JP4218014B2 - Fine particle concentration measuring device - Google Patents

Fine particle concentration measuring device Download PDF

Info

Publication number
JP4218014B2
JP4218014B2 JP2003062763A JP2003062763A JP4218014B2 JP 4218014 B2 JP4218014 B2 JP 4218014B2 JP 2003062763 A JP2003062763 A JP 2003062763A JP 2003062763 A JP2003062763 A JP 2003062763A JP 4218014 B2 JP4218014 B2 JP 4218014B2
Authority
JP
Japan
Prior art keywords
particle concentration
fine particle
ultrasonic
ultrasonic transducer
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003062763A
Other languages
Japanese (ja)
Other versions
JP2004271348A (en
Inventor
力 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2003062763A priority Critical patent/JP4218014B2/en
Publication of JP2004271348A publication Critical patent/JP2004271348A/en
Application granted granted Critical
Publication of JP4218014B2 publication Critical patent/JP4218014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子を含む溶液における微粒子濃度を超音波を使用してを測定する微粒子濃度測定装置に関するものである。
【0002】
【従来技術】
従来、この種の微粒子濃度測定装置は、微粒子を含む溶液における微粒子濃度を超音波を使用してを測定する装置として提供されている。
図5は、従来の微粒子濃度測定装置の原理を示す構成図である。この図5において、従来の微粒子濃度測定装置101は、試料に超音波を照射して測定を行う測定部103と、この測定部103から得られるデータを解析して粒度分布などを表示する解析部105とから構成さている(例えば、非特許文献1参照)。
図6は、従来の微粒子濃度測定装置における測定部の構成例を示した斜視図である。
【0003】
この従来の微粒子濃度測定装置101において測定部103は、図6に示すように、容器131の中に二つの超音波振動子133,135を配置し、かつ、超音波振動子133,135の間に試料137を入れた状態にし、一方の超音波振動子133に連続波信号Siを印加することにより当該超音波振動子133から試料137に対して超音波連続波Aiを供給し、他方の超音波振動子135から試料137を通過してきた超音波連続波Aoに対応する電気信号Siを取り出し、その電気信号Siを図示しない信号処理部で処理したデータを、前記データ解析部105に供給できるようにしたものである。
この微粒子濃度測定装置101によって、微粒子を含む溶液の微粒子濃度を測定することができる。
【非特許文献1】
桜井智宏著、「超音波減衰式高濃度粒度分布測定装置」、超音波TECHNO、2002年5月6日、第119頁〜第121頁。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の微粒子濃度測定装置によれば、次のような問題点があった。
(1)超音波に連続波を使用するため、測定に2〜5分かかり、測定時間に長時間を要するという問題点があった。
(2)超音波を試料に送り出す振動子と、試料を通過してきた超音波を受信する振動子と二つの振動子が必要となり、しかも、操作が不便であるという問題点があった。
(3)また、測定によっては、複数個の振動子を取り替えて使う必要があるため、操作が不便となるという問題点があった。
本発明は、上述した問題点を解消し、部品点数を少なくして操作性をよくした微粒子濃度測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1に係る発明の微粒子濃度測定装置は、微粒子を含む溶液における微粒子濃度を超音波を使用して測定する微粒子濃度測定装置において、平凹形状に形成され、広帯域特性を有する一個の超音波振動子と、当該超音波振動子の焦点位置付近に配置された反射体とから構成され、前記超音波振動子から微粒子を含む溶液に対して広帯域の超音波パルス波を供給し、前記反射体からの反射超音波パルス波から広帯域の反射パルス信号を前記超音波振動子で受信し、微粒子濃度がゼロの水中エコーパルス波におけるスペクトルの最大値を基準として正規化して、前記広帯域の反射パルス信号の周波数スペクトルからの各周波数成分の減衰特性または中心周波数の移行度に基づいて、微粒子を含む溶液における微粒子濃度を測定する解析部とを備えたことを特徴とするものである。
本願請求項2に係る発明では、本願請求項1記載の微粒子濃度測定装置において、前記測定部の超音波振動子は、円形チタン酸鉛振動子の一面を連続した凹面形状に形成してあり、前記円形チタン酸鉛振動子の他面を平面状に形成してあり、かつ、前記円形チタン酸鉛振動子の両面に励振パルス信号を供給するための電極を設けてなることを特徴とするものである。
【0006】
【発明の実施の形態及び実施例】
以下、本発明の実施の形態について図面を参照して説明する。
図1ないし図4は、本発明の実施の形態及び実施例に係る微粒子濃度測定装置を説明するためのものである。
ここに、図1は、本発明の実施の形態に係る微粒子濃度測定装置を示すブロック図である。
【0007】
この図1において、本発明の実施の形態に係る微粒子濃度測定装置1は、微粒子を含む溶液に対して超音波パルス波(Ultrasonic pulse wave) を供給しその反射超音波パルス波から得た反射パルス信号を得る測定部3と、前記測定部3からの反射パルス信号を基に微粒子を含む溶液における微粒子濃度を測定する解析部5とを備え、微粒子を含む溶液における微粒子濃度を測定することができる装置である。
【0008】
前記測定部3は、図1に示すように、微粒子を含む溶液(Aqueous solution of particles) からなる試料を入れる容器31と、前記容器31の内部の一方に配置され平凹(Plano-concave)形状に形成された超音波振動子(Transducer)33と、前記容器31の内部の他方側であって、当該超音波振動子31の焦点位置付近に配置された反射体(Reflector) 35とから構成されている。
【0009】
前記解析部5は、前記測定部3の超音波振動子33に励振パルス信号を供給し、かつ、前記測定部3の前記測定部3の反射体35からの反射パルス波に対応する反射パルス信号を超音波振動子33から取込んで所定のデータに変換するパルス処理手段51と、前記パルス処理手段51からの所定のデータを取込み、前記所定のデータを基に微粒子濃度を測定できるデータ解析処理手段53とから構成されている。
前記パルス処理手段51は、前記測定部3の超音波振動子33に励振パルス信号を供給し、かつ、前記測定部3の反射体35からの反射パルス波に対応する反射パルス信号を超音波振動子33から取込むパルサー(Pulser)51aと、前記パルサー51aからの反射パルス信号をデジタル化するデジダルオシロスコープ(Digital oscilloscope)51bとから構成されいてる。
【0010】
前記データ解析処理手段53は例えばパーソナルコンピュータ(Personal computer 、以下、「コンピュータ」という)で構成されており、このコンピュータには、オペレーティングシステムと、当該濃度を測定する解析プログラムとか少なくとも記憶されている。
上記コンピュータは、図示しないが、各種の処理や演算を実行するコンピュータ本体と、前記コンピュータ本体に接続され処理内容を表示するディスプレイと、前記コンピュータ本体に接続され必要なデータを入力するキーボードと、前記コンピュータ本体に接続され処理の指示等に使用されるマウスと、前記コンピュータ本体に接続されハードコピーを得ることができるプリンタと、その他の機器(例えば外部記憶装置)とを備えている。
【0011】
前記コンピュータ本体は、各種演算処理を実行する中央処理ユニットと、オペレーティングシステムやアプリケーションプログラムを展開記憶する主メモリと、キーボードやマウスやプリンタとのインターフェースである入力出力ポートと、前記高速シリアルバス用のインターフェースと、オペレーティングシステムやアプリケーションプログラムや各種データを格納するハードディスク装置と、その他必要な機器とが内蔵されている。また、前記コンピュータのコンピュータ本体は、当該ハードディスク装置に、所定のオペレーティングシステムと、アプリケーションプログラムとして解析プログラムやその他のプログラムが格納されている。
【0012】
さらに、上記コンピュータは、電源スイッチを投入すると、コンピュータ本体において、ハードディスク装置からオペレーティングシステムが主メモリに展開記憶されて実行された後、さらに、解析プログラムのアプリケーションプログラムが起動されることにより、解析プログラムが主メモリに展開記憶されて解析が可能になるようになっている。
【0013】
図2は、本発明の実施の形態に係る微粒子濃度測定装置で使用される超音波振動子の構成を示す図であって、図2(a)が正面図を、図2(b)が断面図を、それぞれ示したものである。
前記測定部3の超音波振動子33は、図2(a)及び図2(b)に示すように、直径dの円形チタン酸鉛振動子33aの一面を曲率半径rで連続した凹面形状に形成してあり、前記円形チタン酸鉛振動子33aの他面を平面状に形成してあり、かつ、前記円形チタン酸鉛振動子33aの両面(平面状の面と、凹面状の面の双方)に励振パルス信号を供給するための電極33b,33cを設けて構成されている。なお、符号33d,33eは前記電極33b,33cに接続したリード線であり、このリード線33d,33eに励振パルス信号を印加できるようになっている。
【0014】
このような微粒子濃度測定装置1によって微粒子濃度が測定できることについて以下に詳細に説明する。
まず、本発明の原理を簡単に説明する。本発明では、広帯域性を持つ1個のプラノコンケーブ(平凹面)形超音波振動子33から放射される広帯域の超音波を利用し、リアルタイムで微粒子の濃度を測定している。この本発明で提案している測定方法は、広帯域の超音波パルスを用いて、その周波数スペクトルの減衰特性からリアルタイムで測定するものであり、従来の方式と比べて取り扱いが簡単で、得られる情報量も大変豊富なことが特徴である。
【0015】
ここでは、まず、粒子径が100[μm]未満の微粒子を含む水溶液について、濃度に対する超音波の減衰特性等から濃度を測定できることを説明する。
このプラノコンケーブ形の超音波振動子33は、図示のように厚さが連続的に変化しているために、広い周波数帯域の超音波の放射が可能であり、さらに超音波放射面が凹面状であるため、収束した超音波の放射も可能としたものである。このため、この超音波振動子33にインパルス電圧を印可すると、リンギングの少ない収束した超音波パルスを放射できるものである。
【0016】
また、本発明に係る微粒子濃度測定装置1による測定は、図1に示すように、微粒子を溶かした水溶液を収容した容器31の内部の一方の側に、この超音波振動子33を配置し、かつ、超音波振動子33の焦点近辺であって容器31の他方側に反射体35を配置し、当該超音波振動子33に解析部5のパルス処理手段51から励振パルス信号を供給して水溶液に広帯域パルス波を与え、反射体35からのエコーを超音波振動子33で受波し、これを解析部5のパルス処理手段51で反射パルス信号として受信し、所定のデータに変換してデータ解析処理手段53に与えて、解析を行う。
【0017】
また、微粒子の濃度を変えたときに、変化する受波パルス周波数スペクトルをデータ解析処理手段53で調べる。
ここで、用いたプラノコンケーブ形超音波振動子33は、基本共振周波数が1〜10[MHz]の広帯域振動子である。また、超音波振動子33に与える励振パルス信号(電圧)としては、パルス幅が60[n秒]で5[Vp-p ]の矩形パルスを供給した。本実施の形態においては一矩形パルス波信号を供給してこの反射を受けるようにしたが、これは数個からなるパルス波であっても良い。
【0018】
また、水に溶かす微粒子は、平均粒径75[μm]以下のカオリン(陶土)と、平均粒径4[μm]のマツモトマイクロスフェアF−04E(松本油脂製薬製)の2種類を使用した。
また、水1[l]に対して、0[mg]の微粒子、100[mg]の微粒子、200[mg]の微粒子、300[mg]の微粒子、400[mg]の微粒子、及び、500[mg]の微粒子を溶かして、微粒子濃度を0[mg/l]、100[mg/l]、200[mg/l]、300[mg/l]、400[mg/l]、及び、500[mg/l]とした混濁水溶液を用いて測定した。
【0019】
図3は、本発明の実施の形態に係る微粒子濃度測定装置によって、カオリンとマイクロスフェアの濃度を増加させたときのエコーパルス信号の周波数スペクトルを示す特性図であって、図3(a)がカオリン(kaolin)の場合の周波数スペクトルを、図3(b)がマイクロスフェア(Micro sphere)の場合の周波数スペクトルを、それぞれ示した図である。図3におけるそれぞれの特性図の縦軸は微粒子濃度がゼロの水中エコーパルス波におけるスペクトルの最大値を基準として正規化(Nomalized magnitude [dB])してあり、横軸は周波数(Frequency )[MHz]をとっている。
【0020】
また、水溶液における微粒子濃度をそれぞれ0〜500[mg/l]づつ増加させて当該微粒子濃度測定装置1で測定した。
その結果、図3(a)のカオリンの場合は、濃度の増加とともに1〜10[MHz]の周波数帯で各周波数成分が一様に減衰することがわかる。
次に、カオリンよりも粒径の小さいマイクナススフェアの場合では、図3(b)に示すように、図3(a)の結果と同様に濃度が高いほど減衰が大きいが、高周波成分の減衰が周波数に比べて大きいこともわかる。このため、エコーパルス波の中心周波数も濃度の増加とともに低周波側に移行してゆくことがわかる。これは、ここで用いてみた2つの微粒子の大きさや性質の違いによって生じたものと考えられる。
【0021】
このことより、従来の複数個の狭帯域の超音波振動子を利用して超音波の周波数を変化させて測定するよりも、本発明の微粒子濃度測定装置1のように、1個の広帯域超音波振動子33を用いて広帯域超音波パルス波で測定するほうが、簡単に微粒子の濃度だけではなく、同時に、その粒子の大きさなどの性質も調べられる。
【0022】
図4は、本発明の実施の形態に係る微粒子濃度測定装置において、図3に示す測定結果を用いてそれぞれの微粒子濃度に対する周波数成分の変化を調べた結果の一例を示す特性図であり、図4(a)がカオリンの場合の減衰特性図であり、図4(b)がマイクロスフェアの場合の減衰特性である。また、図4にいて、各特性図の縦軸は、それぞれの周波数における水中での値を基準として正規化(Nomalized magnitude [dB])したものである。また、図4( a)に示す特性図の横軸はカリオンによる濃度(Concentration of kaolin in water)[mg/l]であり、図4(b)に示す特性図の横軸はマイクロスフェアによる濃度(Concentration of microsphere in water) [mg/l]である。
【0023】
この図4(a)において、カオリンについては、エコーパルス波の中心周波数付近の5[MHz]のときの変化を示したものである。
また、図4(b)において、マイクロスフェアについては、パルス波の中心周波数が濃度とともに変化してしまうため、2[MHz]のときの変化を示したものである。
これら図4(a)及び図4(b)の結果から、微粒子濃度の増加とともに、周波数が減少している。本発明では、この関係を使用することにより微粒子濃度を測定している。
【0024】
本発明の実施の形態に係る微粒子濃度測定装置1では、プラノコンケース形超音波振動子33から放射される広帯域超音波パルスを測定すべき水溶液の試料に放射し、かつ、反射体35から反射されてくるエコーパルス波に対応する反射パルス信号を超音波振動子33によって取り出し、その水溶液の試料の濃度に応じた反射パルス信号のスペクトルの変化から試料である液体中の微粒子濃度を測定するようにしたものである。
【0025】
その結果、従来の装置では、複数の異なる超音波振動子を用いて測定しなければならず、測定に時間がかかっていたが、本発明の微粒子濃度測定装置1では、プラノコンケーブ形超音波振動子33及びに広帯域の超音波パルスを用いることができるため、1回の送受波で大量のデータを得ることができ、微粒子のおおきささなどの情報も広帯域の超音波をも用いることにより、同時に測定できる。
本発明の実施の形態に係る微粒子濃度測定装置1によれば、測定の簡素化と、リアルタイム化が図られると考えられる。
また、本発明の実施の形態に係る微粒子濃度測定装置1によれば、2種類の微粒子の粒子濃度と、周波数成分の変化から、濃度の増加とともに周波数成分が曲線的に減衰していることから、これを用いて確実に濃度測定が可能となる。
【0026】
以上説明したように本発明の実施の形態に係る微粒子濃度測定装置1によれば、超音波に広帯域パルス波を使用したため、短時間に測定ができ、また、超音波を試料に送り出す振動子と、試料を通過してきた超音波を受信する振動子とが共通のものでよく、部品点数が少なくなり、かつ、操作が簡単となり、しかも、一つの超音波振動子のみでよいため、操作が簡単で測定が容易である。
なお、上記実施の形態では、超音波振動子33の一面に球面状の凹部を形成したものとして説明したが、これに限定されることなく、例えば放物面状の凹部を形成してもよいし、円錐状の凹部としてもよい。また、前記超音波振動子33の凹部は、連続した面の凹部でなく、階段状をした面の凹部に形成してもよく、広域特性と収束性を示せば、平板形状でもあってもよく、どのような形状であってもかまわない。
【0027】
【発明の効果】
以上説明したように本発明によれば、次のような効果がある。
(1)超音波に広帯域パルス波を使用したため、短時間に測定ができるという利点がある。
(2)超音波を試料に送り出す振動子と、試料を通過してきた超音波を受信する振動子とが共通のものでよく、部品点数が少なくなり、かつ、操作が簡単である。
(3)一つの超音波振動子のみでよいため、操作が簡単で測定が容易である。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る微粒子濃度測定装置を示すブロック図である。
【図2】本発明の実施の形態に係る微粒子濃度測定装置で使用される超音波振動子の構成を示す図である。
【図3】本発明の実施の形態に係る微粒子濃度測定装置によって、カオリンとマイクロスフェアの濃度を増加させたときのエコーパルス信号の周波数スペクトルを示す特性図である。
【図4】本発明の実施の形態に係る微粒子濃度測定装置において、図3に示す測定結果を用いてそれぞれの微粒子濃度に対する周波数成分の変化を調べた結果の一例を示す特性図である。
【図5】従来の微粒子濃度測定装置の原理を示す構成図である。
【図6】従来の微粒子濃度測定装置における測定部の構成例を示した斜視図である。
【符号の説明】
1 微粒子濃度測定装置
3 測定部
5 解析部
31 容器
33 超音波振動子(Transducer)
33a 円形チタン酸鉛振動子
33b,33c 電極
35 反射体(Reflector)
51 パルス処理手段
51a パルサー(Pulser)
51b デジダルオシロスコープ(Digital oscilloscope)
53 データ解析処理手段(Personal computer )
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fine particle concentration measuring apparatus that measures the fine particle concentration in a solution containing fine particles using ultrasonic waves.
[0002]
[Prior art]
Conventionally, this kind of fine particle concentration measuring apparatus is provided as an apparatus for measuring the fine particle concentration in a solution containing fine particles using ultrasonic waves.
FIG. 5 is a block diagram showing the principle of a conventional fine particle concentration measuring apparatus. In FIG. 5, a conventional fine particle concentration measurement apparatus 101 includes a measurement unit 103 that performs measurement by irradiating a sample with ultrasonic waves, and an analysis unit that analyzes data obtained from the measurement unit 103 and displays a particle size distribution and the like. 105 (see, for example, Non-Patent Document 1).
FIG. 6 is a perspective view showing a configuration example of a measurement unit in a conventional fine particle concentration measurement apparatus.
[0003]
In this conventional fine particle concentration measuring apparatus 101, the measuring unit 103 has two ultrasonic transducers 133 and 135 disposed in a container 131 and a space between the ultrasonic transducers 133 and 135, as shown in FIG. In the state where the sample 137 is put in, the continuous wave signal Si is applied to one ultrasonic transducer 133 to supply the ultrasonic continuous wave Ai from the ultrasonic transducer 133 to the sample 137, and the other ultrasonic transducer 133 An electrical signal Si corresponding to the ultrasonic continuous wave Ao that has passed through the sample 137 from the acoustic wave oscillator 135 is extracted, and data obtained by processing the electrical signal Si by a signal processing unit (not shown) can be supplied to the data analysis unit 105. It is a thing.
This fine particle concentration measuring apparatus 101 can measure the fine particle concentration of a solution containing fine particles.
[Non-Patent Document 1]
Tomohiro Sakurai, “Ultrasonic attenuation type high-concentration particle size distribution analyzer”, Ultrasonic TECHNO, May 6, 2002, pp. 119-121.
[0004]
[Problems to be solved by the invention]
However, the conventional fine particle concentration measuring apparatus has the following problems.
(1) Since a continuous wave is used for ultrasonic waves, the measurement takes 2 to 5 minutes, and there is a problem that a long time is required for the measurement.
(2) A vibrator that sends ultrasonic waves to the sample, a vibrator that receives the ultrasonic waves that have passed through the sample, and two vibrators are required, and the operation is inconvenient.
(3) In addition, depending on the measurement, it is necessary to replace a plurality of vibrators, and there is a problem that the operation becomes inconvenient.
An object of the present invention is to provide a fine particle concentration measuring apparatus that solves the above-described problems and has improved operability by reducing the number of parts.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the fine particle concentration measuring device according to the first aspect of the present invention is a fine particle concentration measuring device that measures the fine particle concentration in a solution containing fine particles using ultrasonic waves, and is formed in a plano-concave shape. And an ultrasonic transducer having a broadband characteristic, and a reflector disposed in the vicinity of the focal position of the ultrasonic transducer, and the broadband ultrasonic wave is applied to a solution containing fine particles from the ultrasonic transducer. A pulse wave is supplied, a broadband reflected pulse signal is received from the reflected ultrasonic pulse wave from the reflector by the ultrasonic transducer, and is normalized based on the maximum value of the spectrum in an underwater echo pulse wave with a fine particle concentration of zero. It turned into, based on the transition of the damping characteristics or the center frequency of each frequency component from the frequency spectrum of the reflected pulse signal of the wide band, in a solution containing fine particles It is characterized in that it comprises an analysis unit for measuring the particle concentration.
In the invention according to claim 2 of the present application, in the fine particle concentration measurement apparatus according to claim 1 of the present application, the ultrasonic transducer of the measurement unit is formed in a continuous concave shape on one surface of a circular lead titanate transducer, The other surface of the circular lead titanate vibrator is formed in a planar shape, and electrodes for supplying an excitation pulse signal are provided on both surfaces of the circular lead titanate vibrator. It is.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 are diagrams for explaining a fine particle concentration measuring apparatus according to embodiments and examples of the present invention.
FIG. 1 is a block diagram showing the fine particle concentration measuring apparatus according to the embodiment of the present invention.
[0007]
In FIG. 1, a fine particle concentration measuring apparatus 1 according to an embodiment of the present invention supplies an ultrasonic pulse wave to a solution containing fine particles, and a reflected pulse obtained from the reflected ultrasonic pulse wave. A measurement unit 3 that obtains a signal and an analysis unit 5 that measures the concentration of fine particles in a solution containing fine particles based on the reflected pulse signal from the measurement unit 3 can be used to measure the concentration of fine particles in a solution containing fine particles. Device.
[0008]
As shown in FIG. 1, the measurement unit 3 includes a container 31 for storing a sample made of a solution containing fine particles (Aqueous solution of particles), and a plano-concave shape disposed in one of the containers 31. And a reflector 35 disposed on the other side inside the container 31 and in the vicinity of the focal position of the ultrasonic transducer 31. ing.
[0009]
The analysis unit 5 supplies an excitation pulse signal to the ultrasonic transducer 33 of the measurement unit 3 and a reflected pulse signal corresponding to a reflected pulse wave from the reflector 35 of the measurement unit 3 of the measurement unit 3. Is obtained from the ultrasonic transducer 33 and converted into predetermined data, and data analysis processing for taking in the predetermined data from the pulse processing means 51 and measuring the particle concentration based on the predetermined data And means 53.
The pulse processing means 51 supplies an excitation pulse signal to the ultrasonic transducer 33 of the measurement unit 3 and ultrasonically oscillates the reflected pulse signal corresponding to the reflected pulse wave from the reflector 35 of the measurement unit 3. The pulsar 51a is taken in from the child 33, and a digital oscilloscope 51b that digitizes the reflected pulse signal from the pulsar 51a.
[0010]
The data analysis processing means 53 is composed of, for example, a personal computer (hereinafter referred to as “computer”), and at least an operating system and an analysis program for measuring the concentration are stored in the computer.
Although not shown, the computer includes a computer main body for executing various processes and operations, a display connected to the computer main body for displaying processing contents, a keyboard connected to the computer main body for inputting necessary data, A mouse connected to the computer main body and used for processing instructions and the like, a printer connected to the computer main body and capable of obtaining a hard copy, and other devices (for example, an external storage device) are provided.
[0011]
The computer main body includes a central processing unit that executes various arithmetic processes, a main memory that develops and stores an operating system and application programs, an input / output port that is an interface with a keyboard, a mouse, and a printer, and the high-speed serial bus An interface, a hard disk device that stores an operating system, application programs, and various data, and other necessary devices are incorporated. The computer main body of the computer stores a predetermined operating system and an analysis program and other programs as application programs in the hard disk device.
[0012]
Furthermore, when the computer turns on the power switch, the computer program is executed after the operating system is expanded and stored in the main memory from the hard disk device, and then the analysis program is started. Is expanded and stored in the main memory so that it can be analyzed.
[0013]
FIG. 2 is a diagram showing a configuration of an ultrasonic transducer used in the fine particle concentration measurement apparatus according to the embodiment of the present invention, in which FIG. 2 (a) is a front view and FIG. 2 (b) is a cross section. Each figure is shown.
As shown in FIGS. 2A and 2B, the ultrasonic transducer 33 of the measurement unit 3 has a concave shape in which one surface of a circular lead titanate transducer 33a having a diameter d is continuous with a radius of curvature r. The other surface of the circular lead titanate vibrator 33a is formed in a planar shape, and both surfaces of the circular lead titanate vibrator 33a (both a flat surface and a concave surface) ) Are provided with electrodes 33b and 33c for supplying an excitation pulse signal. Reference numerals 33d and 33e denote lead wires connected to the electrodes 33b and 33c, and an excitation pulse signal can be applied to the lead wires 33d and 33e.
[0014]
The fact that the particle concentration can be measured by such a particle concentration measuring apparatus 1 will be described in detail below.
First, the principle of the present invention will be briefly described. In the present invention, the concentration of fine particles is measured in real time using broadband ultrasonic waves radiated from a single plano-concave (plano-concave) ultrasonic transducer 33 having broadband properties. The measurement method proposed in the present invention uses a broadband ultrasonic pulse to measure in real time from the attenuation characteristics of the frequency spectrum, and is easier to handle than the conventional method, and the information obtained The feature is that the amount is very abundant.
[0015]
Here, first, it will be explained that the concentration of an aqueous solution containing fine particles having a particle diameter of less than 100 [μm] can be measured from the attenuation characteristics of ultrasonic waves with respect to the concentration.
Since the thickness of the plano-concave ultrasonic transducer 33 continuously changes as shown in the drawing, it is possible to emit ultrasonic waves in a wide frequency band, and the ultrasonic radiation surface is concave. Therefore, it is possible to emit focused ultrasonic waves. For this reason, when an impulse voltage is applied to the ultrasonic transducer 33, a converged ultrasonic pulse with little ringing can be emitted.
[0016]
Further, in the measurement by the fine particle concentration measuring apparatus 1 according to the present invention, as shown in FIG. 1, the ultrasonic vibrator 33 is disposed on one side of a container 31 containing an aqueous solution in which fine particles are dissolved. In addition, a reflector 35 is disposed in the vicinity of the focal point of the ultrasonic transducer 33 and on the other side of the container 31, and an excitation pulse signal is supplied to the ultrasonic transducer 33 from the pulse processing means 51 of the analysis unit 5. A broadband pulse wave is applied to the echo wave, and the echo from the reflector 35 is received by the ultrasonic transducer 33. This is received as a reflected pulse signal by the pulse processing means 51 of the analysis unit 5, and converted into predetermined data. The analysis processing means 53 gives the analysis.
[0017]
Further, the data analysis processing means 53 examines the received pulse frequency spectrum that changes when the concentration of the fine particles is changed.
Here, the used plano-concave ultrasonic transducer 33 is a broadband transducer having a fundamental resonance frequency of 1 to 10 [MHz]. Further, as the excitation pulse signal (voltage) applied to the ultrasonic transducer 33, a rectangular pulse having a pulse width of 60 [nsec] and 5 [ Vpp ] was supplied. In the present embodiment, one rectangular pulse wave signal is supplied to receive this reflection, but this may be a pulse wave consisting of several pieces.
[0018]
As fine particles to be dissolved in water, two kinds of kaolin (ceramic clay) having an average particle size of 75 [μm] or less and Matsumoto Microsphere F-04E (manufactured by Matsumoto Yushi Seiyaku) having an average particle size of 4 [μm] were used.
Also, 0 [mg] fine particles, 100 [mg] fine particles, 200 [mg] fine particles, 300 [mg] fine particles, 400 [mg] fine particles, and 500 [mg] fine particles with respect to 1 [l] water. mg] fine particles were dissolved, and the fine particle concentrations were 0 [mg / l], 100 [mg / l], 200 [mg / l], 300 [mg / l], 400 [mg / l], and 500 [mg / l]. It was measured using a turbid aqueous solution of [mg / l].
[0019]
FIG. 3 is a characteristic diagram showing the frequency spectrum of the echo pulse signal when the concentrations of kaolin and microspheres are increased by the fine particle concentration measuring apparatus according to the embodiment of the present invention. FIG. It is the figure which each showed the frequency spectrum in case of kaolin (kaolin), and the frequency spectrum in case FIG.3 (b) is a microsphere (Microsphere). The vertical axis of each characteristic diagram in FIG. 3 is normalized (Nomalized magnitude [dB]) based on the maximum value of the spectrum in the underwater echo pulse wave having a fine particle concentration of zero, and the horizontal axis is the frequency [MHz]. ] Is taken.
[0020]
Further, the fine particle concentration in the aqueous solution was increased by 0 to 500 [mg / l] and measured with the fine particle concentration measurement apparatus 1.
As a result, in the case of the kaolin of FIG. 3A, it can be seen that each frequency component is uniformly attenuated in the frequency band of 1 to 10 [MHz] as the concentration increases.
Next, in the case of the micronus sphere having a particle diameter smaller than that of kaolin, as shown in FIG. 3 (b), the higher the concentration, the higher the attenuation as in the result of FIG. 3 (a). It can also be seen that is larger than the frequency. For this reason, it can be seen that the center frequency of the echo pulse wave also shifts to the low frequency side as the concentration increases. This is considered to be caused by the difference in size and property between the two fine particles used here.
[0021]
Thus, rather than performing measurement by changing the frequency of ultrasonic waves using a plurality of conventional narrow-band ultrasonic transducers, a single broadband ultrasonic wave as in the fine particle concentration measurement apparatus 1 of the present invention. When the measurement is performed with a broadband ultrasonic pulse wave using the sonic transducer 33, not only the concentration of the fine particles but also properties such as the size of the particles can be examined at the same time.
[0022]
FIG. 4 is a characteristic diagram showing an example of a result of examining changes in frequency components with respect to respective particle concentrations using the measurement results shown in FIG. 3 in the particle concentration measuring apparatus according to the embodiment of the present invention. 4 (a) is an attenuation characteristic diagram in the case of kaolin, and FIG. 4 (b) is an attenuation characteristic in the case of a microsphere. In FIG. 4, the vertical axis of each characteristic diagram is normalized (Nomalized magnitude [dB]) based on a value in water at each frequency. In addition, the horizontal axis of the characteristic diagram shown in FIG. 4 (a) is concentration of kaolin (concentration of kaolin in water) [mg / l], and the horizontal axis of the characteristic diagram shown in FIG. 4 (b) is the concentration due to microspheres. (Concentration of microsphere in water) [mg / l].
[0023]
In FIG. 4A, for kaolin, the change at 5 [MHz] near the center frequency of the echo pulse wave is shown.
In FIG. 4B, the microsphere shows the change at 2 [MHz] because the center frequency of the pulse wave changes with the concentration.
From the results shown in FIGS. 4A and 4B, the frequency decreases as the fine particle concentration increases. In the present invention, the fine particle concentration is measured by using this relationship.
[0024]
In the fine particle concentration measuring apparatus 1 according to the embodiment of the present invention, a broadband ultrasonic pulse radiated from the plano-concase ultrasonic transducer 33 is radiated to the sample of the aqueous solution to be measured and reflected from the reflector 35. The reflected pulse signal corresponding to the echo pulse wave is extracted by the ultrasonic transducer 33, and the fine particle concentration in the liquid as the sample is measured from the change in the spectrum of the reflected pulse signal according to the concentration of the sample in the aqueous solution. It is a thing.
[0025]
As a result, in the conventional apparatus, measurement must be performed using a plurality of different ultrasonic transducers, and the measurement takes time. However, in the fine particle concentration measurement apparatus 1 of the present invention, the plano-concave ultrasonic vibration is used. Since a broadband ultrasonic pulse can be used for the child 33 and a large amount of data can be obtained by one transmission / reception wave, information such as the magnitude of fine particles can be obtained simultaneously by using a broadband ultrasonic wave. It can be measured.
According to the fine particle concentration measurement apparatus 1 according to the embodiment of the present invention, it is considered that simplification of measurement and real time can be achieved.
Further, according to the fine particle concentration measuring apparatus 1 according to the embodiment of the present invention, the frequency component attenuates in a curve as the concentration increases due to the particle concentration of two kinds of fine particles and the change of the frequency component. This makes it possible to reliably measure the concentration.
[0026]
As described above, according to the fine particle concentration measurement apparatus 1 according to the embodiment of the present invention, since a broadband pulse wave is used for the ultrasonic wave, the measurement can be performed in a short time, and the vibrator for sending the ultrasonic wave to the sample The transducer that receives the ultrasonic wave that has passed through the sample may be the same, the number of parts is reduced, the operation is simple, and only one ultrasonic transducer is required, so the operation is simple Measurement is easy.
In the above-described embodiment, the description has been given on the assumption that a spherical concave portion is formed on one surface of the ultrasonic transducer 33. However, the present invention is not limited to this, and for example, a parabolic concave portion may be formed. And it is good also as a conical recessed part. In addition, the concave portion of the ultrasonic transducer 33 may be formed in a concave portion on a stepped surface instead of a concave portion on a continuous surface, or may have a flat plate shape as long as it shows a wide range characteristic and convergence. Any shape can be used.
[0027]
【The invention's effect】
As described above, the present invention has the following effects.
(1) Since a broadband pulse wave is used for ultrasonic waves, there is an advantage that measurement can be performed in a short time.
(2) The vibrator for sending ultrasonic waves to the sample and the vibrator for receiving the ultrasonic waves that have passed through the sample may be common, the number of parts is reduced, and the operation is simple.
(3) Since only one ultrasonic transducer is required, the operation is simple and the measurement is easy.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a fine particle concentration measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of an ultrasonic transducer used in the fine particle concentration measurement apparatus according to the embodiment of the present invention.
FIG. 3 is a characteristic diagram showing a frequency spectrum of an echo pulse signal when the concentrations of kaolin and microspheres are increased by the fine particle concentration measuring apparatus according to the embodiment of the present invention.
4 is a characteristic diagram showing an example of a result obtained by examining changes in frequency components with respect to respective particle concentrations using the measurement results shown in FIG. 3 in the particle concentration measuring apparatus according to the embodiment of the present invention. FIG.
FIG. 5 is a block diagram showing the principle of a conventional fine particle concentration measuring apparatus.
FIG. 6 is a perspective view showing a configuration example of a measurement unit in a conventional fine particle concentration measurement apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fine particle concentration measuring apparatus 3 Measuring part 5 Analyzing part 31 Container 33 Ultrasonic transducer (Transducer)
33a Circular lead titanate vibrators 33b, 33c Electrode 35 Reflector
51 Pulse processing means 51a Pulser (Pulser)
51b Digital oscilloscope
53 Data analysis processing means (Personal computer)

Claims (2)

微粒子を含む溶液における微粒子濃度を超音波を使用して測定する微粒子濃度測定装置において、
平凹形状に形成され、広帯域特性を有する一個の超音波振動子と、当該超音波振動子の焦点位置付近に配置された反射体とから構成され、前記超音波振動子から微粒子を含む溶液に対して広帯域の超音波パルス波を供給し、前記反射体からの反射超音波パルス波から広帯域の反射パルス信号を前記超音波振動子で受信し、微粒子濃度がゼロの水中エコーパルス波におけるスペクトルの最大値を基準として正規化して、前記広帯域の反射パルス信号の周波数スペクトルからの各周波数成分の減衰特性または中心周波数の移行度に基づいて、微粒子を含む溶液における微粒子濃度を測定する解析部とを備えたことを特徴とする微粒子濃度測定装置。
In a fine particle concentration measuring apparatus that measures the fine particle concentration in a solution containing fine particles using ultrasonic waves,
It is composed of a single ultrasonic transducer having a flat and concave shape and having broadband characteristics, and a reflector disposed in the vicinity of the focal position of the ultrasonic transducer. From the ultrasonic transducer to a solution containing fine particles In contrast, a broadband ultrasonic pulse wave is supplied, a broadband reflected pulse signal is received from the reflected ultrasonic pulse wave from the reflector by the ultrasonic transducer, and a spectrum of an underwater echo pulse wave having a fine particle concentration of zero is received . An analysis unit that normalizes with respect to a maximum value and measures the concentration of fine particles in a solution containing fine particles based on the attenuation characteristics of each frequency component from the frequency spectrum of the broadband reflected pulse signal or the shift degree of the center frequency. A fine particle concentration measuring apparatus comprising:
前記測定部の超音波振動子は、円形チタン酸鉛振動子の一面を連続した凹面形状に形成してあり、前記円形チタン酸鉛振動子の他面を平面状に形成してあり、かつ、前記円形チタン酸鉛振動子の両面に励振パルス信号を供給するための電極を設けてなることを特徴とする請求項1記載の微粒子濃度測定装置。The ultrasonic transducer of the measurement unit is formed in a continuous concave shape on one surface of a circular lead titanate transducer, the other surface of the circular lead titanate transducer is formed in a planar shape, and 2. The fine particle concentration measuring apparatus according to claim 1, wherein electrodes for supplying an excitation pulse signal are provided on both surfaces of the circular lead titanate vibrator.
JP2003062763A 2003-03-10 2003-03-10 Fine particle concentration measuring device Expired - Fee Related JP4218014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062763A JP4218014B2 (en) 2003-03-10 2003-03-10 Fine particle concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062763A JP4218014B2 (en) 2003-03-10 2003-03-10 Fine particle concentration measuring device

Publications (2)

Publication Number Publication Date
JP2004271348A JP2004271348A (en) 2004-09-30
JP4218014B2 true JP4218014B2 (en) 2009-02-04

Family

ID=33124537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062763A Expired - Fee Related JP4218014B2 (en) 2003-03-10 2003-03-10 Fine particle concentration measuring device

Country Status (1)

Country Link
JP (1) JP4218014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351826B2 (en) 2006-02-15 2013-01-08 Ricoh Company, Ltd. Image forming method, image forming device, and image forming program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862533B2 (en) * 2006-07-26 2012-01-25 パナソニック電工株式会社 Airborne particle measurement system
JP5277432B2 (en) * 2007-07-17 2013-08-28 学校法人日本大学 Suspended matter analysis method
JP6361062B2 (en) * 2013-11-25 2018-07-25 日本無線株式会社 Bubble detection device
CN106468647B (en) * 2015-08-18 2019-11-26 厦门乃尔电子有限公司 Detect the device and method of the concentration of particulate in air

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175256A (en) * 1984-09-21 1986-04-17 Hitachi Ltd Fungus body density measuring apparatus
US5121629A (en) * 1989-11-13 1992-06-16 E. I. Du Pont De Nemours And Company Method and apparatus for determining particle size distribution and concentration in a suspension using ultrasonics
JP3140244B2 (en) * 1993-03-04 2001-03-05 川崎製鉄株式会社 Grain size measurement method
DE19722274A1 (en) * 1997-05-28 1998-12-03 Degussa Method for measuring density and mass flow
SE516979C2 (en) * 2000-07-14 2002-03-26 Abb Ab Active acoustic spectroscopy
WO2002050511A2 (en) * 2000-12-18 2002-06-27 E.I. Du Pont De Nemours And Company Method and apparatus for ultrasonic sizing of particles in suspensions
JP2002296255A (en) * 2001-04-02 2002-10-09 Fuji Xerox Co Ltd Ultrasonic liquid-evaluating device, developer concentration-stabilizing device using the evaluation device, and image-forming device provided with the stabilizing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8351826B2 (en) 2006-02-15 2013-01-08 Ricoh Company, Ltd. Image forming method, image forming device, and image forming program

Also Published As

Publication number Publication date
JP2004271348A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
Hoyle Process tomography using ultrasonic sensors
US7713201B2 (en) Method and apparatus for shear property characterization from resonance induced by oscillatory radiation force
Leighton et al. Acoustic detection of gas bubbles in a pipe
Leonov et al. Causes of ultrasound Doppler twinkling artifact
JP4218014B2 (en) Fine particle concentration measuring device
Baddour et al. The fluid and elastic nature of nucleated cells: Implications from the cellular backscatter response
Hoyle et al. Ultrasonic sensors
Bouakaz et al. Harmonic ultrasonic field of medical phased arrays: Simulations and measurements
WO2005071437A1 (en) Contrast dual frequency imaging
JP4083582B2 (en) Improved geometry for pulse acoustic measurements
JP2005342512A (en) Method and system for ultrasound contrast imaging
Leighton A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: review of cavitation monitoring techniques
KR100970948B1 (en) 2-dimensional virtual array probe for 3-dimensional ultrasonic imaging
JP2007301286A (en) Bubble detector
Kumar et al. Quantitative modeling of the anisotropy of ultrasonic backscatter from canine myocardium
Leão-Neto et al. Development and characterization of a superresolution ultrasonic transducer
Garcia-Alvarez et al. Noise level analysis in buffer rod geometries for ultrasonic sensors
JPS6110204Y2 (en)
Lenz et al. Transducer characterization by sound field measurements
CN212415772U (en) Ultrasonic testing equipment
JPS6215213B2 (en)
McClements Particle sizing of food emulsions using ultrasonic spectrometry: principles, techniques and applications
Gelat et al. Establishing a reference ultrasonic cleaning vessel: Part 1 supporting infrastructure and early measurements.
Hung Development of Semi-Auto SAM with Optimal Data Processing by GPU Computing
Stumpf et al. Effect of a spherical scatterer on the radiation reactance of a transducer at an air–water surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4218014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees