JP4213855B2 - Case-hardening steel and case-hardening parts with excellent torsional fatigue properties - Google Patents

Case-hardening steel and case-hardening parts with excellent torsional fatigue properties Download PDF

Info

Publication number
JP4213855B2
JP4213855B2 JP2000261692A JP2000261692A JP4213855B2 JP 4213855 B2 JP4213855 B2 JP 4213855B2 JP 2000261692 A JP2000261692 A JP 2000261692A JP 2000261692 A JP2000261692 A JP 2000261692A JP 4213855 B2 JP4213855 B2 JP 4213855B2
Authority
JP
Japan
Prior art keywords
less
steel
torsional fatigue
case
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000261692A
Other languages
Japanese (ja)
Other versions
JP2002069573A (en
Inventor
達朗 越智
達郎 小畑
雅之 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000261692A priority Critical patent/JP4213855B2/en
Publication of JP2002069573A publication Critical patent/JP2002069573A/en
Application granted granted Critical
Publication of JP4213855B2 publication Critical patent/JP4213855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、肌焼用鋼に関わり、さらに詳しくは、自動車の変速機のシャフト部品等の素材として好適な捩り疲労特性に優れた肌焼用鋼に関するものである。
【0002】
【従来の技術】
自動車の変速機のシャフト部品やCVJ部品は、通常、例えばJIS G 4052、JIS G 4104、JIS G 4105、JIS G 4106などに規定されている中炭素の機械構造用合金鋼を使用し、冷間鍛造(転造も含む)−切削により所定の形状に加工された後、浸炭焼入れを行う工程で製造されている。これらの各種シャフト類は、近年の自動車エンジンの高出力化あるいは環境規制対応にともない、高強度化の指向が強い。これらの部品の主たる所要特性は捩り疲労特性である。
【0003】
浸炭材の高強度化に関する先行技術としては、曲げ疲労強度の向上を図った技術が多数認められる。例えば、特開平9−176784号公報には、S:0.003〜0.070%ほか特定組成の鋼材からなり、線状または棒状圧延材の軸心を通る縦断面において、該軸心と平行で且つ該軸心から1/4・D(Dは圧延材の直径を表す)離れた仮想線を中心線として含む被検面積100mm2中に存在する、酸化物系と硫化物系からなる直径10μm以上の複合介在物が20個以下であり、且つ上記と同一の被検面積中に存在する直径3μm以上10μm未満の硫化物系介在物が50個以上であることを特徴とする疲労特性および被削性に優れた肌焼用鋼が示されている。該発明は縦目と横目の曲げ疲労強度を向上させるために、酸化物系と硫化物系の複合介在物の数を規定した点が特徴である。該発明では、選択元素として、B:0.0003〜0.005%、Ca:0.0005〜0.01%、Te:0.1%以下、Zr:0.1%以下を含有することができるとしている。該発明のCa、Te、Zrの添加の狙いはMnSを球状化して異方性を改善することと、靭性や曲げ疲労特性を劣化させずに被削性を向上させることにある。該発明は疲労特性として曲げ疲労特性にのみ着目しており、捩り疲労特性に関しては全く言及されていない。曲げ疲労は、表面または表面近傍において、引張応力により、軸方向と垂直な断面でき裂が発生伝播し、破壊に至る現象である。これに対して、本発明で取り上げている、捩り疲労は、表面または表面近傍において、剪断応力により、軸方向に平行な面でき裂が発生し、その後軸方向と45度をなす面で伝播する現象である。つまり、捩り疲労破壊と曲げ疲労破壊では、破壊の原因となる作用応力、き裂の発生する断面、破壊の形態がいずれも異なる。以上から、特開平9−176784号公報における曲げ疲労特性に関する記述は、本発明で取り上げた捩り疲労強度に関して何ら示唆を与えるものではない。
【0004】
次に、本発明では、ボロン添加を特徴としているが、ボロン鋼は浸炭加熱時に一部のオーステナイト結晶粒が粗大化する現象を起こしやすい。そのため、肌焼ボロン鋼の浸炭加熱時の粗大粒の発生を防止するための技術についてはいくつか提案されている。例えば、特開昭61−217553号公報には、TiとNの量を0.02<Ti−3.42NとすることによってTiCを生成し、結晶粒界をピン止めすることを目的としている。しかしながら、該鋼の粗大粒抑制の能力は不安定であり、鋼材の製造工程によっては、浸炭時の粗大粒の発生を抑制できないのが現実である。また、該鋼はN量に対して多量のTiを添加するために、多量のTiCが生成し、そのために鋼材の製造時に割れやキズが発生しやすく、また素材の状態で硬くて冷間加工性が良くない等の欠点を有している。
【0005】
また、特開昭63−103052号公報には、Si、Mn量を低減し、N量:0.008%以下、Nb:0.01〜0.20を含んだ冷間鍛造用肌焼用鋼が示されている。しかしながら、該鋼もやはり、粗大粒抑制の能力は不安定であり、鋼材の製造工程によっては、粗大粒の発生を抑制できる場合もあればできない場合もあり、浸炭時の粗大粒の発生を確実には抑制できないのが現実である。また、該鋼はその実施例から明らかな通り、1鋼種を除いて、そのN量は0.005〜0.008の範囲であり、このレベルのN量でも後ほど述べるように結晶粒粗大化特性には悪影響を及ぼす。また、該発明の実施例の1鋼種はN量が0.002%と低Nであるが、Nbが0.05%と多量添加されており、多量のNbCが生成し、そのために素材の状態で硬くて冷間加工性が良くないものと考えられる。
【0006】
以上のように肌焼ボロン鋼に関しては、粗大粒防止に関して、問題はあるものの、いくつかの先行技術は提示されている。しかしながら、これらの先行技術では、捩り疲労特性に関して全く言及されていない。つまり、浸炭シャフト部品に関して、捩り疲労特性の向上の視点から検討した先行技術は認められない。
【0007】
【発明が解決しようとする課題】
シャフト等の肌焼部品に関して、捩り疲労特性の向上技術はこれまでに検討すらされていないのが現状であるが、本発明は肌焼部品の捩り疲労特性の向上技術を明確にし、捩り疲労特性に優れた肌焼用鋼を提供するものである。
【0008】
【課題を解決するための手段】
本発明者は、以下の手段を用いて上記の課題を解決した。
【0009】
すなわち、質量%で、
C:0.1〜0.4%、
Si:0.01〜1.2%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.5〜1.6%、
B:0.0005〜0.006%、
Al:0.015〜0.1%
を含有し、さらに、
Te:0.0005〜0.02%、
Ca:0.0005〜0.02%、
Zr:0.0003〜0.01%、
Mg:0.001〜0.035%、
Y:0.001〜0.1%、
希土類元素:0.001〜0.15%
のうち1種または2種以上を含有し、またはさらに、
Ti:0.05%以下
を含有し、またはさらに、
Nb:0.05%以下、
V:0.4%以下、
のうち1種または2種を含有し、またはさらに、
Mo:1%以下、
Ni:2.5%以下
のうち1種または2種を含有し、
P:0.025%以下、
N:0.007%以下、
O:0.0025%以下
に各々制限し、
残部が鉄および不可避的不純物からなり、
且つ、ベイナイトの組織分率を15%以下に制限し、フェライト結晶粒度が8番以上であることを特徴とする捩り疲労特性に優れた肌焼用鋼である。
【0010】
請求項の発明は、請求項1〜4記載の成分を有し、MnSのアスペクト比が10以下であることを特徴とする捩り疲労特性に優れた肌焼部品である。
【0011】
本発明の鋼を用いることにより、浸炭後に優れた捩り疲労特性を得ることができる。
【0012】
【発明の実施の形態】
本発明者らは、浸炭シャフト部品の製造において、浸炭焼入れ後に優れた捩り疲労特性を実現するために鋭意調査し、次の点を明らかにした。
【0013】
(1)浸炭焼入れ部材の捩り疲労破壊は次の過程で起きる。
A.表面または硬化層と芯部の境界で軸方向に平行な面でき裂が発生する。
B.軸方向に平行な面でき裂が初期伝播する。これを以下モードIII破壊と呼ぶ。
C.モードIII破壊の後、軸方向に45度の面で粒界割れをともなって脆性破壊を起こし、最終破壊を起こす。これを以下モードI破壊と呼ぶ。
【0014】
(2)捩り疲労き裂の発生、初期伝播は軸方向に平行な面で起きるが、この際、軸方向に伸長MnSが存在すると、き裂の発生と初期伝播は促進される。そのため、MnSを粒状化、微細化することによって、き裂の発生・初期伝播は抑制され、捩り疲労強度が飛躍的に向上する。伸長MnSの生成防止、MnSの粒状化、微細化のためにはTe、Ca、Zr、Mg、Y、希土類元素の添加が有効である。なおこれらの元素の多量添加は、粗大ZrN等の窒化物、酸化物生成の原因となり、冷間加工性を阻害するので、不適正である。これらの元素の添加によるMnSの粒状化は高周波焼入れ時の焼き割れ防止にも有効である。なお、先行技術のところで述べたように、特開平9−176784号公報には、MnSを球状化して異方性を改善することと、被削性を向上させることを狙いとして、Ca、Te、Zrを添加することが記述されている。しかしながらCa、Te、Zr添加してMnSを粒状化する狙いは、該公報では異方性を改善することと靭性や曲げ疲労特性を劣化させずに被削性を向上させることであるが、これに対して本発明では捩り疲労特性の向上と、両者で明らかに異なっている。また、該発明には曲げ疲労には言及しているものの、捩り疲労特性に関しては一切言及しておらず、上記のように、捩り疲労破壊と曲げ疲労破壊では、破壊の原因となる作用応力、き裂の発生する断面、破壊の形態がいずれも大きく異なることから、特開平9−176784号公報には本発明の上記の技術思想を示唆するような情報は全く含まれていない。
【0015】
(3)次に、素材の段階で、ベイナイト組織が混入すると、浸炭焼入れ後、元々ベイナイト組織の部分で粗大粒が発生するか混粒となりその近傍で硬さムラが生じる。この領域は軸方向に平行にバンド状に存在する。そのため、ベイナイト組織に起因するこの硬さムラの領域において、モードIIIの捩り疲労き裂の発生、初期伝播が促進される。以上の理由から、浸炭後の捩り疲労特性を改善するためには、素材の段階でベイナイト分率を規制する必要がある。
【0016】
(4)素材のフェライト粒度を微細化すると浸炭後も組織が均一に微細化し、硬さムラも少なくなり、モードIIIの捩り疲労き裂の発生、初期伝播が抑制される。
【0017】
(5)次に、上記捩り疲労破壊過程「C.」の欄で述べた、軸方向に45度の面で粒界割れを伴う脆性破壊モードIを抑制するためには、次の方法による粒界強化が有効である。
▲1▼必須元素としてBを添加。Bは粒界偏析Pを粒界から追い出す効果による。
▲2▼粒界偏析元素であるP、O量の低減。
▲3▼素材のベイナイト組織分率規制による浸炭時の粗大粒の抑制、および素材のフェライト組織の微細化による浸炭時のオーステナイト粒組織の微細化。
▲4▼冷鍛−浸炭工程のような粗大粒が発生しやすい場合に、粗大粒の発生を防止するには、Ti、Nbを添加し、Ti(CN)、Nb(CN)を微細分散させることが有効である。
▲5▼より一層捩り疲労強度の向上を図るためには、Si増量による粒界炭化物の微細化が有効。
【0018】
(6)なお、本発明で対象としている部品は切削や冷鍛等の冷間加工により製造されるものが多いために、冷間加工性の確保も重要な課題である。素材の段階で硬さの向上を抑えて、焼入れ性を向上させるためには、必須元素としてBを添加することが有効である。Bを焼入れ性に効かせるためには、Nの低減が必要であり、 本発明では、N量を0.0070%以下に低減する。
【0019】
本発明は以上の新規なる知見にもとづいてなされたものである。
【0020】
以下、本発明について詳細に説明する。
【0021】
まず、成分の限定理由について説明する。
【0022】
Cは鋼に必要な強度を与えるのに有効な元素であるが、0.10%未満では必要な引張強さを確保することができず、0.4%を超えると硬くなって冷間加工性が劣化するとともに、浸炭後の芯部靭性が劣化するので、0.1〜0.4%の範囲内にする必要がある。
【0023】
Siは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与え、焼戻し軟化抵抗を向上するのに有効な元素であるが、0.01%未満ではその効果は不十分である。一方、1.2%を超えると、硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.01〜1.2%の範囲内にする必要がある。冷間加工性を重視する場合の好適範囲は0.01〜0.5%であり、特別に冷間加工性を重視する場合の好適範囲は0.01〜0.15%である。また、捩り疲労特性を重視する場合の好適範囲は0.35超〜1.2%であり、特に高強度化を指向する場合は、0.5〜1.2%の範囲の添加が望ましい。
【0024】
Mnは鋼に必要な焼入れ性と強度を与えるのに有効な元素であるが、0.2%未満では効果は不十分であり、0.65%を超えるとその効果は飽和するのみならず、硬さの上昇を招き冷間鍛造性が劣化するので、0.2%〜0.65%の範囲内にする必要がある。好適範囲は0.3〜0.65%である。
【0025】
Sは鋼中でMnSを形成し、これによる被削性の向上を目的として添加するが、0.005%未満ではその効果は不十分である。一方、0.15%を超えるとその効果は飽和し、むしろ粒界偏析を起こし粒界脆化を招く。以上の理由から、Sの含有量を0.005〜0.15%の範囲内にする必要がある。好適範囲は0.005〜0.04%である。
【0026】
Crは鋼に強度、焼入れ性を与えるのに有効な元素であるが、0.5%未満ではその効果は不十分であり、1.6%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.5〜1.6%の範囲内にする必要がある。好適範囲は0.7〜1.5%であり、特に高い焼入れ性を指向する場合は、1.0〜1.5%の範囲の添加が望ましい。
【0027】
Bは次の3点を狙いとして添加する。▲1▼棒鋼・線材圧延において、圧延後の冷却過程でボロン鉄炭化物を生成することにより、フェライトの成長速度を増加させ、圧延ままでの軟質化を促進する。▲2▼浸炭焼入れに際して、鋼に焼入れ性を付与する。▲3▼浸炭材の粒界強度を向上させることにより、浸炭部品としての疲労強度・衝撃強度を向上させる。0.0005%未満の添加では、上記の効果は不十分であり、0.006%を超えるとその効果は飽和するので、その含有量を0.0005〜0.006%の範囲内にする必要がある。好適範囲は0.002〜0.004%である。
【0028】
Alは脱酸剤として有用であるとともに、鋼中に存在する固溶NをAlNとして固定し、固溶Bを確保するのに有用である。しかしAl量が多すぎるとAl23が過度に生成することとなり、内部欠陥が増大するとともに冷間加工性を劣化することとなる。したがって、本発明では0.0015〜0.1%とした。また固溶Nを固定する作用を有するTi無添加の場合には、Alは0.04〜0.1%とすることが好ましい。
【0029】
次に、本発明では、Te、Ca、Zr、Y、Mg、希土類元素のうち1種または2種以上を必須元素として含有させる。これらの元素は各々酸化物を生成し、この酸化物がMnSの生成核となるとともに、MnSが(Mn,Ca)Sや(Mn,Mg)Sのように組成改質される。これにより熱間圧延時にこれらの硫化物の延伸性が改善され、粒状MnSが微細分散するため、高周波焼入れ後の捩り疲労特性が向上する。このような効果は、Te:0.0005%未満、Ca:0.0005%未満、Zr:0.0003%未満、Mg:0.001%未満、Y:0.001%未満、希土類元素:0.001%未満の添加は不十分である。一方、Te:0.02%超、Ca:0.02%超、Zr:0.01%超、Mg:0.035%超、Y:0.1%超、希土類元素:0.15%超を添加すると、上記のような効果は飽和し、これらの過剰添加はむしろCaO、MgO等の粗大酸化物やそのクラスターを生成したり、ZrN等の硬質析出物を生成し、冷間加工性の劣化を招く。以上の理由から、これらの含有量をTe:0.0005〜0.02%、Ca:0.0005〜0.02%、Zr:0.0003〜0.01%、Mg:0.001〜0.035%、Y:0.001〜0.1%、希土類元素:0.001〜0.15%とした。なお、本発明でいう希土類元素とは原子番号57〜71番の元素を指す。
【0030】
Pは冷間鍛造時の変形抵抗を高め、靭性を劣化させる元素であるため、冷間鍛造性が劣化する。また、焼入れ、焼戻し後の部品の結晶粒界を脆化させることによって、疲労強度を劣化させるのでできるだけ低減することが望ましい。したがってその含有量を0.025%以下に制限する必要がある。好適範囲は0.015%以下である。
【0031】
Nは以下次の理由から極力制限することが望ましい。Bは上記のように焼入れ性向上、粒界強化等を目的として添加するが、これらのBの効果は鋼中で固溶Bの状態で初めて効果を発現するため、N量を低減してBNの生成を抑制することが必須である。また、Ti添加鋼やNb添加鋼において、Nは鋼中のTiと結びつくと粒制御にほとんど寄与しない粗大なTiNを生成し、これがNbC、NbC主体のNb(CN)とTiC、TiC主体のTi(CN)の析出サイトとなり、これらのTiの炭窒化物、Nbの炭窒化物の微細析出を阻害し粗大粒の生成を促進する。上記の悪影響はN量が0.007%超の場合特に顕著である。以上の理由から、その含有量を0.007%以下にする必要がある。
【0032】
また、Oは鋼中でAl23のような酸化物系介在物を形成する。酸化物系介在物が鋼中に多量に存在すると、 Ti添加鋼やNb添加鋼においては、Nbの析出物、Tiの析出物の析出サイトとなり、熱間加工時にNbの析出物、Tiの析出物が粗大に析出し、浸炭時に結晶粒の粗大化を抑制できなくなる。O含有量が0.0025%を超えるとこのような悪影響が顕著になるため、その含有量を0.0025%以下に制限する必要がある。好適範囲は0.002%以下である。
【0033】
以上が本発明が対象とする鋼の基本成分であるが、本発明の第2請求項ではさらに、Tiを添加することにより、TiによりNをTiNとして固定し、Nを無害化することにした。また、Tiは脱酸作用を有する元素である。但し、Tiを0.1%を超えて添加すると、TiCによる析出硬化が顕著になり、冷間加工性が顕著に劣化する。このため、必要に応じて、Ti:0.1%以下含有させることとした。冷間加工性を重視する場合の好適範囲は0.05%以下である。
【0034】
次に、本発明第3請求項では、Nb、Vの1種または2種を含有する。
【0035】
Nbは浸炭加熱の際に鋼中のC、Nと結びついてNb(CN)を形成し、結晶粒の粗大化抑制に有効な元素である。但し、0.05%を超えると、素材の硬さが硬くなって冷間加工性が劣化するとともに、棒鋼・線材圧延加熱時の溶体化が困難になる。以上の理由から、その含有量を0.05%以下にする必要がある。好適範囲は、0.03%以下である。
【0036】
VもNbと同様の効果を狙いとして添加する。但し、0.4%を超えると、素材の硬さが硬くなって冷間加工性が劣化するとともに、棒鋼・線材圧延加熱時の溶体化が困難になる。以上の理由から、その含有量を0.4%以下にする必要がある。好適範囲は、0.3%以下である。
【0037】
次に、本発明第4請求項では、Mo、Niの1種または2種を含有する。
【0038】
Moは鋼に強度、焼入れ性を与えるのに有効な元素であるが、1%を超えて添加すると硬さの上昇を招き冷間加工性が劣化する。以上の理由から、その含有量を1%以下の範囲内にする必要がある。
【0039】
Niも鋼に強度、焼入れ性を与えるのに有効な元素であるが、2.5%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を2.5%以下の範囲内にする必要がある。
【0040】
次に、本発明では、熱間加工後のベイナイトの組織分率を15%以下に制限するが、このように限定した理由を以下に述べる。
【0041】
熱間加工後の鋼材にベイナイト組織が混入すると、浸炭加熱時の粗大粒発生の原因になる。ベイナイトの組織分率が15%を超えると粗大粒の発生が特に顕著になる。また、ベイナイトの混入の抑制は冷間加工性改善の視点からも望ましい。以上の理由から、熱間加工後のベイナイトの組織分率を15%以下に制限する必要がある。好適範囲は10%以下である。
【0042】
次に、本発明では、フェライト結晶粒度番号を8番以上とするが、このように限定した理由を以下に述べる。熱間加工後のフェライト粒が8番未満の粗粒にすると、熱間加工材の延性が劣化し、冷間加工性・冷間鍛造性が劣化する。また、浸炭後の粒も粗大になり、硬さムラを生じ、モードIIIき裂が発生しやすくなるとともに、粒界強度が低下し、モードI破壊も起こしやすくなり、捩り疲労特性が劣化する。以上の理由から、フェライト結晶粒度番号を8番以上にする必要がある。
【0045】
次に、請求項の発明は、捩り疲労特性に優れた肌焼部品についての発明である。請求項1〜4記載の上記成分を有し、MnSのアスペクト比が10以下に制限する。図1に肌焼軸部品について、MnSのアスペクト比と捩り疲労における時間強度の関係を調査した結果を示す。MnSのアスペクト比が10を超えると捩り疲労特性は顕著に劣化する。以上の理由から、MnSのアスペクト比を10以下に制限した。
【0046】
本発明では、鋳片のサイズ、凝固時の冷却速度、分塊圧延条件については特に限定するものではなく、本発明の要件を満足すればいずれの条件でも良い。また、本発明鋼は、圧延ままの棒鋼を冷間鍛造で部品に成形する工程だけでなく、冷間鍛造の前に焼鈍工程や温・熱間鍛造を経由する場合、温・熱間鍛造工程で部品に成形される場合、切削工程で部品に成形される場合にも適用できる。
【0047】
【実施例】
以下に、本発明の効果を実施例により、さらに具体的に示す。
【0048】
(実施例1)
表1に示す組成を有する鋼を溶製した。ここで、鋼中のZrの分析方法であるが、JIS G 1237−1997付属書3と同様の方法でサンプル処理した後、鋼中Nb量の分析同様に鋼中Zr量をICP(誘導結合プラズマ発光分光分析法)によって測定した。但し本発明での実施例の測定に供したサンプルは2gで、ICPにおける検量線も微量Zrに適するように設定して測定した。すなわちZr濃度が1〜200ppmとなるようにZr標準液を希釈して異なるZr濃度の溶液を作成し、そのZr量を測定することで検量線を作成した。なおこれらのICPに関する共通的な方法についてはJIS K 0116−1995(発光分光分析方法通則)およびJIS Z 8002−1991(分析、試験の許容差通則)による。
【0049】
162mm角の圧延素材としたのち、熱間圧延により、直径34〜42mmの棒鋼を製造した。熱間圧延後の冷却は、一部の材料は空冷、また一部の材料は冷却床に設置した保温カバーを用いて冷却速度を空冷よりも遅くした。
【0050】
圧延後の棒鋼の組織観察を行い、ベイナイトの組織分率、フェライト結晶粒度を求めた。
【0051】
また、圧延後の棒鋼のビッカース硬さを測定した。さらに、圧延ままの棒鋼から、据え込み試験片を作成し、冷間加工性の指標として、冷間変形抵抗と限界据え込み率を求めた。冷間変形抵抗は相当歪み1.0における変形抵抗で代表させた。
【0052】
さらに、圧延材から平行部直径20mmの静的捩り試験片、捩り疲労試験片を採取した。本試験片を930℃×5時間の条件で浸炭焼入れを行い、その後170℃×1時間の条件で焼戻しを行った。その後、静的捩り試験、捩り疲労試験を行った。捩り疲労特性は1×105サイクルでの時間強度で評価した。また、捩り試験片の長手方向の断面において、画像解析装置を用いて、MnSのアスペクト比を求めた。これらの調査結果を表2、3に示す。
【0053】
比較例25はJISのSCr420相当鋼の特性、比較例26はJISのSCM420相当鋼の特性である。また、比較例27、28はボロン鋼の特性である。これらの比較例では、いずれもMnSのアスペクト比が本発明規定の範囲を上回っている。そして、本発明例と比較例を比較すると、本発明例の捩り疲労強度は比較例に比べて顕著に優れている。
【0054】
次に、比較例29は圧延後、引き続いて650℃の炉において焼鈍を行った場合であり、フェライト結晶粒度が本発明規定の範囲を下回った場合である。また、比較例30、31は圧延後、引き続いて水冷による加速冷却を行った場合であり、ベイナイト組織分率が本発明規定の範囲を上回った場合である。比較例29〜31は、いずれも捩り疲労特性が本発明例に比べて劣っている。
【0055】
【表1】

Figure 0004213855
【0056】
【表2】
Figure 0004213855
【0057】
【表3】
Figure 0004213855
【0061】
【発明の効果】
本発明の捩り疲労特性に優れた肌焼用鋼ならびに肌焼き部品を用いれば、各種シャフト部品として優れた捩り疲労特性を有する製品を得ることができる。本発明鋼と本発明部品を用いることによって、各種シャフト類の捩り疲労強度の向上が可能になり、自動車の高出力化や軽量化が可能になる。以上のように、本発明による産業上の効果は極めて顕著なるものがある。
【図面の簡単な説明】
【図】 捩り疲労試験における時間強度とMnSのアスペクト比の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a case hardening steel, and more particularly, to a case hardening steel excellent in torsional fatigue characteristics suitable as a material for a shaft part of an automobile transmission.
[0002]
[Prior art]
The shaft parts and CVJ parts of automobile transmissions are usually made of a medium carbon alloy steel for machine structural use as defined in JIS G 4052, JIS G 4104, JIS G 4105, JIS G 4106, etc. Forging (including rolling)-manufactured in a process of carburizing and quenching after being processed into a predetermined shape by cutting. These various shafts have a strong tendency to increase in strength in accordance with the recent increase in output of automobile engines or compliance with environmental regulations. The main required characteristic of these parts is torsional fatigue characteristics.
[0003]
As a prior art for increasing the strength of carburized materials, many techniques for improving bending fatigue strength are recognized. For example, in Japanese Patent Laid-Open No. 9-176784, S: 0.003 to 0.070% or other steel material having a specific composition and parallel to the axis in a longitudinal section passing through the axis of a linear or rod-shaped rolled material. And a diameter composed of an oxide system and a sulfide system existing in a test area of 100 mm 2 including an imaginary line separated from the axis by 1/4 · D (D represents the diameter of the rolled material) as a center line. Fatigue properties, characterized in that there are no more than 20 composite inclusions of 10 μm or more and 50 or more sulfide inclusions having a diameter of 3 μm or more and less than 10 μm present in the same test area as above A steel for case hardening with excellent machinability is shown. The present invention is characterized in that the number of oxide inclusions and sulfide inclusions is defined in order to improve the bending fatigue strength of the longitudinal and transverse eyes. In the present invention, B: 0.0003 to 0.005%, Ca: 0.0005 to 0.01%, Te: 0.1% or less, Zr: 0.1% or less are included as selective elements. I can do it. The aim of the addition of Ca, Te and Zr of the present invention is to improve the anisotropy by spheroidizing MnS and to improve the machinability without deteriorating toughness and bending fatigue properties. The present invention focuses only on bending fatigue characteristics as fatigue characteristics, and makes no mention of torsional fatigue characteristics. Bending fatigue is a phenomenon in which a crack is generated and propagated in a cross section perpendicular to the axial direction due to tensile stress at or near the surface, leading to fracture. In contrast, torsional fatigue, which is taken up in the present invention, causes a crack to occur in a plane parallel to the axial direction due to shear stress on the surface or in the vicinity of the surface, and then propagates on a plane that forms 45 degrees with the axial direction. It is a phenomenon. That is, the torsional fatigue failure and the bending fatigue failure are different in the acting stress that causes the failure, the cross-section where the crack occurs, and the failure mode. From the above, the description relating to the bending fatigue characteristics in Japanese Patent Application Laid-Open No. 9-176784 does not give any suggestion regarding the torsional fatigue strength taken up in the present invention.
[0004]
Next, the present invention is characterized by boron addition. However, boron steel tends to cause a phenomenon in which some austenite crystal grains become coarse during carburizing heating. Therefore, several techniques for preventing the generation of coarse grains during carburizing heating of case-hardened boron steel have been proposed. For example, Japanese Patent Application Laid-Open No. Sho 61-217553 has an object of producing TiC by pinning the grain boundaries by setting the amounts of Ti and N to 0.02 <Ti-3.42N. However, the ability of the steel to suppress coarse grains is unstable, and the reality is that the generation of coarse grains during carburization cannot be suppressed depending on the steel manufacturing process. Moreover, since the steel adds a large amount of Ti with respect to the N amount, a large amount of TiC is generated, and therefore, cracks and scratches are likely to occur during the manufacture of the steel material, and it is hard and cold worked in the state of the material. It has disadvantages such as poor performance.
[0005]
Japanese Patent Laid-Open No. 63-103052 discloses a case hardening steel for cold forging with a reduced amount of Si and Mn, and an N amount of 0.008% or less and an Nb of 0.01 to 0.20. It is shown. However, the steel also has an unstable ability to suppress coarse grains, and depending on the manufacturing process of the steel material, the generation of coarse grains may or may not be possible. The reality is that it cannot be suppressed. Further, as apparent from the examples, the steel has N content in the range of 0.005 to 0.008 except for one steel type. Even at this level of N content, as described later, the grain coarsening characteristics It has an adverse effect. In addition, one steel type of the embodiment of the present invention has a low N content of 0.002%, but Nb is added in a large amount of 0.05%, so that a large amount of NbC is produced, and therefore the state of the material. It is hard and cold workability is not good.
[0006]
As described above, there are some prior arts for the case-hardened boron steel, although there are problems regarding the prevention of coarse grains. However, these prior arts make no mention of torsional fatigue properties. That is, prior art examined from the viewpoint of improving torsional fatigue characteristics is not recognized for carburized shaft parts.
[0007]
[Problems to be solved by the invention]
Although the technology for improving the torsional fatigue characteristics of the case such as shafts has not been studied so far, the present invention clarifies the technology for improving the torsional fatigue characteristics of the case-hardened parts, and the torsional fatigue characteristics The steel for case hardening excellent in the is provided.
[0008]
[Means for Solving the Problems]
The present inventor has solved the above problems using the following means.
[0009]
That is, in mass%,
C: 0.1-0.4%
Si: 0.01-1.2%
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.5 to 1.6%,
B: 0.0005 to 0.006%,
Al: 0.015-0.1%
In addition,
Te: 0.0005 to 0.02%,
Ca: 0.0005 to 0.02%,
Zr: 0.0003 to 0.01%
Mg: 0.001 to 0.035%,
Y: 0.001 to 0.1%
Rare earth elements: 0.001 to 0.15%
One or more of these, or
Ti: 0.05% or less, or further
Nb: 0.05% or less,
V: 0.4% or less,
Containing one or two of, or
Mo: 1% or less,
Ni: containing one or two of 2.5% or less,
P: 0.025% or less,
N: 0.007% or less,
O: Each is limited to 0.0025% or less,
The balance consists of iron and inevitable impurities,
And, the structural fraction of bainite is limited to 15% or less, an excellent hardening steel in torsional fatigue characteristics, wherein the ferrite grain size is No. 8 or higher.
[0010]
A fifth aspect of the present invention is a case-hardened part having the components of the first to fourth aspects and having an aspect ratio of MnS of 10 or less and excellent in torsional fatigue characteristics.
[0011]
By using the steel of the present invention, excellent torsional fatigue characteristics can be obtained after carburizing.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the manufacture of carburized shaft components, the present inventors have intensively investigated to realize excellent torsional fatigue characteristics after carburizing and quenching, and have clarified the following points.
[0013]
(1) Torsional fatigue failure of carburized and quenched members occurs in the following process.
A. A crack is generated on the surface or a plane parallel to the axial direction at the boundary between the hardened layer and the core.
B. The crack propagates in the plane parallel to the axial direction. This is hereinafter referred to as mode III destruction.
C. After mode III fracture, a brittle fracture occurs with a grain boundary crack at a plane of 45 degrees in the axial direction, and a final fracture occurs. This is hereinafter referred to as mode I destruction.
[0014]
(2) Torsional fatigue crack generation and initial propagation occur in a plane parallel to the axial direction. At this time, if elongated MnS exists in the axial direction, crack generation and initial propagation are promoted. Therefore, by granulating and refining MnS, crack generation and initial propagation are suppressed, and the torsional fatigue strength is dramatically improved. Addition of Te, Ca, Zr, Mg, Y and rare earth elements is effective for preventing the formation of elongated MnS, granulating and refining MnS. The addition of a large amount of these elements is inappropriate because it causes formation of nitrides and oxides such as coarse ZrN and inhibits cold workability. Granulation of MnS by adding these elements is also effective for preventing cracks during induction hardening. As described in the prior art, Japanese Patent Application Laid-Open No. Hei 9-176784 discloses Ca, Te, and Aim for the purpose of improving the anisotropy by spheroidizing MnS and improving the machinability. The addition of Zr is described. However, the aim of granulating MnS by adding Ca, Te, Zr is to improve anisotropy and improve machinability without degrading toughness and bending fatigue properties. On the other hand, in the present invention, the improvement in torsional fatigue characteristics is clearly different between the two. In addition, although the invention refers to bending fatigue, it does not refer to any torsional fatigue characteristics, and as described above, in torsional fatigue fracture and bending fatigue fracture, acting stress that causes fracture, Since both the cross-section where the crack occurs and the form of fracture differ greatly, Japanese Patent Application Laid-Open No. 9-176784 does not include any information that suggests the above technical idea of the present invention.
[0015]
(3) Next, when a bainite structure is mixed in the raw material stage, after carburizing and quenching, coarse grains are originally generated or mixed in a portion of the bainite structure, and hardness unevenness occurs in the vicinity thereof. This region exists in a band shape parallel to the axial direction. For this reason, generation of mode III torsional fatigue cracks and initial propagation are promoted in this region of hardness unevenness caused by the bainite structure. For the above reasons, in order to improve the torsional fatigue characteristics after carburizing, it is necessary to regulate the bainite fraction at the material stage.
[0016]
(4) after carburizing and refining the ferrite grain size of the material even tissue uniformly miniaturized, hardness unevenness decreases, the occurrence of torsional fatigue crack mode III, the initial propagation Ru is suppressed.
[0017]
(5) Next, in order to suppress the brittle fracture mode I accompanied by intergranular cracking at a 45 degree surface in the axial direction described in the column of the torsional fatigue fracture process "C." Boundary strengthening is effective.
(1) Add B as an essential element. B is due to the effect of expelling the grain boundary segregation P from the grain boundaries.
(2) Reduction of the amount of P and O which are segregation elements at grain boundaries.
(3) Suppression of coarse grains during carburization by regulating the bainite structure fraction of the material and refinement of the austenite grain structure during carburization by refinement of the ferrite structure of the material.
(4) When coarse grains are likely to be generated in the cold forging-carburizing process, in order to prevent the formation of coarse grains, Ti and Nb are added and Ti (CN) and Nb (CN) are finely dispersed. It is effective.
(5) In order to further improve torsional fatigue strength, it is effective to refine grain boundary carbides by increasing Si.
[0018]
(6) Since many of the parts targeted by the present invention are manufactured by cold working such as cutting or cold forging, ensuring cold workability is also an important issue. It is effective to add B as an essential element in order to suppress the improvement in hardness at the material stage and improve the hardenability. In order to make B effective for hardenability, it is necessary to reduce N. In the present invention, the amount of N is reduced to 0.0070% or less.
[0019]
The present invention has been made based on the above new findings.
[0020]
Hereinafter, the present invention will be described in detail.
[0021]
First, the reasons for limiting the components will be described.
[0022]
C is an effective element for imparting the necessary strength to steel, but if it is less than 0.10%, the required tensile strength cannot be ensured, and if it exceeds 0.4%, it becomes hard and cold work is performed. The core portion toughness after carburizing deteriorates as well as the properties deteriorate, so it is necessary to set the content within the range of 0.1 to 0.4%.
[0023]
Si is an element effective for deoxidation of steel and is an element effective for imparting necessary strength and hardenability to steel and improving temper softening resistance. However, if it is less than 0.01%, the effect is ineffective. It is enough. On the other hand, if it exceeds 1.2%, the hardness is increased and the cold forgeability is deteriorated. For the above reasons, the content needs to be in the range of 0.01 to 1.2%. The preferred range when the cold workability is emphasized is 0.01 to 0.5%, and the preferred range when the cold workability is particularly important is 0.01 to 0.15%. Further, the preferred range when the torsional fatigue characteristics are emphasized is more than 0.35 to 1.2%, and particularly when increasing the strength is desired, addition in the range of 0.5 to 1.2% is desirable.
[0024]
Mn is an element effective for imparting the hardenability and strength necessary for steel, but if it is less than 0.2%, the effect is insufficient, and if it exceeds 0.65%, the effect is not only saturated, Since the increase in hardness is caused and the cold forgeability is deteriorated, it is necessary to be within the range of 0.2% to 0.65%. A preferable range is 0.3 to 0.65%.
[0025]
S forms MnS in the steel and is added for the purpose of improving machinability. However, if it is less than 0.005%, its effect is insufficient. On the other hand, if it exceeds 0.15%, the effect is saturated, and rather, grain boundary segregation occurs, leading to grain boundary embrittlement. For these reasons, the S content needs to be in the range of 0.005 to 0.15%. The preferred range is 0.005 to 0.04%.
[0026]
Cr is an element effective for imparting strength and hardenability to steel, but if it is less than 0.5%, its effect is insufficient, and if it exceeds 1.6%, it will cause an increase in hardness and cold. Forgeability deteriorates. For the above reasons, the content needs to be in the range of 0.5 to 1.6%. The preferred range is 0.7 to 1.5%, and in the case of particularly aiming for high hardenability, addition in the range of 1.0 to 1.5% is desirable.
[0027]
B is added for the following three points. (1) In steel bar / wire rolling, boron iron carbide is generated in the cooling process after rolling, thereby increasing the growth rate of ferrite and promoting softening during rolling. (2) When carburizing and quenching, impart hardenability to the steel. (3) Improve the fatigue strength and impact strength of carburized parts by improving the grain boundary strength of the carburized material. When the amount is less than 0.0005%, the above effect is insufficient. When the amount exceeds 0.006%, the effect is saturated, so the content must be within the range of 0.0005 to 0.006%. There is. The preferred range is 0.002 to 0.004%.
[0028]
Al is useful as a deoxidizer and is useful for securing solid solution B by fixing solid solution N present in steel as AlN. However, if the amount of Al is too large, Al 2 O 3 will be generated excessively, increasing internal defects and degrading the cold workability. Therefore, in the present invention, it was made 0.0015 to 0.1%. In addition, when Ti is not added and has an action of fixing solute N, Al is preferably 0.04 to 0.1%.
[0029]
Next, in this invention, 1 type (s) or 2 or more types are contained as an essential element among Te, Ca, Zr, Y, Mg, and rare earth elements. Each of these elements generates an oxide, and this oxide serves as a nucleus for forming MnS, and MnS is compositionally modified such as (Mn, Ca) S or (Mn, Mg) S. This improves the stretchability of these sulfides during hot rolling and finely disperses the granular MnS, thereby improving the torsional fatigue characteristics after induction hardening. Such effects are Te: less than 0.0005%, Ca: less than 0.0005%, Zr: less than 0.0003%, Mg: less than 0.001%, Y: less than 0.001%, rare earth element: 0 Addition of less than 0.001% is insufficient. On the other hand, Te: more than 0.02%, Ca: more than 0.02%, Zr: more than 0.01%, Mg: more than 0.035%, Y: more than 0.1%, rare earth elements: more than 0.15% The above effects are saturated, and excessive addition of these produces rather coarse oxides such as CaO and MgO and their clusters, and hard precipitates such as ZrN, which are cold workable. It causes deterioration. For these reasons, these contents are set to Te: 0.0005 to 0.02%, Ca: 0.0005 to 0.02%, Zr: 0.0003 to 0.01%, Mg: 0.001 to 0 0.035%, Y: 0.001 to 0.1%, and rare earth elements: 0.001 to 0.15%. In addition, the rare earth element as used in the field of this invention refers to the element of atomic number 57-71.
[0030]
Since P is an element that increases deformation resistance during cold forging and deteriorates toughness, cold forgeability deteriorates. Further, since the fatigue strength is deteriorated by embrittlement of the grain boundaries of the parts after quenching and tempering, it is desirable to reduce them as much as possible. Therefore, it is necessary to limit the content to 0.025% or less. The preferred range is 0.015% or less.
[0031]
N is preferably limited as much as possible for the following reasons. B is added for the purpose of improving hardenability and strengthening grain boundaries as described above. However, since the effect of these B is manifested in the state of solid solution B in the steel, the amount of N is reduced to reduce BN. It is essential to suppress the generation of. In addition, in Ti-added steel and Nb-added steel, when N is combined with Ti in the steel, coarse TiN that hardly contributes to grain control is generated, which is NbC, NbC-based Nb (CN), TiC, TiC-based Ti. It becomes a precipitation site of (CN), inhibits fine precipitation of these Ti carbonitrides and Nb carbonitrides, and promotes the formation of coarse particles. The above adverse effect is particularly noticeable when the N content exceeds 0.007%. For the above reasons, the content needs to be 0.007% or less.
[0032]
O forms oxide inclusions such as Al 2 O 3 in the steel. When a large amount of oxide inclusions are present in steel, in Ti-added steel and Nb-added steel, it becomes a precipitation site for Nb precipitates and Ti precipitates, and Nb precipitates and Ti precipitates during hot working The matter precipitates coarsely, and it becomes impossible to suppress the coarsening of crystal grains during carburizing. When the O content exceeds 0.0025%, such an adverse effect becomes remarkable, so the content needs to be limited to 0.0025% or less. The preferred range is 0.002% or less.
[0033]
The above are the basic components of steel targeted by the present invention. In the second claim of the present invention, by adding Ti, N is fixed as TiN by Ti, and N is rendered harmless. . Ti is an element having a deoxidizing action. However, if Ti is added in excess of 0.1%, precipitation hardening due to TiC becomes remarkable, and cold workability is remarkably deteriorated. For this reason, Ti: 0.1% or less was included as necessary. The preferred range when emphasizing cold workability is 0.05% or less.
[0034]
Next, in the third aspect of the present invention, one or two of Nb and V are contained.
[0035]
Nb combines with C and N in steel during carburizing heating to form Nb (CN), and is an element effective for suppressing coarsening of crystal grains. However, if it exceeds 0.05%, the hardness of the material becomes hard and the cold workability deteriorates, and it is difficult to form a solution during heating of the steel bar and wire rod. For the above reasons, the content needs to be 0.05% or less. The preferred range is 0.03% or less.
[0036]
V is added for the same effect as Nb. However, if it exceeds 0.4%, the hardness of the material becomes hard and the cold workability deteriorates, and it becomes difficult to form a solution during heating of the steel bar and wire rod. For the above reasons, the content needs to be 0.4% or less. The preferred range is 0.3% or less.
[0037]
Next, the fourth aspect of the present invention contains one or two of Mo and Ni.
[0038]
Mo is an element effective for imparting strength and hardenability to steel, but if added over 1%, the hardness increases and cold workability deteriorates. For the above reasons, the content needs to be in the range of 1% or less.
[0039]
Ni is also an effective element for imparting strength and hardenability to steel, but if added over 2.5%, the hardness is increased and cold forgeability is deteriorated. For the above reasons, the content needs to be in the range of 2.5% or less.
[0040]
Next, in the present invention, the structure fraction of bainite after hot working is limited to 15% or less. The reason for this limitation will be described below.
[0041]
If a bainite structure is mixed in the steel material after hot working, it causes coarse grains during carburizing heating. When the bainite structure fraction exceeds 15%, the generation of coarse grains becomes particularly noticeable. In addition, suppression of bainite contamination is also desirable from the viewpoint of improving cold workability. For the above reasons, it is necessary to limit the structural fraction of bainite after hot working to 15% or less. The preferred range is 10% or less.
[0042]
Next, in the present invention, the ferrite crystal grain size number is 8 or more. The reason for this limitation will be described below. If the ferrite grains after hot working are coarser than # 8, the ductility of the hot work material is deteriorated, and the cold workability and cold forgeability are deteriorated. In addition, the grains after carburization become coarse, causing hardness unevenness, and mode III cracks are easily generated, the grain boundary strength is reduced, mode I fracture is easily caused, and the torsional fatigue characteristics are deteriorated. For these reasons, the ferrite grain size number needs to be 8 or more.
[0045]
Next, the invention of claim 5 is an invention relating to a case that is excellent in torsional fatigue characteristics. It has the said component of Claims 1-4, and the aspect ratio of MnS restrict | limits to 10 or less. FIG. 1 shows the results of investigating the relationship between the aspect ratio of MnS and the time strength in torsional fatigue of the case-hardened shaft component. When the aspect ratio of MnS exceeds 10, the torsional fatigue characteristics are significantly deteriorated. For the above reasons, the aspect ratio of MnS was limited to 10 or less.
[0046]
In the present invention, the size of the slab, the cooling rate during solidification, and the ingot rolling conditions are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied. In addition, the steel of the present invention is not only a process for forming an as-rolled steel bar into parts by cold forging, but also a warm / hot forging process when passing through an annealing process or warm / hot forging before cold forging. It can also be applied to the case where it is formed into a part by the cutting process.
[0047]
【Example】
Hereinafter, the effects of the present invention will be described more specifically by way of examples.
[0048]
Example 1
Steel having the composition shown in Table 1 was melted. Here, it is a method for analyzing Zr in steel. After the sample was processed in the same manner as in Appendix 3 of JIS G 1237-1997, the amount of Zr in steel was measured by ICP (inductively coupled plasma) in the same manner as the analysis of Nb in steel. (Emission spectroscopy). However, the sample used for the measurement in the examples of the present invention was 2 g, and the calibration curve in ICP was set to be suitable for a very small amount of Zr. That is, the Zr standard solution was diluted so that the Zr concentration was 1 to 200 ppm to prepare solutions having different Zr concentrations, and the calibration curve was prepared by measuring the Zr amount. In addition, about the common method regarding these ICP, it is based on JISK0116-1995 (general rules of emission spectroscopic analysis method) and JIS Z 8002-1991 (general rules of tolerance of analysis and test).
[0049]
After forming a 162 mm square rolled material, steel bars having a diameter of 34 to 42 mm were manufactured by hot rolling. For cooling after hot rolling, some materials were air-cooled, and some materials were cooled at a slower cooling rate than air-cooling using a heat insulating cover installed on the cooling floor.
[0050]
The structure of the steel bar after rolling was observed to determine the structure fraction of bainite and the ferrite grain size.
[0051]
Further, the Vickers hardness of the rolled steel bar was measured. Furthermore, an upsetting test piece was prepared from the rolled steel bar, and the cold deformation resistance and the limit upsetting rate were obtained as indicators of cold workability. The cold deformation resistance was represented by the deformation resistance at an equivalent strain of 1.0.
[0052]
Further, static torsional test pieces and torsional fatigue test pieces having a parallel part diameter of 20 mm were collected from the rolled material. This test piece was carburized and quenched under conditions of 930 ° C. × 5 hours, and then tempered under conditions of 170 ° C. × 1 hour. Thereafter, a static torsion test and a torsional fatigue test were performed. The torsional fatigue characteristics were evaluated by time strength at 1 × 10 5 cycles. Moreover, the aspect ratio of MnS was calculated | required using the image analysis apparatus in the cross section of the longitudinal direction of a torsion test piece. These survey results are shown in Tables 2 and 3.
[0053]
Comparative Example 25 is a characteristic of JIS SCr420 equivalent steel, and Comparative Example 26 is a characteristic of JIS SCM420 equivalent steel. Comparative examples 27 and 28 are characteristics of boron steel. In each of these comparative examples, the aspect ratio of MnS exceeds the range specified in the present invention. When comparing the inventive example and the comparative example, the torsional fatigue strength of the inventive example is significantly superior to that of the comparative example.
[0054]
Next, Comparative Example 29 is a case where after rolling, annealing was subsequently performed in a furnace at 650 ° C., and the ferrite crystal grain size was below the range specified in the present invention. Comparative Examples 30 and 31 are cases where accelerated cooling by water cooling is subsequently performed after rolling, and the bainite structure fraction exceeds the range specified in the present invention. Comparative Examples 29 to 31 are all inferior in torsional fatigue characteristics to the inventive examples.
[0055]
[Table 1]
Figure 0004213855
[0056]
[Table 2]
Figure 0004213855
[0057]
[Table 3]
Figure 0004213855
[0061]
【The invention's effect】
If the case hardening steel and case hardening parts excellent in torsional fatigue characteristics of the present invention are used, products having excellent torsional fatigue characteristics as various shaft parts can be obtained. By using the steel of the present invention and the parts of the present invention, the torsional fatigue strength of various shafts can be improved, and the output and weight of the automobile can be increased. As described above, the industrial effects of the present invention are extremely remarkable.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between time strength and MnS aspect ratio in a torsional fatigue test.

Claims (5)

質量%で、
C:0.1〜0.4%、
Si:0.01〜1.2%、
Mn:0.2〜0.65%、
S:0.005〜0.15%、
Cr:0.5〜1.6%、
B:0.0005〜0.006%、
Al:0.015〜0.1%、
を含有し、さらに、
Te:0.0005〜0.02%、
Ca:0.0005〜0.02%、
Zr:0.0003〜0.01%、
Mg:0.001〜0.035%、
Y:0.001〜0.1%、
希土類元素:0.001〜0.15%
のうち1種または2種以上を含有し、
P:0.025%以下、
N:0.007%以下、
O:0.0025%以下
に各々制限し、
残部が鉄および不可避的不純物からなり、
且つ、ベイナイトの組織分率を15%以下に制限し、フェライト結晶粒度が8番以上であることを特徴とする捩り疲労特性に優れた肌焼用鋼。
% By mass
C: 0.1-0.4%
Si: 0.01-1.2%
Mn: 0.2 to 0.65%,
S: 0.005 to 0.15%,
Cr: 0.5 to 1.6%,
B: 0.0005 to 0.006%,
Al: 0.015-0.1%
In addition,
Te: 0.0005 to 0.02%,
Ca: 0.0005 to 0.02%,
Zr: 0.0003 to 0.01%
Mg: 0.001 to 0.035%,
Y: 0.001 to 0.1%
Rare earth elements: 0.001 to 0.15%
Containing one or more of them,
P: 0.025% or less,
N: 0.007% or less,
O: Each is limited to 0.0025% or less,
The balance consists of iron and inevitable impurities,
Moreover, a steel for case hardening excellent in torsional fatigue characteristics, characterized in that the structure fraction of bainite is limited to 15% or less and the ferrite crystal grain size is No. 8 or more.
さらに、質量%で、Ti:0.1%以下を含有することを特徴とする請求項1記載の捩り疲労特性に優れた肌焼用鋼。  The steel for case hardening having excellent torsional fatigue characteristics according to claim 1, further comprising, by mass%, Ti: 0.1% or less. さらに、質量%で、Nb:0.05%以下V:0.4%以下のうち1種または2種を含有することを特徴とする請求項1または請求項2記載の捩り疲労特性に優れた肌焼用鋼。  Furthermore, it is excellent in the torsional fatigue property of Claim 1 or Claim 2 containing 1 type or 2 types in Nb: 0.05% or less V: 0.4% or less by the mass% Case-hardening steel. さらに、質量%で、Mo:1%以下、Ni:2.5%以下のうち1種または2種を含有することを特徴とする請求項1〜3のいずれか1つに記載の捩り疲労特性に優れた肌焼用鋼。  The torsional fatigue property according to any one of claims 1 to 3, further comprising one or two of Mo: 1% or less and Ni: 2.5% or less in mass%. Excellent for case hardening steel. 請求項1〜4のいずれか1つに記載の成分を有し、MnSのアスペクト比が10以下であることを特徴とする捩り疲労特性に優れた肌焼部品。  A case-hardened part having excellent torsional fatigue characteristics, comprising the component according to any one of claims 1 to 4 and having an aspect ratio of MnS of 10 or less.
JP2000261692A 2000-08-30 2000-08-30 Case-hardening steel and case-hardening parts with excellent torsional fatigue properties Expired - Fee Related JP4213855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261692A JP4213855B2 (en) 2000-08-30 2000-08-30 Case-hardening steel and case-hardening parts with excellent torsional fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261692A JP4213855B2 (en) 2000-08-30 2000-08-30 Case-hardening steel and case-hardening parts with excellent torsional fatigue properties

Publications (2)

Publication Number Publication Date
JP2002069573A JP2002069573A (en) 2002-03-08
JP4213855B2 true JP4213855B2 (en) 2009-01-21

Family

ID=18749491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261692A Expired - Fee Related JP4213855B2 (en) 2000-08-30 2000-08-30 Case-hardening steel and case-hardening parts with excellent torsional fatigue properties

Country Status (1)

Country Link
JP (1) JP4213855B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016262B2 (en) * 2006-06-21 2012-09-05 株式会社神戸製鋼所 Component design method of alternative steel for chromium molybdenum steel
US8034199B2 (en) * 2007-09-27 2011-10-11 Nippon Steel Corporation Case-hardening steel excellent in cold forgeability and low carburization distortion property
KR20110036752A (en) 2009-01-16 2011-04-08 신닛뽄세이테쯔 카부시키카이샤 Case hardening steel, carburized component, and method for producing case hardening steel
EP2418296B1 (en) * 2009-04-06 2020-02-26 Nippon Steel Corporation Case hardening steel superior in cold workability, machinability and fatigue characteristics after carburized quenching and method of production of same
JP5458048B2 (en) 2011-03-29 2014-04-02 株式会社神戸製鋼所 Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel
JP6488945B2 (en) * 2015-08-19 2019-03-27 新日鐵住金株式会社 Case-hardened steel for high-strength cold forging

Also Published As

Publication number Publication date
JP2002069573A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP3524229B2 (en) High toughness case hardened steel machine parts and their manufacturing method
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
JP3764586B2 (en) Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics
JP4347999B2 (en) Induction hardening steel and induction hardening parts with excellent torsional fatigue properties
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP3094856B2 (en) High strength, high toughness case hardening steel
JP4983099B2 (en) Steel shaft parts with excellent impact and fatigue properties and manufacturing method thereof
JP6798557B2 (en) steel
JP2000154819A (en) High strength drive shaft and manufacture thereof
JP3764627B2 (en) Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP4983098B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP2004027334A (en) Steel for induction tempering and method of producing the same
KR20050061476A (en) Steel product for induction hardening, induction-hardened member using the same and methods for producing them
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP4213855B2 (en) Case-hardening steel and case-hardening parts with excellent torsional fatigue properties
JP3733967B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
JP4517983B2 (en) Steel material excellent in fatigue characteristics after induction hardening and method for producing the same
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP2002069577A (en) Cold-warm forging steel having excellent forgeability and product toughness, and its production method
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP4117170B2 (en) Carburizing steel and carburized parts
JPH1143737A (en) Cold forging steel excellent in grain coarsening preventing property and cold forgeability, and its production
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4213855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees