JP4223730B2 - Heat sink plate - Google Patents

Heat sink plate Download PDF

Info

Publication number
JP4223730B2
JP4223730B2 JP2002111814A JP2002111814A JP4223730B2 JP 4223730 B2 JP4223730 B2 JP 4223730B2 JP 2002111814 A JP2002111814 A JP 2002111814A JP 2002111814 A JP2002111814 A JP 2002111814A JP 4223730 B2 JP4223730 B2 JP 4223730B2
Authority
JP
Japan
Prior art keywords
heat sink
particles
sink plate
silicon carbide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002111814A
Other languages
Japanese (ja)
Other versions
JP2003309232A (en
Inventor
信幸 鈴木
晶 寺師
清 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totan Kako Co Ltd
Original Assignee
Totan Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totan Kako Co Ltd filed Critical Totan Kako Co Ltd
Priority to JP2002111814A priority Critical patent/JP4223730B2/en
Publication of JP2003309232A publication Critical patent/JP2003309232A/en
Application granted granted Critical
Publication of JP4223730B2 publication Critical patent/JP4223730B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体や集積回路などの放熱性を要求される基板として、強度、熱伝導度に優れ、かつ適当な熱膨張率を有する部材に摘要される。
【0002】
【従来の技術】
半導体の基板として従来、アルミナセラミックスやエポキシ樹脂が使用されていた頃は、半導体自体からの発熱は問題にならなかった。しかし最近では,演算速度のスピードアップや、高速通信いわゆる光通信の光熱による発熱量の増大に伴って、半導体の冷却が必要不可欠になって来た。それに対応するように、基板も熱伝導度の良好なもの、及び適当な熱膨張率を具備する材料によって選定されるようになった。
【0003】
すなわち、高熱伝導で適当な熱膨張率を有するものとして、銅タングステン、銅モリブデンや炭化珪素とアルミニウムの複合材料が発明されて利用されている。これらはおよそ、150〜200W/mKの熱伝導度と、8〜12ppm/Kの熱膨張率を有している。
【0004】
【発明が解決しようとする課題】
ところが最近では、半導体からの発熱量が大きくなり、熱伝導度がより大きなものが必要となって来た。又、光通信に供される化合物半導体では、熱膨張率が4〜5ppm/Kが要求される。銅タングステン、銅モリブデンや炭化珪素とアルミニウムの複合材料では、新しい基板で必要とされている熱伝導度、熱膨張の両特性ともに満足させることは不可能である。
【0005】
他方では、近年自動車にも電気化に伴い集積回路の基板として、熱膨張率8〜12ppm/K、熱伝導度300W/mK以上のヒートシンク材料としての要求特性の他に、機械的強度として250MPa以上のものが必要とされている。
【0006】
このため、本開発の課題として、熱膨張率を4〜5ppm/Kと8〜12ppm/Kの2水準とし、熱伝導度が300〜400W/mKのヒートシンク板を完成させることとした。
【0007】
本課題に先行して、予め強化材となる各種無機物にマトリックスの溶融金属を含浸させた金属基複合材の機械的強度と熱伝導度および熱膨張率の特性を調査した所、表―1に示す特性値が得られた。
【0008】

Figure 0004223730
【0009】
本課題を達成する為、表―1に示す複合材料をさらに組合わせて使用することを考えた。熱伝導度について、例えば2種の複合材料を組合わせた場合、総括熱伝導度U(W/mK)は1種の熱伝導度A(W/mK)、その厚さX(mm)とし、他種の熱伝導度B(W/mK)、その厚さY(mm)とする時、
U=(X+Y)/(X/A+Y/B)という式が成り立つ。
【0010】
上式のUが400W/mK以上になるためには少なくとも一種は10、11を採用し、他種との兼合いからその厚さを調整すれば良い訳である。例えば他種に4を選択し、その厚さを1mm、11の厚さを3mmとする時、Uは408W/mKとなる。別の例としては、1の厚さを1mm、10の厚さを2mmとする時、Uは407W/mKとなり、それぞれ熱伝導度の目標を満足する。
【0011】
次に熱膨張率であるが、10あるいは11を使用する場合、直角方向での熱膨張率を採用せねばならない。この理由はヒートシンク板としては、熱伝導度が板の厚さ方向に良好なことが必要であるのに対して、熱膨張率は板の平面方向に関係してくるからである。
【0012】
9、10および11は、繊維方向をヒートシンク板の厚み方向とする時、板の平面方向は、繊維の直角方向となるがその直角方向の引張強度はいずれも小さいので、例えば1と10の組合わせの場合、熱膨張は1が支配的となり熱膨張率として、12ppm/Kとなる。又、4と11の組合わせの場合は、8ppm/Kとなり例えば、電気自動車などのパワーモジュール系のヒートシンク板として満足されるものとなる。
【0013】
一方で、10と12、11と13の組合わせでは、板の平面方向の熱膨張率はそれぞれ、4.5〜4.1となり光通信用などの放熱基板として最適なものとなる。
【0014】
【課題を解決するための手段】
本発明は、炭化珪素粒子又は立方晶窒化ほう素粒子からなる層と炭素粒子又は炭素繊維からなる層の2層から構成される無機物層に溶融金属を含浸させることによって得られるヒートシンク板を提供するものである。
【実施例】
以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0015】
【実施例1】
ピッチ系の炭素繊維をフェノール樹脂にて一方向に揃うように成形し、これを真空中で3000℃に焼成し、1方向のグラファイト質の炭素繊維成形体を得た。このものの繊維体積率は55%フェノール樹脂から炭化したものは18%であった。
【0016】
他方、炭化珪素粒子を2000℃にて焼結した炭化珪素焼結体を体積率72%で得た。黒鉛化炭素繊維成形体(1)と炭化珪素焼結体(4)とを繊維方向が炭化珪素板面に直角になるよに配置して図―1に示すようにそれぞれ800℃に予熱した後、所定の金型に入れ(3、4)、その上に800℃のJIS A1050溶湯を注ぎプランジャーで圧力98MPaにて加圧し凝固完了後、黒鉛化炭素繊維と炭化珪素を強化材とするアルミニウム基複合材を得た。
【0017】
このように得られた複合材の物性は、図―2に示すように炭素繊維の複合材層が2mm炭化珪素の複合材層が1mmの厚さの加工すると、熱膨張率が4.5ppm/K、熱伝導度が407W/mKであった。これと同様のものを図―3―1(断面図)、図―3―2(平面図)のように加工し、ヒートシンクパッケージ(14)を得た。このものは炭素繊維とアルミニウムからなる複合材層が機械加工性に優れているので、容易に加工でき、かつ、サブマウント(13)が一体成形できるので、サブマウント頂上からパッケージの最下面までの熱伝導度も極めて良好であり、かつサブマウントを基板にロー付けする必要のないものであった。
【0018】
【実施例2】
実施例1と同様の黒鉛化炭素繊維成形体を用いて他方は炭化珪素焼結体の替わりに炭化珪素粒子を用いて、JIS A1050の替わりにJIS C1020を、予熱温度1200℃、溶湯温度1250℃にした以外は同様にして行った。
その結果、熱膨張率は8ppm/K、熱伝導度は408W/mKであった。
【0019】
【実施例3】
予め650℃に加熱した炭化珪素焼結体の上に、これも予め600℃加熱した黒鉛粒子を金型内に配置して、750℃のJIS ADC14溶湯を流し図―4のようにプランジャーで圧力70MPaにて加圧し、凝固後、炭化珪素と黒鉛粒子の2層からなる金属基複合材料を得た。
【0020】
このものを、幅70mm長さ150mmで炭化珪素の複合材層の厚みが1mm、黒鉛粒子との複合材層の厚みが2mmになるように作成した。このものの引張強度は、板の平面方向で310MPaであり、熱伝導度は310W/mK、熱膨張率は4.3ppm/Kであった。
これを図―5のように黒鉛粒子の複合材層の部分を切削加工して6ヶのセクションに分かれたパワーモジュール用の基板が得られた。このものは黒鉛粒子との複合材層の部分だけの切削なので容易に加工でき、しかも一体成形物であるので6ヶ所の凸部分をロー付けの必要もなく、より熱伝導度の良好なものが得られた。
【0021】
【発明の効果】
本発明により充分に高い熱伝導度を有し、かつ適正な熱膨張率を有する、易加工の一体型ヒートシンクが得られた。
【図面の簡単な説明】
【図1】400W/mK以上の熱伝導度を有し、熱膨張率が4〜5ppmのヒ
ートシンクパッケージを製造する概念図
【図2】図―1から取り出された複合材料
【図−3―1】一体型のサブマウントを有するヒートシンクパッケージの断面図
【図−3−2】同上の平面図
【図―4】 300W/mK以上の熱伝導度を有するパワーモジュール用のヒートシンク板を製造する概念図
【図―5】 パワーモジュール
【符号の説明】
1 黒鉛化炭素繊維成形体
2、22 炭化珪素焼結体
3、4、23、24 金型
5、25 加圧プランジャ
6、26 アルミニウム又はアルミニウム合金溶湯
11 炭素繊維複合材層
12、32 焼結炭化珪素複合材層
13 サブマウント
21 黒鉛粒子層
31 黒鉛粒子複合材層[0001]
[Industrial application fields]
The present invention is applied to a member having excellent strength and thermal conductivity and having an appropriate coefficient of thermal expansion as a substrate requiring heat dissipation such as a semiconductor or an integrated circuit.
[0002]
[Prior art]
In the past, when alumina ceramics or epoxy resin was used as a semiconductor substrate, heat generation from the semiconductor itself was not a problem. Recently, however, semiconductor cooling has become indispensable as the calculation speed increases and the amount of heat generated by the light heat of high-speed communication, so-called optical communication, increases. Correspondingly, the substrate has been selected by a material having a good thermal conductivity and a material having an appropriate coefficient of thermal expansion.
[0003]
That is, a composite material of copper tungsten, copper molybdenum, silicon carbide and aluminum has been invented and used as a material having high thermal conductivity and an appropriate thermal expansion coefficient. They have a thermal conductivity of approximately 150-200 W / mK and a coefficient of thermal expansion of 8-12 ppm / K.
[0004]
[Problems to be solved by the invention]
Recently, however, the amount of heat generated from semiconductors has increased, and the one having higher thermal conductivity has become necessary. In addition, a compound semiconductor used for optical communication is required to have a coefficient of thermal expansion of 4 to 5 ppm / K. Copper tungsten, copper molybdenum, or a composite material of silicon carbide and aluminum cannot satisfy both the thermal conductivity and thermal expansion characteristics required for a new substrate.
[0005]
On the other hand, in recent years, automobiles have become a substrate for integrated circuits as a result of electrification. In addition to the required characteristics as a heat sink material with a thermal expansion coefficient of 8 to 12 ppm / K and a thermal conductivity of 300 W / mK or more, the mechanical strength is 250 MPa or more. Things are needed.
[0006]
For this reason, as a subject of this development, the thermal expansion coefficient was set to two levels of 4 to 5 ppm / K and 8 to 12 ppm / K, and a heat sink plate having a thermal conductivity of 300 to 400 W / mK was completed.
[0007]
Prior to this task, we investigated the mechanical strength, thermal conductivity, and thermal expansion characteristics of metal matrix composites that were pre-impregnated with various types of inorganic materials as reinforcing materials. The characteristic values shown were obtained.
[0008]
Figure 0004223730
[0009]
In order to achieve this task, we considered using the composite materials shown in Table 1 in combination. Regarding thermal conductivity, for example, when two types of composite materials are combined, the overall thermal conductivity U (W / mK) is one type of thermal conductivity A (W / mK) and its thickness X (mm), When other types of thermal conductivity B (W / mK), thickness Y (mm),
The equation U = (X + Y) / (X / A + Y / B) holds.
[0010]
In order for U in the above equation to be 400 W / mK or more, at least one of them should adopt 10, 11 and the thickness should be adjusted in consideration of the balance with other types. For example, when 4 is selected for the other species, the thickness is 1 mm, and the thickness of 11 is 3 mm, U is 408 W / mK. As another example, when the thickness of 1 is 1 mm and the thickness of 10 is 2 mm, U is 407 W / mK, each satisfying the target of thermal conductivity.
[0011]
Next, regarding the thermal expansion coefficient, when 10 or 11 is used, the thermal expansion coefficient in the perpendicular direction must be adopted. This is because, as a heat sink plate, it is necessary that the thermal conductivity is good in the thickness direction of the plate, whereas the coefficient of thermal expansion is related to the plane direction of the plate.
[0012]
9, 10 and 11, when the fiber direction is the thickness direction of the heat sink plate, the plane direction of the plate is the perpendicular direction of the fiber, but the tensile strength in the perpendicular direction is small. In the case of combination, the thermal expansion is 1 and the thermal expansion coefficient is 12 ppm / K. Further, in the case of the combination of 4 and 11, it becomes 8 ppm / K, and is satisfied as a heat module plate of a power module system such as an electric vehicle.
[0013]
On the other hand, in the combination of 10 and 12, 11 and 13, the coefficient of thermal expansion in the plane direction of the plate is 4.5 to 4.1, respectively, which is optimal as a heat dissipation substrate for optical communication or the like.
[0014]
[Means for Solving the Problems]
The present invention provides a heat sink plate obtained by impregnating a molten metal into an inorganic layer composed of a layer composed of silicon carbide particles or cubic boron nitride particles and a layer composed of carbon particles or carbon fibers. Is.
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0015]
[Example 1]
Pitch-based carbon fibers were molded with a phenol resin so as to be aligned in one direction, and fired at 3000 ° C. in a vacuum to obtain a unidirectional graphitic carbon fiber molded body. The fiber volume fraction of this product was 18% carbonized from 55% phenol resin.
[0016]
On the other hand, a silicon carbide sintered body obtained by sintering silicon carbide particles at 2000 ° C. was obtained at a volume ratio of 72%. Graphitized carbon fiber molded body (1) and silicon carbide sintered body (4) are placed so that the fiber direction is perpendicular to the silicon carbide plate surface and preheated to 800 ° C as shown in Fig. Then, put it in a predetermined mold (3, 4), pour 800 ℃ JIS A1050 molten metal onto it and pressurize with a plunger at a pressure of 98 MPa, and after solidification is completed, aluminum with graphitized carbon fiber and silicon carbide as reinforcement A matrix composite was obtained.
[0017]
The physical properties of the composite material thus obtained are as follows. When the carbon fiber composite material layer is processed with a 2 mm silicon carbide composite material layer with a thickness of 1 mm, the coefficient of thermal expansion is 4.5 ppm / K and thermal conductivity were 407 W / mK. A heat sink package (14) was obtained by processing the same as shown in Fig. 3-1 (sectional view) and Fig. 3-2-2 (plan view). This composite layer made of carbon fiber and aluminum is excellent in machinability, so it can be easily processed, and the submount (13) can be formed integrally, so that from the top of the submount to the bottom of the package. The thermal conductivity was also very good and it was not necessary to braze the submount to the substrate.
[0018]
[Example 2]
Using the same graphitized carbon fiber molded body as in Example 1 and using silicon carbide particles instead of the silicon carbide sintered body, JIS C1020 instead of JIS A1050, preheating temperature 1200 ° C., molten metal temperature 1250 ° C. The procedure was the same except for the above.
As a result, the coefficient of thermal expansion was 8 ppm / K, and the thermal conductivity was 408 W / mK.
[0019]
[Example 3]
On the silicon carbide sintered body heated in advance to 650 ° C., graphite particles heated in advance to 600 ° C. are placed in a mold, and a 750 ° C. JIS ADC14 molten metal is flowed with a plunger as shown in FIG. After pressurizing at a pressure of 70 MPa and solidifying, a metal matrix composite material comprising two layers of silicon carbide and graphite particles was obtained.
[0020]
This was prepared so that the width of the composite material layer of 70 mm in width and 150 mm in length, the silicon carbide composite material layer was 1 mm, and the composite material layer with graphite particles was 2 mm. The tensile strength of this product was 310 MPa in the plane direction of the plate, the thermal conductivity was 310 W / mK, and the thermal expansion coefficient was 4.3 ppm / K.
As shown in Fig. 5, the composite layer of graphite particles was cut to obtain a power module substrate divided into six sections. Since this is only a part of the composite material layer with graphite particles, it can be easily processed, and since it is an integrally molded product, there is no need to braze the six convex parts, and it has better thermal conductivity. Obtained.
[0021]
【The invention's effect】
According to the present invention, an easily machined integrated heat sink having a sufficiently high thermal conductivity and an appropriate coefficient of thermal expansion was obtained.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for manufacturing a heat sink package having a thermal conductivity of 400 W / mK or more and a thermal expansion coefficient of 4 to 5 ppm. FIG. 2 is a composite material taken out from FIG. ] Cross-sectional view of heat sink package with integrated submount [Fig. 3-2] Plan view of the above [Fig. 4] Conceptual diagram for manufacturing a heat sink plate for a power module having a thermal conductivity of 300 W / mK or more [Figure-5] Power module [Explanation of symbols]
1 Graphitized carbon fiber molded body 2, 22 Silicon carbide sintered body 3, 4, 23, 24 Mold 5, 25 Pressure plunger 6, 26 Aluminum or aluminum alloy molten metal 11 Carbon fiber composite material layer 12, 32 Sintered carbonization Silicon composite material layer 13 Submount 21 Graphite particle layer 31 Graphite particle composite material layer

Claims (5)

炭化珪素粒子又は立方晶窒化ほう素粒子からなる層と炭素粒子又は炭素繊維からなる層の2層から構成される無機物層に溶融金属を含浸させることによって得られるヒートシンク板。The heat sink plate obtained by the impregnating molten metal into constructed inorganic layer of two layers of the silicon carbide particles or cubic a layer of carbon particles or carbon fiber comprising boron nitride particles layer. 炭化珪素粒子又は立方晶窒化ほう素粒子からなる層が、炭化珪素粒子又は立方晶窒化ほう素粒子の粉体からなる層、炭化珪素粒子又は立方晶窒化ほう素粒子の粉体の焼結体からなる層又は炭化珪素粒子又は立方晶窒化ほう素粒子の粉体のアルミナゾル若しくはシリカゾルをバインダーとした仮焼結体からなる層である請求項1記載のヒートシンク板。The layer made of silicon carbide particles or cubic boron nitride particles is made of a layer made of powder of silicon carbide particles or cubic boron nitride particles, or a sintered body of powder of silicon carbide particles or cubic boron nitride particles. 2. The heat sink plate according to claim 1, wherein the heat sink plate is a layer made of a pre-sintered body using alumina sol or silica sol of silicon carbide particles or cubic boron nitride particles as a binder. 炭素粒子又は炭素繊維からなる層が、炭素繊維をフェノール樹脂にて一方向に揃うように成形し、これを焼成した1方向のグラファイト質の炭素繊維成形体である請求項1記載のヒートシンク板 2. The heat sink plate according to claim 1, wherein the layer composed of carbon particles or carbon fibers is a unidirectional graphitic carbon fiber molded body obtained by molding carbon fibers so as to be aligned in one direction with a phenol resin and firing the carbon fibers . 溶融金属の金属が、アルミニウム、銅、銀又はそれらの合金である請求項1記載のヒートシンク板。The heat sink plate according to claim 1, wherein the metal of the molten metal is aluminum, copper, silver, or an alloy thereof. 溶融金属を、高圧にて圧入凝固させることにより含浸させて得られる請求項1記載のヒートシンク板。The heat sink plate according to claim 1, wherein the heat sink plate is obtained by impregnating a molten metal by press-fitting and solidifying at a high pressure.
JP2002111814A 2002-04-15 2002-04-15 Heat sink plate Expired - Lifetime JP4223730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111814A JP4223730B2 (en) 2002-04-15 2002-04-15 Heat sink plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111814A JP4223730B2 (en) 2002-04-15 2002-04-15 Heat sink plate

Publications (2)

Publication Number Publication Date
JP2003309232A JP2003309232A (en) 2003-10-31
JP4223730B2 true JP4223730B2 (en) 2009-02-12

Family

ID=29394506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111814A Expired - Lifetime JP4223730B2 (en) 2002-04-15 2002-04-15 Heat sink plate

Country Status (1)

Country Link
JP (1) JP4223730B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014528B2 (en) 2003-03-28 2007-11-28 日本碍子株式会社 Heat spreader module manufacturing method and heat spreader module
JP4378334B2 (en) 2005-09-09 2009-12-02 日本碍子株式会社 Heat spreader module and manufacturing method thereof
JP2009013460A (en) * 2007-07-04 2009-01-22 Denki Kagaku Kogyo Kk Aluminum-ceramics composite, and method for producing the same
JP2009123823A (en) * 2007-11-13 2009-06-04 Denki Kagaku Kogyo Kk Light emitting element package, and light emitting device mounted with the same
JP5400289B2 (en) * 2007-11-13 2014-01-29 電気化学工業株式会社 Light emitting device
JP2009123824A (en) * 2007-11-13 2009-06-04 Denki Kagaku Kogyo Kk Light emitting element package, and light emitting device mounted with the same
JP5400290B2 (en) * 2007-11-13 2014-01-29 電気化学工業株式会社 Light emitting device
JP5284704B2 (en) * 2008-07-17 2013-09-11 電気化学工業株式会社 Aluminum-silicon carbide composite and method for producing the same
JP5284706B2 (en) * 2008-07-22 2013-09-11 電気化学工業株式会社 Aluminum-silicon carbide composite and method for producing the same
JP5699442B2 (en) * 2010-04-07 2015-04-08 三菱マテリアル株式会社 Power module substrate and power module
JP5659542B2 (en) * 2010-04-07 2015-01-28 三菱マテリアル株式会社 Insulating substrate and power module
JPWO2016002943A1 (en) * 2014-07-04 2017-06-08 デンカ株式会社 Heat dissipation component and manufacturing method thereof
JP2020113598A (en) * 2019-01-09 2020-07-27 昭和電工株式会社 Heat radiator

Also Published As

Publication number Publication date
JP2003309232A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP4223730B2 (en) Heat sink plate
JP4348565B2 (en) High thermal conductivity / low thermal expansion composite material and heat dissipation board
US7993728B2 (en) Aluminum/silicon carbide composite and radiating part comprising the same
JP4344934B2 (en) High thermal conductivity / low thermal expansion composite material, heat dissipation substrate and manufacturing method thereof
US6186768B1 (en) Metal matrix composite (MMC) body
US6884522B2 (en) Metal matrix composite structure and method
US20090075056A1 (en) Aluminum-silicon carbide composite body and method for processing the same
JP5335339B2 (en) A heat radiator composed of a combination of a graphite-metal composite and an aluminum extruded material.
US20070053166A1 (en) Heat dissipation device and composite material with high thermal conductivity
US20100163782A1 (en) Carbon-Containing Metal-Based Composite Material and Manufacturing Method Thereof
US20080265403A1 (en) Hybrid Metal Matrix Composite Packages with High Thermal Conductivity Inserts
WO2006030676A1 (en) Aluminum-silicon carbide composite
JP2010048387A (en) Brake pad
WO2015115649A1 (en) Silicon carbide complex, method for manufacturing same, and heat dissipation component using same
JP3496816B2 (en) Metal-ceramic composites and heat dissipating parts using them
JPH0852835A (en) Heat transfer element available especially in electronics aselectronic part or printed circuit board and its production
JP2004076044A (en) Ceramics-metal composite material and method for producing the same
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP5467782B2 (en) Manufacturing method of heat dissipation board having electrical insulation
JP2005005528A (en) Module for mounting semiconductor element
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
JP7394500B1 (en) Aluminum composite material containing metal and/or ceramics and graphite, and method for producing aluminum composite material containing metal and/or ceramics and graphite
JP2002033423A (en) Module structure
JP2001288526A (en) Heat radiating material and its production method
JP2001085583A (en) Die for producing metal-ceramic composite and production of metal-ceramic composite

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Ref document number: 4223730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term