Method for continuously casting steel excellent in quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4256723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees