JP4220859B2 - Magnetic bearing - Google Patents

Magnetic bearing Download PDF

Info

Publication number
JP4220859B2
JP4220859B2 JP2003295532A JP2003295532A JP4220859B2 JP 4220859 B2 JP4220859 B2 JP 4220859B2 JP 2003295532 A JP2003295532 A JP 2003295532A JP 2003295532 A JP2003295532 A JP 2003295532A JP 4220859 B2 JP4220859 B2 JP 4220859B2
Authority
JP
Japan
Prior art keywords
magnetic flux
rotor
magnetic
pole
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003295532A
Other languages
Japanese (ja)
Other versions
JP2005061580A (en
Inventor
養二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwaki Co Ltd
Original Assignee
Iwaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwaki Co Ltd filed Critical Iwaki Co Ltd
Priority to JP2003295532A priority Critical patent/JP4220859B2/en
Publication of JP2005061580A publication Critical patent/JP2005061580A/en
Application granted granted Critical
Publication of JP4220859B2 publication Critical patent/JP4220859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/20Application independent of particular apparatuses related to type of movement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は、磁気力によってロータを非接触状態で支持する磁気軸受に関し、特にステータとロータとのギャップを検出するセンサを備えた磁気軸受に関する。   The present invention relates to a magnetic bearing that supports a rotor in a non-contact state by a magnetic force, and more particularly, to a magnetic bearing provided with a sensor that detects a gap between a stator and a rotor.

磁気軸受は、回転体を非接触で支持することができるため、各種の軸受に利用されてきている。しかし、磁気浮上は本来不安定であり、浮上量を検出し、フィードバック制御によって安定化する必要がある。浮上量を検出するセンサとしては、渦電流センサ、インダクタンスセンサ等があるが、これらは一般に高価であり、また、センサを設置するスペースが限られるという問題がある。また、磁気軸受とセンサとを離して設置する必要があるため、フィードバック系の安定領域狭く、安定化に苦労する等の問題があった。特に、最近では、超小型回転体用の磁気軸受が要望されており、センサの設置スペースが限定されることは、小型化をする上での大きな障害となる。   Magnetic bearings have been used for various types of bearings because they can support a rotating body in a non-contact manner. However, magnetic levitation is inherently unstable, and it is necessary to detect the flying height and stabilize it by feedback control. Sensors for detecting the flying height include an eddy current sensor, an inductance sensor, and the like. However, these are generally expensive and have a problem that a space for installing the sensor is limited. In addition, since it is necessary to install the magnetic bearing and the sensor apart from each other, there is a problem that the stable region of the feedback system is narrow and it is difficult to stabilize. In particular, recently, there has been a demand for magnetic bearings for ultra-small rotating bodies, and the limited installation space for sensors is a major obstacle to downsizing.

この問題を解決する有力な方法として、近年、磁気軸受の電磁石をセンサとして利用するセルフセンシング技術も研究されている(特許文献1)。セルフセンシング技術を利用した磁気軸受の位置検出原理は次の通りである。すなわち、ロータの位置が変化すると、磁気軸受の磁極からロータまでの距離(ギャップ)が変化し、これによって磁極のインダクタンスが変化する。このインダクタンスの変化を何らかの方法で検出することにより、ギャップを推定することができる。従来は、電磁石の励磁コイルに高周波の信号を重畳させ、高周波成分の電流及び電圧からロータの変位を推定する方法や、ロータ磁気軸受系の数学モデルを構築し、これにより変位推定のオブザーバを作成する方法等が試みられてきた。
特開2001−177919公報(段落0003〜0005、図1,図2)
As an effective method for solving this problem, a self-sensing technique using an electromagnet of a magnetic bearing as a sensor has recently been studied (Patent Document 1). The principle of magnetic bearing position detection using self-sensing technology is as follows. That is, when the position of the rotor changes, the distance (gap) from the magnetic pole of the magnetic bearing to the rotor changes, thereby changing the inductance of the magnetic pole. The gap can be estimated by detecting this change in inductance by some method. Conventionally, a high-frequency signal is superimposed on the excitation coil of an electromagnet and a rotor displacement is estimated from the current and voltage of the high-frequency component, and a mathematical model of the rotor magnetic bearing system is constructed, thereby creating an observer for displacement estimation. There have been attempts to do so.
JP 2001-177919 A (paragraphs 0003 to 0005, FIGS. 1 and 2)

しかし、上述した従来のセルフセンシングによる磁気軸受は、変位センサを別途使用する方法に比べると、位置の推定精度が悪く、実用になる方法はまだ開発されていない。   However, the above-described conventional magnetic bearing using self-sensing has a poor position estimation accuracy compared to a method using a separate displacement sensor, and a practical method has not been developed yet.

本発明は、このような問題点に鑑みてなされたもので、位置の推定精度が高く、一層の小型化及び軽量化が図れる磁気軸受を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a magnetic bearing that has high position estimation accuracy and can be further reduced in size and weight.

本発明に係る磁気軸受は、ステータと、このステータに磁気力によって非接触状態で支持されて回転するロータとを有する磁気軸受において、前記ステータは、前記ロータに向けて径方向に突設されて先端の磁束集中部が前記ロータに対して所定のギャップを介して対向する励磁コイルを有する複数の主極と、前記複数の主極の磁束集中部に対してそれぞれ周方向にずれた位置に配置され先端が第1極性となりこれと隣接する前記主極の磁束集中部が第2極性となるようにバイアス磁束を供給する永久磁石を有する複数の補極と、前記複数の補極の永久磁石の先端に装着されて前記ロータとの間のギャップを検出する磁束センサとを有し、前記励磁コイルによって生成される制御磁束が前記永久磁石とは独立した磁気回路を形成することを特徴とする。 Magnetic bearing Ru engagement with the invention, the stator and, projecting in a magnetic bearing having a rotor that rotates while being supported in a non-contact state by the magnetic force to the stator, wherein the stator is radially toward the rotor A plurality of main poles each having an exciting coil facing the rotor with a predetermined gap, and positions shifted in the circumferential direction with respect to the magnetic flux concentration parts of the plurality of main poles. And a plurality of supplemental poles having permanent magnets for supplying a bias magnetic flux so that the magnetic flux concentrating portion of the main pole adjacent to the first pole has a first polarity and a second polarity. Japanese that is attached to the distal end of the magnet to have a magnetic flux sensor for detecting a gap between the rotor and forms a magnetic circuit control flux is independent of the permanent magnet produced by the exciting coil To.

本発明の磁気軸受の一つの実施形態では、前記複数の補極が90°の間隔で配置された4つの補極であり、これら補極の先端に装着された4つの磁束センサのうち対向する磁束センサの出力の差分から前記ステータに対する前記ロータの変位を検出し、前記励磁コイルの電流値を制御する制御回路を備える。 In one embodiment of the magnetic bearing of the invention, the a plurality of four auxiliary poles interpole are arranged at intervals of 90 °, opposite of the four magnetic flux sensor mounted to the distal end of interpole A control circuit that detects a displacement of the rotor relative to the stator from a difference in output of a magnetic flux sensor that controls the current value of the exciting coil.

本発明の磁気軸受によれば、ステータが、ロータと対向しロータに磁束を供給する複数の永久磁石を有しているので、永久磁石とロータとの間のギャップに生成される磁束は、ギャップの大きさの逆数で変化する。この磁束の変化を永久磁石の先端に装着された磁束センサで検出することにより、ロータの変位を精度良く検出することができる。 According to magnetic bearing of the present invention, the magnetic flux stator, since it has a plurality of permanent magnets supplying flux to the rotor and facing the rotor, which is generated in the gap between the permanent magnet and the rotor, It varies with the inverse of the size of the gap. By detecting this change in magnetic flux with a magnetic flux sensor attached to the tip of the permanent magnet, the displacement of the rotor can be detected with high accuracy.

また、本発明の磁気軸受によれば、ロータに向けて突設された複数の主極の磁束集中部に対して、バイアス磁束を供給する永久磁石を有する補極の先端が、周方向にずれた位置に配置され、補極の先端が第1極性となりこれと隣接する主極の磁束集中部が第2極性となるように磁気回路が形成される。そして、複数の主極にのみ巻回された励磁コイルによって発生磁束を制御してラジアル方向の磁気力を制御し、補極の先端に設置された磁束センサでロータの変位を検出するようにしている。このため、本発明によれば、主極の励磁コイルによって生成される制御磁束と、補極によるバイアス磁束とをほぼ独立した磁気回路とすることができ、相互の干渉を少なくして、制御応答性を高めることができると同時に、磁束センサでの変位検出に制御磁束の影響を排除することができる。
Further, according to this onset Ming magnetic bearing, with respect to the magnetic flux concentrating portion of the plurality of main poles which protrude towards the rotor, the tip of the commutating poles with permanent magnets for supplying the bias magnetic flux in the circumferential direction The magnetic circuit is formed such that the tip of the complementary pole is disposed at a shifted position and the magnetic flux concentrating portion of the main pole adjacent thereto has the second polarity. The generated magnetic flux is controlled by an excitation coil wound only on a plurality of main poles to control the radial magnetic force, and the displacement of the rotor is detected by a magnetic flux sensor installed at the tip of the auxiliary pole. Yes. For this reason, according to the present invention, the control magnetic flux generated by the exciting coil of the main pole and the bias magnetic flux by the complementary pole can be made into a substantially independent magnetic circuit, reducing mutual interference and controlling response. As a result, the influence of the control magnetic flux on the displacement detection by the magnetic flux sensor can be eliminated.

また、制御磁束を発生させる主極と、バイアス磁束を発生させる補極の周方向位置をずらしたことにより、主極とロータとの間のギャップと、補極とロータとの間のギャップを、それぞれに適した個別のギャップとすることもできる。従って、例えば補極とロータとのギャップを主極とロータとのギャップよりも大きく設定することもでき、これにより磁束センサの配置スペースを十分に確保することができる。   Also, by shifting the circumferential position of the main pole that generates the control magnetic flux and the auxiliary pole that generates the bias magnetic flux, the gap between the main pole and the rotor and the gap between the auxiliary pole and the rotor are It can also be an individual gap suitable for each. Therefore, for example, the gap between the auxiliary pole and the rotor can be set to be larger than the gap between the main pole and the rotor, so that a sufficient space for arranging the magnetic flux sensor can be secured.

以下、添付の図面を参照して、この発明の好ましい実施の形態を説明する。
図1は、本発明の第1の実施形態に係る4極型の磁気軸受の構成を示す断面図である。
磁気軸受は、外側に配置された環状のステータ1と、このステータ1の内側に配置されたロータ2とを有する。
ステータ1は継鉄11を含む。継鉄11は、積層鋼板等の磁性材料からなり、環状部12と、この環状部12の内周側から中心に向けて突出し周方向に45°の間隔で交互に配置された各4つの主突極部13及び補突極部14とを有する。4つの主突極部13には、それぞれ励磁コイル15が巻回され、この励磁コイル15と主突極部13とで主極3が構成されている。4つの主突極部13と45°位相がずれた4つの補突極部14の先端には、それぞれ、バイアス磁束の生成用の永久磁石16が第1の極性(例えばN極)を先端側にして装着されている。この永久磁石16と補突極部14とで補極4が構成されている。そして、この補極4の先端、すなわち永久磁石16のN極側に磁束センサ17が装着されている。磁束センサ17としては、例えばホールセンサ、磁気抵抗センサ等を用いることができる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a sectional view showing the configuration of a four-pole magnetic bearing according to the first embodiment of the present invention.
The magnetic bearing has an annular stator 1 disposed outside and a rotor 2 disposed inside the stator 1.
The stator 1 includes a yoke 11. The yoke 11 is made of a magnetic material such as a laminated steel plate, and protrudes from the inner peripheral side of the annular portion 12 toward the center of the annular portion 12 and is arranged in four main portions alternately arranged at intervals of 45 ° in the circumferential direction. It has a salient pole part 13 and a supplementary salient pole part 14. An exciting coil 15 is wound around each of the four main salient pole portions 13, and the exciting coil 15 and the main salient pole portion 13 constitute the main pole 3. A permanent magnet 16 for generating a bias magnetic flux has a first polarity (for example, an N pole) at the tip side of the four auxiliary salient pole portions 14 that are 45 ° out of phase with the four main salient pole portions 13. It is installed. The permanent magnet 16 and the complementary salient pole portion 14 constitute the complementary pole 4. A magnetic flux sensor 17 is attached to the tip of the auxiliary pole 4, that is, the N pole side of the permanent magnet 16. As the magnetic flux sensor 17, for example, a Hall sensor, a magnetoresistive sensor, or the like can be used.

一方、ロータ2は、少なくとも外周部に積層鋼板や電磁材料等の磁性体を配したもので、ステータ1の内側に配置されている。ロータ2の外周面と主突極部12の先端とのギャップは、例えば1mm、ロータ2の外周面と磁束センサ17とのギャップは、例えば2mmというように、主極3及び補極4のロータ2に対するギャップは、それぞれ個別に設定することもできる。また、永久磁石16から供給されるバイアス磁束は、一度ロータ2に達し、ロータ2から主極3に達するように、主極3と補極4の間隔は、上述したギャップの2倍以上となるように設定することが望ましい。   On the other hand, the rotor 2 has a magnetic material such as a laminated steel plate or electromagnetic material disposed at least on the outer peripheral portion, and is disposed inside the stator 1. The gap between the outer peripheral surface of the rotor 2 and the tip of the main salient pole portion 12 is, for example, 1 mm, and the gap between the outer peripheral surface of the rotor 2 and the magnetic flux sensor 17 is, for example, 2 mm. The gaps for 2 can also be set individually. Further, the interval between the main pole 3 and the auxiliary pole 4 is more than twice the gap described above so that the bias magnetic flux supplied from the permanent magnet 16 once reaches the rotor 2 and reaches the main pole 3 from the rotor 2. It is desirable to set as follows.

このような磁気軸受によれば、図1に点線矢印で示すように、永久磁石16の先端側がN極に着磁されているので、永久磁石16によって生成されるバイアス磁束Φbが、補極4の先端からロータ2を介して両側で隣接する主極3に至り、更に環状部12を介して補極4に戻る経路に形成される。これにより、主極3の先端(磁束集中部)はS極となる。また、対向する主極3の励磁コイル15同士を直列に接続し、電流の向きを同じ向きとする、即ち対向する主極3の対向面を互いに異なる極とするように励磁することにより、主極3の励磁コイル15で生成される制御磁束Φcは、一方の主極3の磁束を強め、他方の主極3の磁束を弱めるように作用する。これにより、ラジアル方向の力が発生しラジアル軸受としての機能を発揮する。制御磁束Φcは、主極3同士を介した経路、つまりバイアス磁束Φbの経路とは独立した経路に形成されるので、制御磁束Φcが、バイアス磁束Φbに影響されることが少なく、制御力及び制御応答性が向上する。   According to such a magnetic bearing, as indicated by a dotted arrow in FIG. 1, since the tip side of the permanent magnet 16 is magnetized to the N pole, the bias magnetic flux Φb generated by the permanent magnet 16 is changed to the auxiliary pole 4. Is formed in a path that reaches the main pole 3 that is adjacent on both sides via the rotor 2 and returns to the auxiliary pole 4 via the annular portion 12. Thereby, the front-end | tip (magnetic flux concentration part) of the main pole 3 turns into an S pole. Further, the exciting coils 15 of the opposing main poles 3 are connected in series, and the main current 3 is excited in the same direction, that is, by exciting the opposing surfaces of the opposing main poles 3 to be different from each other. The control magnetic flux Φc generated by the exciting coil 15 of the pole 3 acts to strengthen the magnetic flux of one main pole 3 and weaken the magnetic flux of the other main pole 3. As a result, a radial force is generated and functions as a radial bearing. Since the control magnetic flux Φc is formed in a path through the main poles 3, that is, a path independent from the path of the bias magnetic flux Φb, the control magnetic flux Φc is hardly influenced by the bias magnetic flux Φb, and the control force and Control responsiveness is improved.

また、バイアス磁束Φbは、制御磁束Φcの影響を受けないので、バイアス磁束Φbは、補極4とロータ2との間のギャップの変化にのみ応答して変化するものと考えられる。このため、このギャップの磁束変化を、磁束センサ17で検出することにより、ロータ2の変位を高精度に推定することができる。
いま、図1に示すようなxy座標系を設定し、ロータ2のx方向及びy方向の変位をそれぞれx,y、ロータ2と補極4との平均ギャップをga、磁束センサ17が検出するギャップを図1の右上から時計回りに順番にg1,g2,g3,g4とすると、各磁束センサ17が検出するギャップg1〜g4は、
Further, since the bias magnetic flux Φb is not affected by the control magnetic flux Φc, the bias magnetic flux Φb is considered to change in response to only the change in the gap between the auxiliary pole 4 and the rotor 2. For this reason, by detecting the magnetic flux change in the gap by the magnetic flux sensor 17, the displacement of the rotor 2 can be estimated with high accuracy.
Now, an xy coordinate system as shown in FIG. 1 is set, the displacements of the rotor 2 in the x and y directions are respectively x and y, the average gap between the rotor 2 and the auxiliary pole 4 is ga, and the magnetic flux sensor 17 detects. Assuming that the gaps are g1, g2, g3, and g4 in order from the upper right in FIG. 1, the gaps g1 to g4 detected by the magnetic flux sensors 17 are:

Figure 0004220859
Figure 0004220859

で表わされる。
従って、ロータ2のx,y方向の変位x,yは、
It is represented by
Therefore, the displacements x and y in the x and y directions of the rotor 2 are

Figure 0004220859
Figure 0004220859

と求めることができる。ちなみに、磁束センサ17が実際に検出するのは磁束Φbであり、この磁束Φbはギャップの逆数で変化する。しかし、通常、ロータ2の変位は微少であるから、ギャップは、磁束Φbの変化に符号を反転させた値で近似することができる。   It can be asked. Incidentally, the magnetic flux sensor 17 actually detects the magnetic flux Φb, and this magnetic flux Φb changes with the reciprocal of the gap. However, since the displacement of the rotor 2 is usually very small, the gap can be approximated by a value obtained by inverting the sign of the change in the magnetic flux Φb.

図2は、以上の点を踏まえて、本実施形態の磁気軸受を制御する制御回路を構成した例を示す図である。
4極の磁束センサ17から出力される信号は、ギャップg1〜g4の変化の符号を反転させた信号であり、これらの信号は、センサアンプ21,22,23,24でそれぞれ増幅されたのち、数2を実行する演算回路25,26,27,28によってx方向変位信号及びy方向変位信号に変換される。これらの変位信号は、x方向コントローラ29及びy方向コントローラ30にそれぞれ入力される。x方向コントローラ29及びy方向コントローラ30は、それぞれx方向変位信号及びy方向変位信号に基づいて、例えばPID制御信号を出力し、これをパワーアンプ31,32を介して、各主極3の励磁コイル15にフィードバックする。このように、x,y方向で独立して制御することにより、ラジアル方向の位置決めが可能になる。また、このように、対向する主極3の励磁コイル15同士を直列に接続することにより、2極分を1つのパワーアンプで駆動することができる。
FIG. 2 is a diagram illustrating an example in which a control circuit for controlling the magnetic bearing of the present embodiment is configured based on the above points.
The signals output from the quadrupole magnetic flux sensor 17 are signals obtained by inverting the signs of changes in the gaps g1 to g4, and these signals are amplified by the sensor amplifiers 21, 22, 23, and 24, respectively. The arithmetic circuits 25, 26, 27, and 28 that execute Equation 2 are converted into x-direction displacement signals and y-direction displacement signals. These displacement signals are input to the x-direction controller 29 and the y-direction controller 30, respectively. The x-direction controller 29 and the y-direction controller 30 output, for example, a PID control signal based on the x-direction displacement signal and the y-direction displacement signal, respectively, and excite each main pole 3 via the power amplifiers 31 and 32. Feedback is provided to the coil 15. As described above, independent control in the x and y directions enables positioning in the radial direction. Further, by connecting the exciting coils 15 of the opposing main poles 3 in series in this way, the two poles can be driven by one power amplifier.

図3は、本発明の第2の実施形態に係る4極型の磁気軸受を示す断面図である。
この実施形態では、補突極部を省略し、主突極部と主突極部とを跨ぐように永久磁石を配置した例である。
ステータ41を構成する4つの主極43の主突極部53の先端の互いに隣接する角部を連絡するように、円弧状の永久磁石46が配置され、この永久磁石46で補極44が形成されている。永久磁石46の背面の主突極部53は、周方向に張り出してバックヨーク54を形成している。周方向に隣接するバックヨーク54間には、所定のギャップが形成されている。永久磁石46の前面には、磁束センサ47が装着されている。
この実施形態のものは、図1のものに比べて補突極部がない分だけ小型化を図ることが可能である。また、励磁コイル45で生成される制御磁束Φcの通過断面積を広くとることができるという利点がある。
FIG. 3 is a sectional view showing a four-pole magnetic bearing according to the second embodiment of the present invention.
In this embodiment, the supplementary salient pole part is omitted, and the permanent magnet is arranged so as to straddle the main salient pole part and the main salient pole part.
An arc-shaped permanent magnet 46 is arranged so as to connect the corners adjacent to each other at the tips of the main salient pole portions 53 of the four main poles 43 constituting the stator 41, and an auxiliary pole 44 is formed by the permanent magnets 46. Has been. A main salient pole portion 53 on the back surface of the permanent magnet 46 projects in the circumferential direction to form a back yoke 54. A predetermined gap is formed between the back yokes 54 adjacent in the circumferential direction. A magnetic flux sensor 47 is mounted on the front surface of the permanent magnet 46.
In this embodiment, the size can be reduced as much as there is no auxiliary salient pole portion compared to that in FIG. Further, there is an advantage that a cross-sectional area of the control magnetic flux Φc generated by the exciting coil 45 can be widened.

図4は、本発明の第3の実施形態に係る3極アウターロータ型の磁気軸受を示す断面図である。
この実施形態では、ステータ61が内側、ロータ62が外側に配置される。ステータ61の継鉄71は、積層鋼板等の磁性体からなる円板状部72と、この円板状部72の外周側から外側に向けて放射状に突出し、周方向に30°間隔で交互に配置された3つの主突極部73及び補突極部74とを有する。継鉄71の主突極部73と、この主突極部73に巻回された励磁コイル75とで主極63が形成され、継鉄71の補突極部74と、N極を先端側に向けて補突極部74の先端に装着された永久磁石76とで補極64が形成されている。永久磁石76の先端には、磁束センサ77が装着されている。また、ロータ62は、ステータ61の主突極部73の先端及び永久磁石76の先端の磁束センサ77と所定のギャップを介して対向する円筒状内周面を有する環状の磁性体で構成されている。
FIG. 4 is a sectional view showing a three-pole outer rotor type magnetic bearing according to a third embodiment of the present invention.
In this embodiment, the stator 61 is disposed on the inner side and the rotor 62 is disposed on the outer side. The yoke 71 of the stator 61 protrudes radially from the outer peripheral side of the disk-shaped part 72 to the outside, and is alternately formed at intervals of 30 ° in the circumferential direction. It has three main salient pole parts 73 and auxiliary salient pole parts 74 arranged. A main pole 63 is formed by the main salient pole portion 73 of the yoke 71 and the exciting coil 75 wound around the main salient pole portion 73. The auxiliary salient pole portion 74 of the yoke 71 and the N pole are connected to the tip side. A supplementary pole 64 is formed with a permanent magnet 76 attached to the tip of the supplementary salient pole portion 74. A magnetic flux sensor 77 is attached to the tip of the permanent magnet 76. The rotor 62 is made of an annular magnetic body having a cylindrical inner peripheral surface facing the magnetic flux sensor 77 at the tip of the main salient pole portion 73 of the stator 61 and the tip of the permanent magnet 76 with a predetermined gap therebetween. Yes.

図5は、この3極型の磁気軸受を制御する制御回路を示す図である。
この例のように3極型の磁気軸受の場合には、3相モータの駆動回路を使用することができる。すなわち、3つの磁束センサ77の出力信号は、3つのセンサアンプ81,82,83で増幅され、3相2相変換回路84に入力される。3相2相変換回路84は、3つの磁束センサ77で検出された変位信号をx,y方向の2相方向の変位信号に変換する。このx,y方向変位信号は、x,y方向コントローラ85,86に入力される。x,yコントローラ85,86からのx方向及びy方向のPID制御信号は、2相3相変換回路87に入力され、ここで2相3相変換され、その変換3相出力が3相駆動回路88に入力されて、3つの励磁コイル15が3相(U,V,W)駆動される。これにより、各主極33の一部の磁束は強められ、残りの磁束は弱められてラジアル方向の力が発生する。
FIG. 5 is a diagram showing a control circuit for controlling the three-pole magnetic bearing.
In the case of a three-pole magnetic bearing as in this example, a three-phase motor drive circuit can be used. That is, the output signals of the three magnetic flux sensors 77 are amplified by the three sensor amplifiers 81, 82, 83 and input to the three-phase / two-phase conversion circuit 84. The three-phase / two-phase conversion circuit 84 converts the displacement signals detected by the three magnetic flux sensors 77 into displacement signals in the two-phase directions in the x and y directions. The x and y direction displacement signals are input to the x and y direction controllers 85 and 86. PID control signals in the x and y directions from the x and y controllers 85 and 86 are input to a two-phase / three-phase conversion circuit 87 where two-phase / three-phase conversion is performed, and the converted three-phase output is a three-phase drive circuit. The three excitation coils 15 are driven in three phases (U, V, W). Thereby, a part of the magnetic flux of each main pole 33 is strengthened, and the remaining magnetic flux is weakened to generate a radial force.

このようなアウターロータ型の磁気軸受においても、本発明は適用可能であることは明らかである。   It is obvious that the present invention can be applied to such an outer rotor type magnetic bearing.

本発明の第1の実施形態に係る磁気軸受の断面図である。It is sectional drawing of the magnetic bearing which concerns on the 1st Embodiment of this invention. 同磁気軸受の制御回路を示す回路図である。It is a circuit diagram which shows the control circuit of the magnetic bearing. 本発明の第2の実施形態に係る磁気軸受の断面図である。It is sectional drawing of the magnetic bearing which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る磁気軸受の断面図である。It is sectional drawing of the magnetic bearing which concerns on the 3rd Embodiment of this invention. 同磁気軸受の制御回路を示す回路図である。It is a circuit diagram which shows the control circuit of the magnetic bearing.

符号の説明Explanation of symbols

1,41,61…ステータ、2,62…ロータ、3,43,63…主極、4,44,64…補極、13,53,73…主突極部、14,74…補突極部、15,45,75…励磁コイル、16,46,76…永久磁石、17,47,77…磁束センサ。   DESCRIPTION OF SYMBOLS 1,41,61 ... Stator, 2,62 ... Rotor, 3, 43, 63 ... Main pole, 4, 44, 64 ... Supplementary pole, 13, 53, 73 ... Main salient pole part, 14, 74 ... Supplementary salient pole 15, 45, 75 ... excitation coil, 16, 46, 76 ... permanent magnet, 17, 47, 77 ... magnetic flux sensor.

Claims (2)

ステータと、このステータに磁気力によって非接触状態で支持されて回転するロータとを有する磁気軸受において、
前記ステータは、
前記ロータに向けて径方向に突設されて先端の磁束集中部が前記ロータに対して所定のギャップを介して対向する励磁コイルを有する複数の主極と、
前記複数の主極の磁束集中部に対してそれぞれ周方向にずれた位置に配置され先端が第1極性となりこれと隣接する前記主極の磁束集中部が第2極性となるようにバイアス磁束を供給する永久磁石を有する複数の補極と、
前記複数の補極の永久磁石の先端に装着されて前記ロータとの間のギャップを検出する磁束センサと
を有し、
前記励磁コイルによって生成される制御磁束が前記永久磁石とは独立した磁気回路を形成することを特徴とする磁気軸受。
In a magnetic bearing having a stator and a rotor that is supported and rotated in a non-contact state by magnetic force on the stator,
The stator is
A plurality of main poles having an exciting coil that protrudes in a radial direction toward the rotor and has a magnetic flux concentrating portion at a tip thereof facing the rotor via a predetermined gap;
The bias magnetic flux is arranged so that the tip is the first polarity and the adjacent magnetic pole of the main pole adjacent to the magnetic flux concentration portions of the plurality of main poles is shifted in the circumferential direction. A plurality of auxiliary poles having permanent magnets to be supplied;
Wherein the plurality of being attached to the tip of the permanent magnets of the interpole have a magnetic flux sensor for detecting a gap between the rotor,
A magnetic bearing in which a control magnetic flux generated by the excitation coil forms a magnetic circuit independent of the permanent magnet .
前記複数の補極は、90°の間隔で配置された4つの補極であり、
これら補極の先端に装着された4つの磁束センサのうち対向する磁束センサの出力の差分から前記ステータに対する前記ロータの変位を検出し、前記励磁コイルの電流値を制御する制御回路を備えたことを特徴とする請求項記載の磁気軸受。
The plurality of complementary poles are four complementary poles arranged at intervals of 90 °,
A control circuit for detecting the displacement of the rotor relative to the stator from the difference in output of the opposing magnetic flux sensors among the four magnetic flux sensors mounted at the tips of these auxiliary poles and controlling the current value of the exciting coil is provided. The magnetic bearing according to claim 1 .
JP2003295532A 2003-08-19 2003-08-19 Magnetic bearing Expired - Lifetime JP4220859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295532A JP4220859B2 (en) 2003-08-19 2003-08-19 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295532A JP4220859B2 (en) 2003-08-19 2003-08-19 Magnetic bearing

Publications (2)

Publication Number Publication Date
JP2005061580A JP2005061580A (en) 2005-03-10
JP4220859B2 true JP4220859B2 (en) 2009-02-04

Family

ID=34371745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295532A Expired - Lifetime JP4220859B2 (en) 2003-08-19 2003-08-19 Magnetic bearing

Country Status (1)

Country Link
JP (1) JP4220859B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886667A (en) * 2010-07-09 2010-11-17 北京奇峰聚能科技有限公司 Permanent-magnetic bias inner rotor radial magnetic bearing
CN102032270A (en) * 2011-01-17 2011-04-27 鲁东大学 Permanent magnetic and electromagnetic mixed radial bearing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009949A (en) * 2005-06-28 2007-01-18 Toru Masuzawa Hybrid type magnetic bearing
JP5236571B2 (en) * 2009-05-13 2013-07-17 国立大学法人埼玉大学 Magnetic levitation device
US11316403B2 (en) * 2016-08-12 2022-04-26 Denso Corporation Electric motor system
CN110953249A (en) * 2019-12-02 2020-04-03 北京泓慧国际能源技术发展有限公司 Directional single magnetic circuit radial magnetic bearing and rotating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886667A (en) * 2010-07-09 2010-11-17 北京奇峰聚能科技有限公司 Permanent-magnetic bias inner rotor radial magnetic bearing
CN102032270A (en) * 2011-01-17 2011-04-27 鲁东大学 Permanent magnetic and electromagnetic mixed radial bearing
CN102032270B (en) * 2011-01-17 2012-07-25 鲁东大学 Permanent magnetic and electromagnetic mixed radial bearing

Also Published As

Publication number Publication date
JP2005061580A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4786297B2 (en) Hybrid magnetic bearing
JP5329222B2 (en) Ironless magnetic linear motor with levitation and lateral force capability
KR100403857B1 (en) Motor of magnetic lifting type
US10833570B2 (en) Homopolar bearingless slice motors
JP2000145773A (en) Magnetic bearing device
JP2005061578A (en) Magnetic bearing
KR20020030033A (en) Magnetic bearing apparatus
JP2008289283A (en) Motor with magnetic bearing portion
JP2008295206A (en) Bearingless motor and bearingless motor control system
JPH0155804B2 (en)
JP4220859B2 (en) Magnetic bearing
JPH09275694A (en) Energizing circuit for armature coil of linear motor
JP2007009949A (en) Hybrid type magnetic bearing
JP2013050172A (en) Electromagnetic suspension
JP4606429B2 (en) Bearingless motor and bearingless motor system
JP4138735B2 (en) Magnetic bearing
JP3454062B2 (en) Linear motor
US7719152B2 (en) Magnetic levitation actuator
Hofer et al. Analysis of a Current Biased Eight-Pole Radial Active Magnetic Bearing Regarding Self-Sensing
JPH06141512A (en) Magnetic levitation motor
JP4138606B2 (en) Magnetic bearing
JP4138739B2 (en) Magnetic bearing
JPS6399742A (en) Magnetic bearing integrating type motor
JP5359108B2 (en) Magnetic bearing displacement detection method and detection apparatus
JPH07245932A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4220859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term