JP4219041B2 - Leukocyte selective removal material - Google Patents

Leukocyte selective removal material Download PDF

Info

Publication number
JP4219041B2
JP4219041B2 JP09322399A JP9322399A JP4219041B2 JP 4219041 B2 JP4219041 B2 JP 4219041B2 JP 09322399 A JP09322399 A JP 09322399A JP 9322399 A JP9322399 A JP 9322399A JP 4219041 B2 JP4219041 B2 JP 4219041B2
Authority
JP
Japan
Prior art keywords
mol
leukocyte
methoxydiethylene glycol
less
methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09322399A
Other languages
Japanese (ja)
Other versions
JP2000245833A (en
Inventor
博和 小野寺
一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Kuraray Medical Co Ltd
Original Assignee
Asahi Kasei Kuraray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kuraray Medical Co Ltd filed Critical Asahi Kasei Kuraray Medical Co Ltd
Priority to JP09322399A priority Critical patent/JP4219041B2/en
Publication of JP2000245833A publication Critical patent/JP2000245833A/en
Application granted granted Critical
Publication of JP4219041B2 publication Critical patent/JP4219041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、白血球を選択的に除去し、赤血球、血小板を通過させる白血球選択除去材に関する。詳しくは、輸血や体外循環時に、血液中の白血球を選択的に除去したり、多血小板血漿を調製する際に混入する白血球を選択的に除去したりする目的に用いられる白血球除去材に関する。
【0002】
【従来の技術】
近年、輪血分野において、白血球の混入による副作用が数多く知られている。この副作用予防のため、ポリエステル製の不織布やコットン綿などの材料を用いた白血球除去が行われている。また、血小板製剤を輸血する場合血小板の材料への粘着性を抑制するために親水性のポリマー等を材料表面に被覆する技術が用いられている。
一方、全身性エリトマトーデス、悪性関節リウマチ、多発性硬化症、潰瘍性大腸炎、クローン病等の自己免疫性疾患、白血病、癌などの治療、或いは移植前の免疫抑制の目的で白血球を白血球除去器を用いて選択的に除去する技術が進歩してきた。
従来、不織布等をフィルターとして用いた白血球除去器が開発されており、これら白血球除去器においては高い白血球の除去能力が要求されている。一方、同時に他の血液成分、特に有用な血小板の粘着を低く抑え、主目的の白血球のみを選択的に除去する能力が要求されている。血小板は特に粘着性が高く一般的なフィルター材料表面では白血球以上に粘着し、除去されやすく、フィルターの白血球除去効率と血小板粘着抑制のバランスをとることが困難であった。
そこで特開平4−187206号公報では、表面にエチレングリコール多量体を被覆した白血球分離材料が提案されているが、血小板の粘着は抑制出来るが、白血球除去能力が低下してしまうので好ましくなかった。
一方、ヒドロキシエチルメタアクリレート(HEMA)及びメチルメタアクリレート(MMA)からなるブロック重合体上に(ポリオキシエチレン)−ポリ(オキシプロピレン)ブロックポリマーを被覆した材料が特許2826115号公報で開示されているが、疎水性の高いモノマーを用いて材料表面をコーティングし、これに第2のポリマーを被覆するため、構成が複雑で且つ、MMA由来の疎水的な部分が存在するため、材料自体の親水性が低下し、充分な生体適合性、血小板粘着抑制性が得られるとは言えない。
以上のような理由から、高い親水性を有し且つ血小板等の粘着性の低い生体適合性の高い白血球選択除去材の開発が望まれていた。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑み、白血球に対する高い除去能は維持した状態でなおかつ血小板の粘着を抑制する白血球選択除去材を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明は、上記目的を達成するために、下記の構成を有する。即ち、本発明は表面に非イオン性親水性基を有する繊維からなる白血球除去材において、表面の非イオン性親水性基が少なくとも水酸基とメトキシジエチレングリコール基を有する重合体であり、メトキシジエチレングリコール基のモル百分率が20モル%以上80モル%未満であることを特徴とする白血球選択除去材である。
本発明の非イオン性親水性基とは、体液、血液等の白血球含有液のpHでほとんどイオン化しない中性の親水性を有する官能基である。本発明では水酸基及びメトキシジエチレングリコール基を必須の構成要件とする。
水酸基を含む官能基とは末端に水酸基を有している官能基であり、水酸基単独で用いられることはもとより、ヒドロキシエチル基、ヒドロキシメチル基、ヒドロキシプロピル基等のアルキルヒドロキシル基等が重合体主鎖より適度なスペーサー効果を有する点で、更に好ましく用いられる。ヒドロキシエチル基が最も好ましく用いられる。
本発明の白血球選択除去材において、水酸基を含む官能基とメトキシジエチレングリコール基を有する重合体は、メトキシジエチレングリコール基のモル百分率が20モル%以上80モル%未満である必要がある。
メトキシジエチレングリコール基のモル百分率が20モル%以上80モル%未満であるとき最も血小板の吸着を抑制し、効率的に白血球を除去出来る。モル百分率が20モル%未満であると、血小板の粘着が増加するため、好ましくない。一方、モル百分率が80モル%以上であると、白血球の除去能力が低下するため好ましくない。
本発明の白血球選択除去材は、非イオン性親水性基を表面に有する繊維よりなる。本発明の白血球選択除去材は、表面と基材部分とが別に形成され、表面が前記非イオン性親水性基を有する重合体からなっていてもよいし、繊維全体が前記重合体からなっていても良い。機械的強度面、或いは経済性の観点より、表面と基材部分とが別に形成され、表面が前記非イオン性親水性基を有する重合体からなっていることが好ましい。最も好ましくは、基材部分の表面に、コーティング等の手法により、前記非イオン性親水性基を有する重合体が物理的或いは化学的に結合していることが好ましい。
上記コーティングによる方法は、基材部分の表面が物理的又は化学的に不均一であっても、上記の化学組成を有する表面を安定的に形成させることができるので好ましい。
基材部分と表面の化学的組成が異なる場合、表面は非常に薄い層で、繊維の直径に比較すればほとんど無視しうる程度でも充分用いることができる。
白血球選択除去材の重量当たりの非イオン性親水性基を有する重合体の重量の割合は、0.01重量%以上10重量%未満が好ましい。更に安定性及び経済性の面より好ましい割合は、0.05%以上5%未満、最も好ましくは、0.1%以上3%未満である。
【0005】
本発明の白血球除去材の表面の化学組成は、重合体が溶解し、基材部分が溶解しない適当な溶媒を用いて抽出し、公知の核磁気共鳴スペクトル、赤外吸収スペクトル、元素分析等の手段を用いて解析することができる。
また、重合体が溶解しない場合には、上記記載の方法に加えて、X線光電子分光分析装置(ESCA)、電子線プローブX線マイクロアナライザー(EPMA)等の公知の表面分析法により解析可能である。
本発明の重合体がランダム共重合体の場合、水酸基を含む官能基とメトキシジエチレングリコール基がランダムに分布できるため、広い範囲のモル百分率で、目的とする効果が得られる。即ち、メトキシジエチレングリコール基を有するモノマーのモル百分率が30モル%以上80モル%未満であるとき最も血小板の吸着を抑制し、効率的に白血球を除去できる。更に上記の観点より、より好ましいメトキシジエチレングリコール基を有するモノマーのモル百分率は35モル%以上75モル%未満、最も好ましくは35モル%以上70モル%未満である。
重合体がブロック共重合体の場合、水酸基を含む官能基とメトキシジエチレングリコール基が規則的に局在化して分布しているため、より低い範囲のメトキシジエチレングリコール基を有するモノマーのモル百分率で、目的の効果が得られる。また、ブロック共重合体では、モル百分率が50モル%以上になると重合体の水に対する溶解性が高まり、好ましくない。ブロック共重合体では、メトキシジエチレングリコール基を有するモノマーのモル百分率が20モル%以上50モル%未満であるとき最も血小板の吸着を抑制し、効率的に白血球を除去できることがわかった。更に上記の観点より、より好ましいメトキシジエチレングリコール基を有するモノマーのモル百分率は25モル%以上50モル%未満、最も好ましくは30モル%以上45モル%未満である。
【0006】
上記重合体を構成する単量体を例示すると、水酸基を有する単量体としては、ヒドロキシエチルメタクリレート、ヒドロキシメチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレート等のヒドロキシアルキルメタクリレート或いは同様のアクリレート、ビニルアルコール等が挙げられる。中でも適度なスペーサーを有する点で、ヒドロキシアルキルメタアクリレートが更に好ましく用いられる。最も好ましくは、ヒドロキシエチルメタアクリレートが良好に用いられる。
一方、メトキシジエチレングリコール基を有する単量体としては、メトキシジエチレングリコールメタクリレート、メトキシジエチレングリコールアクリレート、メトキシジエチレングリコールビニルエーテル等が用いられるが、好ましくは、メトキシジエチレングリコールメタクリレート、メトキシジエチレングリコールアクリレートが良好に用いられ、最も好ましくは、メトキシジエチレングリコールメタクリレートが良好に用いられる。
本発明でいうメトキシジエチレングリコールメタクリレートのモル百分率とは、重合体中のメトキシジエチレングリコールメタクリレートの占めるモル百分率である。
また、上記記載の共重合体を基材表面に被覆して用いる場合、共重合体が血液等の体液と接触するため、基材表面に被覆した状態で、水不溶性である必要がある。従って、水への溶解度は低いことが好ましい。
本発明の白血球選択除去材は、繊維からなっているので、重量当たりの表面積が大きく、効率よく白血球を除去でき、且つ除去材として用いる上で好ましい物理的形状を有している。好ましい形状を例示すると、織布、不織布等が効果的に用いられる。特に不織布では、重量当たりの表面積を大きく、高精度に制御できる点より最も好ましい。
本発明の繊維は、その平均繊維直径が0.5μm以上5μm未満であることが好ましい。白血球選択除去材当たりの白血球除去性能は、繊維の平均直径が小さいほど高い。しかしながら、0.5μm未満になると除去材が目詰まりしやすくなり、また、同時に血小板の粘着性も高まり選択性の低下を引き起こすため好ましくない。平均繊維直径は0.5μm以上4.5μm未満が更に好ましく、1μm以上4μm未満が最も好ましい。
本発明にいう繊維の平均直径は、例えば繊維集合体の走査型電子顕微鏡写真を撮り、無作為に選択した100本以上の繊維の直径を測定し、それらを数平均する方法で求められる。
【0007】
本発明の白血球選択除去材において、不織布を使用する場合、不織布の目付はその物理的性質上重要である。不織布の目付は、公知の試験方法により測定でき、強度の面より出来るだけ大きい方が好ましく15g/m以上の時良好に用いられる。一方、目付が大きすぎると血液の流れ抵抗が増加し、流れ性が不良になるためこの上限は200g/m未満であることが好ましい。不織布のより好ましい目付は20g/m以上150g/mであり、最も好ましくは、20g/m以上100g/mである。不織布は、単一の不織布を用いても良いし、更に目付或いは平均繊維直径の異なる不織布を2層以上重ねた構造においても良好に用いられる。
また、本発明の実施態様において、繊維の表面と基材部分とが別に形成される場合、基材部分としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリアクリロニトリル、ポリメチルメタクリレート等のポリアクリレート或いはポリメタクリレート、ポリスルホン、ポリアミド等の合成繊維、セルロースアセテート等の半合成繊維、キュプラアンモニアレーヨン、ビスコースレーヨン等の再生繊維、ガラス繊維等が例示できる。これらの中でも特に合成繊維が好ましく用いられる。紡糸性、繊維の均一性等の面より合成繊維の中でもポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレン等のポリオレフィンが最も有効に用いられる。
ポリプロピレン、ポリエチレン等のポリオレフィン、ポリアクリロニトリル、ポリメチルメタクリレート等のポリアクリレート或いはポリメタクリレート、ポリスルホン等の水と接触しても含浸しない疎水性の高い材料を基材部分として用いる場合、表面部分としては本発明のブロック共重合体が特に有効に用いられる。
本発明の白血球選択除去材は、入口と出口を有する容器或いはバッグに充填して、白血球選択除去フィルターとして有効に用いられる。この場合、本発明の白血球選択除去材を単独で或いはプレフィルターと共に充填して用いることができる。プレフィルターを用いる場合、プレフィルターも本発明の非イオン性親水性基を表面に有していても良い。
【0008】
以下、実施例により本発明をより詳細に説明する。
【実施例1〜3、比較例1〜3】
2−ヒドロキシエチルメタアクリレート(以下HEMAと略す)及びメトキシジエチレングリコールメタアクリレート(以下MDGと略す)のブロック共重合体を通常のラジカル開始剤を用いて合成した。重合条件としては、エタノール300mLに対し、MDGモノマーのみを(0g〜16.5gの範囲で変えて)、開始剤として2、2′−アゾビス(2、4−ジメチルバレロニトリル)(V−65)0.1g存在下、70℃で30分間重合反応を行った後、HEMAモノマーを添加し(モノマー重量が合計で30gとなるように仕込み量をそれぞれ13.5g〜30gの範囲で変えた)、更に6時間重合を行った。得られた重合溶液は、5gの塩化ナトリウムを加えた水5L中に攪拌しながら滴下し、共重合体を析出させて水不溶分を回収した。重合結果を表1に示す。

Figure 0004219041
平均繊維直径1.9μmのポリプロピレン繊維よりなる不織布(目付60g/m)1gを上記したそれぞれの重合体の1%エタノール溶液に浸した後、不織布に吸収された溶液を圧縮空気により除去し、60℃の真空乾燥機中で12時間乾燥した。
【0009】
(実験例)
このようにして得られた不織布を直径6.8mmの円形に切断し、5枚をカラムにセットし血小板粘着性の評価を行った。
それぞれのカラムに抗凝固剤としてACD−Aを添加したヒト新鮮血液(白血球数:4,500〜8,400/μL、血小板数:150,000〜440,000/μL)(血液:ACD−A=8:1)1.5mLをシリンジポンプを用いて0.5mL/分の一定流速で室温にて流し、不織布通過前後の血液中の白血球濃度及び血小板の濃度を測定し、白血球の除去率及び血小板の回収率を下式により求めた。
白血球除去率(%)=(1−出口側血液の白血球濃度/入口側血液の白血球濃度)×100
血小板回収率(%)=出口側血液の血小板濃度×100/入口側血液の血小板濃度 結果を表2に示す。
Figure 0004219041
【0010】
【実施例4〜7、比較例4〜5】
2−ヒドロキシエチルメタアクリレート(以下HEMAと略す)及びメトキシジエチレングリコールメタアクリレート(以下MDGと略す)のランダム共重合体を通常のラジカル重合で合成した。重合条件としては、エタノール300mLに対し、モノマー合計30g(HEMA仕込み重量を6g〜30gの範囲で変え、MDGはそれぞれ30g−(HEMA仕込み重量)とした)、開始剤として2、2′−アゾビス(2、4−ジメチルバレロニトリル)(V−65)0.1g存在下、70℃で6時間重合反応を行った。得られた重合溶液は、5gの塩化ナトリウムを加えた水5L中に攪拌しながら滴下し、共重合体を析出させて水不溶分を回収した。収率を表3に示す。
Figure 0004219041
平均繊維直径1.2μmのポリエチレンテレフタレート繊維よりなる不織布(目付40g/m)1gを上記したそれぞれの重合体の1%エタノール溶液に浸した後、不織布に吸収された溶液を圧縮空気により除去し、60℃の真空乾燥機中で12時間乾燥した。
(実験例)
このようにして得られた不織布を直径6.8mmの円形に切断し、5枚をカラムにセットし実施例1の実験例と同様の方法で白血球除去率と血小板回収率を求めた。コーティングなしの不織布を比較例5とした。結果を表4に示す。
Figure 0004219041
【0011】
【発明の効果】
本発明の白血球選択除去材は、白血球を選択的に除去でき、更に、血小板等の粘着を抑制できる有用な白血球選択除去材である。[0001]
[Industrial application fields]
The present invention relates to a leukocyte selective removal material that selectively removes leukocytes and allows red blood cells and platelets to pass therethrough. More specifically, the present invention relates to a leukocyte-removing material used for the purpose of selectively removing leukocytes in blood during blood transfusion or extracorporeal circulation or selectively removing leukocytes mixed when preparing platelet-rich plasma.
[0002]
[Prior art]
In recent years, many side effects due to the mixing of leukocytes are known in the field of blood circulation. In order to prevent this side effect, leukocyte removal using materials such as polyester nonwoven fabric and cotton cotton has been carried out. Further, in the case of transfusion of a platelet preparation, a technique for coating the surface of a material with a hydrophilic polymer or the like is used in order to suppress adhesion of platelets to the material.
On the other hand, leukocyte remover for the treatment of systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, ulcerative colitis, autoimmune diseases such as Crohn's disease, leukemia, cancer, etc. or immunosuppression before transplantation Advances have been made in the technology for selective removal using the.
Conventionally, leukocyte removers using a nonwoven fabric or the like as a filter have been developed, and these leukocyte removers are required to have a high leukocyte removal ability. On the other hand, there is a demand for the ability to selectively remove only the main target leukocytes while keeping the adhesion of other blood components, particularly useful platelets, low. Platelets are particularly sticky and adhere more than leukocytes on the surface of general filter materials and are easily removed, making it difficult to balance the leukocyte removal efficiency of the filter and suppression of platelet adhesion.
Japanese Laid-Open Patent Publication No. 4-187206 proposes a leukocyte separation material whose surface is coated with an ethylene glycol multimer, but it can suppress platelet adhesion, but it is not preferable because the leukocyte removal ability decreases.
On the other hand, Japanese Patent No. 2826115 discloses a material in which a block polymer composed of hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) is coated with a (polyoxyethylene) -poly (oxypropylene) block polymer. However, since the surface of the material is coated with a highly hydrophobic monomer and the second polymer is coated on the material surface, the structure is complicated and the hydrophobic portion derived from MMA exists. It cannot be said that sufficient biocompatibility and platelet adhesion suppression are obtained.
For the reasons described above, it has been desired to develop a leukocyte selective removal material having high hydrophilicity and low bioadhesiveness such as platelets.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a leukocyte selective removal material that suppresses adhesion of platelets while maintaining a high ability to remove leukocytes in view of the above-described problems of the prior art.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration. That is, the present invention relates to a leukocyte-removing material comprising a fiber having a nonionic hydrophilic group on the surface, wherein the surface nonionic hydrophilic group is a polymer having at least a hydroxyl group and a methoxydiethylene glycol group, and the molarity of the methoxydiethylene glycol group is A leukocyte selective removal material characterized in that the percentage is 20 mol% or more and less than 80 mol%.
The nonionic hydrophilic group of the present invention is a functional group having neutral hydrophilicity that is hardly ionized at the pH of a leukocyte-containing liquid such as body fluid or blood. In the present invention, a hydroxyl group and a methoxydiethylene glycol group are essential constituent requirements.
The functional group containing a hydroxyl group is a functional group having a hydroxyl group at the end. The hydroxyl group such as hydroxyethyl group, hydroxymethyl group, hydroxypropyl group, etc. is used as a polymer in addition to being used alone. It is more preferably used in that it has a more appropriate spacer effect than the chain. A hydroxyethyl group is most preferably used.
In the leukocyte selective removing material of the present invention, the polymer having a functional group containing a hydroxyl group and a methoxydiethylene glycol group needs to have a mole percentage of the methoxydiethylene glycol group of 20 mol% or more and less than 80 mol%.
When the mole percentage of the methoxydiethylene glycol group is 20 mol% or more and less than 80 mol%, the adsorption of platelets is most suppressed and leukocytes can be efficiently removed. If the mole percentage is less than 20 mol%, platelet adhesion increases, which is not preferable. On the other hand, if the mole percentage is 80 mol% or more, the ability to remove leukocytes decreases, which is not preferable.
The leukocyte selective removal material of the present invention comprises a fiber having a nonionic hydrophilic group on its surface. In the leukocyte selective removing material of the present invention, the surface and the base material portion are formed separately, the surface may be composed of a polymer having the nonionic hydrophilic group, and the entire fiber is composed of the polymer. May be. From the viewpoint of mechanical strength or economy, it is preferable that the surface and the base material portion are formed separately, and the surface is made of a polymer having the nonionic hydrophilic group. Most preferably, the polymer having the nonionic hydrophilic group is physically or chemically bonded to the surface of the substrate portion by a technique such as coating.
The coating method is preferable because the surface having the above chemical composition can be stably formed even if the surface of the substrate portion is physically or chemically nonuniform.
When the chemical composition of the base material portion and the surface is different, the surface is a very thin layer, and it can be used sufficiently even if it is almost negligible compared to the fiber diameter.
The weight ratio of the polymer having a nonionic hydrophilic group per weight of the leukocyte selective removing material is preferably 0.01% by weight or more and less than 10% by weight. Furthermore, a preferable ratio in terms of stability and economy is 0.05% or more and less than 5%, and most preferably 0.1% or more and less than 3%.
[0005]
The chemical composition of the surface of the leukocyte-removing material of the present invention is extracted using a suitable solvent in which the polymer dissolves and the base material does not dissolve, and the known nuclear magnetic resonance spectrum, infrared absorption spectrum, elemental analysis, etc. It can be analyzed using means.
If the polymer does not dissolve, it can be analyzed by a known surface analysis method such as an X-ray photoelectron spectrometer (ESCA), an electron probe X-ray microanalyzer (EPMA) in addition to the method described above. is there.
When the polymer of the present invention is a random copolymer, a functional group containing a hydroxyl group and a methoxydiethylene glycol group can be distributed randomly, so that the desired effect can be obtained in a wide range of mole percentage. That is, when the mole percentage of the monomer having a methoxydiethylene glycol group is 30 mol% or more and less than 80 mol%, the adsorption of platelets is most suppressed and leukocytes can be efficiently removed. Furthermore, from the above viewpoint, the mole percentage of the monomer having a methoxydiethylene glycol group is more preferably 35 mol% or more and less than 75 mol%, and most preferably 35 mol% or more and less than 70 mol%.
When the polymer is a block copolymer, the functional group containing a hydroxyl group and the methoxydiethylene glycol group are regularly localized and distributed. Therefore, the mole percentage of the monomer having a lower range of methoxydiethylene glycol group An effect is obtained. Moreover, in a block copolymer, when the mole percentage is 50 mol% or more, the solubility of the polymer in water is increased, which is not preferable. In the block copolymer, it was found that when the mole percentage of the monomer having a methoxydiethylene glycol group is 20 mol% or more and less than 50 mol%, the adsorption of platelets is most suppressed and leukocytes can be efficiently removed. Furthermore, from the above viewpoint, the mole percentage of the monomer having a methoxydiethylene glycol group is more preferably 25 mol% or more and less than 50 mol%, and most preferably 30 mol% or more and less than 45 mol%.
[0006]
Examples of monomers constituting the polymer include hydroxyl group-containing monomers such as hydroxyethyl methacrylate, hydroxymethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate, or similar acrylates and vinyl alcohol. Is mentioned. Of these, hydroxyalkyl methacrylate is more preferably used because it has an appropriate spacer. Most preferably, hydroxyethyl methacrylate is used favorably.
On the other hand, as the monomer having a methoxydiethylene glycol group, methoxydiethylene glycol methacrylate, methoxydiethylene glycol acrylate, methoxydiethylene glycol vinyl ether, and the like are used. Preferably, methoxydiethylene glycol methacrylate and methoxydiethylene glycol acrylate are preferably used, and most preferably Methoxydiethylene glycol methacrylate is preferably used.
The mole percentage of methoxydiethylene glycol methacrylate referred to in the present invention is the mole percentage occupied by methoxydiethylene glycol methacrylate in the polymer.
Further, when the copolymer described above is used by coating the surface of the substrate, the copolymer comes into contact with a body fluid such as blood, and therefore it is necessary to be water-insoluble in a state where the copolymer is coated on the surface of the substrate. Therefore, it is preferable that the solubility in water is low.
Since the selective leukocyte removal material of the present invention is made of fibers, it has a large surface area per weight, can efficiently remove leukocytes, and has a preferable physical shape for use as a removal material. When a preferable shape is illustrated, a woven fabric, a nonwoven fabric, etc. are used effectively. In particular, the nonwoven fabric is most preferable because the surface area per weight is large and can be controlled with high accuracy.
The fibers of the present invention preferably have an average fiber diameter of 0.5 μm or more and less than 5 μm. The leukocyte removal performance per leukocyte selective removal material is higher as the average diameter of the fiber is smaller. However, when the thickness is less than 0.5 μm, the removal material is likely to be clogged, and at the same time, the adhesiveness of platelets is increased and the selectivity is lowered. The average fiber diameter is more preferably 0.5 μm or more and less than 4.5 μm, and most preferably 1 μm or more and less than 4 μm.
The average diameter of the fibers referred to in the present invention can be determined by, for example, taking a scanning electron micrograph of the fiber assembly, measuring the diameters of 100 or more randomly selected fibers, and averaging the numbers.
[0007]
In the leukocyte selective removing material of the present invention, when using a nonwoven fabric, the basis weight of the nonwoven fabric is important in terms of its physical properties. The basis weight of the nonwoven fabric can be measured by a known test method, and is preferably as large as possible from the viewpoint of strength, and is preferably used when it is 15 g / m 2 or more. On the other hand, if the basis weight is too large, the blood flow resistance increases and the flowability becomes poor. Therefore, the upper limit is preferably less than 200 g / m 2 . The more preferable basis weight of the nonwoven fabric is 20 g / m 2 or more and 150 g / m 2 , and most preferably 20 g / m 2 or more and 100 g / m 2 . A single nonwoven fabric may be used as the nonwoven fabric, and it is also used favorably in a structure in which two or more layers of nonwoven fabrics having different basis weights or average fiber diameters are stacked.
Further, in the embodiment of the present invention, when the fiber surface and the base material portion are formed separately, the base material portion includes polyethylene terephthalate, polyester such as polybutylene terephthalate, polypropylene, polyolefin such as polyethylene, polyacrylonitrile, Examples thereof include polyacrylates such as polymethyl methacrylate or synthetic fibers such as polymethacrylate, polysulfone and polyamide, semi-synthetic fibers such as cellulose acetate, recycled fibers such as cupra ammonia rayon and viscose rayon, and glass fibers. Of these, synthetic fibers are particularly preferably used. Among synthetic fibers, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyolefins such as polypropylene and polyethylene are most effectively used in terms of spinnability and fiber uniformity.
Polyolefin such as polypropylene and polyethylene, polyacrylate such as polyacrylonitrile and polymethyl methacrylate, or a highly hydrophobic material that does not impregnate even when in contact with water, such as polymethacrylate and polysulfone, is used as the surface portion. The block copolymers of the invention are particularly effectively used.
The leukocyte selective removal material of the present invention is effectively used as a leukocyte selective removal filter by filling a container or bag having an inlet and an outlet. In this case, the leukocyte selective removing material of the present invention can be used alone or filled with a prefilter. When using a prefilter, the prefilter may also have the nonionic hydrophilic group of the present invention on the surface.
[0008]
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 1-3, Comparative Examples 1-3
A block copolymer of 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA) and methoxydiethylene glycol methacrylate (hereinafter abbreviated as MDG) was synthesized using a normal radical initiator. As polymerization conditions, for 300 mL of ethanol, only the MDG monomer was changed (within a range of 0 g to 16.5 g), and 2,2′-azobis (2,4-dimethylvaleronitrile) (V-65) as an initiator. In the presence of 0.1 g, after performing a polymerization reaction at 70 ° C. for 30 minutes, HEMA monomer was added (the charge amount was changed within the range of 13.5 g to 30 g so that the monomer weight was 30 g in total), Polymerization was further performed for 6 hours. The obtained polymerization solution was added dropwise to 5 L of water to which 5 g of sodium chloride had been added with stirring, to precipitate a copolymer and collect water-insoluble matter. The polymerization results are shown in Table 1.
Figure 0004219041
After immersing 1 g of a nonwoven fabric (60 g / m 2 ) of a polypropylene fiber having an average fiber diameter of 1.9 μm in a 1% ethanol solution of each polymer described above, the solution absorbed in the nonwoven fabric is removed with compressed air, It dried for 12 hours in a 60 degreeC vacuum dryer.
[0009]
(Experimental example)
The nonwoven fabric thus obtained was cut into a circular shape having a diameter of 6.8 mm, and five sheets were set in a column to evaluate platelet adhesion.
Human fresh blood to which ACD-A was added as an anticoagulant to each column (white blood cell count: 4,500-8,400 / μL, platelet count: 150,000-440,000 / μL) (blood: ACD-A = 8: 1) 1.5 mL was flowed at a constant flow rate of 0.5 mL / min using a syringe pump at room temperature, and the white blood cell concentration and platelet concentration before and after passing through the nonwoven fabric were measured. Platelet recovery was determined by the following equation.
Leukocyte removal rate (%) = (1−white blood cell concentration of outlet side blood / white blood cell concentration of inlet side blood) × 100
Platelet recovery rate (%) = exit side blood platelet concentration × 100 / inlet side blood platelet concentration The results are shown in Table 2.
Figure 0004219041
[0010]
Examples 4-7, Comparative Examples 4-5
A random copolymer of 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA) and methoxydiethylene glycol methacrylate (hereinafter abbreviated as MDG) was synthesized by ordinary radical polymerization. As polymerization conditions, a total of 30 g of monomers per 300 mL of ethanol (HEMA feed weight was changed in the range of 6 to 30 g, MDG was 30 g- (HEMA feed weight)), and 2,2′-azobis ( In the presence of 0.1 g of 2,4-dimethylvaleronitrile) (V-65), a polymerization reaction was performed at 70 ° C. for 6 hours. The obtained polymerization solution was added dropwise to 5 L of water to which 5 g of sodium chloride had been added with stirring, to precipitate a copolymer and collect water-insoluble matter. The yield is shown in Table 3.
Figure 0004219041
After 1 g of a nonwoven fabric (weight per unit area: 40 g / m 2 ) made of polyethylene terephthalate fibers having an average fiber diameter of 1.2 μm was immersed in a 1% ethanol solution of each of the above polymers, the solution absorbed in the nonwoven fabric was removed with compressed air. And dried in a vacuum dryer at 60 ° C. for 12 hours.
(Experimental example)
The non-woven fabric thus obtained was cut into a circular shape having a diameter of 6.8 mm, and 5 sheets were set on a column, and the leukocyte removal rate and platelet recovery rate were determined in the same manner as in the experimental example of Example 1. The non-woven fabric without coating was designated as Comparative Example 5. The results are shown in Table 4.
Figure 0004219041
[0011]
【The invention's effect】
The leukocyte selective removal material of the present invention is a useful leukocyte selection / removal material that can selectively remove leukocytes and can further suppress adhesion of platelets and the like.

Claims (6)

表面に非イオン性親水性基を有する繊維からなる白血球除去材において、表面の非イオン性親水性基が2−ヒドロキシエチルメタアクリレート及びメトキシジエチレングリコールメタアクリレートの共重合体であり、メトキシジエチレングリコール基のモル百分率が20モル%以上80モル%未満であることを特徴とする白血球選択除去材。In the leukocyte removal material comprising a fiber having a nonionic hydrophilic group on the surface, the nonionic hydrophilic group on the surface is a copolymer of 2-hydroxyethyl methacrylate and methoxydiethylene glycol methacrylate, and the moles of methoxydiethylene glycol groups A leukocyte selective removing material characterized in that the percentage is 20 mol% or more and less than 80 mol%. 表面の非イオン性親水性基が2−ヒドロキシエチルメタアクリレート及びメトキシジエチレングリコールメタアクリレートのランダム共重合体であって、メトキシジエチレングリコールメタクリレートのモル百分率が30モル%以上80モル%未満であり、且つ水不溶性であるランダム共重合体であることを特徴とする請求項1記載の白血球選択除去材。 The surface nonionic hydrophilic group is a random copolymer of 2-hydroxyethyl methacrylate and methoxydiethylene glycol methacrylate, and the mole percentage of methoxydiethylene glycol methacrylate is 30 mol% or more and less than 80 mol%, and is insoluble in water The material for selectively removing leukocytes according to claim 1, wherein the material is a random copolymer. 表面の非イオン性親水性基が2−ヒドロキシエチルメタアクリレート及びメトキシジエチレングリコールメタアクリレートのブロック共重合体であって、メトキシジエチレングリコールメタクリレートのモル百分率が20モル%以上50モル%未満であり、且つ水不溶性であるブロック共重合体であることを特徴とする請求項1記載の白血球選択除去材。 The surface nonionic hydrophilic group is a block copolymer of 2-hydroxyethyl methacrylate and methoxydiethylene glycol methacrylate, and the mole percentage of methoxydiethylene glycol methacrylate is 20 mol% or more and less than 50 mol%, and is insoluble in water 2. The leukocyte selective removal material according to claim 1, which is a block copolymer. 表面に上記ブロック共重合体を有し、その基材部分が疎水性高分子材料である繊維からなることを特徴とする請求項3記載の白血球選択除去材。  4. The leukocyte selective removing material according to claim 3, wherein the block copolymer is provided on the surface, and the base material portion is made of a fiber which is a hydrophobic polymer material. 繊維の平均直径が0.5μm以上5μm未満であることを特徴とする請求項1乃至4記載の白血球選択除去材。  5. The leukocyte selective removal material according to claim 1, wherein an average diameter of the fibers is 0.5 μm or more and less than 5 μm. 繊維が不織布であることを特徴とする請求項1乃至5記載の白血球選択除去材。  6. The leukocyte selective removing material according to claim 1, wherein the fiber is a nonwoven fabric.
JP09322399A 1999-02-25 1999-02-25 Leukocyte selective removal material Expired - Fee Related JP4219041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09322399A JP4219041B2 (en) 1999-02-25 1999-02-25 Leukocyte selective removal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09322399A JP4219041B2 (en) 1999-02-25 1999-02-25 Leukocyte selective removal material

Publications (2)

Publication Number Publication Date
JP2000245833A JP2000245833A (en) 2000-09-12
JP4219041B2 true JP4219041B2 (en) 2009-02-04

Family

ID=14076568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09322399A Expired - Fee Related JP4219041B2 (en) 1999-02-25 1999-02-25 Leukocyte selective removal material

Country Status (1)

Country Link
JP (1) JP4219041B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050036848A (en) * 2001-10-16 2005-04-20 아사히 카세이 메디칼 가부시키가이샤 Method of selectively eliminating virus and leukocytes, eliminating material and eliminating apparatus
AU2003244152A1 (en) 2002-06-17 2003-12-31 Asahi Medical Co., Ltd. Biocompatible polymer and filter for selectively eliminating leucocytes using the same
DE60311240T2 (en) * 2003-07-03 2007-07-05 Fresenius Hemocare Italia S.R.L., Cavezzo Filter for removing substances from blood products
WO2018169061A1 (en) 2017-03-16 2018-09-20 富士フイルム株式会社 Method for separating megakaryocytes and platelets and instrument for separating megakaryocytes and platelets

Also Published As

Publication number Publication date
JP2000245833A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
JP4587213B2 (en) Biocompatible polymer and leukocyte selective removal filter material using the same
KR100885367B1 (en) Coating Material for Leukocyte Removal Filter
WO1987005812A1 (en) Filter medium for selectively removing leucocytes
US7156240B2 (en) Filter for processing blood and process for producing the same
CN1177620C (en) Leukocyte-removing filter material
WO2001032236A1 (en) Filter for selectively removing leukocyte
JP4251987B2 (en) Leukocyte selective removal filter material
JP3176752B2 (en) Blood filtration material
JP3741320B2 (en) Leukocyte selective removal filter material
JP4219041B2 (en) Leukocyte selective removal material
JPH0780062A (en) Endotoxin removing device and production of purified blood
JP3534361B2 (en) Leukocyte removal material
JP3459836B2 (en) Platelet purification filter
JP2006077136A (en) Method for producing biocompatible polymer
JP4393218B2 (en) Virus removal blood processing apparatus and virus removal method
JP4082894B2 (en) Leukocyte selective removal filter material
JPH1033668A (en) Leukocyte selectively removing filter and leukocyte selectively removing filter device
JP4082893B2 (en) Leukocyte selective removal filter material with excellent sterilization resistance
JP2000212235A (en) Hydrophilic copolymer
JP2008079890A (en) Blood component processing material and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees