JP4254428B2 - Driving force distribution control device for four-wheel drive vehicles - Google Patents

Driving force distribution control device for four-wheel drive vehicles Download PDF

Info

Publication number
JP4254428B2
JP4254428B2 JP2003305195A JP2003305195A JP4254428B2 JP 4254428 B2 JP4254428 B2 JP 4254428B2 JP 2003305195 A JP2003305195 A JP 2003305195A JP 2003305195 A JP2003305195 A JP 2003305195A JP 4254428 B2 JP4254428 B2 JP 4254428B2
Authority
JP
Japan
Prior art keywords
force distribution
driving force
distribution control
torque
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003305195A
Other languages
Japanese (ja)
Other versions
JP2005075047A (en
Inventor
博隆 楠川
丈夫 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003305195A priority Critical patent/JP4254428B2/en
Publication of JP2005075047A publication Critical patent/JP2005075047A/en
Application granted granted Critical
Publication of JP4254428B2 publication Critical patent/JP4254428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Description

発明は、電子制御により前後輪へのトルク配分を制御する四輪駆動車の駆動力配分制御装置に関するものである。 The present invention relates to a driving force distribution control device for a four-wheel drive vehicle that controls torque distribution to front and rear wheels by electronic control.

従来の四輪駆動車の駆動力配分制御装置は、アクセル開度と車速により駆動力配分制御領域と差回転制御領域とに分けた制御領域マップ設定手段を有し、検出されるアクセル開度と車速による運転点が制御領域マップ上において、駆動力配分制御領域である場合は、大トルク指令による駆動力配分制御を実行し、運転点が制御領域マップ上において、差回転制御領域である場合に、主駆動輪と副駆動輪の速度差に応じたトルク指令による差回転制御を実行する技術が知られている(例えば、特許文献1参照)。
特開2001−225658号公報
A conventional driving force distribution control device for a four-wheel drive vehicle has control region map setting means divided into a driving force distribution control region and a differential rotation control region according to the accelerator opening and the vehicle speed, and the detected accelerator opening and When the driving point based on the vehicle speed is the driving force distribution control area on the control area map, the driving force distribution control is executed by the large torque command, and the driving point is the differential rotation control area on the control area map. A technique for executing differential rotation control based on a torque command corresponding to a speed difference between a main drive wheel and a sub drive wheel is known (see, for example, Patent Document 1).
JP 2001-225658 A

しかしながら、従来の四輪駆動車の駆動力配分制御装置にあっては、アクセル開度と車速のみによって制御仕様を決める構成となっていたため、登坂路での連続登坂のように、副駆動輪への連続的な大トルク伝達が不要な走行シーンにおいても、運転点が駆動力配分制御領域に存在する限り、駆動力配分制御が継続的に実行されることになり、高トルクにて滑り締結されるトルク配分アクチュエータの耐久・信頼性(例えば、ユニット油温・ギヤ系の疲労強度)の低下を引き起こすという問題があった。   However, the conventional driving force distribution control device for a four-wheel drive vehicle has a configuration in which the control specifications are determined only by the accelerator opening and the vehicle speed. Even in a driving scene that does not require continuous large torque transmission, as long as the operating point exists in the driving force distribution control region, the driving force distribution control is continuously executed, and the sliding engagement is performed with high torque. There is a problem that the durability and reliability (for example, unit oil temperature and gear system fatigue strength) of the torque distribution actuator is reduced.

本発明は、上記問題に着目してなされたもので、発進性能の確保と、トルク配分アクチュエータの耐久・信頼性の向上との両立を図ることができる四輪駆動車の駆動力配分制御装置を提供することを目的とする。   The present invention has been made paying attention to the above problems, and provides a driving force distribution control device for a four-wheel drive vehicle capable of ensuring both start performance and improving the durability and reliability of a torque distribution actuator. The purpose is to provide.

上記目的を達成するため、本発明では、
エンジン駆動系に設けられたトルク配分アクチュエータを介して副駆動輪へ伝達されるトルクを、予め設定された複数の駆動力配分制御手段のうち選択した手段により決める駆動力配分コントローラを備えた四輪駆動車の駆動力配分制御装置において、
前記駆動力配分制御手段として、副駆動輪への伝達トルクをエンジントルク相当値に応じて決めるトルク対応駆動力配分制御手段と、アクセル開度速度に応じて前後輪駆動力配分制御を行うアクセル対応駆動力配分制御手段と、を設け、
前記駆動力配分コントローラは、車速が所定値以上のとき、前記トルク対応駆動力配分制御手段による副駆動輪への伝達トルクの決定を禁止し、前記アクセル対応駆動力配分制御手段により副駆動輪への伝達トルクを決定することを特徴とする。
In order to achieve the above object, in the present invention,
Four wheels equipped with a driving force distribution controller that determines the torque transmitted to the auxiliary driving wheels via a torque distribution actuator provided in the engine drive system by means selected from a plurality of preset driving force distribution control means In the driving force distribution control device for driving vehicles,
As the driving force distribution control means, torque corresponding driving force distribution control means for determining the transmission torque to the auxiliary driving wheel according to the engine torque equivalent value, and accelerator corresponding to the front and rear wheel driving force distribution control according to the accelerator opening speed. Driving force distribution control means ,
The driving force distribution controller prohibits determination of torque transmitted to the auxiliary driving wheel by the torque corresponding driving force distribution control means when the vehicle speed is equal to or higher than a predetermined value , and the accelerator corresponding driving force distribution control means applies the auxiliary driving wheel to the auxiliary driving wheel. The transmission torque is determined .

ここで、「トルク対応駆動力配分制御手段」とは、例えば、アクセル開度や変速機出力軸トルクやエンジン出力軸トルク等のエンジントルク相当値により設定された目標伝達トルク特性に基づくフィードフォワード制御により、発進性能確保を目的として副駆動輪へ大トルクを伝達する指令を出力する手段をいう。   Here, the “torque-adaptive driving force distribution control means” means, for example, feedforward control based on a target transmission torque characteristic set by an engine torque equivalent value such as an accelerator opening, a transmission output shaft torque, and an engine output shaft torque. Thus, means for outputting a command for transmitting a large torque to the auxiliary drive wheels for the purpose of securing the starting performance.

よって、本発明の四輪駆動車の駆動力配分制御装置にあっては、駆動力配分コントローラにおいて、車速が所定値以上のとき、副駆動輪への伝達トルクをエンジントルク相当値に応じて決めるトルク対応駆動力配分制御が禁止されるため、車速が所定値未満の発進域におけるトルク対応駆動力配分制御による発進性能の確保と、車速が所定値以上の走行域における不要なトルク伝達抑制によるトルク配分アクチュエータの耐久・信頼性の向上と、の両立を図ることができる。   Therefore, in the driving force distribution control device for a four-wheel drive vehicle according to the present invention, in the driving force distribution controller, when the vehicle speed is equal to or higher than a predetermined value, the transmission torque to the auxiliary driving wheel is determined according to the engine torque equivalent value. Torque-related driving force distribution control is prohibited, so starting performance is ensured by torque-compatible driving force distribution control in a starting region where the vehicle speed is less than a predetermined value, and torque is generated by suppressing unnecessary torque transmission in a traveling region where the vehicle speed is a predetermined value or more. It is possible to improve the durability and reliability of the distribution actuator.

以下、本発明の四輪駆動車の駆動力配分制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。   Hereinafter, the best mode for realizing a driving force distribution control device for a four-wheel drive vehicle according to the present invention will be described based on a first embodiment shown in the drawings.

まず、構成を説明する。
図1は実施例1の四輪駆動車の駆動力配分制御装置が適用された後輪駆動ベースの四輪駆動車を示す全体システム図である。
First, the configuration will be described.
FIG. 1 is an overall system diagram showing a four-wheel drive vehicle based on a rear wheel drive to which a drive force distribution control device for a four-wheel drive vehicle according to a first embodiment is applied.

四輪駆動車の駆動系は、図1に示すように、エンジン1、自動変速機2、リヤプロペラシャフト3、リヤディファレンシャル4、リヤドライブシャフト5,6、左後輪7、右後輪8、トラスファクラッチ9(トルク配分アクチュエータ)、フロントプロペラシャフト10、フロントディファレンシャル11、フロントドライブシャフト12,13、左前輪14、右前輪15、とを備えている。
なお、左右後輪7,8が、主駆動輪に相当し、左右前輪14,15が副駆動輪に相当する。
As shown in FIG. 1, the drive system of the four-wheel drive vehicle includes an engine 1, an automatic transmission 2, a rear propeller shaft 3, a rear differential 4, rear drive shafts 5 and 6, a left rear wheel 7, a right rear wheel 8, A truss clutch 9 (torque distribution actuator), a front propeller shaft 10, a front differential 11, front drive shafts 12 and 13, a left front wheel 14 and a right front wheel 15 are provided.
The left and right rear wheels 7 and 8 correspond to main drive wheels, and the left and right front wheels 14 and 15 correspond to auxiliary drive wheels.

前記エンジン1は、エンジンコントローラ16からの指令により燃料噴射制御等が行われ、前記自動変速機2は、自動変速コントローラ17からの指令によりにより変速制御等が行われる。   The engine 1 is subjected to fuel injection control or the like according to a command from the engine controller 16, and the automatic transmission 2 is subjected to gear shift control or the like according to a command from the automatic transmission controller 17.

前記トランスファクラッチ9の締結制御を行う前後差動制限システムは、前後差動制限アクチュエータ19と、該前後差動制限アクチュエータ19に対し締結指令または解放指令を出力する差動制限コントローラ20(トルク配分コントローラ)と、を有して構成される。   The front / rear differential limiting system that controls the engagement of the transfer clutch 9 includes a front / rear differential limiting actuator 19 and a differential limiting controller 20 (torque distribution controller) that outputs a fastening command or a release command to the front / rear differential limiting actuator 19. ).

前記トランスファクラッチ9としては、例えば、油圧多板クラッチや電磁多板クラッチ等が適用され、締結により左右後輪7,8と左右前輪14,15の差動を制限する前後差動制限機能を有する。つまり、トランスファクラッチ9の締結により駆動トルクが、左右後輪7,8からトランスファクラッチ9を介して左右前輪14,15へ伝達されるというトルク配分作用により左右後輪7,8と左右前輪14,15の差動を制限する。   As the transfer clutch 9, for example, a hydraulic multi-plate clutch, an electromagnetic multi-plate clutch, or the like is applied, and it has a front-rear differential limiting function that limits the differential between the left and right rear wheels 7 and 8 and the left and right front wheels 14 and 15 by fastening. . That is, the left and right rear wheels 7 and 8 and the left and right front wheels 14 and 15 are driven by a torque distribution action in which the driving torque is transmitted from the left and right rear wheels 7 and 8 to the left and right front wheels 14 and 15 by fastening the transfer clutch 9. Limit 15 differentials.

前記差動制限コントローラ20には、アクセル開度センサ21(アクセル開度検出手段),前後加速度センサ22,モード切替スイッチ23等からの情報が入力される。前記モード切替スイッチ23は、2WD固定モードと4WD固定モードとオートモードとの切り替えを手動により行う手段である。そして、モード切替スイッチ23の4WD固定モードを選択すると前後輪の差動制限作用が最も強くなる。また、モード切替スイッチ23のオートモードを選択すると、例えば、前後輪回転速度差やアクセル開度速度等に応じ付与されるクラッチ締結トルクが大きいと前後輪の差動許容量が小さくて強い差動制限作用を示し、クラッチ締結トルクが小さくなるほど前後輪の差動許容量が次第に大きくなる。   Information from an accelerator opening sensor 21 (accelerator opening detecting means), a longitudinal acceleration sensor 22, a mode changeover switch 23, and the like is input to the differential limiting controller 20. The mode changeover switch 23 is means for manually switching between the 2WD fixed mode, the 4WD fixed mode, and the auto mode. When the 4WD fixed mode of the mode switch 23 is selected, the differential limiting action for the front and rear wheels is strongest. When the auto mode of the mode changeover switch 23 is selected, for example, if the clutch engagement torque applied according to the front-rear wheel rotational speed difference, the accelerator opening speed, or the like is large, the differential allowance between the front and rear wheels is small and strong differential. The limiting effect is exhibited, and the differential allowable amount of the front and rear wheels gradually increases as the clutch engagement torque decreases.

前記各輪7,8,14,15をブレーキ液圧により制動するアンチロックブレーキシステムは、図1に示すように、ブレーキペダル30、ブースタ31、マスタシリンダ32、マスタシリンダ液圧パイプ33,34、ABSアクチュエータ35、左後輪ホイールシリンダ液圧パイプ36、右後輪ホイールシリンダ液圧パイプ37、左前輪ホイールシリンダ液圧パイプ38、右前輪ホイールシリンダ液圧パイプ39、左後輪ホイールシリンダ40、右後輪ホイールシリンダ41、左前輪ホイールシリンダ42、右前輪ホイールシリンダ43、ブレーキコントローラ44、とを備えている。   As shown in FIG. 1, an anti-lock brake system that brakes the wheels 7, 8, 14, and 15 with brake hydraulic pressure includes a brake pedal 30, a booster 31, a master cylinder 32, master cylinder hydraulic pipes 33 and 34, ABS actuator 35, left rear wheel wheel cylinder hydraulic pipe 36, right rear wheel wheel cylinder hydraulic pipe 37, left front wheel wheel cylinder hydraulic pipe 38, right front wheel wheel cylinder hydraulic pipe 39, left rear wheel wheel cylinder 40, right A rear wheel wheel cylinder 41, a left front wheel wheel cylinder 42, a right front wheel wheel cylinder 43, and a brake controller 44 are provided.

前記ABSアクチュエータ35は、オイルポンプや液圧制御バルブ等により構成され、通常制動時には、マスタシリンダ液圧パイプ33,34に対応して分けられた2つのブレーキ液圧系統を介して各輪7,8,14,15にブレーキ液圧を供給する。ABS作動時には、各輪7,8,14,15の制動ロックを抑えるように、減圧・保持・増圧の3モードによりブレーキ液圧を制御する。   The ABS actuator 35 is constituted by an oil pump, a hydraulic pressure control valve, and the like, and during normal braking, each wheel 7, via two brake hydraulic pressure systems divided corresponding to the master cylinder hydraulic pressure pipes 33, 34. Brake fluid pressure is supplied to 8,14,15. At the time of ABS operation, the brake fluid pressure is controlled by three modes of pressure reduction, holding, and pressure increase so as to suppress braking lock of each wheel 7, 8, 14, and 15.

前記ブレーキコントローラ44には、ブレーキランプスイッチ45,左前輪速センサ46(車速検出手段),右前輪速センサ47(車速検出手段),左後輪速センサ48,右後輪速センサ49等からの情報が入力される。   The brake controller 44 includes a brake lamp switch 45, a left front wheel speed sensor 46 (vehicle speed detection means), a right front wheel speed sensor 47 (vehicle speed detection means), a left rear wheel speed sensor 48, a right rear wheel speed sensor 49, and the like. Information is entered.

前記エンジンコントローラ16と自動変速コントローラ17と差動制限コントローラ20とブレーキコントローラ44とは、情報交換を行う双方向通信線50により互いに連結されていて、ブレーキコントローラ44が入力した車輪速情報は、双方向通信線50を介して前記差動制限コントローラ20に供給される。   The engine controller 16, the automatic transmission controller 17, the differential limit controller 20, and the brake controller 44 are connected to each other by a bidirectional communication line 50 for exchanging information. It is supplied to the differential limiting controller 20 via the directional communication line 50.

次に、作用を説明する。   Next, the operation will be described.

[トルク配分制御処理]
図2は実施例1の差動制限コントローラ20にて所定制御周期毎に実行されるトルク配分制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。
[Torque distribution control processing]
FIG. 2 is a flowchart showing the flow of torque distribution control processing executed at predetermined control cycles by the differential limiting controller 20 of the first embodiment. Each step will be described below.

ステップS1では、アクセル開度ACCと車速Vとが読み込まれ、ステップS2へ移行する。
ここで、アクセル開度ACCは、アクセル開度センサ21からのセンサ信号に基づいて演算される。また、車速Vは、左前輪速センサ46と右前輪速センサからのセンサ信号に基づく左前輪速と右前輪速との平均値により演算される。
In step S1, the accelerator opening degree ACC and the vehicle speed V are read, and the process proceeds to step S2.
Here, the accelerator opening ACC is calculated based on a sensor signal from the accelerator opening sensor 21. The vehicle speed V is calculated from an average value of the left front wheel speed and the right front wheel speed based on sensor signals from the left front wheel speed sensor 46 and the right front wheel speed sensor.

ステップS2では、アクセル開度ACCと車速Vによる運転点が、図3に示す駆動力配分制御領域と差回転制御領域とに分けた制御領域マップ上にて駆動力配分制御領域に存在するか否かが判断され、YESの場合はステップS3へ移行し、NOの場合はステップS6へ移行する。
ここで、図3に示す制御領域マップは予め差動制限コントローラ20のメモリに記憶設定されている(制御領域マップ設定手段)。
In step S2, whether or not the operating point based on the accelerator opening ACC and the vehicle speed V exists in the driving force distribution control region on the control region map divided into the driving force distribution control region and the differential rotation control region shown in FIG. If YES, the process proceeds to step S3. If NO, the process proceeds to step S6.
Here, the control area map shown in FIG. 3 is stored and set in advance in the memory of the differential limiting controller 20 (control area map setting means).

ステップS3では、車速Vが所定値以上か否かが判断され、YESの場合はステップS4へ移行し、NOの場合はステップS5へ移行する。
ここで、「所定値」は、車両発進から定常走行に移行する境界領域、例えば、40km/h〜60km/hの車速に設定される。
In step S3, it is determined whether or not the vehicle speed V is equal to or higher than a predetermined value. If YES, the process proceeds to step S4. If NO, the process proceeds to step S5.
Here, the “predetermined value” is set to a boundary region where the vehicle starts and moves to steady running, for example, a vehicle speed of 40 km / h to 60 km / h.

ステップS4では、ステップS3の判断にて車速Vが所定値以上である場合、主駆動輪と副駆動輪の速度差に応じたフィードバック制御による副駆動輪へのトルク指令値と(差回転対応駆動力配分制御手段)、アクセル開度速度に応じたフィードフォワード制御による副駆動輪へのトルク指令値と(アクセル対応駆動力配分制御手段)、のセレクトハイによる指令値を目標伝達トルクとして設定し、この目標伝達トルクを得る指令を前後差動制限アクチュエータ19に指令してエンドへ移行する。
ここで、アクセル開度速度に応じた制御は、アクセル開度ACCの時間微分処理によりアクセル開度速度を求め、図4に示すように、求められたアクセル開度速度が大きいほど大きなトルク指令値Trr_ctrlとし、前輪14,15への駆動力配分量を大きくする。
In step S4, if the vehicle speed V is greater than or equal to a predetermined value in the determination in step S3, the torque command value to the sub drive wheel by feedback control according to the speed difference between the main drive wheel and the sub drive wheel (the differential rotation compatible drive). Force distribution control means), the torque command value to the auxiliary drive wheel by feedforward control according to the accelerator opening speed and the command value by the select high of (acceleration corresponding driving force distribution control means) are set as the target transmission torque, A command for obtaining the target transmission torque is commanded to the front-rear differential limiting actuator 19 and the process proceeds to the end.
Here, the control according to the accelerator opening speed is obtained by calculating the accelerator opening speed by time differentiation processing of the accelerator opening ACC, and as shown in FIG. 4, the larger the determined accelerator opening speed, the larger the torque command value. Trr_ctrl is set, and the driving force distribution amount to the front wheels 14 and 15 is increased.

ステップS5では、ステップS3の判断にて車速Vが所定値未満である場合、主駆動輪と副駆動輪の速度差に応じたフィードバック制御による副駆動輪へのトルク指令値と、エンジントルク相当値に応じたフィードフォワード制御による副駆動輪へのトルク指令値と(トルク対応駆動力配分制御手段)、のセレクトハイによる指令値を目標伝達トルクとして設定し、この目標伝達トルクを得る指令を前後差動制限アクチュエータ19に指令してエンドへ移行する。
ここで、「エンジントルク相当値」とは、例えば、アクセル開度や変速機出力軸トルクやエンジン出力軸トルク等をいい、「フィードフォワード制御による副駆動輪へのトルク指令値」とは、前記エンジントルク相当値により設定された目標伝達トルク特性に基づき、発進性能確保を目的として副駆動輪へ大トルクを伝達する指令をいう。
In step S5, when the vehicle speed V is less than the predetermined value in the determination in step S3, the torque command value to the auxiliary driving wheel by feedback control according to the speed difference between the main driving wheel and the auxiliary driving wheel, and the engine torque equivalent value The command value by the select high of the torque command value to the auxiliary driving wheel by the feedforward control according to the torque and the (high torque corresponding driving force distribution control means) is set as the target transmission torque, and the command to obtain this target transmission torque is set to the front-to-back difference. A command is given to the motion limiting actuator 19 to shift to the end.
Here, the “engine torque equivalent value” refers to, for example, the accelerator opening, the transmission output shaft torque, the engine output shaft torque, and the like, and the “torque command value to the sub drive wheels by feedforward control” Based on the target transmission torque characteristic set by the engine torque equivalent value, it refers to a command for transmitting a large torque to the sub drive wheels for the purpose of securing the starting performance.

ステップS6では、ステップS2においてアクセル開度ACCと車速Vによる運転点が、図3に示す駆動力配分制御領域と差回転制御領域とに分けた制御領域マップ上にて差回転制御領域に存在すると判断された場合、車速Vが所定値以上か否かが判断され、YESの場合はステップS7へ移行し、NOの場合はステップS8へ移行する。   In step S6, if the operating point based on the accelerator opening ACC and the vehicle speed V in step S2 exists in the differential rotation control region on the control region map divided into the driving force distribution control region and the differential rotation control region shown in FIG. If it is determined, it is determined whether or not the vehicle speed V is equal to or higher than a predetermined value. If YES, the process proceeds to step S7, and if NO, the process proceeds to step S8.

ステップS7では、ステップS6の判断にて車速Vが所定値以上である場合、主駆動輪と副駆動輪の速度差に応じたフィードバック制御による副駆動輪へのトルク指令値と、アクセル開度速度に応じたフィードフォワード制御による副駆動輪へのトルク指令値と、のセレクトハイによる指令値を目標伝達トルクとして設定し、この目標伝達トルクを得る指令を前後差動制限アクチュエータ19に指令してエンドへ移行する。   In step S7, if the vehicle speed V is greater than or equal to a predetermined value in the determination in step S6, the torque command value for the auxiliary driving wheel by the feedback control according to the speed difference between the main driving wheel and the auxiliary driving wheel, and the accelerator opening speed The command value by the select high of the torque command value to the auxiliary drive wheel by the feedforward control according to and the command value by the selection high is set as the target transmission torque, and the command to obtain this target transmission torque is commanded to the front-rear differential limiting actuator 19 and the end Migrate to

ステップS8では、ステップS6の判断にて車速Vが所定値未満である場合、主駆動輪と副駆動輪の速度差に応じたフィードバック制御による副駆動輪へのトルク指令値を目標伝達トルクとして設定し、この目標伝達トルクを得る指令を前後差動制限アクチュエータ19に指令してエンドへ移行する。   In step S8, when the vehicle speed V is less than the predetermined value in the determination in step S6, the torque command value to the auxiliary driving wheel by the feedback control according to the speed difference between the main driving wheel and the auxiliary driving wheel is set as the target transmission torque. Then, a command for obtaining the target transmission torque is commanded to the front-rear differential limiting actuator 19 and the process proceeds to the end.

[トルク配分制御作用]
勾配のきつい山岳路で連続登坂走行をしているときであって、発進からの連続登坂走行の後、カーブに進入した場合を例にとり、図4に示すタイムチャートに基づいてトルク配分制御作用を説明する。
[Torque distribution control function]
The torque distribution control action is based on the time chart shown in FIG. 4, taking as an example the case where the vehicle has entered a curve after running continuously uphill after starting on a slope with a tight mountain road. explain.

先ず、アクセル踏み込み操作を行ってt0の時点にて発進すると、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS5へと進む流れとなり、ステップS5では、差回転対応駆動力配分制御での伝達トルクとトルク対応駆動力配分制御での伝達トルクとのセレクトハイによる指令値を目標伝達トルクとする前後輪トルク配分制御が実行される。   First, when the accelerator is depressed and the vehicle starts at time t0, the flow proceeds from step S1 to step S2 to step S3 to step S5 in the flowchart of FIG. Front / rear wheel torque distribution control is executed in which the command value based on the select high between the transmission torque at the torque and the transmission torque in the torque corresponding driving force distribution control is the target transmission torque.

そして、ステップS3において、車速Vが所定値以上であると判断されるt1の時点までは、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS5へと進む流れが繰り返され、差回転対応駆動力配分制御での伝達トルクとトルク対応駆動力配分制御での伝達トルクとのセレクトハイによる指令値を目標伝達トルクとする前後輪トルク配分制御が実行される。   In step S3, until the time point t1 when the vehicle speed V is determined to be equal to or higher than the predetermined value, the flow of steps S1 → step S2 → step S3 → step S5 is repeated in the flowchart of FIG. Front / rear wheel torque distribution control is executed using a command value based on a selection high between the transmission torque in the rotation-compatible driving force distribution control and the transmission torque in the torque-compatible driving force distribution control as the target transmission torque.

よって、発進から車速が所定値となるまでは、例えば、アクセル開度ACCが大きいほど大きな伝達トルクが副駆動輪である左右前輪14,15に伝達され、エンジントルクを4輪7,8,14,15に対しほぼ等配分にて分配することで、左右後輪7,8の駆動スリップを抑えた高い駆動性能により連続登坂路を走破することができる。   Therefore, from the start until the vehicle speed reaches a predetermined value, for example, the larger the accelerator opening ACC, the larger the transmission torque is transmitted to the left and right front wheels 14 and 15, which are auxiliary drive wheels, and the engine torque is transferred to the four wheels 7, 8, 14 , 15 can be distributed on the road up and down continuously with high driving performance that suppresses the driving slip of the left and right rear wheels 7, 8.

次に、t1の時点で車速Vが所定値以上であると判断されると、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4へと進む流れとなり、ステップS4では、差回転対応駆動力配分制御での伝達トルクとアクセル対応駆動力配分制御での伝達トルクとのセレクトハイによる指令値を目標伝達トルクとする前後輪トルク配分制御が実行される。   Next, when it is determined that the vehicle speed V is greater than or equal to a predetermined value at the time t1, the flow proceeds to step S1, step S2, step S3, step S4 in the flowchart of FIG. Front-and-rear wheel torque distribution control is executed with a command value based on select high between the transmission torque in the corresponding driving force distribution control and the transmission torque in the accelerator-compatible driving force distribution control as the target transmission torque.

そして、ステップS3において、車速Vが所定値以上である限り、勾配のきつい山岳路のカーブ進入直前のt2の時点でアクセル足離しであると判断されるまでは、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4へと進む流れが繰り返され、差回転対応駆動力配分制御での伝達トルクとアクセル対応駆動力配分制御での伝達トルクとのセレクトハイによる指令値を目標伝達トルクとする前後輪トルク配分制御が実行される。   Then, in step S3, as long as the vehicle speed V is equal to or higher than a predetermined value, step S1 in the flowchart of FIG. 2 is determined until it is determined that the accelerator is released at time t2 immediately before entering the curve on the steep mountain road. Step S2 → Step S3 → Step S4 is repeated, and the command value based on the selection high between the transmission torque in the differential rotation corresponding driving force distribution control and the transmission torque in the accelerator corresponding driving force distribution control is set as the target transmission torque. The front and rear wheel torque distribution control is executed.

よって、駆動力配分制御がt3の時点まで継続される従来の制御仕様時とは異なり、t1の時点で駆動力配分制御モードが切り換わり、t1からt2までは、アクセル開度速度がゼロであるため、主駆動輪と副駆動輪との間に差回転が生じていない限り、左右前輪14,15へ伝達されるトルクがゼロまで落とされる。このため、例えば、トランスファクラッチ9が油圧クラッチユニットである場合には、過度な油温上昇が防止されるし、左右前輪14,15へのユニット内トルク伝達経路にギヤやチェーン等を有する場合はその疲労強度が確保され、トランスファクラッチ9の耐久・信頼性の向上を図ることができる。   Therefore, unlike the conventional control specification in which the driving force distribution control is continued until time t3, the driving force distribution control mode is switched at time t1, and the accelerator opening speed is zero from t1 to t2. Therefore, as long as there is no differential rotation between the main drive wheel and the sub drive wheel, the torque transmitted to the left and right front wheels 14, 15 is reduced to zero. For this reason, for example, when the transfer clutch 9 is a hydraulic clutch unit, an excessive increase in the oil temperature is prevented, and a gear, a chain, or the like is provided in the unit torque transmission path to the left and right front wheels 14 and 15. The fatigue strength is ensured, and the durability and reliability of the transfer clutch 9 can be improved.

次に、勾配のきつい山岳路でのカーブ進入時点t2からカーブを抜ける時点t3の時点までは、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS6→ステップS7へと進む流れが繰り返され、差回転対応駆動力配分制御での伝達トルクとアクセル対応駆動力配分制御での伝達トルクとのセレクトハイによる指令値を目標伝達トルクとする前後輪トルク配分制御がそのまま継続される。   Next, in the flowchart of FIG. 2, the flow from step S1 → step S2 → step S6 → step S7 is repeated in the flowchart of FIG. The front and rear wheel torque distribution control using the command value by the select high of the transmission torque in the differential rotation corresponding driving force distribution control and the transmission torque in the accelerator corresponding driving force distribution control as the target transmission torque is continued.

よって、このt2〜t3の走行区間では、アクセル開度速度がゼロであるため、主駆動輪と副駆動輪との間に差回転が生じていない限り、左右前輪14,15へ伝達されるトルクがゼロまで落とされるする前後輪トルク配分制御が、t1の時点からそのまま継続されることになり、副駆動輪への大トルク伝達が抑えられ、トランスファクラッチ9の耐久・信頼性の向上を図ることができる。   Therefore, in the traveling section from t2 to t3, since the accelerator opening speed is zero, the torque transmitted to the left and right front wheels 14 and 15 as long as there is no differential rotation between the main drive wheel and the sub drive wheel. The torque distribution control for the front and rear wheels, where the torque is reduced to zero, will continue as it is from the point of time t1, large torque transmission to the sub drive wheels will be suppressed, and the durability and reliability of the transfer clutch 9 will be improved. Can do.

次に、カーブを抜けた時点t3から時点t4までの区間において、再度アクセルの踏み込み操作を行うと、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS6→ステップS7へと進む流れとなり、ステップS7では、差回転対応駆動力配分制御での伝達トルクとアクセル対応駆動力配分制御での伝達トルクとのセレクトハイによる指令値を目標伝達トルクとする前後輪トルク配分制御が実行される。   Next, when the accelerator is depressed again in the section from the time point t3 to the time point t4 after exiting the curve, the flow proceeds to step S1, step S2, step S6, step S7 in the flowchart of FIG. In S7, front and rear wheel torque distribution control is executed in which the command value based on the select high of the transmission torque in the differential rotation corresponding driving force distribution control and the transmission torque in the accelerator corresponding driving force distribution control is set as the target transmission torque.

よって、このt3〜t4の走行区間では、アクセル開度速度が高いため、左右前輪14,15へ一時的に高トルクが伝達されることになり、カーブ抜け後の加速性が確保される。   Therefore, in the travel section from t3 to t4, since the accelerator opening speed is high, a high torque is temporarily transmitted to the left and right front wheels 14 and 15, and the acceleration performance after the curve is lost is ensured.

さらに、アクセル踏み込み操作を終えて高アクセル開度で維持するt4時点以降は、アクセル開度速度がゼロであるため、主駆動輪と副駆動輪との間に差回転が生じていない限り、左右前輪14,15へ伝達されるトルクがゼロまで落とされるする前後輪トルク配分制御が実行される。   Furthermore, after t4, when the accelerator depression operation is finished and maintained at a high accelerator opening, the accelerator opening speed is zero, so the right and left are not affected unless there is a differential rotation between the main drive wheel and the sub drive wheel. Front and rear wheel torque distribution control is executed in which the torque transmitted to the front wheels 14 and 15 is reduced to zero.

[トルク配分制御内容]   [Contents of torque distribution control]

実施例1のトルク配分制御内容は、図3の制御領域マップに示すように、
(1)TA1領域
車両の運転点が駆動力配分制御領域にあって、かつ、車速V<所定値のTA1領域では、図2のステップS5により、差回転対応駆動力配分制御によるトルク指令値と、トルク対応駆動力配分制御によるトルク指令値と、のセレクトハイによる指令値を目標伝達トルクとする。
(2)TA2領域
車両の運転点が駆動力配分制御領域にあって、かつ、車速V≧所定値のTA2領域では、図2のステップS4により、差回転対応駆動力配分制御によるトルク指令値と、アクセル対応駆動力配分制御によるトルク指令値と、のセレクトハイによる指令値を目標伝達トルクとする。
(3)DA1領域
車両の運転点が差回転制御領域にあって、かつ、車速V<所定値のDA1領域では、図2のステップS8により、差回転対応駆動力配分制御によるトルク指令値を目標伝達トルクとする。
(4)DA2領域
車両の運転点が差回転制御領域にあって、かつ、車速V≧所定値のDA2領域では、図2のステップS7により、差回転対応駆動力配分制御によるトルク指令値と、アクセル対応駆動力配分制御によるトルク指令値と、のセレクトハイによる指令値を目標伝達トルクとする。
The torque distribution control contents of the first embodiment are as shown in the control area map of FIG.
(1) TA1 area When the driving point of the vehicle is in the driving force distribution control area and the vehicle speed V <the TA1 area where the vehicle speed V <predetermined value, in step S5 in FIG. The torque command value based on the torque corresponding driving force distribution control and the command value based on the select high are set as the target transmission torque.
(2) TA2 region When the driving point of the vehicle is in the driving force distribution control region and the vehicle speed V is equal to or greater than the predetermined value TA2, the torque command value by the differential rotation corresponding driving force distribution control is set in step S4 of FIG. Then, the torque command value by the accelerator corresponding driving force distribution control and the command value by the select high are set as the target transmission torque.
(3) When the operating point of the DA1 area vehicle is in the differential rotation control area and the vehicle speed V <the DA1 area where the vehicle speed V <predetermined value, the target torque command value by the differential rotation corresponding driving force distribution control is set in step S8 of FIG. The transmission torque.
(4) In the DA2 region where the driving point of the DA2 region vehicle is in the differential rotation control region and the vehicle speed V ≧ predetermined value, in step S7 of FIG. The torque command value by the accelerator corresponding driving force distribution control and the command value by the select high are set as the target transmission torque.

すなわち、制御領域マップ上では四つの制御モードを有するが、TA2領域とDA2領域とでは同じ制御が行われることで、実質的には、TA1領域での差回転対応とトルク対応のセレクトハイによる制御モードと、DA1領域での差回転対応制御モードと、TA2+DA2領域での差回転対応とアクセル対応のセレクトハイによる制御モードと、の三つの制御モードを持つことになる。   In other words, although there are four control modes on the control area map, the same control is performed in the TA2 area and the DA2 area. There are three control modes: a mode, a control mode corresponding to differential rotation in the DA1 area, and a control mode based on differential rotation corresponding to the TA2 + DA2 area and a control mode corresponding to the accelerator.

ここで、三つの制御モードから、駆動スリップを抑えるように前後輪のトルク配分をフィードバック制御する差回転対応制御を除いて考えると、TA1領域でのトルク対応制御モードと、TA2+DA2領域でのアクセル対応制御モードと、が車速条件により分けられていることがわかる。そこで、その理由について、以下に説明する。   Here, from the three control modes, excluding the differential rotation support control that feedback controls the torque distribution of the front and rear wheels to suppress drive slip, the torque support control mode in the TA1 region and the accelerator support in the TA2 + DA2 region It can be seen that the control mode is divided according to the vehicle speed condition. The reason will be described below.

(1)トルク対応制御モードとアクセル対応制御モードとを『車速』により切り替える理由
車速が大きい走行シーンでの必要な副駆動輪トルクは、発進時と比較してそれほど必要とされない。つまり、4WD性能と部品耐久信頼性の向上を両立させるために、切り替え判断条件を車速とした。
(1) Reason for Switching between Torque-Compatible Control Mode and Accelerator-Compatible Control Mode by “Vehicle Speed” Necessary auxiliary driving wheel torque in a traveling scene where the vehicle speed is high is not so much required as compared to when starting. That is, in order to achieve both the 4WD performance and the improvement of component durability reliability, the switching determination condition is the vehicle speed.

(2)車速が所定値以上でアクセル対応制御モードにすべき理由
連続登坂路にような、加速をしていなくてもアクセルペダルを踏み続けているような走行シーンにて、不要な指令トルクをカットしたいという思いで発想したものである。つまり、連続登坂路のような走行シーンにおいて、従来技術では、所定車速以上となっても不要なトルクを指令しているが、上記のように、実施例1では、車速が所定値以上でアクセル対応制御モードにすれば、アクセルペダルを踏み続けているような走行シーンにて伝達トルクを抑えることができ、部品の耐久信頼性が確実に向上する。
(2) Reasons to set the accelerator control mode when the vehicle speed is higher than the specified value Unnecessary command torque is applied in a driving scene where the accelerator pedal is continuously depressed even if the vehicle is not accelerating, such as on a continuous uphill road. It was inspired by the desire to cut. That is, in a traveling scene such as a continuous uphill road, in the conventional technique, an unnecessary torque is commanded even when the vehicle speed exceeds a predetermined vehicle speed. However, as described above, in the first embodiment, the accelerator is operated when the vehicle speed exceeds a predetermined value. If the corresponding control mode is set, the transmission torque can be suppressed in a traveling scene in which the accelerator pedal is continuously depressed, and the durability reliability of the parts is reliably improved.

(3)車速が所定値未満でトルク対応制御モードにすべき理由
これは、従来技術と同様に、発進性能を確保するためである。車速が所定値未満でアクセル対応制御モードを適用すると、例えば、登坂発進時のアクセルペダルを一気に踏み込むが、その後、アクセル開度が一定となるようなときは、4WDとならないため、4WDとしての発進性能を確保できない。
(3) Reason why the vehicle speed should be less than the predetermined value and the torque corresponding control mode should be set. This is to ensure the start performance as in the prior art. When the accelerator-compatible control mode is applied when the vehicle speed is less than a predetermined value, for example, the accelerator pedal is depressed at the time of starting uphill, but after that, when the accelerator opening is constant, 4WD does not become 4WD. Performance cannot be secured.

次に、効果を説明する。
実施例1の四輪駆動車の駆動力配分制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the driving force distribution control device for a four-wheel drive vehicle according to the first embodiment, the following effects can be obtained.

(1)エンジン駆動系に設けられたトルク配分アクチュエータを介して副駆動輪へ伝達されるトルクを、予め設定された複数の駆動力配分制御手段のうち選択した手段により決める駆動力配分コントローラを備えた四輪駆動車の駆動力配分制御装置において、前記駆動力配分制御手段として、副駆動輪への伝達トルクをエンジントルク相当値に応じて決めるトルク対応駆動力配分制御手段を設け、前記駆動力配分コントローラは、車速が所定値以上のとき、前記トルク対応駆動力配分制御手段による副駆動輪への伝達トルクの決定を禁止するため、車速が所定値未満の発進域におけるトルク対応駆動力配分制御による発進性能の確保と、車速が所定値以上の走行域における不要なトルク伝達抑制によるトルク配分アクチュエータの耐久・信頼性の向上と、の両立を図ることができる。   (1) Provided with a driving force distribution controller that determines torque transmitted to the sub drive wheels via a torque distribution actuator provided in the engine drive system by means selected from a plurality of preset driving force distribution control means In the four-wheel drive vehicle driving force distribution control device, the driving force distribution control means is provided with torque corresponding driving force distribution control means for determining the transmission torque to the sub driving wheel according to the engine torque equivalent value, and the driving force When the vehicle speed is equal to or higher than a predetermined value, the distribution controller prohibits the determination of the torque transmitted to the auxiliary drive wheels by the torque-compatible driving force distribution control means, so that the torque-compatible driving force distribution control in the starting region where the vehicle speed is less than the predetermined value. The durability and reliability of the torque distribution actuator is ensured by ensuring start performance by driving and suppressing unnecessary torque transmission in the driving range where the vehicle speed exceeds the specified value. It is possible to achieve the above, the compatibility of.

(2)前記駆動力配分制御手段として、アクセル開度速度に応じて前後輪駆動力配分制御を行うアクセル対応駆動力配分制御手段を設け、前記駆動力配分コントローラは、前記トルク対応駆動力配分制御を禁止しているとき、前記アクセル対応駆動力配分制御手段により副駆動輪への伝達トルクを決定するため、車速が所定値以上の走行域にてアクセル踏み込み操作により加速しようとした場合、主駆動輪の駆動スリップ発生を抑えて加速性を向上させることができる。   (2) As the driving force distribution control means, provided is an accelerator corresponding driving force distribution control means for performing front and rear wheel driving force distribution control according to the accelerator opening speed, and the driving force distribution controller includes the torque corresponding driving force distribution control. When the vehicle speed is about to be accelerated by the accelerator depressing operation in the traveling region where the vehicle speed is equal to or higher than the predetermined value in order to determine the transmission torque to the auxiliary driving wheel by the accelerator-corresponding driving force distribution control means. Acceleration can be improved by suppressing the occurrence of wheel drive slip.

(3)前記アクセル対応駆動力配分制御手段は、アクセル開度速度が大きいほど副駆動輪への駆動力配分量を大きくするため、アクセル踏み込み速度にあらわれるドライバーの加速意図が大きいほど駆動性能を高めることができる。   (3) The accelerator-adaptive driving force distribution control means increases the amount of driving force distribution to the auxiliary driving wheel as the accelerator opening speed increases, so the driving performance increases as the driver's acceleration intention appears in the accelerator depression speed. be able to.

(4)前記駆動力配分制御手段として、副駆動輪への伝達トルクを主駆動輪と副駆動輪との速度差に応じて決める差回転対応駆動力配分制御手段を設け、前記駆動力配分コントローラは、トルク対応駆動力配分制御を禁止しているとき、前記アクセル対応駆動力配分制御手段による伝達トルクと前記差回転対応駆動力配分制御手段による伝達トルクとのセレクトハイにより駆動力配分を制御し、トルク対応駆動力配分制御を禁止していないとき、前記トルク対応駆動力配分制御手段による伝達トルクと前記差回転対応駆動力配分制御手段による伝達トルクとのセレクトハイにより駆動力配分を制御するため、停止〜低速域での発進性能の確保と、中〜高速域でのトルク配分アクチュエータの耐久・信頼性の向上と、全車速域での駆動スリップ抑制と、を併せて達成することができる。   (4) As the driving force distribution control means, provided is a differential rotation-compatible driving force distribution control means for determining a transmission torque to the auxiliary driving wheel according to a speed difference between the main driving wheel and the auxiliary driving wheel, and the driving force distribution controller When the torque corresponding driving force distribution control is prohibited, the driving force distribution is controlled by selecting high between the transmission torque by the accelerator corresponding driving force distribution control means and the transmission torque by the differential rotation corresponding driving force distribution control means. When the torque corresponding driving force distribution control is not prohibited, the driving force distribution is controlled by selecting high between the transmission torque by the torque corresponding driving force distribution control means and the transmission torque by the differential rotation corresponding driving force distribution control means. Ensuring start performance in the stop-low speed range, improving the durability and reliability of the torque distribution actuator in the mid-high speed range, and suppressing drive slip in all vehicle speed ranges , It can be achieved together.

(5)車速を検出する車速検出手段と、アクセル開度を検出するアクセル開度検出手段と、車速とアクセル開度の関係により駆動力配分制御領域と差回転制御領域とを設定している制御領域マップ設定手段と、を設け、前記駆動力配分コントローラは、車速検出値とアクセル開度検出値による車両の運転点が制御領域マップ上で駆動力配分制御領域に存在する場合、車速が所定値以上の時は前記差回転対応駆動力配分制御手段による伝達トルクと前記アクセル対応駆動力配分制御手段による伝達トルクとのセレクトハイにより制御し、車速が所定値未満の時は前記差回転対応駆動力配分制御手段による伝達トルクと前記トルク対応駆動力配分制御手段による伝達トルクとのセレクトハイにより駆動力配分を制御し、車速検出値とアクセル開度検出値による車両の運転点が制御領域マップ上で差回転制御領域に存在する場合、車速が所定値以上の時は前記差回転対応駆動力配分制御手段による伝達トルクと前記アクセル対応駆動力配分制御手段による伝達トルクとのセレクトハイにより制御し、車速が所定値未満の時は前記差回転対応駆動力配分制御手段による伝達トルクにより駆動力配分を制御するため、既に設定してある車速とアクセル開度の関係による制御領域マップをそのまま利用しながら、制御領域マップ上に車速による切り替え判断条件を加えるだけで、制御領域マップ上で分割された各領域にて最適の駆動力配分制御を実行することができる。   (5) Vehicle speed detecting means for detecting the vehicle speed, accelerator opening detecting means for detecting the accelerator opening, and control in which the driving force distribution control area and the differential rotation control area are set according to the relationship between the vehicle speed and the accelerator opening. An area map setting means, wherein the driving force distribution controller is configured such that the vehicle speed is a predetermined value when the driving point of the vehicle based on the vehicle speed detection value and the accelerator opening detection value exists in the driving force distribution control area on the control area map. When the vehicle speed is less than a predetermined value, control is performed by selecting high between the transmission torque by the differential rotation-compatible driving force distribution control means and the transmission torque by the accelerator-compatible driving force distribution control means. The driving force distribution is controlled by selecting high between the transmission torque by the distribution control means and the transmission torque by the torque corresponding driving force distribution control means, and the vehicle speed detection value and the accelerator opening detection When the driving point of the vehicle is present in the differential rotation control region on the control region map, when the vehicle speed is a predetermined value or more, the transmission torque by the differential rotation corresponding driving force distribution control unit and the accelerator corresponding driving force distribution control unit When the vehicle speed is less than a predetermined value, the driving force distribution is controlled by the transmission torque by the differential rotation corresponding driving force distribution control means. While using the control region map based on the relationship as it is, the optimum driving force distribution control can be executed in each region divided on the control region map simply by adding the switching determination condition based on the vehicle speed on the control region map. .

以上、本発明の四輪駆動車の駆動力配分制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   As mentioned above, although the drive force distribution control apparatus of the four-wheel drive vehicle of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, Each of Claims Design changes and additions are permitted without departing from the scope of the claimed invention.

例えば、実施例1では、トルク対応駆動力配分制御を禁止しているとき、アクセル対応駆動力配分制御に切り替える例を示したが、トルク対応駆動力配分制御を禁止したらトルク配分アクチュエータを解放し、2輪駆動状態へ移行する例としても良い。   For example, in the first embodiment, when the torque corresponding driving force distribution control is prohibited, the example is switched to the accelerator corresponding driving force distribution control. However, when the torque corresponding driving force distribution control is prohibited, the torque distribution actuator is released, It is good also as an example which transfers to a two-wheel drive state.

実施例1では、切り替え判断条件である車速条件として、固定値により車速しきい値(所定値)を与える例を示したが、ドライバーの嗜好による手動切替操作や車両状態等による自動切り替え作動により、可変値により車速しきい値(所定値)を与えるようにしても良い。   In the first embodiment, an example in which a vehicle speed threshold value (predetermined value) is given by a fixed value as a vehicle speed condition that is a switching determination condition. However, by a manual switching operation by a driver's preference or an automatic switching operation by a vehicle state or the like, A vehicle speed threshold value (predetermined value) may be given by a variable value.

本発明の四輪駆動車の駆動力配分制御装置は、後輪駆動ベースの4輪駆動車への適用例に限らず、前輪駆動ベースの4輪駆動車へも適用できる。   The driving force distribution control device for a four-wheel drive vehicle according to the present invention is not limited to an application example to a four-wheel drive vehicle based on a rear wheel drive, but can also be applied to a four-wheel drive vehicle based on a front wheel drive base.

実施例1の四輪駆動車の駆動力配分制御装置を示す全体システム図である。1 is an overall system diagram illustrating a driving force distribution control device for a four-wheel drive vehicle according to a first embodiment. 実施例1の差動制限コントローラにて実行されるトルク配分制御処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of torque distribution control processing executed by the differential limiting controller according to the first embodiment. 実施例1の差動制限コントローラに設定してある制御領域マップを示す図である。It is a figure which shows the control area map set to the differential limiting controller of Example 1. FIG. アクセル対応駆動力配分制御にて用いられるアクセル開度速度に対する副駆動輪伝達トルク特性を示す図である。It is a figure which shows the sub drive wheel transmission torque characteristic with respect to the accelerator opening speed used by accelerator corresponding driving force distribution control. 勾配がきつい登坂路走行時に実施例1の差動制限コントローラにて実行されるトルク配分制御作用を示すタイムチャートである。It is a time chart which shows the torque distribution control effect | action performed with the differential limiting controller of Example 1 at the time of an uphill traveling with a strong gradient.

符号の説明Explanation of symbols

1 エンジン
2 自動変速機
3 リヤプロペラシャフト
4 リヤディファレンシャル
5,6 リヤドライブシャフト
7 左後輪
8 右後輪
9 トラスファクラッチ(トルク配分アクチュエータ)
10 フロントプロペラシャフト
11 フロントディファレンシャル
12,13 フロントドライブシャフト
14 左前輪
15 右前輪
16 エンジンコントローラ
17 自動変速コントローラ
19 前後差動制限アクチュエータ
20 差動制限コントローラ(トルク配分コントローラ)
21 アクセル開度センサ(アクセル開度検出手段)
22 前後加速度センサ
23 モード切替スイッチ
44 ブレーキコントローラ
46 左前輪速センサ(車速検出手段)
47 右前輪速センサ(車速検出手段)
48 左後輪速センサ
49 右後輪速センサ
1 Engine 2 Automatic transmission 3 Rear propeller shaft 4 Rear differential 5, 6 Rear drive shaft 7 Left rear wheel 8 Right rear wheel 9 Truss clutch (torque distribution actuator)
DESCRIPTION OF SYMBOLS 10 Front propeller shaft 11 Front differential 12, 13 Front drive shaft 14 Left front wheel 15 Right front wheel 16 Engine controller 17 Automatic transmission controller 19 Front-back differential limiting actuator 20 Differential limiting controller (torque distribution controller)
21 Accelerator opening sensor (accelerator opening detector)
22 Longitudinal acceleration sensor 23 Mode changeover switch 44 Brake controller 46 Front left wheel speed sensor (vehicle speed detection means)
47 Front right wheel speed sensor (vehicle speed detection means)
48 Left rear wheel speed sensor 49 Right rear wheel speed sensor

Claims (4)

エンジン駆動系に設けられたトルク配分アクチュエータを介して副駆動輪へ伝達されるトルクを、予め設定された複数の駆動力配分制御手段のうち選択した手段により決める駆動力配分コントローラを備えた四輪駆動車の駆動力配分制御装置において、
前記駆動力配分制御手段として、副駆動輪への伝達トルクをエンジントルク相当値に応じて決めるトルク対応駆動力配分制御手段と、アクセル開度速度に応じて前後輪駆動力配分制御を行うアクセル対応駆動力配分制御手段と、を設け、
前記駆動力配分コントローラは、車速が所定値以上のとき、前記トルク対応駆動力配分制御手段による副駆動輪への伝達トルクの決定を禁止し、前記アクセル対応駆動力配分制御手段により副駆動輪への伝達トルクを決定することを特徴とする四輪駆動車の駆動力配分制御装置。
Four wheels equipped with a driving force distribution controller that determines the torque transmitted to the auxiliary driving wheels via a torque distribution actuator provided in the engine drive system by means selected from a plurality of preset driving force distribution control means In the driving force distribution control device for driving vehicles,
As the driving force distribution control means, torque corresponding driving force distribution control means for determining the transmission torque to the auxiliary driving wheel according to the engine torque equivalent value, and accelerator corresponding to the front and rear wheel driving force distribution control according to the accelerator opening speed. Driving force distribution control means ,
The driving force distribution controller prohibits determination of torque transmitted to the auxiliary driving wheel by the torque corresponding driving force distribution control means when the vehicle speed is equal to or higher than a predetermined value , and the accelerator corresponding driving force distribution control means applies the auxiliary driving wheel to the auxiliary driving wheel. A driving force distribution control device for a four-wheel drive vehicle, wherein the transmission torque of the vehicle is determined .
請求項に記載された四輪駆動車の駆動力配分制御装置において、
前記アクセル対応駆動力配分制御手段は、アクセル開度速度が大きいほど副駆動輪への駆動力配分量を大きくすることを特徴とする四輪駆動車の駆動力配分制御装置。
In the drive force distribution control device for a four-wheel drive vehicle according to claim 1 ,
The driving force distribution control device for a four-wheel drive vehicle, wherein the accelerator-compatible driving force distribution control means increases the amount of driving force distribution to the auxiliary driving wheels as the accelerator opening speed increases.
請求項または請求項に記載された四輪駆動車の駆動力配分制御装置において、
前記駆動力配分制御手段として、副駆動輪への伝達トルクを主駆動輪と副駆動輪との速度差に応じて決める差回転対応駆動力配分制御手段を設け、
前記駆動力配分コントローラは、トルク対応駆動力配分制御を禁止しているとき、前記アクセル対応駆動力配分制御手段による伝達トルクと前記差回転対応駆動力配分制御手段による伝達トルクとのセレクトハイにより駆動力配分を制御し、トルク対応駆動力配分制御を禁止していないとき、前記トルク対応駆動力配分制御手段による伝達トルクと前記差回転対応駆動力配分制御手段による伝達トルクとのセレクトハイにより駆動力配分を制御することを特徴とする四輪駆動車の駆動力配分制御装置。
In the driving force distribution control device for a four-wheel drive vehicle according to claim 1 or 2 ,
As the driving force distribution control means, provided is a differential rotation-compatible driving force distribution control means for determining the transmission torque to the auxiliary driving wheel according to the speed difference between the main driving wheel and the auxiliary driving wheel,
When the driving force distribution controller prohibits the torque corresponding driving force distribution control, the driving force distribution controller is driven by selecting high between the transmission torque by the accelerator corresponding driving force distribution control means and the transmission torque by the differential rotation corresponding driving force distribution control means. When the force distribution is controlled and the torque corresponding driving force distribution control is not prohibited, the driving force is selected by selecting high between the transmission torque by the torque corresponding driving force distribution control means and the transmission torque by the differential rotation corresponding driving force distribution control means. A driving force distribution control device for a four-wheel drive vehicle, characterized by controlling the distribution.
請求項1ないし請求項の何れか1項に記載された四輪駆動車の駆動力配分制御装置において、
車速を検出する車速検出手段と、
アクセル開度を検出するアクセル開度検出手段と、
車速とアクセル開度の関係により駆動力配分制御領域と差回転制御領域とを設定している制御領域マップ設定手段と、を設け、
前記駆動力配分コントローラは、車速検出値とアクセル開度検出値による車両の運転点が制御領域マップ上で駆動力配分制御領域に存在する場合、車速が所定値以上の時は前記差回転対応駆動力配分制御手段による伝達トルクと前記アクセル対応駆動力配分制御手段による伝達トルクとのセレクトハイにより制御し、車速が所定値未満の時は前記差回転対応駆動力配分制御手段による伝達トルクと前記トルク対応駆動力配分制御手段による伝達トルクとのセレクトハイにより駆動力配分を制御し、車速検出値とアクセル開度検出値による車両の運転点が制御領域マップ上で差回転制御領域に存在する場合、車速が所定値以上の時は前記差回転対応駆動力配分制御手段による伝達トルクと前記アクセル対応駆動力配分制御手段による伝達トルクとのセレクトハイにより制御し、車速が所定値未満の時は前記差回転対応駆動力配分制御手段による伝達トルクにより駆動力配分を制御することを特徴とする四輪駆動車の駆動力配分制御装置。
The drive force distribution control device for a four-wheel drive vehicle according to any one of claims 1 to 3 ,
Vehicle speed detection means for detecting the vehicle speed;
An accelerator opening detecting means for detecting the accelerator opening;
A control region map setting means for setting a driving force distribution control region and a differential rotation control region according to the relationship between the vehicle speed and the accelerator opening; and
The driving force distribution controller, when the vehicle operating point based on the vehicle speed detection value and the accelerator opening detection value is present in the driving force distribution control region on the control region map, when the vehicle speed is equal to or greater than a predetermined value, When the vehicle speed is less than a predetermined value, the transmission torque by the differential rotation correspondence driving force distribution control means and the torque are controlled by selecting high between the transmission torque by the force distribution control means and the transmission torque by the accelerator correspondence driving force distribution control means. When the driving force distribution is controlled by selecting high with the transmission torque by the corresponding driving force distribution control means, and the driving point of the vehicle based on the vehicle speed detection value and the accelerator opening detection value exists in the differential rotation control region on the control region map, When the vehicle speed is equal to or higher than a predetermined value, the transmission torque by the differential rotation corresponding driving force distribution control means and the transmission torque by the accelerator corresponding driving force distribution control means Of controlled by select-high, the vehicle speed is the differential speed corresponding driving force distribution of a four-wheel-drive vehicle and controls the driving force distribution by the torque transmitted by the control means the driving force distribution control apparatus when less than the predetermined value.
JP2003305195A 2003-08-28 2003-08-28 Driving force distribution control device for four-wheel drive vehicles Expired - Fee Related JP4254428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305195A JP4254428B2 (en) 2003-08-28 2003-08-28 Driving force distribution control device for four-wheel drive vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305195A JP4254428B2 (en) 2003-08-28 2003-08-28 Driving force distribution control device for four-wheel drive vehicles

Publications (2)

Publication Number Publication Date
JP2005075047A JP2005075047A (en) 2005-03-24
JP4254428B2 true JP4254428B2 (en) 2009-04-15

Family

ID=34408678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305195A Expired - Fee Related JP4254428B2 (en) 2003-08-28 2003-08-28 Driving force distribution control device for four-wheel drive vehicles

Country Status (1)

Country Link
JP (1) JP4254428B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163481B2 (en) * 2008-12-25 2013-03-13 日産自動車株式会社 Apparatus and method for controlling motor torque of a four-wheel drive vehicle
JP6164428B2 (en) * 2014-09-24 2017-07-19 マツダ株式会社 Slip rate control device for four-wheel drive vehicles

Also Published As

Publication number Publication date
JP2005075047A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US8380419B2 (en) Resume speed adaptation for automatic vehicle acceleration at a rate derived from a measured acceleration rate
US7198335B2 (en) Method and system for controlling regenerative braking of a four wheel drive electric vehicle
US20030036837A1 (en) Driving force controlling apparatus and method for four-wheel drive vehicle
US7861838B2 (en) Automatic transmission control apparatus
JP4539700B2 (en) Drive system controller for four-wheel drive vehicle
CN108204454B (en) Control device for all-wheel drive vehicle
CN107521338B (en) Control device for four-wheel drive vehicle and gradient value setting device for vehicle
KR20000028856A (en) Method for influencing a shift process connected with a change in transmission ratio when driving a motor vehicle
JP4254428B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP4665489B2 (en) Vehicle road surface friction coefficient discrimination device
JP2003336666A (en) Method for adjusting slip of clutch arranged in automatic transmission
JPH0699752A (en) Drive force distribution control device for four-wheel drive vehicle
JP4193534B2 (en) Differential limit control device
JP4543622B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP4306308B2 (en) Torque distribution control device for four-wheel drive vehicles
US7290636B2 (en) Device and method for controlling distribution of drive force of four-wheel drive car
US6848549B2 (en) Method and apparatus for operating an automated change-speed gearbox
JPH11278088A (en) Control device of torque distribution clutch for vehicle and parking brake turn judgement device for vehicle
JP4674461B2 (en) Vehicle road surface friction coefficient discrimination device
WO2023047585A1 (en) Travel driving control device for four-wheel drive vehicle
JP4665485B2 (en) Vehicle road surface friction coefficient discrimination device
JP3314551B2 (en) Braking force control device
WO2014178225A1 (en) Hybrid vehicle control device
KR20240053087A (en) Traction control method for vehicle
JP4424195B2 (en) Vehicle control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees