JP4235285B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery Download PDF

Info

Publication number
JP4235285B2
JP4235285B2 JP24564398A JP24564398A JP4235285B2 JP 4235285 B2 JP4235285 B2 JP 4235285B2 JP 24564398 A JP24564398 A JP 24564398A JP 24564398 A JP24564398 A JP 24564398A JP 4235285 B2 JP4235285 B2 JP 4235285B2
Authority
JP
Japan
Prior art keywords
active material
porosity
polymer
material mixture
mixture layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24564398A
Other languages
Japanese (ja)
Other versions
JPH11307100A (en
Inventor
誠 筒江
一成 木下
明子 石田
賢 西村
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24564398A priority Critical patent/JP4235285B2/en
Priority to US09/248,914 priority patent/US6579649B2/en
Publication of JPH11307100A publication Critical patent/JPH11307100A/en
Application granted granted Critical
Publication of JP4235285B2 publication Critical patent/JP4235285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機電解質電池、特に電極およびセパレータが有機電解液を吸収保持するポリマーを含み、熱融着により電極とセパレータを一体化できる有機電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、携帯電話やノート型コンピューター等の携帯機器の普及に伴い、小型、軽量で、高エネルギー密度の二次電池が切望されている。このような要望に応えるために、各種二次電池の開発が進められている。リチウムを負極活物質とするリチウム二次電池は、高エネルギー密度が期待できることから注目されている。なかでも正極、負極およびセパレータにポリマーを含み、このポリマーに有機電解液を吸収保持させた、いわゆるポリマー電解質二次電池が注目されている。
このポリマー電解質二次電池は、ポリマーとしてフッ化ビニリデンと六フッ化プロピレンの共重合体を用い、正極、セパレータおよび負極を熱融着により一体化できることから、薄型電池の実用化に最も近い電池系として注目されている(特表平8−507407号公報)。
【0003】
上記ポリマー電解質二次電池は、たとえば、次のようにして製造される。まず、コバルト酸リチウムや球状黒鉛粒子のような電極活物質粉末と導電剤粉末の混合物に、ポリマーの有機溶媒溶液と造孔剤のフタル酸ジ−n−ブチルを添加してペーストを調製する。このペーストを集電体に塗着した後、乾燥し前記有機溶媒を除去して電極シートを得る。こうして得られた正極シートと負極シートとの間に、造孔剤を含むポリマーのシートからなるセパレータシートを介在させ、加熱下で加圧することにより熱融着一体化して電池素子シートを得る。次いで、この電池素子シートをたとえば抽出溶媒のジエチルエーテル中に浸漬して造孔剤を抽出除去し電池素子シートに多孔性を付与し、しかる後その細孔とポリマー自身に有機電解液を含浸させる。
【0004】
【発明が解決しようとする課題】
上記のようにして得られるポリマー電解質電池の容量密度は、電極中のポリマーの配合割合および電極の多孔度に大きく左右される。すなわち、電極中のポリマーの割合が高ければ活物質の量が相対的に減少するし、ポリマーの割合が低ければ電極強度が低下する。また、上記の電極材料のペーストを集電体に塗着した後、圧延するなどにより電極材料の充填密度を上げ、多孔度を小さくすれば、電極内へ十分な電解液量が浸透せず、従って活物質が十分利用されなくなる。反対に、電極材料の充填密度を下げて電極部分の空間の総体積を増やし多孔度を大きくすれば、電極中に十分な電解液が浸透する。従って、活物質の利用率は上がるが、活物質の絶対量は低下する。
本発明は、以上に鑑み、電極の多孔度を適切に設定することにより、容量密度の大きいポリマー電解質電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の有機電解質電池は、有機電解液を吸収保持するポリマーおよび遷移金属含有リチウム酸化物を含む活物質混合物層と活物質混合物層を支持する集電体からなる正極、有機電解液を吸収保持するポリマーおよび充放電によりリチウムイオンの出入りが可能な炭素材料を含む活物質混合物層と活物質混合物層を支持する集電体からなる負極、有機電解液を吸収保持するポリマーからなる多孔性のセパレータ、並びに前記正極、負極、およびセパレータに吸収保持された有機電解液を具備し、正極の活物質混合物層の多孔度が40〜55%、負極の活物質混合物層の多孔度が35〜45%の範囲にあることを特徴とする。
前記活物質混合物層の多孔度は、(活物質混合物層の空間部分の総体積)/(活物質混合物層の総体積)×100(%)で表される。
【0006】
【発明の実施の形態】
本発明は、活物質混合物層中のポリマーの割合を一定にした条件の下で、多孔度を最適化することにより容量密度の大きいポリマー電解質電池を提供する。
本発明によるポリマー電解質電池の電極は、以下のようにして作製することが好ましい。まず、電極活物質と導電剤の粉末混合物に、ポリマーの有機溶媒溶液および造孔剤を混合してペーストを調製する。このペーストを集電体に塗着し乾燥した後、加圧ローラーにより圧延し、所定の寸法に切断して電極シートを得る。セパレータは、造孔剤を含むポリマーのシートで用意する。そして、このようにして得られた電極シートおよびセパレータシートの状態で、または正極、負極およびセパレータを一体に熱融着して電池素子に組み立てた状態において、造孔剤を抽出することによりポリマー部分を多孔性にし、電解液を浸透させる細孔を多数形成する。
【0007】
このような製造方法をとる際、電極の活物質混合物層の多孔度は、前記の加圧ローラーによる圧延の度合いにより調整するのが好ましい。活物質混合物層の多孔度は、ポリマーに対する造孔剤の割合によっても調整することができる。造孔剤によって定まる多孔度は、電解液を浸透保持させるためのものであるから、活物質に対するポリマー量が決まれば、ポリマーに対する最適な造孔剤の割合は自ずから決まる。
このように多孔度を調整する方法として二つの方法が考えられる。すなわち、加圧ローラーによる圧延度合いによって調整する方法と、造孔剤の添加割合によって調整する方法である。加圧ローラーによる圧延度合いを大きくすると、ポリマー粒子が変形したり潰されたりして、造孔剤が抜けて形成される細孔の径は小さくなり、多孔度は小さくなる。圧延度合いが小さいと、ポリマーは変形したり潰されたりすることがなく、造孔剤が抜けて形成される細孔は大きく、多孔度は大きくなる。一方、造孔剤の割合を少なくすると、できる細孔は少なく多孔度は小さくなり、造孔剤の割合を多くすると、できる細孔は多くなり多孔度は大きくなる。実際には、圧延度合いと造孔剤の割合とを調整することにより多孔度が決定される。いずれの方法においても、多孔度が小さければ、電極中への電解液の浸透が不十分となり放電容量、特に高率放電における放電容量が低下する。一方、多孔度が大きければ、同一活物質量のときは電極が厚くなり、集電体からの距離が遠くなり放電容量は低下し、また体積が大きくなるので体積効率が低下する。また、同一厚みとすると活物質量の比率が小さくなり、電池の絶対放電容量が小さくなる。さらに、多孔度が大きすぎると、電極の機械的強度は低下し、サイクル特性の低下を招く。
【0008】
本発明は、ポリマー量と造孔剤の添加割合が一定の条件の下で、活物質混合物層の圧延度合いを調整することにより、造孔剤によって調整される細孔および活物質混合物層の充填密度に左右される細孔の両者を勘案して、活物質混合物層の最適な多孔度を見いだしたことに基づくものである。
本発明の電極およびセパレータに用いるポリマーは、フッ化ビニリデンと六フッ化プロピレンとの共重合体、また造孔剤はフタル酸ージ−nーブチルがそれぞれ好適であるが、これらに限定されるものではない。
【0009】
正極活物質としては、LiCoO2、LiNiO2、LiMn24など充放電によりリチウムイオンを可逆的に出し入れできる化合物、特に遷移金属含有リチウム酸化物が用いられる。また、負極活物質としては、充放電によりリチウムイオンを可逆的に出し入れできる炭素材料、なかでも炭素質メソフェーズ粒体を炭素化および黒鉛化して得られた球状黒鉛粒子が好適に用いられる。
正極の集電体には、アルミニウム、チタン、ステンレス鋼などの箔、穴あき板、ラス板、網体など、また負極の集電体には、銅、ステンレス鋼などの箔、穴あき板、ラス板、網体などがそれぞれ用いられる。セルを多層に積層する構成をとるときは、穴あき板などの多孔板を用いるのが好ましい。
有機電解液には、LiClO4、LiBF4、LiPF6、LiCF3SO3など溶質とエチレンカーボネート、プロピレンカーボネート、ジメトキシエタンなどの有機溶媒との組み合わせなど、有機電解質電池に用いるものとして知られているもののなかから適宜選択して用いられる。
【0010】
本発明の好適な実施形態において、ポリマーはフッ化ビニリデンと六フッ化プロピレンとの共重合体であり、電極の活物質混合物中にはカーボンブラックなどの炭素質導電剤を含み、活物質混合物中のポリマーの割合は4〜16重量%である。
正極活物質に上記のような酸化物を用いた場合、活物質混合物中のポリマーの配合割合は5〜8重量%がより好ましい。一方、負極は、前記のような球状黒鉛粒子を活物質に用いた場合、活物質混合物中のポリマーの配合割合は9〜16重量%がより好ましい。
【0011】
【実施例】
以下、本発明をその実施例により詳細に説明する。
《実施例1》
フッ化ビニリデンと六フッ化プロピレンとの共重合体(六フッ化プロピレンの比率:12重量%)(以下、P(VDF−HFP)で表す。)100gをアセトン500gに溶解し、その溶液にフタル酸ージ−nーブチル(以下、DBPで表す。)150gを添加して混合溶液を得た。この溶液をガラス板上に塗布した後、乾燥してアセトンを除去し、厚さ50μmのセパレータシートを得た。
一方、P(VDF−HFP)90gをアセトン1500gに溶解した溶液に、コバルト酸リチウムLiCoO2900g、アセチレンブラック50g、およびDBP135gを混合し、撹拌してペーストを調製した。このペーストを集電体のアルミニウムのラス板の片面に塗着し乾燥した後、ロールプレスにより圧延した。こうして厚さ100μmの正極シートを得た。
【0012】
P(VDF−HFP)120gをアセトン1000gに溶解した溶液に、炭素質メソフェーズ粒体を炭素化および黒鉛化して得られた平均粒径6μmの球状黒鉛粒子(大阪ガス製)750g、導電剤の黒鉛繊維(大阪ガス製)60g、およびDBP180gを混合してペーストを得た。ここに用いた黒鉛繊維は、気相成長法により得た炭素繊維を黒鉛化したものである。このペーストを集電体の銅のラス板の両面に塗着し乾燥した後、ロールプレスにより圧延した。こうして厚さ300μmの負極シートを得た。
なお、上記の正極および負極の集電体は、あらかじめ表面に導電性炭素皮膜を形成したものを用いた。この導電性炭素皮膜は、ポリフッ化ビニリデンのNーメチルピロリドン溶液にアセチレンブラックを分散した分散液を集電体表面に塗布した後、乾燥して形成した。
【0013】
上記のようにして得た負極シートの両面に、それぞれセパレータシートを介して正極シートを配し、150℃に加熱された二本の加圧ローラー間をとおして加圧することにより一体に熱融着して電池素子を得た。この電池素子は、次にジエチルエーテル中に浸漬することによりDBPを抽出除去し、ポリマー部分を多孔性化した後、50℃で真空乾燥し、次いで電解液中に浸漬して電極およびセパレータ中の細孔内およびポリマー自身に電解液を含浸保持させた。電解液には、エチレンカーボネートとエチルメチルカーボネートの体積比1:3の混合溶媒に六フッ化リン酸リチウムLiPF6を1モル/lの割合で溶解したものである。
このようにして調製した電池素子を、絶縁性樹脂フィルムの中間にアルミニウムフィルムを配したラミネートフィルムで外装して厚さ0.6mm、大きさ40×60mmの電池を得た。
この電池の正極活物質混合物層の多孔度は45%、負極のそれは40%であった。
【0014】
次に、負極活物質混合物層の多孔度を40%と一定にし、正極活物質混合物層の多孔度を変えた電池を作製した。これらをA群電池という。また、正極活物質混合物層の多孔度を45%と一定にし、負極活物質混合物層の多孔度を変えた電池を作製した。これらをB群電池という。これらの電池について特性を比較した結果を以下に説明する。
まず、A群電池を放電レート0.2Cで終止電圧3.0Vまで放電して放電容量を求めた。その結果を図1に示す。図1の横軸には、正極活物質混合物層の多孔度を表している。同様にB群電池について試験した結果を図2に示す。
これらの図から明らかなように、同じ活物質量であるにもかかわらず電極活物質層の多孔度によって放電容量が大きく変わることがわかる。正極および負極とも多孔度30〜60%の範囲においてほぼ満足できる容量が得られる。さらにくわしく見ると、正極では多孔度40〜55%において、また負極では多孔度35〜45%において、それぞれ80mAh(活物質利用率80%)以上を得ることができ、より好ましい。
【0015】
次に、A群電池については正極の多孔度が25、45、および70%のもの、B群電池については負極の多孔度が23、40、および52%のものをそれぞれ放電レートを変えて放電した。図3に正極の多孔度を変えた電池の放電レートと放電容量との関係を示す。また、図4に負極の多孔度を変えた電池の放電レートと放電容量との関係を示す。これらの図から、電極活物質層の多孔度が適切でないと放電レートにかかわらず充填された活物質に見合った放電容量が得られないことがわかる。
【0016】
【発明の効果】
以上のように、本発明によれば、電極の活物質混合物層の多孔度を適切に規定することにより、容量密度の大きいポリマー電解質電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例におけるポリマー電解質電池において、負極活物質層の多孔度を一定にした条件の下で正極活物質層の多孔度を変えた場合の放電容量の変化を示す図である。
【図2】正極活物質層の多孔度を一定にした条件の下で負極活物質層の多孔度を変えた場合の放電容量の変化を示す図である。
【図3】正極活物質層の多孔度を変えた電池の放電レートと放電容量との関係を示す図である。
【図4】負極活物質層の多孔度を変えた電池の放電レートと放電容量との関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic electrolyte battery, and more particularly to an organic electrolyte secondary battery in which an electrode and a separator include a polymer that absorbs and holds an organic electrolyte, and the electrode and the separator can be integrated by heat fusion.
[0002]
[Prior art]
In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, secondary batteries that are small, lightweight, and have high energy density are desired. In order to meet such demands, various secondary batteries are being developed. Lithium secondary batteries that use lithium as a negative electrode active material are attracting attention because they can be expected to have a high energy density. In particular, a so-called polymer electrolyte secondary battery in which a polymer is contained in a positive electrode, a negative electrode, and a separator, and an organic electrolytic solution is absorbed and held in the polymer has attracted attention.
This polymer electrolyte secondary battery uses a copolymer of vinylidene fluoride and propylene hexafluoride as a polymer, and the positive electrode, separator, and negative electrode can be integrated by thermal fusion. (Japanese Patent Publication No. 8-507407).
[0003]
The polymer electrolyte secondary battery is manufactured, for example, as follows. First, a paste is prepared by adding a polymer organic solvent solution and a pore-forming agent di-n-butyl phthalate to a mixture of an electrode active material powder such as lithium cobaltate and spherical graphite particles and a conductive agent powder. The paste is applied to a current collector and then dried to remove the organic solvent to obtain an electrode sheet. A separator sheet made of a polymer sheet containing a pore-forming agent is interposed between the positive electrode sheet and the negative electrode sheet thus obtained, and heat fusion is integrated by applying pressure under heating to obtain a battery element sheet. Next, the battery element sheet is immersed in, for example, diethyl ether as an extraction solvent to extract and remove the pore-forming agent to impart porosity to the battery element sheet, and then the pores and the polymer itself are impregnated with an organic electrolyte. .
[0004]
[Problems to be solved by the invention]
The capacity density of the polymer electrolyte battery obtained as described above greatly depends on the blending ratio of the polymer in the electrode and the porosity of the electrode. That is, if the polymer ratio in the electrode is high, the amount of the active material is relatively decreased, and if the polymer ratio is low, the electrode strength is decreased. Also, after applying the above electrode material paste to the current collector, increasing the packing density of the electrode material by rolling, etc., and reducing the porosity, a sufficient amount of electrolyte does not penetrate into the electrode, Therefore, the active material is not sufficiently utilized. On the other hand, if the packing density of the electrode material is lowered to increase the total volume of the space of the electrode portion and increase the porosity, sufficient electrolyte solution penetrates into the electrode. Therefore, the utilization rate of the active material is increased, but the absolute amount of the active material is decreased.
In view of the above, an object of the present invention is to provide a polymer electrolyte battery having a large capacity density by appropriately setting the porosity of an electrode.
[0005]
[Means for Solving the Problems]
The organic electrolyte battery of the present invention absorbs and holds a positive electrode comprising an active material mixture layer containing a polymer that absorbs and holds an organic electrolyte and a transition metal-containing lithium oxide, and a current collector that supports the active material mixture layer, and an organic electrolyte. Active material mixture layer containing a carbon material capable of entering and exiting lithium ions by charging and discharging, a negative electrode comprising a current collector supporting the active material mixture layer, and a porous separator comprising a polymer that absorbs and holds an organic electrolyte And the positive electrode, the negative electrode, and the organic electrolyte solution absorbed and retained by the separator, the positive electrode active material mixture layer has a porosity of 40 to 55%, and the negative electrode active material mixture layer has a porosity of 35 to 45%. It is characterized by being in the range.
The porosity of the active material mixture layer is represented by (total volume of space portion of active material mixture layer) / (total volume of active material mixture layer) × 100 (%).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a polymer electrolyte battery having a large capacity density by optimizing the porosity under the condition that the ratio of the polymer in the active material mixture layer is constant.
The electrode of the polymer electrolyte battery according to the present invention is preferably produced as follows. First, a paste is prepared by mixing a polymer organic solvent solution and a pore-forming agent into a powder mixture of an electrode active material and a conductive agent. The paste is applied to a current collector and dried, then rolled with a pressure roller, and cut into a predetermined size to obtain an electrode sheet. The separator is prepared by a polymer sheet containing a pore forming agent. In the state of the electrode sheet and the separator sheet thus obtained, or in the state where the positive electrode, the negative electrode and the separator are integrally heat-sealed and assembled into a battery element, the polymer part is extracted by extracting the pore forming agent. Is made porous, and a large number of pores through which the electrolyte solution permeates are formed.
[0007]
When taking such a manufacturing method, it is preferable to adjust the porosity of the active material mixture layer of the electrode according to the degree of rolling by the pressure roller. The porosity of the active material mixture layer can also be adjusted by the ratio of the pore-forming agent to the polymer. The porosity determined by the pore-forming agent is for allowing the electrolyte solution to permeate and hold. Therefore, if the amount of the polymer relative to the active material is determined, the optimum ratio of the pore-forming agent to the polymer is naturally determined.
Two methods are conceivable as methods for adjusting the porosity in this way. That is, there are a method of adjusting by the degree of rolling by the pressure roller and a method of adjusting by the addition ratio of the pore former. When the degree of rolling by the pressure roller is increased, the polymer particles are deformed or crushed, the diameter of the pores formed by the removal of the pore-forming agent is decreased, and the porosity is decreased. When the degree of rolling is small, the polymer is not deformed or crushed, the pores formed by the removal of the pore former are large, and the porosity increases. On the other hand, when the proportion of the pore-forming agent is reduced, the number of pores that can be produced is small and the porosity is reduced. Actually, the porosity is determined by adjusting the degree of rolling and the ratio of the pore former. In any of the methods, if the porosity is small, the penetration of the electrolytic solution into the electrode becomes insufficient, and the discharge capacity, particularly the discharge capacity in high rate discharge is lowered. On the other hand, if the porosity is large, the electrode becomes thick when the amount of the active material is the same, the distance from the current collector is increased, the discharge capacity is decreased, and the volume is increased, so that the volume efficiency is decreased. Further, if the thickness is the same, the ratio of the amount of active material is reduced, and the absolute discharge capacity of the battery is reduced. Furthermore, when the porosity is too large, the mechanical strength of the electrode is lowered, and the cycle characteristics are lowered.
[0008]
The present invention is to fill the pores and active material mixture layer adjusted by the pore forming agent by adjusting the rolling degree of the active material mixture layer under the condition that the polymer amount and the addition ratio of the pore forming agent are constant. This is based on finding the optimum porosity of the active material mixture layer in consideration of both the pores depending on the density.
The polymer used for the electrode and separator of the present invention is preferably a copolymer of vinylidene fluoride and propylene hexafluoride, and the pore-forming agent is preferably phthalate-di-n-butyl, but is not limited thereto. is not.
[0009]
As the positive electrode active material, a compound such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 that can reversibly take in and out lithium ions by charging / discharging, in particular, a transition metal-containing lithium oxide is used. Further, as the negative electrode active material, a carbon material capable of reversibly taking in and out lithium ions by charging / discharging, particularly spherical graphite particles obtained by carbonizing and graphitizing carbonaceous mesophase particles is preferably used.
The current collector of the positive electrode is a foil, holed plate, lath plate, net, etc. of aluminum, titanium, stainless steel, etc. The current collector of the negative electrode is a foil, holed plate of copper, stainless steel, etc. A lath plate, a net, or the like is used. When taking a configuration in which cells are laminated in multiple layers, it is preferable to use a porous plate such as a perforated plate.
Organic electrolytes are known for use in organic electrolyte batteries, such as combinations of solutes such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 and organic solvents such as ethylene carbonate, propylene carbonate, and dimethoxyethane. It is appropriately selected from those used.
[0010]
In a preferred embodiment of the present invention, the polymer is a copolymer of vinylidene fluoride and propylene hexafluoride, and the active material mixture of the electrode contains a carbonaceous conductive agent such as carbon black, and the active material mixture contains The proportion of the polymer is 4 to 16% by weight.
When the above oxide is used for the positive electrode active material, the blending ratio of the polymer in the active material mixture is more preferably 5 to 8% by weight. On the other hand, in the negative electrode, when the above spherical graphite particles are used as the active material, the blending ratio of the polymer in the active material mixture is more preferably 9 to 16% by weight.
[0011]
【Example】
Hereinafter, the present invention will be described in detail by examples.
Example 1
100 g of a copolymer of vinylidene fluoride and propylene hexafluoride (ratio of propylene hexafluoride: 12% by weight) (hereinafter referred to as P (VDF-HFP)) is dissolved in 500 g of acetone, and phthalate is added to the solution. 150 g of acid-di-n-butyl (hereinafter referred to as DBP) was added to obtain a mixed solution. After applying this solution on a glass plate, it was dried to remove acetone to obtain a separator sheet having a thickness of 50 μm.
On the other hand, 900 g of lithium cobaltate LiCoO 2 , 50 g of acetylene black, and 135 g of DBP were mixed in a solution obtained by dissolving 90 g of P (VDF-HFP) in 1500 g of acetone, and stirred to prepare a paste. This paste was applied to one side of an aluminum lath plate as a current collector, dried, and then rolled by a roll press. Thus, a positive electrode sheet having a thickness of 100 μm was obtained.
[0012]
750 g of spherical graphite particles (manufactured by Osaka Gas) having an average particle diameter of 6 μm obtained by carbonizing and graphitizing carbonaceous mesophase granules in a solution of 120 g of P (VDF-HFP) in 1000 g of acetone, graphite as a conductive agent A paste was obtained by mixing 60 g of fibers (manufactured by Osaka Gas) and 180 g of DBP. The graphite fiber used here is a graphitized carbon fiber obtained by a vapor phase growth method. This paste was applied to both sides of a copper lath plate as a current collector, dried, and then rolled by a roll press. Thus, a negative electrode sheet having a thickness of 300 μm was obtained.
In addition, as the current collector for the positive electrode and the negative electrode, those having a conductive carbon film formed on the surface in advance were used. This conductive carbon film was formed by applying a dispersion of acetylene black dispersed in an N-methylpyrrolidone solution of polyvinylidene fluoride on the surface of the current collector and then drying it.
[0013]
A positive electrode sheet is disposed on both sides of the negative electrode sheet obtained as described above via a separator sheet, and heat is integrally fused by applying pressure between two pressure rollers heated to 150 ° C. Thus, a battery element was obtained. This battery element was then immersed in diethyl ether to extract and remove DBP, and after making the polymer part porous, it was vacuum dried at 50 ° C., and then immersed in an electrolyte solution so as to be contained in the electrode and separator. The electrolyte solution was impregnated and held in the pores and in the polymer itself. The electrolytic solution is obtained by dissolving lithium hexafluorophosphate LiPF 6 at a ratio of 1 mol / l in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3.
The battery element thus prepared was packaged with a laminate film in which an aluminum film was placed in the middle of the insulating resin film to obtain a battery having a thickness of 0.6 mm and a size of 40 × 60 mm.
The porosity of the positive electrode active material mixture layer of this battery was 45%, and that of the negative electrode was 40%.
[0014]
Next, a battery was produced in which the porosity of the negative electrode active material mixture layer was kept constant at 40%, and the porosity of the positive electrode active material mixture layer was changed. These are called Group A batteries. In addition, a battery in which the porosity of the positive electrode active material mixture layer was kept constant at 45% and the porosity of the negative electrode active material mixture layer was changed was produced. These are called group B batteries. The results of comparing the characteristics of these batteries will be described below.
First, the discharge capacity was obtained by discharging the group A battery to a final voltage of 3.0 V at a discharge rate of 0.2C. The result is shown in FIG. The horizontal axis of FIG. 1 represents the porosity of the positive electrode active material mixture layer. Similarly, the results of tests on the group B battery are shown in FIG.
As can be seen from these figures, the discharge capacity varies greatly depending on the porosity of the electrode active material layer despite the same amount of active material. Both the positive electrode and the negative electrode have a substantially satisfactory capacity in the range of porosity of 30 to 60%. More specifically, 80 mAh (active material utilization rate of 80%) or more can be obtained at a porosity of 40 to 55% for the positive electrode and a porosity of 35 to 45% for the negative electrode, respectively.
[0015]
Next, for the group A batteries, the positive electrode porosity is 25, 45, and 70%, and for the group B batteries, the negative electrode porosity is 23, 40, and 52%, respectively, with different discharge rates. did. FIG. 3 shows the relationship between the discharge rate and the discharge capacity of a battery in which the porosity of the positive electrode is changed. FIG. 4 shows the relationship between the discharge rate and the discharge capacity of a battery in which the porosity of the negative electrode is changed. From these figures, it can be seen that if the porosity of the electrode active material layer is not appropriate, a discharge capacity corresponding to the filled active material cannot be obtained regardless of the discharge rate.
[0016]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a polymer electrolyte battery having a large capacity density by appropriately defining the porosity of the active material mixture layer of the electrode.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in discharge capacity when the porosity of a positive electrode active material layer is changed under the condition that the porosity of a negative electrode active material layer is constant in a polymer electrolyte battery in an example of the present invention. is there.
FIG. 2 is a diagram showing a change in discharge capacity when the porosity of the negative electrode active material layer is changed under the condition that the porosity of the positive electrode active material layer is constant.
FIG. 3 is a diagram showing a relationship between a discharge rate and a discharge capacity of a battery in which the porosity of a positive electrode active material layer is changed.
FIG. 4 is a diagram showing a relationship between a discharge rate and a discharge capacity of a battery in which the porosity of a negative electrode active material layer is changed.

Claims (1)

有機電解液を吸収保持するポリマーおよび遷移金属含有リチウム酸化物を含む活物質混合物層と活物質混合物層を支持する集電体からなる正極、有機電解液を吸収保持するポリマーおよび充放電によりリチウムイオンの出入りが可能な炭素材料を含む活物質混合物層と活物質混合物層を支持する集電体からなる負極、有機電解液を吸収保持するポリマーからなる多孔性のセパレータ、並びに前記正極、負極、およびセパレータに吸収保持された有機電解液を具備し、正極の活物質混合物層の多孔度が40〜55%、負極の活物質混合物層の多孔度が35〜45%の範囲にある有機電解質電池。A positive electrode composed of an active material mixture layer containing a polymer that absorbs and holds an organic electrolyte and a transition metal-containing lithium oxide and a current collector that supports the active material mixture layer, a polymer that absorbs and holds an organic electrolyte, and lithium ions by charge and discharge An active material mixture layer containing a carbon material capable of entering and exiting, a negative electrode made of a current collector that supports the active material mixture layer, a porous separator made of a polymer that absorbs and holds an organic electrolyte, and the positive electrode, the negative electrode, and An organic electrolyte battery comprising an organic electrolytic solution absorbed and held in a separator, wherein the positive electrode active material mixture layer has a porosity of 40 to 55% and the negative electrode active material mixture layer has a porosity of 35 to 45%.
JP24564398A 1998-02-18 1998-08-31 Organic electrolyte battery Expired - Fee Related JP4235285B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24564398A JP4235285B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery
US09/248,914 US6579649B2 (en) 1998-02-18 1999-02-09 Polymer electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-36136 1998-02-18
JP3613698 1998-02-18
JP24564398A JP4235285B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11307100A JPH11307100A (en) 1999-11-05
JP4235285B2 true JP4235285B2 (en) 2009-03-11

Family

ID=26375181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24564398A Expired - Fee Related JP4235285B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP4235285B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083589A (en) * 2000-09-08 2002-03-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
KR101846767B1 (en) * 2014-04-02 2018-04-06 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery
JP6587105B2 (en) * 2016-03-24 2019-10-09 トヨタ自動車株式会社 Secondary battery
WO2020194300A1 (en) * 2019-03-26 2020-10-01 3Dbatteries Ltd. Ion conductive assembly and process for the preparation thereof

Also Published As

Publication number Publication date
JPH11307100A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US6423447B1 (en) Non-aqueous electrolyte secondary battery and method of production of the same
US6280878B1 (en) Electrode and lithium secondary battery using this electrode
JP3471238B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2004259636A (en) Nonaqueous electrolyte secondary battery
JP4088755B2 (en) Nonaqueous electrolyte secondary battery
WO2018059180A1 (en) High-power, high-energy chemical power supply and preparation method therefor
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4180335B2 (en) Non-aqueous electrolyte battery
JP3183270B2 (en) Manufacturing method of organic electrolyte battery
CN112216878B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JP3540629B2 (en) Method for producing electrode for electrochemical device and electrochemical device
JP4235285B2 (en) Organic electrolyte battery
US20230360863A1 (en) Advanced lithium-ion energy storage device
JP2001202954A (en) Nonaqueous electrolyte battery
KR100364965B1 (en) Method for manufacturing electrode of lithium polymer battery and lithium polymer battery using the electrode made by the method
JP4448963B2 (en) Flat type non-aqueous electrolyte secondary battery and method for manufacturing the same
JP2000113872A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH11273735A (en) Lithium-ion polymer secondary battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2002042891A (en) Thin-type lithium secondary battery
JP7107867B2 (en) Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2001319693A (en) Nonaqueous-electrolyte secondary battery
JP4291901B2 (en) Organic electrolyte battery
JP2001052742A (en) Sheet secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees