JP4224180B2 - Sensorless self-excited resonance type electromagnetic vibration device - Google Patents

Sensorless self-excited resonance type electromagnetic vibration device Download PDF

Info

Publication number
JP4224180B2
JP4224180B2 JP32332299A JP32332299A JP4224180B2 JP 4224180 B2 JP4224180 B2 JP 4224180B2 JP 32332299 A JP32332299 A JP 32332299A JP 32332299 A JP32332299 A JP 32332299A JP 4224180 B2 JP4224180 B2 JP 4224180B2
Authority
JP
Japan
Prior art keywords
vibration
current
electromagnet
calculation
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32332299A
Other languages
Japanese (ja)
Other versions
JP2001137778A (en
Inventor
嘉則 神谷
Original Assignee
株式会社村上精機工作所
嘉則 神谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村上精機工作所, 嘉則 神谷 filed Critical 株式会社村上精機工作所
Priority to JP32332299A priority Critical patent/JP4224180B2/en
Publication of JP2001137778A publication Critical patent/JP2001137778A/en
Application granted granted Critical
Publication of JP4224180B2 publication Critical patent/JP4224180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電磁石の吸引力とバネの復元力による振動を利用した、粉粒体を搬送するセンサレス自励共振型電磁振動装置に関するものである。
【0002】
【従来の技術】
電磁フィーダを駆動する共振型電磁振動機用制御装置として、特開平5−224756号公報に開示されたものがある。これは、電磁石電流の基本波と第3高調波の位相が共に90°となる周波数を検出追従する方式で、共振型の電磁振動制御を行うものである。
【0003】
【発明が解決しようとする課題】
しかしながら、この方式は、基本波、第3高調波について位相検出を行うため、コストが高いという問題があった。
本発明が解決しようとする課題は、電磁石の吸引力とバネの復元力による振動を利用した粉粒体の振動搬送装置において、電磁石自身を距離センサとする自励共振型の振動制御を行い、急速加振、急速停止、搬送量制御などを可能にするローコストで高性能の装置を提供することにある。
【0004】
【課題を解決するための手段】
前記課題を解決するため、本発明のセンサレス自励共振型電磁振動装置は、電磁石の吸引力とバネの復元力とを利用して被振動体を振動させる粉粒体の振動搬送装置において、前記被振動体を加振する電磁石のコイルに通電する電流制御PWMインバータの電流及び電圧を検出する電流センサ及び電圧センサと、前記電流センサで得られる電流信号と前記電圧センサで得られる電圧信号とを、それぞれキャリア周波数のバンドパスフィルタを通じその絶対値演算を行い、その演算により得られた電流信号を電圧信号で除算して、これを被振動体の変位の情報量とするセンサレス変位演算手段と、前記変位の情報量から特定の周波数帯域を選択して振動の振幅xAdを得るバンドパスフィルタと、前記振動の振幅xAdを所定の基準値と比較して方形波電圧を得る比較器と、この比較器の出力を積分して三角波を得る積分回路と、この積分回路で生成された三角波を一定振幅の正弦波に整形し、振動速度の位相を求める関数発生器と、前記検出振幅xAdを微分して、振動速度を求め、その絶対値を演算する搬送速度演算回路と、この求められた振動速度を搬送量指令に負帰還し、その誤差をPID演算するPID制御器と、PID制御器の出力の平方根演算を行う平方根演算器と、この平方根演算値と、前記振動速度の位相との積を求める乗算器とを備え、この乗算器の出力を電流指令として、電流制御PWMインバータに与え、電磁石に通電し吸引力を発生させることを特徴とする。
【0005】
【発明の実施の形態】
本発明の実施の形態について説明する。
図2は被振動体のセンサレス変位検出の手段を示すものであり、電流制御PWMインバータ21によって、電磁石コイル22に通電する電流Iは、10KHzのキャリヤ周波数によるトランジスタTR1,TR2のスイッチングリップル電流を含んでいる。このリップル電流と、電磁石コイルリップル電圧EL、電磁石コア間の距離xの間は、自己インダクタンスLによって関係づけられる。
【0006】
すなわち、概略の関係式は、次の二つの式である。
|EL|=2πfHL×|I|
H:PWMキャリア周波数(約10kHz)
L≒(μ0AN2/2x)[H]・・・・(自己インダクタンス)
ここで、μ0は4π×10-7[H/m]、Aは磁極面積[m2]、Nはコイル巻回数である。
【0007】
以上の関係式からxを求める。技術的には、バンドパスフィルタでリップル分を抽出する。
x=(μ0AN2/πfH)×(|I|/|EL|)
∴x∝|I(BPF)|/|EL(BPF)|
【0008】
この実行手段として、電流検出値Idを微分演算し、絶対値演算(全波整流)し、キャリヤリップルを消去するために、LPF19または機械共振周波数近辺のBPF8を通して、センサレスに距離xに対応するxdと振幅に対応するxAdを演算検出する。
ここで、ISは電流指令(機械振動用)、I0は演算用電流指令(5%程度の一定値)である。
【0009】
機械系の固有振動制御の手段は次の通りである。電磁石の吸引力F[N]、被振動体の質量M[Kg]、バネ定数K[N/m]、振動のダンピング係数D[N/m/s]、変位x[m]とすると、一般式として次式で表される。
F=M・d2x/dt2+D・dx/dt+Kx・・・(1)
【0010】
これを変形して、次式を得る。
F−D・dx/dt=M・d2x/dt2+Kx・・・(2)
この右辺は、持続する定振幅の固有振動である。したがって、左辺はF−D・dx/dt=0となるようにFを制御すればよい。すなわち、電磁石の吸引力Fを、速度ベクトルの位相で、振動減衰力を消去する量だけ制御すれば、機械系の固有振動に共振した定振幅制御が実現できる。
【0011】
次に、電磁石吸引力の線形化の手段について説明する。
電磁石の吸引力Fは、次式で示すように非線形である。
F[N]=(μ0AN2/8)(I/x)2
【0012】
基本的に、制御系の安定化のためには、力を線形化することが必要である。したがって、線形化のため√Iの値を電磁石の電流にすれば次式のように、電流に対して力が線形化できる。
F[N]=(μ0AN2/8)(I/x2
【0013】
これらを実現するための演算方式について説明する。
上記の電磁石吸引力Fを固有振動ベクトル化し、線形化するために、PID16の出力に図3の演算を行う。
【0014】
本発明により改良した制御系を図4に示す。前記の演算方式によって、制御系は図4に示す伝達関数ブロック図のように表現され、安定な振動制御が可能になる。この開ループ伝達関数G0は、次式で表され、
0={PKv(1+IS)(1+dS)/IS(1+TS)(1+tS)(MS+D)}×(I0/x0)L0
ダンピング係数D=0でも、微分時定数dを選ぶことで安定に制御できる。
但し、P:比例ゲイン、I:積分時定数、d:微分時定数、t:ノイズカット時定数、Kv:振動速度検出係数、L0:基準インダクタンス、x0:基準ギャップ距離、T:速度検出フィルター時定数である。
【0015】
【実施例】
図1に本発明の実施例の概要を示す。図中1は電磁石、2は被振動体、3はバネ、4は電流変成器(CT)、5はセンサレス変位演算器、6は微分回路、7は絶対値演算回路、8はバンドパスフィルタ、9は搬送速度演算器、10は微分回路、11は絶対値演算回路、12は速度位相演算器、13は比較器、14は積分回路、15は正弦波整形回路、16はPID演算器、17は平方根演算回路、18は乗算器、19は除算器、20は乗算器、21はPWMインバータ、22は電磁石コイル、23は搬送量指令回路である。
【0016】
本実施例では、電流制御インバータ21から与えられる電流をCT4で検出したIdと、インバータ21の出力電圧ELとを、インバータのキャリア周波数(約10kHz)のBPF6とBPF6’を通してキャリア周波数帯域のみを抽出し、次いで絶対値演算回路7と7’を通して絶対値を得、除算器19で前者を後者で除算して被振動体の変位xを得る。さらにBPF8を通して振幅xAdを演算検出する(センサレス検出)。ついで振幅検出xAdを比較器13で基準値と比較し、積分回路14で積分し、正弦波整形回路15で正弦波形にして速度位相を演算する。一方、微分回路10でxAdを微分し、絶対値演算回路11で絶対値を求めて搬送速度を演算し、これを搬送量指令に負帰還してPID演算器16でPID演算制御出力を得る。なお、この平方根演算を平方根演算回路17で行う。この値と前記速度位相との乗算値を求め、これを電流制御PWMインバータ21に与え、電磁石1に通電する。
【0017】
これにより、電磁石1の吸引力とバネ3の復元力による振動を利用した粉粒体の振動搬送装置において、電磁石自身を距離センサとする自励共振型の振動制御を行い、急速加振、急速停止、搬送量制御などを可能にするローコストで高性能の装置が実現できる。
【0018】
次に、図1の実施例の詳細を図面にしたがって説明する。
図5は図1の搬送量指令回路23の詳細を示すもので、図中31は電圧設定器、32は分圧回路、33は高速・低速切替スイッチ、34は増幅器である。
【0019】
図6は図1のPID演算回路16の詳細を示すもので、図中35はゲイン調整器、36は微分・積分回路、37は起動・停止スイッチである。
【0020】
図7(a)は図1の平方根演算回路17の詳細を示すもので、図7(b)は入力電圧と出力電圧の関係を示す特性図である。
【0021】
図8は図1の速度位相演算回路12及び搬送速度演算回路9の詳細を示すものである。図中38はノイズ除去のためのローパスフィルタである。
【0022】
図9は図1のセンサレス変位演算回路5の詳細を示すもので、図中39は増幅とリップル除去用の増幅器である。
【0023】
次に、実験結果のオシログラフによる波形図を示す。
図10はセンサレス演算検出波形と従来の加速度センサ波形を比較したもので、センサレス演算による本発明の方が、ノイズの少ない良い特性が得られていることが分かる。
【0024】
図11は無負荷運転時のギャップxdと電流Iを示している。xdとIの位相差が90°であり、振動速度位相に固定された電流であることを示している。
【0025】
図12は無負荷運転時の応答(低速0.2mm、高速2mm)を示すものであり、速度指令を急変した場合、応答速度、制御の安定性が良好であることが分かる。
【0026】
なお、前述のアナログ方式をディジタル化すると、PID、平方根演算、乗算器、正弦波整形、LPF、BPFなどがローコストに行える。但し、センサレス変位演算はアナログ方式とする。
【0027】
【発明の効果】
上述したように、本発明によれば、電磁石の吸引力とバネの復元力による振動を利用した粉粒体の振動搬送装置において、電磁石自身を距離センサとする自励共振型の振動制御を行い、急速加振、急速停止、搬送量制御などを可能にするローコストで高性能の装置が実現できる。
【図面の簡単な説明】
【図1】 本発明の実施例の概要を示すブロック図である。
【図2】 本発明の電流制御PWMインバータの概要を示すブロック図である。
【図3】 本発明における固有振動ベクトル化、線形化演算のブロック図である。
【図4】 本発明の制御系の伝達関数ブロック図である。
【図5】 本発明の搬送量指令回路の詳細を示す回路図である。
【図6】 本発明のPID演算回路の詳細を示す回路図である。
【図7】 本発明の平方根演算回路の詳細を示すもので、(a)は回路図、(b)は入出力電圧の関係を示す特性図である。
【図8】 本発明の速度位相演算回路及び搬送速度演算回路の詳細を示す回路図である。
【図9】 本発明のセンサレス変位演算回路の詳細を示す回路図である。
【図10】 センサレス演算検出波形と従来の加速度センサ波形図である。
【図11】 無負荷運転時のギャップと電流の関係を示す特性図である。
【図12】 無負荷運転時の応答を示す特性図である。
【符号の説明】
1 電磁石、2 被振動体、3 バネ、4 電流変成器(CT)、5 センサレス変位演算器、6、6’ バンドパスフィルタ(BPF)、7、7’ 絶対値演算回路、8 バンドパスフィルタ(BPF)、9 搬送速度演算器、10 微分回路、11 絶対値演算回路、12 速度位相演算器、13 比較器、14 積分回路、15 正弦波整形回路、16 PID演算器、17 平方根演算回路、18 乗算器、19 除算器、20 乗算器、21 PWMインバータ、22 電磁石コイル、23 搬送量指令回路、31 電圧設定器、32 分圧回路、33 高速・低速切替スイッチ、34 増幅器、35 ゲイン調整器、36 微分・積分回路、37 起動・停止スイッチ、38 ローパスフィルタ(LPF)、39 増幅器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensorless self-excited resonance type electromagnetic vibration device that conveys a granular material using vibration due to an attractive force of an electromagnet and a restoring force of a spring.
[0002]
[Prior art]
As a control device for a resonance type electromagnetic vibrator for driving an electromagnetic feeder, there is one disclosed in Japanese Patent Laid-Open No. 5-224756. This is a method of detecting and following the frequency at which the phase of the fundamental wave and the third harmonic of the electromagnet current are both 90 °, and performs resonance type electromagnetic vibration control.
[0003]
[Problems to be solved by the invention]
However, this method has a problem of high cost because phase detection is performed for the fundamental wave and the third harmonic.
The problem to be solved by the present invention is to perform vibration control of self-excited resonance type using the electromagnet itself as a distance sensor in the vibration conveying device of the granular material using vibration due to the attractive force of the electromagnet and the restoring force of the spring, The object is to provide a low-cost and high-performance apparatus that enables rapid vibration, rapid stop, and conveyance amount control.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a sensorless self-excited resonance type electromagnetic vibration device of the present invention is the above-described powder conveyance device that vibrates a vibrating body using the attractive force of an electromagnet and the restoring force of a spring. A current sensor and a voltage sensor for detecting a current and a voltage of a current control PWM inverter for energizing a coil of an electromagnet that vibrates a vibrating body, a current signal obtained by the current sensor, and a voltage signal obtained by the voltage sensor The sensorless displacement calculation means for calculating the absolute value through the band pass filter of the carrier frequency, dividing the current signal obtained by the calculation by the voltage signal, and using this as the information amount of the displacement of the vibrating body, a band-pass filter to obtain the amplitude x Ad vibration by selecting a specific frequency band from the information amount of the displacement, it compares the amplitude x Ad of the vibration with a predetermined reference value A comparator that obtains a wave voltage, an integration circuit that integrates the output of this comparator to obtain a triangular wave, and a function that calculates the phase of the vibration velocity by shaping the triangular wave generated by this integration circuit into a sine wave of constant amplitude And a carrier speed calculation circuit for differentiating the detected amplitude x Ad to obtain a vibration speed and calculating an absolute value thereof, and the obtained vibration speed is negatively fed back to the conveyance amount command, and the error is calculated by PID. A PID controller that performs a square root operation on the output of the PID controller, and a multiplier that obtains a product of the square root operation value and the phase of the vibration velocity. A command is given to the current control PWM inverter as a command, and the electromagnet is energized to generate an attractive force.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described.
FIG. 2 shows a means for detecting sensorless displacement of the vibrating body. The current I applied to the electromagnetic coil 22 by the current control PWM inverter 21 includes switching ripple currents of the transistors TR1 and TR2 with a carrier frequency of 10 KHz. It is out. The ripple current, the electromagnet coil ripple voltage E L , and the distance x between the electromagnet cores are related by the self-inductance L.
[0006]
That is, the general relational expressions are the following two expressions.
| E L | = 2πfH L × | I |
f H : PWM carrier frequency (about 10 kHz)
L ≒ (μ 0 AN 2 / 2x) [H] ··· (Self-inductance)
Here, μ 0 is 4π × 10 −7 [H / m], A is the magnetic pole area [m 2 ], and N is the number of coil turns.
[0007]
X is obtained from the above relational expression. Technically, the ripple is extracted by a band pass filter.
x = (μ 0 AN 2 / πf H ) × (| I | / | E L |)
∴x∝ | I (BPF) | / | E L (BPF) |
[0008]
As the execution means, and differential operation of the current detection value I d, and the absolute value operation (full-wave rectification), to clear the carrier ripple through BPF8 of LPF19 or mechanical resonant frequency near, corresponding to the distance x to the sensorless the x Ad corresponding to x d and the amplitude computing detection.
Here, I S is a current command (for mechanical vibration), and I 0 is a calculation current command (a constant value of about 5%).
[0009]
The means for controlling the natural vibration of the mechanical system is as follows. When an attraction force F [N] of an electromagnet, a mass M [Kg] of a body to be vibrated, a spring constant K [N / m], a vibration damping coefficient D [N / m / s], and a displacement x [m] It is expressed by the following formula as a formula.
F = M · d 2 x / dt 2 + D · dx / dt + Kx (1)
[0010]
By transforming this, the following equation is obtained.
FD · dx / dt = M · d 2 x / dt 2 + Kx (2)
This right side is a continuous oscillation with a constant amplitude. Therefore, F may be controlled so that the left side becomes FD · dx / dt = 0. That is, if the attraction force F of the electromagnet is controlled by the velocity vector phase by an amount that eliminates the vibration damping force, constant amplitude control that resonates with the natural vibration of the mechanical system can be realized.
[0011]
Next, means for linearizing the electromagnet attractive force will be described.
The attractive force F of the electromagnet is non-linear as shown by the following equation.
F [N] = (μ 0 AN 2/8) (I / x) 2
[0012]
Basically, it is necessary to linearize the force in order to stabilize the control system. Therefore, if the value of √I is set to the current of the electromagnet for linearization, the force can be linearized with respect to the current as shown in the following equation.
F [N] = (μ 0 AN 2/8) (I / x 2)
[0013]
A calculation method for realizing these will be described.
In order to convert the above-mentioned electromagnet attractive force F into a natural vibration vector and linearize it, the calculation of FIG. 3 is performed on the output of the PID 16.
[0014]
FIG. 4 shows a control system improved by the present invention. By the above calculation method, the control system is expressed as a transfer function block diagram shown in FIG. 4, and stable vibration control becomes possible. This open loop transfer function G 0 is expressed by the following equation:
G 0 = {PKv (1 + IS) (1 + dS) / IS (1 + TS) (1 + tS) (MS + D)} × (I 0 / x 0 ) L 0
Even with the damping coefficient D = 0, it can be controlled stably by selecting the differential time constant d.
Where P: proportional gain, I: integral time constant, d: derivative time constant, t: noise cut time constant, K v : vibration speed detection coefficient, L 0 : reference inductance, x 0 : reference gap distance, T: speed Detection filter time constant.
[0015]
【Example】
FIG. 1 shows an outline of an embodiment of the present invention. In the figure, 1 is an electromagnet, 2 is a vibrating body, 3 is a spring, 4 is a current transformer (CT), 5 is a sensorless displacement calculator, 6 is a differentiation circuit, 7 is an absolute value calculation circuit, 8 is a bandpass filter, 9 is a conveyance speed calculator, 10 is a differentiation circuit, 11 is an absolute value calculation circuit, 12 is a speed phase calculator, 13 is a comparator, 14 is an integration circuit, 15 is a sine wave shaping circuit, 16 is a PID calculator, 17 Is a square root arithmetic circuit, 18 is a multiplier, 19 is a divider, 20 is a multiplier, 21 is a PWM inverter, 22 is an electromagnet coil, and 23 is a transport amount command circuit.
[0016]
In this embodiment, the I d which detects the current supplied from the current control inverter 21 in CT4, and an output voltage E L of the inverter 21, the carrier frequency band through BPF6 and BPF6 'of the carrier frequency of the inverter (approximately 10 kHz) only Then, the absolute value is obtained through the absolute value calculation circuits 7 and 7 ', and the former 19 is divided by the latter by the divider 19 to obtain the displacement x of the vibrating body. Further, the amplitude x Ad is calculated and detected through the BPF 8 (sensorless detection). Next, the amplitude detection x Ad is compared with the reference value by the comparator 13, integrated by the integration circuit 14, and converted into a sine waveform by the sine wave shaping circuit 15 to calculate the speed phase. On the other hand, x Ad is differentiated by the differentiation circuit 10, the absolute value is obtained by the absolute value calculation circuit 11, the conveyance speed is calculated, this is negatively fed back to the conveyance amount command, and the PID calculation control output is obtained by the PID calculator 16. . This square root calculation is performed by the square root calculation circuit 17. A multiplication value of this value and the speed phase is obtained, and this is given to the current control PWM inverter 21 to energize the electromagnet 1.
[0017]
As a result, in the powder vibration transfer device using the vibration caused by the attractive force of the electromagnet 1 and the restoring force of the spring 3, self-excited resonance type vibration control using the electromagnet itself as a distance sensor is performed. A low-cost, high-performance device that enables stopping, transport amount control, etc. can be realized.
[0018]
Next, details of the embodiment of FIG. 1 will be described with reference to the drawings.
FIG. 5 shows details of the transport amount command circuit 23 of FIG. 1, in which 31 is a voltage setting device, 32 is a voltage dividing circuit, 33 is a high-speed / low-speed switch, and 34 is an amplifier.
[0019]
FIG. 6 shows details of the PID arithmetic circuit 16 of FIG. 1, in which 35 is a gain adjuster, 36 is a differentiation / integration circuit, and 37 is a start / stop switch.
[0020]
FIG. 7A shows details of the square root arithmetic circuit 17 of FIG. 1, and FIG. 7B is a characteristic diagram showing the relationship between the input voltage and the output voltage.
[0021]
FIG. 8 shows details of the speed phase calculation circuit 12 and the conveyance speed calculation circuit 9 of FIG. In the figure, reference numeral 38 denotes a low-pass filter for removing noise.
[0022]
FIG. 9 shows the details of the sensorless displacement calculation circuit 5 of FIG. 1, in which 39 is an amplifier for amplification and ripple removal.
[0023]
Next, an oscillograph waveform of the experimental results is shown.
FIG. 10 shows a comparison between a sensorless calculation detection waveform and a conventional acceleration sensor waveform, and it can be seen that the present invention based on sensorless calculation provides better characteristics with less noise.
[0024]
FIG. 11 shows the gap xd and current I during no-load operation. The phase difference between xd and I is 90 °, indicating that the current is fixed to the vibration velocity phase.
[0025]
FIG. 12 shows the response during low-load operation (low speed 0.2 mm, high speed 2 mm). It can be seen that the response speed and the stability of the control are good when the speed command is suddenly changed.
[0026]
If the above-described analog method is digitized, PID, square root calculation, multiplier, sine wave shaping, LPF, BPF, etc. can be performed at low cost. However, the sensorless displacement calculation is analog.
[0027]
【The invention's effect】
As described above, according to the present invention, the self-excited resonance type vibration control using the electromagnet itself as a distance sensor is performed in the granular material vibration conveyance device using the vibration caused by the attractive force of the electromagnet and the restoring force of the spring. It is possible to realize a low-cost and high-performance apparatus that enables rapid vibration, rapid stop, and conveyance amount control.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an outline of an embodiment of the present invention.
FIG. 2 is a block diagram showing an outline of a current control PWM inverter of the present invention.
FIG. 3 is a block diagram of natural vibration vectorization and linearization calculation in the present invention.
FIG. 4 is a transfer function block diagram of a control system of the present invention.
FIG. 5 is a circuit diagram showing details of a carry amount command circuit of the present invention.
FIG. 6 is a circuit diagram showing details of a PID arithmetic circuit of the present invention.
7A and 7B show details of the square root arithmetic circuit of the present invention, in which FIG. 7A is a circuit diagram, and FIG. 7B is a characteristic diagram showing a relationship between input and output voltages.
FIG. 8 is a circuit diagram showing details of a speed phase calculation circuit and a conveyance speed calculation circuit of the present invention.
FIG. 9 is a circuit diagram showing details of a sensorless displacement calculation circuit of the present invention.
FIG. 10 is a sensorless calculation detection waveform and a conventional acceleration sensor waveform diagram.
FIG. 11 is a characteristic diagram showing the relationship between the gap and current during no-load operation.
FIG. 12 is a characteristic diagram showing a response during no-load operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electromagnet, 2 to-be-vibrated body, 3 spring, 4 current transformer (CT), 5 sensorless displacement calculator, 6, 6 'band pass filter (BPF), 7, 7' absolute value calculation circuit, 8 band pass filter ( BPF), 9 Transport speed calculator, 10 Differentiation circuit, 11 Absolute value calculation circuit, 12 Speed phase calculator, 13 Comparator, 14 Integration circuit, 15 Sine wave shaping circuit, 16 PID calculator, 17 Square root calculation circuit, 18 Multiplier, 19 Divider, 20 Multiplier, 21 PWM inverter, 22 Electromagnetic coil, 23 Carrying amount command circuit, 31 Voltage setter, 32 Voltage divider circuit, 33 High speed / low speed changeover switch, 34 Amplifier, 35 Gain adjuster, 36 differentiation / integration circuit, 37 start / stop switch, 38 low pass filter (LPF), 39 amplifier

Claims (1)

電磁石の吸引力とバネの復元力とを利用して被振動体を振動させる粉粒体の振動搬送装置において、
前記被振動体を加振する電磁石のコイルに通電する電流制御PWMインバータの電流及び電圧を検出する電流センサ及び電圧センサと、
前記電流センサで得られる電流信号と前記電圧センサで得られる電圧信号とを、それぞれキャリア周波数のバンドパスフィルタを通じその絶対値演算を行い、その演算により得られた電流信号を電圧信号で除算して、これを被振動体の変位の情報量とするセンサレス変位演算手段と、
前記変位の情報量から特定の周波数帯域を選択して振動の振幅xAdを得るバンドパスフィルタと、
前記振動の振幅xAdを所定の基準値と比較して方形波電圧を得る比較器と、
この比較器の出力を積分して三角波を得る積分回路と、
この積分回路で生成された三角波を一定振幅の正弦波に整形し、振動速度の位相を求める関数発生器と、
前記検出振幅xAdを微分して、振動速度を求め、その絶対値を演算する搬送速度演算回路と、
この求められた振動速度を搬送量指令に負帰還し、その誤差をPID演算するPID制御器と、
PID制御器の出力の平方根演算を行う平方根演算器と、
この平方根演算値と、前記振動速度の位相との積を求める乗算器とを備え、
この乗算器の出力を電流指令として、電流制御PWMインバータに与え、電磁石に通電し吸引力を発生させることを特徴とする、センサレス共振型電磁振動装置。
In the vibration conveying device of the granular material that vibrates the vibrating body using the attractive force of the electromagnet and the restoring force of the spring,
A current sensor and a voltage sensor for detecting a current and a voltage of a current control PWM inverter for energizing a coil of an electromagnet for exciting the vibrating body;
The absolute value of the current signal obtained by the current sensor and the voltage signal obtained by the voltage sensor is calculated through a band-pass filter of a carrier frequency, and the current signal obtained by the calculation is divided by the voltage signal. , A sensorless displacement calculation means using this as an information amount of the displacement of the vibrating body,
A bandpass filter that selects a specific frequency band from the information amount of the displacement to obtain an amplitude x Ad of vibration;
A comparator that compares the amplitude x Ad of the vibration with a predetermined reference value to obtain a square wave voltage;
An integration circuit that obtains a triangular wave by integrating the output of the comparator;
A function generator that shapes the triangular wave generated by this integration circuit into a sine wave of constant amplitude and obtains the phase of the vibration speed,
A conveyance speed calculation circuit for differentiating the detected amplitude x Ad to obtain a vibration speed and calculating an absolute value thereof;
A PID controller that negatively feeds back the obtained vibration speed to the conveyance amount command and calculates the error by PID,
A square root calculator for performing a square root calculation of the output of the PID controller;
A multiplier for obtaining a product of the square root operation value and the phase of the vibration speed;
A sensorless resonance type electromagnetic vibration device characterized in that an output of the multiplier is given as a current command to a current control PWM inverter to energize an electromagnet to generate an attractive force.
JP32332299A 1999-11-12 1999-11-12 Sensorless self-excited resonance type electromagnetic vibration device Expired - Lifetime JP4224180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32332299A JP4224180B2 (en) 1999-11-12 1999-11-12 Sensorless self-excited resonance type electromagnetic vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32332299A JP4224180B2 (en) 1999-11-12 1999-11-12 Sensorless self-excited resonance type electromagnetic vibration device

Publications (2)

Publication Number Publication Date
JP2001137778A JP2001137778A (en) 2001-05-22
JP4224180B2 true JP4224180B2 (en) 2009-02-12

Family

ID=18153506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32332299A Expired - Lifetime JP4224180B2 (en) 1999-11-12 1999-11-12 Sensorless self-excited resonance type electromagnetic vibration device

Country Status (1)

Country Link
JP (1) JP4224180B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957604B2 (en) * 2002-10-04 2007-08-15 富士通株式会社 Channel search device
JP4720578B2 (en) * 2006-03-31 2011-07-13 東洋製罐株式会社 Molten resin lump feeder
EP2404732B1 (en) * 2006-02-17 2017-05-17 Toyo Seikan Group Holdings, Ltd. Method and apparatus for feeding molten resin mass in a press mould
JP5297745B2 (en) * 2008-09-30 2013-09-25 大和製衡株式会社 Vibration conveying apparatus and combination weigher using the same
JP5795841B2 (en) * 2010-05-26 2015-10-14 Ntn株式会社 Control unit for vibratory component feeder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134413A (en) * 1986-11-25 1988-06-07 Toyota Motor Corp Constant amplitude adjustor for vibrating bowl feeder
JP3235858B2 (en) * 1992-02-12 2001-12-04 明治電機工業株式会社 Control device for resonance type electromagnetic vibrator
JP3439822B2 (en) * 1993-06-16 2003-08-25 ワイケイケイ株式会社 Resonant frequency tracking controller for self-excited vibration type parts feeder
JP3525015B2 (en) * 1996-10-14 2004-05-10 愛三工業株式会社 Oscillator driving device and powder supply device
JP4082629B2 (en) * 1997-11-14 2008-04-30 株式会社村上精機工作所 Self-excited resonance type vibration device
JP4041211B2 (en) * 1998-05-14 2008-01-30 株式会社村上精機工作所 Sensorless self-excited resonance type electromagnetic vibration device

Also Published As

Publication number Publication date
JP2001137778A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
WO2007004656A1 (en) Magnetic bearing device and magnetic bearing method
EP0449625B1 (en) Mass velocity controller
JP2011010533A (en) Motor control device and motor control system
EP1349265A4 (en) Linear compressor drive device
JP4224180B2 (en) Sensorless self-excited resonance type electromagnetic vibration device
JP2003254249A (en) Device and method for controlling linear compressor
JP4041211B2 (en) Sensorless self-excited resonance type electromagnetic vibration device
JP4367411B2 (en) Motor control device
JP4082629B2 (en) Self-excited resonance type vibration device
JP3014264B2 (en) Steel plate vibration control device
JP3220281B2 (en) Magnetic bearing device
JP3752701B2 (en) Self-excited vibration type vibration control device
CN105312510B (en) Eddy current type mould level measurement device and mould level assay method
JPH05118329A (en) Magnetic bearing device
JPH0234008A (en) Driver for ultrasonic vibrator
JP2000014200A (en) Pwm inverter
JP3890672B2 (en) Self-excited vibration type vibration device
JP3895479B2 (en) Vibration test apparatus and vibration test apparatus control method
JP2000288469A (en) Optimum mode selecting resonance type vibrating classifier
JP3890673B2 (en) Self-excited vibration type vibration device
EP3584586A2 (en) Speed detecting device and speed detecting method
JPS6329518B2 (en)
JP2005087808A (en) Resonance type vibration device
JP2519141B2 (en) Magnetic bearing device
Mizuno et al. Control system design of frequency-feedback magnetic bearings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081121

R150 Certificate of patent or registration of utility model

Ref document number: 4224180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term