JP4211098B2 - X-ray tomography equipment - Google Patents

X-ray tomography equipment Download PDF

Info

Publication number
JP4211098B2
JP4211098B2 JP30823498A JP30823498A JP4211098B2 JP 4211098 B2 JP4211098 B2 JP 4211098B2 JP 30823498 A JP30823498 A JP 30823498A JP 30823498 A JP30823498 A JP 30823498A JP 4211098 B2 JP4211098 B2 JP 4211098B2
Authority
JP
Japan
Prior art keywords
imaging
ray
tomographic plane
ray tube
imaging target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30823498A
Other languages
Japanese (ja)
Other versions
JP2000126169A (en
Inventor
克裕 増尾
充 梅田
浩孝 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP30823498A priority Critical patent/JP4211098B2/en
Publication of JP2000126169A publication Critical patent/JP2000126169A/en
Application granted granted Critical
Publication of JP4211098B2 publication Critical patent/JP4211098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、被検体内の撮影対象断層面のX線断層撮影画像を得る非CT式(非コンピュータトモグラフィ式)のX線断層撮影装置に係り、特には、種々の深さ位置の撮影対象断層面のX線断層撮影画像を得るための改良技術に関する。
【0002】
【従来の技術】
病院などにの医療機関に設置されている非CT式のX線断層撮像装置は、図9に示すように、天板1に載置支持させた被検体M内の撮影対象断層面Maに対するX線管2からのX線の入射方向を順次変更しながら被検体Mに向けてX線を照射させるとともに、被検体M内の撮像対象断層面Maの透過X線像が常に、イメージインテンシファイアなどのX線検出器やフィルムなどの撮影材などの撮像部3の受像面3aの同じ位置に投影されるように撮影対象断層面Maに対するX線の入射方向の変更(X線管2側の動作)と連動して撮像部3の受像面3aの位置を変更させて、撮影対象断層面MaのX線断層撮影画像を得るように構成されている。
【0003】
このX線断層撮像装置によるX線断層撮影の原理を今少し詳しく説明する。すなわち、図9に示すように、例えば、X線管2の位置やX線管2から照射されるX線の照射角度を変更させるなどして、被検体M内の撮影対象断層面Maに対するX線管2からのX線の入射方向を変更しても、その撮影対象断層面Maの中に位置する点A、Bが常に撮像部3の受像面3aの同じ点a、bに投影されるように、撮影対象断層面Maに対するX線の入射方向の変更と連動させて受像部3の受像面3aの位置を変更させる。そうすると、撮影対象断層面Maの外に位置する点Cは、撮影対象断層面Maに対するX線の入射方向が変化するにつれて受像面3aでの投影位置がどんどん変化する。例えば、X線管1が位置P1のときの撮影対象断層面Maに対するX線の入射方向に対しては、点Cが受像面3aの点c1に投影されるが、位置P1と異なる位置P2にX線管1が移ったときの撮影対象断層面Maに対するX線の入射方向に対しては、点Cが受像面3aの点c2に投影されることになる。
【0004】
このように撮影対象断層面Maに対するX線の入射方向を変えた状態で撮像部3の受像面3aで受像された各透過X線像を重ね合わせると、重ね合わせ後の画像内では、点Cの透過X線像は画像全体にばらまかれる(分配される)ことになって点Cは不明瞭なボケ状態の点として現れる。点Cのボケ度合いは撮影対象断層面Maから離れるに従って大きくなる。一方、点A、Bの透過X線像は画像の一点に留められる(集中される)ことになって点A、Bは重ね合わせ後の画像内に明瞭な点として現れる。従って、撮影対象断層面Maに対するX線の入射方向を種々に変更して撮像部3の受像面3aで受像された多数の透過X線像を重ね合わせることによって、撮像対象断層面Maだけが明瞭に映っている画像、すなわち、被検体M内の撮影対象断層面Maを抽出したようなX線断層撮影画像を得ることができる。
【0005】
なお、撮像部3がイメージインテンシファイアなどのX線検出器で構成される場合には、上記X線管2や撮像部3の撮影動作中にサンプリングされた撮影対象断層面Maに対するX線の入射方向が相違する多数の透過X線画像を各々デジタル画像に変換し、デジタル画像処理によって各画像を画像積分することでX線断層撮影画像を得ている。また、撮像部3がフィルムなどの撮影材などで構成される場合は、上記X線管2や撮像部3の撮影動作中に撮影対象断層面Maに対するX線の入射方向が相違する多数の透過X線画像を撮影材3に多重露光させてX線断層撮影画像を得ている。
【0006】
上記原理に基づいて撮影対象断層面MaのX線断層撮影画像を得るX線断層撮影装置の駆動制御系は、従来、以下のように構成されている。
【0007】
〔第1従来例〕
図10を参照する。この第1従来例は、モーターなどのX線管駆動機構11によって、例えば、天井に敷設されたレール21に沿って水平移動されるX線管保持部材22にX線管2が保持され、X線管2が水平移動されるようになっている。X線管2には高電圧発生器などを含むX線照射駆動部12が接続され、このX線照射駆動部12によってX線管2からのX線の照射駆動が行われる。また、モーターなどの照射角度駆動機構13によって、例えば、X線管保持部材22に対してX線管2が回転されてX線管2から照射されるX線の照射角度が変更されるように構成されている。
【0008】
X線管駆動機構11やX線照射駆動部12、照射角度駆動機構13などの撮影駆動系の駆動制御は制御部10P1によって行われる。制御部10P1は、これら撮影駆動系11、12、13を駆動制御して、X線管2の水平移動に伴って以下のようにX線の照射角度を変更しつつ、X線管2からX線を照射させるように動作させる。X線の照射角度は、X線管2の水平移動中の各位置において、X線管2から照射されるX線束の中心軸XJが常に、被検体M内の撮影対象断層面Ma中の撮影中心GCを通過するように変更される。これにより、天板1に載置支持された被検体M内の撮影対象断層面Ma(中の撮影中心GC)に対するX線の入射方向を種々の方向に変更させている。
【0009】
被検体Mを載置支持する天板1を挟んでX線管2と反対側に配置された撮像部3は、伸縮自在の連結部材100によってX線管2と一体的に水平移動可能にX線管2に連結されている。連結部材100には支点101が設けられている。これにより、X線管2を水平移動させると、連結部材100が支点101周りに揺動され、これに伴って、被検体M内の撮像対象断層面Maの透過X線像が常に、撮像部3の受像面3aの同じ位置に投影されるようにX線管2側の動作と連動して撮像部3の受像面3aの位置を変更させている。支点101の位置は変更できるようになっている。
【0010】
以上の構成により、図10に示す撮影対象断層面Maのうち、撮影中心GCを中心とした所定の撮影範囲GHのX線断層撮影画像を得ることができる。
【0011】
ところで、この第1従来例では、制御部10P1は、撮影駆動系を駆動するための駆動データとして、予め決められた深さ位置の1つの撮影対象断層面Maに対応した1種類の駆動データだけを持っている。そして、撮影対象断層面Maの深さ位置を変更して撮影するときには、支点101の位置を、撮影しようとする撮影対象断層面Maの深さ位置に応じた位置に変更することによって、X線管2側と撮像部3側との連動動作を、撮影しようとする撮影対象断層面Maの深さ位置に応じた動作が行えるように変更させている。
【0012】
〔第2従来例〕
図11を参照する。上記第1従来例では、撮影対象断層面MaのX線断層撮影画像を得るのに必要なX線管2側と撮像部3側との連動動作を、X線管2と撮像部3とを連結部材100で連結させて実現しているが、第2従来例は、X線管2と撮像部3とを連結させずに、X線管2を水平移動させるX線管駆動機構11とは別に、撮像部3を水平移動させるモーターなどの撮像部駆動機構14を備えてX線管2と撮像部3とを独立させて水平移動可能に構成している。そして、制御部10P2が、撮影対象断層面MaのX線断層撮影画像を得るのに必要なX線管2側と撮像部3側との連動動作を行うように、X線管駆動機構11と撮像部駆動機構14を駆動制御している。その他のX線の照射角度の変更制御やX線管2からのX線照射の駆動制御は、上記第1実施例と同様である。
【0013】
この第2従来例でも、制御部10P2は、撮影駆動系を駆動するための駆動データとして、予め決められた深さ位置の1つの撮影対象断層面Maに対応した1種類の駆動データだけを持っている。そして、撮影対象断層面Maの深さ位置を変更して撮影するときには、天板1の昇降移動などを行う天板駆動機構15によって天板1を昇降移動させて被検体MをX線管2に対して遠近(撮影部3の受像面3aに対して近遠)させ、これにより、被検体M内における上記1つの撮影対象断層面Maの位置関係を深さ方向に変更させている。
【0014】
【発明が解決しようとする課題】
しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
通常、一連の断層撮影検査では、病変部の位置を特定するために、撮影対象断層面Maの深さ位置を数点変えた撮影を行うが、上記第1従来例の場合には、撮影対象断層面Maの深さ位置を変えた撮影を行うごとに、連結部材100の支点101の位置を変更させる必要がある。この連結部材100の支点101の変更作業には、術者の手作業が含まれるので、連結部材100の支点101の変更作業は手間で、術者への負担も大きいという問題がある。
【0015】
第2従来例では、天板1を昇降させるだけで撮影対象断層面Maの深さ位置を変えた撮影を行うことができ、また、天板1の昇降は通常、ボタン操作などで行えるので、上記第1従来例の問題は解消される。しかしながら、天板1を昇降させることに伴って、天板1上で被検体Mの体動が起き易く、その結果、所望の深さ位置の撮影対象断層面Maに対するX線断層撮影画像を正確に得ることができないことがある。特に、病変部の位置を特定するためには、撮影対象断層面Maの深さ位置を(mm)単位で変更することもあり、被検体Mの体動による撮影対象断層面Maの深さ位置のズレによって、(mm)単位で変更した各深さ位置の撮影対象断層面Maに対する各X線断層撮影画像が正確に得られずに、一連の断層撮影検査に支障を来すこともある。また、断層撮影検査中に天板1を頻繁に細かく昇降させると、被検体Mに心理的な不安を与えるという問題もある。
【0016】
この発明は、このような事情に鑑みてなされたものであって、上記従来技術の欠点を解消して種々の深さ位置の撮影対象断層面のX線断層撮影画像を容易に得ることができるX線断層撮影装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
この発明は、このような目的を達成するために、次のような構成をとる。すなわち、この発明は、被検体内の撮影対象断層面のX線断層撮影画像を得るX線断層撮影装置であって、(a)被検体を支持する支持手段と、(b)前記支持手段に支持させた被検体にX線を照射するX線照射手段と、(c)前記支持手段に支持させた被検体を挟んで前記X線照射手段と反対側に配置され、被検体を透過したX線透過像を受像面で受像して撮像する撮像手段と、(d)前記支持手段に支持させた被検体内の撮影対象断層面に対する前記X線照射手段からのX線の入射方向を変更駆動するX線入射方向変更駆動手段と、前記X線照射手段からのX線の照射駆動を行うX線照射駆動手段と、前記撮像手段の受像面の位置を変更駆動する受像位置変更駆動手段とを含む撮影駆動手段と、(e)前記支持手段に支持させた被検体内の撮影対象断層面に対する前記X線照射手段からのX線の入射方向を順次変更しながら被検体に向けてX線を照射させるとともに、前記撮像対象断層面の透過X線像が常に前記撮像手段の受像面の同じ位置に投影されるように撮影対象断層面に対するX線の入射方向の変更と連動して前記撮像手段の受像面の位置を変更させるように前記撮影駆動手段を駆動データに従って駆動制御する制御手段とを備え、撮影対象断層面の深さ位置を変更して撮影するときには、前記制御手段は、撮影しようとする撮影対象断層面の深さ位置に応じて、その深さ位置の撮影対象断層面と前記X線照射手段との位置関係及びその深さ位置の撮影対象断層面と前記撮像手段の受像面との位置関係によって決まるその撮影対象断層面の深さ位置に応じた前記撮影駆動手段の駆動データを、当該撮影対象断層面の深さ位置を変更する前後で前記X線照射手段の移動範囲を同じとする条件下で撮影対象断層面の深さ位置に応じて算出し、それに従って前記撮影駆動手段を駆動制御することを特徴とするものである。
【0018】
〔作用〕
この発明の作用は次のとおりである。
被検体を支持手段に支持させて、X線照射手段と撮像手段との間の所定の撮影位置に被検体が位置されると、制御手段は、支持手段に支持させた被検体内の撮影対象断層面に対するX線照射手段からのX線の入射方向を順次変更しながらX線を照射させるとともに、その撮像対象断層面の透過X線像が常に撮像手段の受像面の同じ位置に投影されるように撮影対象断層面に対するX線の入射方向の変更と連動して撮像手段の受像面の位置を変更させるように、X線入射方向変更駆動手段、X線照射駆動手段、受像位置変更駆動手段を含む撮影駆動手段を駆動データに従って駆動制御してその撮影対象断層面のX線断層撮影画像を得る。
【0019】
そして、撮影対象断層面の深さ位置を変更して撮影するときには、制御手段は、撮影しようとする撮影対象断層面の深さ位置に応じて、その深さ位置の撮影対象断層面とX線照射手段との位置関係及びその深さ位置の撮影対象断層面と撮像手段の受像面との位置関係によって決まるその撮影対象断層面の深さ位置に応じた撮影駆動手段の駆動データを撮影対象断層面の深さ位置に応じて算出し、それに従って撮影駆動手段を駆動制御してその深さ位置の撮影対象断層面に対するX線断層撮影画像を得る。
【0020】
撮影対象断層面とX線照射手段との位置関係や、撮影対象断層面と撮像手段の受像面との位置関係は、幾何学的な位置関係に置き換えることができる。
【0021】
また、撮影対象断層面の深さ位置を変更することは、撮影対象断層面をX線照射手段に対して遠近(撮像手段の受像面に対して近遠)させることである。
【0022】
従って、撮影しようとする深さ位置の撮影対象断層面とX線照射手段との位置関係や、その深さ位置の撮影対象断層面と撮像手段の受像面との位置関係は、幾何学的に把握することができる。
【0023】
これに基づき、その深さ位置の撮影対象断層面に対するX線断層撮影画像を得るためには、その撮影対象断層面に対するX線の入射方向を変更するためのX線照射手段側の動作範囲や動作速度などのX線入射方向変更駆動手段に対する駆動データ、それに連動して撮像手段の受像面の位置を変更させる動作範囲や動作速度などの受像位置変更駆動手段に対する駆動データを幾何学的な演算などによって求めることができる。また、X線照射手段側の動作範囲や動作速度、撮像手段の受像面の位置を変更させる動作範囲や動作速度などが決まれば、どのタイミングでX線を照射すればよいかなども決まり、X線照射駆動手段の駆動データも決められる。このようにして深さ位置の撮影対象断層面ごとに決まる駆動データに従って撮影駆動手段を駆動制御すれば、種々の深さ位置の撮影対象断層面に対するX線断層撮影画像を自動的に得ることができる。
【0024】
【発明の実施の形態】
以下、図面を参照してこの発明の実施の形態を説明する。
図1はこの発明の一実施例に係るX線断層撮影装置の概略構成図である。
なお、以下の実施例では説明を簡単にするために、X線管2を水平移動させるとともに、X線管2からのX線の照射角度を変更して、被検体M内の撮影対象断層面Maに対するX線管2からのX線の入射方向を変更させ、それに追従させて、撮像部3の受像面3aを水平移動させて撮影対象断層面MaのX線断層撮影画像を得る装置を例に採り説明する。また、実施例において、従来技術の説明に用いた符号と同一の符号を付した部分は従来技術と基本的に同一であるので、不要な重複説明は省略する。
【0025】
この実施例に係るX線断層撮影装置の撮影駆動系は、基本的に、第2従来例のものと同じである。すなわち、X線管駆動機構11によって、例えば、天井に敷設されたレール21に沿って水平移動されるX線管保持部材22にX線管2が保持され、X線管2が水平移動されるようになっている。X線管2には高電圧発生器などを含むX線照射駆動部12が接続され、このX線照射駆動部12によってX線管2からのX線の照射駆動が行われる。また、モーターなどの照射角度駆動機構13によって、例えば、X線管保持部材22に対してX線管2が回転されてX線管2から照射されるX線の照射角度が変更されるように構成されている。
【0026】
一方、被検体Mを載置支持する天板1を挟んでX線管2と反対側に配置された撮像部3の受像面3aは、撮像部駆動機構14によって水平移動されるようになっている。
【0027】
なお、この実施例では、天板1が支持手段に、X線管2がX線照射手段に、撮像部3が撮像手段に、X線管駆動機構11と照射角度駆動機構13がX線入射方向変更駆動手段に、X線照射駆動部12がX線照射駆動手段に、撮像部駆動機構14が受像位置変更駆動手段に、X線管駆動機構11やX線照射駆動部12、照射角度駆動機構13、撮像部駆動機構14を含む撮影駆動系が撮影駆動手段にそれぞれ相当する。
【0028】
X線管駆動機構11やX線照射駆動部12、照射角度駆動機構13、撮像部駆動機構14を含む撮影駆動系の駆動制御は、制御手段に相当する制御部10によって行われる。制御部10は、不揮発性のメモリ30に記憶されている駆動データに従って撮影駆動系11、12、13、14を駆動制御して被検体M内の撮影対象断層面MaのX線断層撮影画像の撮影を行う。
【0029】
メモリ30には、後述するような決定方法によって決められた種々の深さ位置の撮影対象断層面Maに応じた複数の駆動データが予め記憶されている。術者によって設定盤31から、これから撮影しようとする撮影対象断層面Maの深さ位置が設定されると、制御部10は、設定された撮影対象断層面Maの深さ位置に応じた駆動データをメモリ30から読み出し、その駆動データに従って、撮影駆動系11〜14を駆動制御して設定された深さ位置の撮影対象断層面Maに対するX線断層撮影画像の撮影を行う。
【0030】
従って、この実施例の構成によれば、第1従来例のようにX線管2と撮像部3とを連結した連結部材100の支点101を変更したり、あるいは、第2従来例のように天板1を昇降させたりすることなく、撮影駆動系11〜14の駆動を変更させるだけで、撮影対象断層面Maの深さ位置を変更したX線断層撮影画像の撮影を行うことができる。よって、手間や術者への負担をかけず、また、撮影中の被検体Mの体動を低減して、種々の深さ位置の撮影対象断層面に対する各X線断層撮影画像を正確に得られるとともに、撮影中の被検体Mへの心理的な不安を軽減することができるなど、第1、第2従来例の欠点を解消することができる。
【0031】
また、装置の撮影駆動系は、第2従来例と基本的に同じであり、その撮影駆動系の駆動制御の内容を変更しているだけであるので、制御部10を構成するマイクロコンピューターのプログラムやデータを記憶するPROMの内容を、種々の深さ位置の撮影対象断層面Maに応じた駆動データを含めるとともに、その駆動データを使い分けて撮影駆動系を駆動制御するように書き換えるだけで、大幅な改造を行わずに第2従来例の装置資産を利用することができる。従って、医療機関などに既に第2従来例の装置が設置されている場合には、その資産を無駄にすることなく有効利用することができる。
【0032】
なお、上記実施例に、天板1を前後や左右などの水平方向への移動と、昇降移動などを行う天板駆動機構を備えて、撮影対象断層面Maの深さ位置を変更して撮影する以外の目的、例えば、被検体Mを天板1に乗降させる位置と、X線管2と撮像部3との間の撮影位置との間で天板1(被検体M)を移動させるなどのために、天板1を移動可能に構成してもよい。
【0033】
また、後述する駆動データの決定方法でも詳述するが、ある1つの深さ位置の撮影対象断層面Maを基準の撮影対象断層面MaSとし、その基準の撮影対象断層面MaSに応じた撮影駆動系11〜14の駆動データを基準の駆動データとすれば、基準の撮影対象断層面MaSの深さ位置と異なる深さ位置の撮影対象断層面MaNに応じた駆動データは、その深さ位置の撮影対象断層面MaNに応じた係数を基準の駆動データに掛け合わせるだけでよい場合がある。そのような場合には、各々の深さ位置の撮影対象断層面Maに応じた駆動データを全てメモリ30に記憶しておかずに、基準の駆動データと、各深さ位置の撮影対象断層面MaNに応じた係数とをメモリ30に記憶し、各深さ位置の撮影対象断層面MaNのX線断層撮影画像の撮影を行うときに、基準の駆動データにその深さ位置の撮影対象断層面MaNに応じた係数を掛け合わせてその深さ位置の撮影対象断層面MaNに応じた駆動データを得るようにしてもよい。このように構成すれば、メモリ30への記憶量を低減させることができる。
【0034】
また、各々の深さ位置の撮影対象断層面Maに応じた駆動データや、基準の駆動データと、各深さ位置の撮影対象断層面MaNに応じた係数となどをメモリ30に記憶しておくのではなく、後述する駆動データの決定方法をプログラム化しておき、設定盤31から、これから撮影しようとする撮影対象断層面Maの深さ位置が設定されるごとに、制御部10は、設定された撮影対象断層面Maの深さ位置に応じた駆動データを撮影前に算出し、その演算の結果得られた駆動データに従って、撮影駆動系11〜14を駆動制御して設定された深さ位置の撮影対象断層面Maに対するX線断層撮影画像の撮影を行うように構成してもよい。
【0035】
次に、異なる深さ位置の撮影対象断層面Maに応じた駆動データを決定する方法を説明する。
【0036】
<第1の決定方法>
図2を参照する。図2に示すように、撮影対象断層面MaS、MaNとX線管2との位置関係や、撮影対象断層面MaS、MaNと撮像部3の受像面3aとの位置関係は、幾何学的な位置関係に置き換えることができる。
【0037】
図2では、予め決めておいた1つの撮影対象断層面を基準の撮影対象断層面MaSとし、撮影対象断層面MaNは、その基準の撮影対象断層面MaSの深さ位置と異なる深さ位置の撮影対象断層面を示している。図2中の点GCSは基準の撮影対象断層面MaSの中のX線断層撮影画像を撮影する際の撮影中心、GCNは撮影対象断層面MaNの中のX線断層撮影画像を撮影する際の撮影中心と示す。
【0038】
ここで、撮影対象断層面の深さ位置を変更した撮影とは、基本的に、ある撮影対象断層面MaSの中の点GCSを撮影中心としてX線断層撮影画像を撮影したとき、別の深さ位置の撮影対象断層面MaNの中において、水平方向(図2の左右方向および図2の紙面に垂直な方向)の位置を変更せずに、撮影対象断層面MaSの撮影中心GCSを深さ方向(図2の上下方向)にずらせた点GCNを撮影中心としてX線断層撮影画像を撮影することを意味する。すなわち、図2において、各撮影中心GNS、GCNは、深さ方向に延ばした撮影中心軸CJ上にプロットされる。
【0039】
また、図2において、点XFはX線管2の焦点の位置を示し、点IFは撮像部3の受像面3aの中心位置を示す。点XCはX線管2の焦点XFの基準位置であり、一方、点ICは受像面3aの基準位置である。上述した撮影中心軸CJは、これら基準位置XC、ICを結んだ軸線とする。
【0040】
すなわち、点GCSやGCNを撮影中心として撮影対象断層面MaS、MaNのX線断層撮影画像を撮影する場合には、各撮影中心GCS、GCNが、撮影中心軸CJ上に一致するように天板1及び被検体Mを位置させる。
【0041】
また、基準の撮影対象断層面MaSの深さ位置は、例えば、X線管2の焦点XFの基準位置XCからの距離XHSで決められる。すなわち、点GCS、GCNを撮影中心として撮影対象断層面MaS、MaNのX線断層撮影画像を撮影する場合の撮影位置は、基準の撮影対象断層面MaSが、X線管2の焦点XFの基準位置XCから距離XHSだけ離れた位置に位置されるとともに、各撮影中心CGS、CGNが、撮影中心軸CJ上に一致する位置であり、そのような撮影位置に天板1及び被検体Mを位置させた状態で撮影断層面の深さ位置を変更した撮影が行われる。
【0042】
さて、従来例2の制御部10P2が持っていた撮影駆動系11〜14の駆動データによって撮影される1つの撮影対象断層面Maを基準の撮影対象断層面MaSとし、その駆動データを用いて、基準の撮影対象断層面MaSの撮影を行うものとする。
【0043】
この撮影データでは、X線管2の焦点XFの基準位置XCを撮影の際のX線管2の焦点XFの移動範囲の中心としている。すなわち、基準の撮影対象断層面MaSの撮影は、基準位置XCから、図2の左方向に所定の距離XWS離れた位置をX線管2の焦点XFの移動開始位置XSSとし、基準位置XCから、図2の右方向に同じ距離XWS離れた位置をX線管2の焦点XFの移動終了位置XESとして、この移動開始位置XSSと移動終了位置XESとの間の移動範囲(2×XWS)を、X線管2の焦点XFが図2の左から右に水平移動するようにX線管2を水平移動させている。
【0044】
上記移動範囲内のX線管2の移動中のX線管2からのX線の照射角度は、X線管2の水平移動中の各位置において、X線管2から照射されるX線束の中心軸XJが常に、基準の撮影対象断層面MaS中の撮影中心GCSを通過するように変更させる。すなわち、深さ方向に対して右方向に角度をθS傾けた状態から、深さ方向に対して左方向に角度をθS傾けた状態までの回転範囲内を、X線管2の水平移動に合わせて、X線管保持部材22に対してX線管2を水平方向の軸芯周りで時計周りに回転させる。
【0045】
以上のようにX線管2の水平移動及びX線の照射角度の変更を行うことで、天板1に載置支持された被検体M内の基準の撮影対象断層面MaS(中の撮影中心GCS)に対するX線の入射方向を種々の方向に変更させている。
【0046】
一方、撮像部3の受像面3aは、X線管2の水平移動中の各位置において、X線管2から照射されるX線束の中心軸XJが常に、受像面3aの中心IFに入射するようにX線管2と反対方向(図2の右から左に)に水平移動させる。これにより、基準の撮像対象断層面MaSの透過X線像が常に、撮像部3の受像面3aの同じ位置に投影されるように基準の撮影対象断層面MaS(中の撮影中心GCS)に対するX線の入射方向の変更(X線管2側の動作)と連動して撮像部3の受像面3aの位置を変更させることができる。
【0047】
なお、図2では、上記撮像部3の受像面3aの水平移動の移動開始位置をISS、移動終了位置をIES、受像面3aの基準位置ICと移動開始位置ISSとの間の距離及び受像面3aの基準位置ICと移動終了位置IESとの間の距離をIWSで示している。また、X線管2の焦点XFの基準位置XCと受像面3aの基準位置ICとの間の距離XIHは、X線管2と撮像部3を設置したときに決まるので、X線管2の焦点XFの基準位置XCと基準の撮影対象断層面MaSとの間の距離XHSが決まれば、受像面3aの基準位置ICと基準の撮影対象断層面MaSとの間の距離IHSは決まる。
【0048】
X線管2を水平移動させるX線管駆動機構11の駆動データには、X線管2の移動範囲の他にX線管2の移動速度が含まれる。また、X線の照射角度を変更駆動する照射角度駆動機構13の駆動データには、上述したX線管2の回転範囲の他にX線管2を回転させる際の回転速度が含まれる。さらに、撮像部3の受像面3aを水平移動させる撮像部駆動機構14の駆動データには、撮像部3の受像面3aの移動範囲の他に撮像部3の受像面3aの移動速度が含まれる。
【0049】
X線管2の移動速度VXS(t)及び回転速度WXS(t)と、撮像部3の受像面3aの移動速度VIS(t)の一例を図3(a)〜(c)に実線で示す。この例では、X線管2の移動速度VXS(t)を、撮影開始t0からt1までは加速させ、所定速度VX1に達するとt1からt2まで一定速度VX1とし、t2から減速させてt3でX線管2の移動を停止させて、tSの時間で撮影を行うようにしている。なお、t0〜t1間の時間とt2〜t3間の時間は、例えば、同じに設定される。X線管2の回転速度WXS(t)と撮像部3の受像面3aの移動速度XIS(t)とは、X線管2の移動速度VXS(t)に合わせて、撮影開始t0からt1までは加速させ、t1からt2まで一定速度とし、t2から減速させてt3でX線管2の回転及び撮像部3の受像面3aの移動を停止させて、tSの時間で撮影が終了するようにしている。
【0050】
また、X線照射駆動部2は、例えば、図3(d)や(e)に示すように、t0〜t3の間(必要に応じてt1〜t2の間でもよい)X線管2からのX線を常時照射させたり、一定周期ごとにパルス状に照射させるように駆動制御される。
【0051】
次に、基準の撮影対象断層面MaSの深さ位置と異なる深さ位置の撮影対象断層面MaNを撮影する場合を考える。
【0052】
ここでは、X線の照射角度の変更範囲(撮影対象断層面MaS、MaNに対するX線入射方向の変更範囲)である、X線管2の回転範囲を基準の撮影対象断層面MaSの撮影時と同じ(2×θS)にする場合について考える。
【0053】
X線管2の回転範囲を撮影対象断層面MaSの撮影と同じ(2×θS)にして、撮影対象断層面MaNを撮影するためには、図2に示すように、X線管2の移動開始位置をXSN、移動終了位置をXENとする(2×XWN)の範囲をX線管2の移動範囲とし、一方で、撮像部3の受像面3aの移動開始位置をISN、移動終了位置をIENとする(2×IWN)の範囲を撮像部3の受像面3aの移動範囲としなければならないことが幾何学的に導ける。また、図2中の距離XHS、IHS及びSNH(いずれも既知)により、X線管2の焦点XFの基準位置XCと撮影対象断層面MaNの深さ位置との間の距離XHNと、撮像部3の受像面3aの基準位置ICと撮影対象断層面MaNの深さ位置との間の距離IHNとが求められる。
【0054】
X線管2の焦点XFが基準の撮影対象断層面MaSの撮影時の移動開始位置XSSに位置した点と、X線管2の焦点XFが基準位置XCに位置した点と、基準の撮影対象断層面MaSの撮影中心GCSとの3点を頂点とする三角形と、X線管2の焦点XFが撮影対象断層面MaNの撮影時の移動開始位置XSNに位置した点と、X線管2の焦点XFが基準位置XCに位置した点と、撮影対象断層面MaNの撮影中心GCNとの3点を頂点とする三角形とは相似形である。また、撮像部3の受像面3aが基準の撮影対象断層面MaSの撮影時の移動開始位置ISSに位置した点と、撮像部3の受像面3aが基準位置ICに位置した点と、基準の撮影対象断層面MaSの撮影中心GCSNの3点を頂点とする三角形と、撮像部3の受像面3aが撮影対象断層面MaNの撮影時の移動開始位置ISNに位置した点と、撮像部3の受像面3aが基準位置ICに位置した点と、撮影対象断層面MaNの撮影中心GCNとの3点を頂点とする三角形とは相似形である。
【0055】
従って、撮影対象断層面MaNの撮影時のX線管2の移動範囲を決める距離XWNと、撮影対象断層面MaNの撮影時の受像面3aの移動範囲を決める距離IWNとは、既知の値であるXWS、XHS、XHNと、IWS、IHS、IHNを用いて、以下の式(1)、(2)で求めることができる。
【0056】
XWN=KXN×XWS … (1)
但し、KXN=XHN/XHS
IWN=KIN×XIS … (2)
但し、KIN=IHN/IHS
【0057】
また、相似の関係から、以下の式(3)、(4)及び、図3(a)、(b)の二点鎖線で示すように、撮影対象断層面MaNの撮影時のX線管2の移動速度VXN(t)を、基準の撮影対象断層面MaSの撮影時のX線管2の移動速度VXS(t)に、上記(1)式の係数KXNを掛け合わせた速度とするとともに、撮影対象断層面MaNの撮影時の撮像部3の受像面3aの移動速度VIN(t)を、基準の撮影対象断層面MaSの撮影時の撮像部3の受像面3aの移動速度VIS(t)に、上記(2)式の係数KINを掛け合わせた速度として駆動させると、撮影対象断層面MaNの撮影において、基準の撮影対象断層面MaSの撮影中の同じ時間tにおけるX線の照射角度(撮影対象断層面MaS、MaNに対するX線入射方向の角度)を常に同じにすることができる。従って、X線管2の回転速度を基準の撮影対象断層面MaSの撮影時のX線管2の回転速度WXS(t)(図3(c))と同じ駆動データで駆動することができる。
【0058】
VXN(t)=KXN×VXS(t) … (3)
VIN(t)=KIN×VIS(t) … (4)
【0059】
さらに、X線管2の水平移動やX線の照射角度、撮像部3の受像面3aの水平移動を上述した駆動データで駆動制御すると、撮影対象断層面MaNの撮影は、tSの時間で完了することになる。従って、X線の照射駆動は、基準の撮影対象断層面MaSの撮影時と同じ駆動データ(図3(d)や(e))で行うことができる。
【0060】
なお、上記係数KXN、KINは、撮影対象断層面MaNが、図2に示すように、基準の撮影対象断層面MaSよりもX線管2から遠ざかる(撮像部3の受像面3aに近づく)とKXN>1、0<KIN<1となり、逆に、撮影対象断層面MaNが、基準の撮影対象断層面MaSよりもX線管2に近づく(撮像部3の受像面3aから遠ざかる)と0<KXN<1、KIN>1となる係数である。
【0061】
また、基準の撮影対象断層面MaSの撮影時と撮影対象断層面MaNの撮影時とにおける受像面3aの移動状態をわかり易くするために、図2では、基準の撮影対象断層面MaSの撮影時の受像面3aと撮影対象断層面MaNの撮影時の受像面3aとを上下に若干ずらせて描いているが実際は同一軸上を移動する。また、図4以下の図やグラフにおいても、同様に、実際は重なる部分であっても基準の撮影対象断層面MaSの撮影時のものと撮影対象断層面MaNの撮影時のものとを区分するために若干ずらせて描いている場合もある。
【0062】
<第2の決定方法>
まず、X線管2の移動範囲と撮像部3の受像面3aの移動範囲は、上記第1の決定方法と同じ決定方法で決定する(図2参照)。すなわち、撮影対象断層面MaNの撮影時のX線管2の移動範囲を、移動開始位置XSN〜移動終了位置XENの(2×XWN)の範囲とし、撮像部3の受像面3aの移動範囲を、移動開始位置ISN〜移動終了位置IENの(2×IWN)の範囲とする。
【0063】
次に、X線管2の移動速度VXN(t)を、一定速度で移動させる際の速度が基準の撮影対象断層面MaSの撮影時と同じVX1になるように決定する。すなわち、図4(a)の二点鎖線に示すように、撮影開始t0からt1までは加速させ、所定速度VX1に達するとt1からt4まで一定速度VX1とし、t4から減速させてt5でX線管2の移動を停止させて、tNの時間で撮影を行うようにする。なお、t4〜t5間の時間は、例えば、t2〜t3間の時間と同じとする。基準の撮影対象断層面MaSの撮影時のX線管2の移動速度VXS(t)を図4(a)に実線で示す。
【0064】
上記X線管2の移動速度VXN(t)に合わせるためには、撮像部3の受像面3aの移動速度VIN(t)は、図4(b)の二点鎖線に示すようになる。基準の撮影対象断層面MaSの撮影時の撮像部3の受像面3aの移動速度VIS(t)を図4(b)に実線で示す。
【0065】
図4(a)、(b)に示すように、この場合には、撮影対象断層面MaNの撮影に要する時間tNは、基準の撮影対象断層面MaSの撮影に要する時間tSより長くなる。なお、図2と逆に、撮影対象断層面MaNが、基準の撮影対象断層面MaSよりもX線管2に近づく(撮像部3の受像面3aから遠ざかる)場合には、撮影対象断層面MaNの撮影に要する時間tNは、基準の撮影対象断層面MaSの撮影に要する時間tSより短くなる。
【0066】
いずれにしても、撮影時間が変動することにより、それに応じて、X線の照射角度の変更速度(X線管2の回転速度)を新たに決める必要がある。すなわち、X線管2の移動速度に合わせるためには、X線管2の回転速度WXN(t)は、図4(c)の二点鎖線に示すようになる。基準の撮影対象断層面MaSの撮影時のX線管2の回転速度WXS(t)を図4(c)に実線で示す。
【0067】
ここで、図4(c)の一定時の速度WX2は未知数であるが、この速度WX2は、例えば、以下のようにして決定することができる。まず、図5に示すように、X線管2の焦点XFが基準位置XCから所定時間(例えば、1秒)後に到達する位置をXC1とすると、基準位置XCからその位置XC1までの距離(移動量)WC1は、X線管2の移動速度VXN(t)(VX1)によって求めることができる。この位置XC1をX線管2の焦点XFの移動軌跡上にプロットする。このとき、上記一定時の速度WX2におけるX線の照射角度の単位時間当たりの変更角は図5中のθ1となる。図5において、X線管2の焦点XFが基準位置XCに位置した点とX線管2の焦点XFが上記位置XC1に位置した点と撮影対象断層面MaNの撮影中心GCNとの3点を頂点とする三角形に注目すると、θ1は既知の距離XHNとXC1から三角関数によって求めることができる。従って、上記一定時の速度WX2におけるX線の照射角度の単位時間当たりの変更角θ1が求められれば、上記一定時の速度WX2が求められる。
【0068】
また、上記一定時の速度WX2が求まれば、t0〜t1間の時間(既知)で速度を「0」〜WX2にするように加速すればよいので、WXN(t)のt0〜t1の加速時の速度の傾きが決まり、同様に、t4〜t5の減速時の速度の傾きも決まる。
【0069】
以上により、撮影対象断層面MaNの撮影時のX線管2の回転速度WXN(t)が決定できる。なお、X線管2の回転範囲は、第1の決定方法の場合と同じ(2×θS)である。従って、照射角度駆動機構13の駆動データも決定できる。
【0070】
また、撮影時間の変動に伴って、X線の照射は、図3(d)や(e)と同様の照射を上記t0〜t5の間(必要に応じてt1〜t4の間)行えばよい。
【0071】
<第3の決定方法>
ここでは、図6に示すように、X線管2の移動範囲を各撮影対象断層面MaS、MaNの撮影時で同じにする場合について考える。
【0072】
このとき、X線管2の移動速度も、各撮影対象断層面MaS、MaNの撮影時で同じにすることができる。すなわち、X線管駆動機構11の駆動データは各撮影対象断層面MaS、MaNの撮影時で同じにすることができる。また、この結果、各撮影対象断層面MaS、MaNの撮影に要する時間が全て同じであるからX線照射駆動部12の駆動データも各撮影対象断層面MaS、MaNの撮影時で同じにすることができる。
【0073】
しかしながら、図6に示すように、この駆動制御では、X線の照射角度の変更範囲(撮影対象断層面MaS、MaNに対するX線入射方向の変更範囲)である、X線管2の回転範囲が、撮影対象断層面MaSの撮影時(2×θS)と、撮影対象断層面MaNの撮影時(2×θN)とで相違することになる。
【0074】
このθNは、X線管2の焦点XFが各撮影対象断層面MaS、MaNの撮影時の移動開始位置XSSに位置した点と、X線管2の焦点XFが基準位置XCに位置した点と、撮影対象断層面MaNの撮影中心GCNとの3点を頂点とする三角形に注目すれば、既知の距離XWS、XHNから三角関数によって求めることができる。
【0075】
また、各撮影対象断層面MaS、MaNの撮影において、撮影時間が同じ(tS)であって、X線管2の回転範囲が変更されたことに伴って、X線の照射角度の変更速度(X線管2の回転速度)を新たに決める必要がある。X線管2の移動に合わせるためには、X線管2の回転速度WXN(t)は、図7(a)の二点鎖線に示すようになる。基準の撮影対象断層面MaSの撮影時のX線管2の回転速度WXS(t)を図7(a)に実線で示す。
【0076】
図7(a)中の一定時の速度WX3は、上述した第2の決定方法で説明したWX2の決定方法と同様の決定方法で求めることができる。従って、照射角度駆動機構13の駆動データを決定することができる。
【0077】
また、図6に示すように、X線管2の移動範囲を各撮影対象断層面MaS、MaNの撮影時で同じ(X線管2の回転角度が変更された)ことに伴って、撮像部3の受像面3aの移動範囲が変更される。この撮影対象断層面MaNの撮影時の撮像部3の受像面3aの移動範囲を決める距離IWN2は次のように求めることができる。すなわち、図6において、撮像部3の受像面3aが撮影対象断層面MaNの撮影時の移動開始位置ISNに位置した点と、撮像部3の受像面3aが基準位置ICに位置した点と、撮影対象断層面MaNの撮影中心GCNとの3点を頂点とする三角形に注目すると、既知の値である距離IHNと角度θNとから三角関数によって距離IWN2が求められる。
【0078】
また、各撮影対象断層面MaS、MaNの撮影において、撮影時間が同じ(tS)であって、撮像部3の受像面3aの移動範囲が変更されたことに伴って、撮像部3の受像面3aの移動速度も新たに決める必要がある。X線管2の移動に合わせるためには、撮像部3の受像面3aの移動速度VIN(t)は、図7(b)の二点鎖線に示すようになる。基準の撮影対象断層面MaSの撮影時の撮像部3の受像面3aの移動速度VIS(t)を図7(b)に実線で示す。
【0079】
ここで、図7(b)の一定時の速度VI2は未知数であるが、この速度VI2は、例えば、次のようにして決定することができる。すなわち、上述した第2の決定方法で説明したX線管2の回転速度中の一定時の速度におけるX線の照射角度の単位時間当たりの変更角を求める場合と同様の手法で、この第3の決定方法の場合でのX線管2の回転速度中の一定時の速度WX3におけるX線の照射角度の単位時間当たりの変更角θ2を、撮像部3の受像面3aを含めて作図すると図8に示すようになる。なお、図8中の位置XC2は、この第3の決定方法において、X線管2の焦点XFが基準位置XCから所定時間(例えば、1秒)後に到達する位置を示し、距離WC2は、基準位置XCからその位置XC2までの移動量を示す。図8から明らかなように、撮像部3の受像面3の移動速度VIN(t)中の一定時の速度VI2における単位時間当たりの受像面3aの移動量WC3は、既知の距離IHNと角度θ2とから三角関数で求めることができ、撮像部3の受像面3の移動速度VIN(t)中の一定時の速度VI2が求められる。従って、撮像部3の受像面3の移動速度VIN(t)が決まり、撮像部駆動機構14の駆動データが決まる。
【0080】
その他、撮像部3の受像面3aの移動範囲と移動速度とを各撮影対象断層面MaS、MaNの撮影時で同じにするように撮影駆動系11〜14の駆動データを決定することもできる。この場合には、撮影対象断層面MaNの撮影時のX線管2の移動範囲や移動速度、回転範囲、回転速度を新たに決めてやる必要があるが、これら駆動データも、上述したように幾何学的に求めることができる。
【0081】
上記第1〜第3の決定方法では、撮影対象断層面MaNの撮影時の撮影駆動系11〜14の駆動データの決定を例に採り説明したが、それ以外の深さ位置の撮影対象断層面Maの撮影時の撮影駆動系11〜14の駆動データも同様の方法で決定することができる。
【0082】
なお、上記第1〜第3の決定方法では、予め決められた1つの撮影対象断層面MaSを基準として、その基準の撮影対象断層面MaSの撮影時の撮影駆動系11〜14の駆動データを用いて、それ以外の深さ位置の撮影対象断層面MaNの撮影時の撮影駆動系11〜14の駆動データを決定したが、この発明はこれに限らず、任意の深さ位置の撮影対象断層面Maの撮影時の撮影駆動系11〜14の駆動データを個別に決定することもできる。
【0083】
すなわち、これまでの説明から明らかなように、ある深さ位置の撮影対象断層面Maの撮影を行う場合、X線管2の移動範囲、X線管2の回転範囲、撮像部3の受像面3aの移動範囲のいずれか1つが決まれば残りも決まる。また、X線管2の移動速度、X線管2の回転速度、撮像部3の受像面3aの移動速度のいずれか1つが決まれば残りも決まる。従って、X線管駆動機構11、照射角度駆動機構13、撮像部駆動機構14の駆動データを決めることができる。また、X線管駆動機構11、照射角度駆動機構13、撮像部駆動機構14の駆動データが決まると、撮影時間が決まるので、X線照射をどのタイミングで行えばよいかも決まり、X線照射駆動部12の駆動データも決まる。このような撮影駆動系11〜14の駆動データの決定方法は、撮影対象断層面Maの深さ位置が変わっても同様であるので、任意の深さ位置の撮影対象断層面Maごとに、撮影時の撮影駆動系11〜14の駆動データを個別に決定することもできる。
【0084】
ところで、撮影中、X線を常時照射させたり、常に同一周期でパルス状にX線を照射させる場合、撮影対象断層面Maの撮影ごとに撮影時間が変動すると、撮影対象断層面Maの撮影ごとに被検体MへのX線の曝射量が変動などして好ましくない。従って、撮影対象断層面Maの撮影ごとの撮影時間を常に同じにするように撮影駆動系11〜14の駆動データを決定することが好ましいが、撮影対象断層面Maの撮影ごとの撮影時間が変動するように撮影駆動系11〜14の駆動データを決定する場合でも、例えば、X線をパルス状に照射させるとともに、そのパルス周期を、撮影対象断層面Maの撮影ごとの撮影時間に応じて変化させるようにしてもよい。
【0085】
また、同じ深さ位置の撮影対象断層面Ma内において撮影中心(撮影範囲)を変更する場合には、天板1上で被検体Mを水平方向に移動させたり、被検体Mを載置支持した天板1を水平方向に移動させたりしてもよいが、次のように構成してもよい。
【0086】
X線管2と撮像部3の受像面3aとの各々の水平移動の移動可能最大範囲を十分に長くし、X線管2の焦点XFの基準位置XCと撮像部3の受像面3aの基準位置IC(撮影中心軸CJ)を天板1の長手方向(被検体Mの体軸方向)に移動させれば、同じ深さ位置の撮影対象断層面Ma内において撮影中心(撮影範囲)を天板1の長手方向(被検体Mの体軸方向)に変更させることができる。また、レール21などを含むX線管2の水平移動を行うためのユニット全体を天板1の短手方向(被検体Mの体軸方向に直交する水平方向)に移動させる駆動機構を設けるとともに、撮像部3の受像面3aの水平移動を行うためのユニット全体も同じ水平方向に移動させる駆動機構を設けて、各ユニット全体を天板1の短手方向に水平移動させれば、同じ深さ位置の撮影対象断層面Ma内において撮影中心(撮影範囲)を天板1の短手方向(被検体Mの体軸方向に直交する水平方向)に変更させることができる。このように構成すれば、天板1や被検体Mを移動させることなく、同じ深さ位置の撮影対象断層面Ma内において撮影中心(撮影範囲)を変更したX線断層撮影画像を撮影することもできる。
【0087】
上記実施例では、X線管2と撮像部3の受像面3aとを水平1軸方向への移動だけを行わせて撮影対象断層面Maの撮影を行う場合について説明したが、X線管2と撮像部3の受像面3aとを、円弧状に移動させたり、水平面内で円軌道や楕円軌道、放射状の軌道、渦巻き状の軌道、ハイポサイクロイド軌道などに沿って移動させたりする周知の移動形態をとって撮影対象断層面Maの撮影を行う構成のものであってもこの発明は同様に適用することができる。なお、例えば、X線管2や撮像部3の受像面3aを、水平面内で1つの円軌道に沿って移動させて撮影対象断層面Maの撮影を行う構成のものは、通常、X線の照射角度が固定されるので、そのような構成のものは、X線管2を水平面内で1つの円軌道に沿って移動させる駆動機構がこの発明におけるX線入射方向変更駆動手段に相当することになる。
【0088】
また、被検体Mを寝かせた状態で撮影対象断層面MaのX線断層撮影画像を撮影する場合に限らず、被検体Mを斜め状態で支持したり、立たせて支持させたりした状態で、その被検体Mを挟んでX線管2と撮像部3の受像面3aを配置させて撮影対象断層面MaのX線断層撮影画像を撮影する場合にもこの発明は同様に適用することができる。
【0089】
【発明の効果】
以上の説明から明らかなように、この発明によれば、撮影駆動手段を駆動する駆動データを変更するだけで、種々の深さ位置の撮影対象断層面に対する各X線断層撮影画像を撮影するように構成したので、手間や術者への負担をかけることなく、撮影対象断層面の深さ位置を変更した撮影を行うことができる。また、天板などの支持手段(被検体)を昇降させて被検体をX線照射手段に対して遠近(撮像手段の受像面に対して近遠)させることなく、撮影対象断層面の深さ位置を変更した撮影が行えるので、撮影中の被検体の体動を低減でき、種々の深さ位置の撮影対象断層面に対する各X線断層撮影画像を正確に得られるとともに、撮影中の被検体への心理的な不安を軽減することができる。
【図面の簡単な説明】
【図1】この発明の一実施例に係るX線断層撮影装置の概略構成図である。
【図2】撮影対象断層面の深さ方向を変更して撮影する際の撮影駆動系の駆動データを第1、第2の決定方法で決定する場合の説明図である。
【図3】撮影対象断層面の深さ方向を変更して撮影する際の撮影駆動系の駆動データを第1の決定方法で決定する場合のX線管の移動速度や撮像部の受像面の移動速度、X線管の回転速度などを示す図である。
【図4】撮影対象断層面の深さ方向を変更して撮影する際の撮影駆動系の駆動データを第2の決定方法で決定する場合のX線管の移動速度と撮像部の受像面の移動速度とX線管の回転速度を示す図である。
【図5】撮影対象断層面の深さ方向を変更して撮影する際の撮影駆動系の駆動データを第2の決定方法で決定する場合のX線管の回転速度の決定方法を説明するための図である。
【図6】撮影対象断層面の深さ方向を変更して撮影する際の撮影駆動系の駆動データを第3の決定方法で決定する場合の説明図である。
【図7】撮影対象断層面の深さ方向を変更して撮影する際の撮影駆動系の駆動データを第3の決定方法で決定する場合のX線管の回転速度と撮像部の受像面の移動速度を示す図である。
【図8】撮影対象断層面の深さ方向を変更して撮影する際の撮影駆動系の駆動データを第3の決定方法で決定する場合の撮像部の受像面の移動速度の決定方法を説明するための図である。
【図9】撮影対象断層面のX線断層撮影画像の撮影原理を説明するための図である。
【図10】第1従来例に係るX線断層撮影装置の駆動制御系の概略構成図である。
【図11】第2従来例に係るX線断層撮影装置の駆動制御系の概略構成図である。
【符号の説明】
1:天板
2:X線管
3:撮像部
3a:撮像部の受像面
10:制御部
11:X線管駆動機構
12:X線照射駆動部
13:照射角度駆動機構
14:撮像部駆動機構
M:被検体
Ma、MaS、MaN:撮影対象断層面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-CT (non-computer tomography) X-ray tomography apparatus for obtaining an X-ray tomographic image of a tomographic plane in a subject, and in particular, imaging objects at various depth positions. The present invention relates to an improved technique for obtaining an X-ray tomographic image of a tomographic plane.
[0002]
[Prior art]
As shown in FIG. 9, the non-CT X-ray tomographic imaging apparatus installed in a medical institution such as a hospital has an X for an imaging target tomographic plane Ma in a subject M placed and supported on the top 1. While the X-ray incident direction from the X-ray tube 2 is sequentially changed, the subject M is irradiated with X-rays, and the transmitted X-ray image of the imaging target tomographic plane Ma in the subject M is always an image intensifier. Change of the incident direction of X-rays on the tomographic plane Ma to be imaged (on the X-ray tube 2 side) so as to be projected on the same position on the image receiving surface 3a of the imaging unit 3 such as an X-ray detector such as a film or a photographing material such as film The position of the image receiving surface 3a of the imaging unit 3 is changed in conjunction with the operation) to obtain an X-ray tomographic image of the imaging target tomographic surface Ma.
[0003]
The principle of X-ray tomography using this X-ray tomographic imaging apparatus will now be described in some detail. That is, as shown in FIG. 9, for example, by changing the position of the X-ray tube 2 or the irradiation angle of the X-rays irradiated from the X-ray tube 2, the X with respect to the imaging target tomographic plane Ma in the subject M is changed. Even when the incident direction of the X-ray from the ray tube 2 is changed, the points A and B located in the tomographic plane Ma to be imaged are always projected on the same points a and b on the image receiving surface 3a of the imaging unit 3. As described above, the position of the image receiving surface 3a of the image receiving unit 3 is changed in conjunction with the change in the X-ray incident direction with respect to the imaging target tomographic plane Ma. Then, the projection position on the image receiving surface 3a changes more and more at the point C located outside the imaging target tomographic plane Ma as the X-ray incident direction changes with respect to the imaging target tomographic plane Ma. For example, with respect to the X-ray incidence direction with respect to the imaging target tomographic plane Ma when the X-ray tube 1 is at the position P1, the point C is projected onto the point c1 on the image receiving surface 3a, but at a position P2 different from the position P1. The point C is projected onto the point c2 on the image receiving surface 3a with respect to the X-ray incidence direction with respect to the tomographic plane Ma to be imaged when the X-ray tube 1 moves.
[0004]
When the transmitted X-ray images received on the image receiving surface 3a of the imaging unit 3 are superposed in a state where the X-ray incident direction with respect to the tomographic plane Ma to be imaged is changed in this way, a point C is obtained in the image after superposition. The transmitted X-ray image is scattered (distributed) over the entire image, and the point C appears as an unclear blurred point. The degree of blur at the point C increases as the distance from the tomographic plane Ma to be imaged increases. On the other hand, the transmitted X-ray images of the points A and B are kept (concentrated) at one point of the image, and the points A and B appear as clear points in the superimposed image. Therefore, only the imaging target tomographic plane Ma is clear by superimposing a large number of transmitted X-ray images received on the image receiving surface 3a of the imaging unit 3 by variously changing the X-ray incident direction with respect to the imaging target tomographic plane Ma. , That is, an X-ray tomographic image obtained by extracting the tomographic plane Ma to be imaged in the subject M can be obtained.
[0005]
When the imaging unit 3 is configured by an X-ray detector such as an image intensifier, X-rays for the imaging target tomographic plane Ma sampled during the imaging operation of the X-ray tube 2 or the imaging unit 3 are used. X-ray tomographic images are obtained by converting a large number of transmitted X-ray images having different incident directions into digital images and integrating the images by digital image processing. Further, when the imaging unit 3 is configured by a photographing material such as a film, a large number of transmissions with different X-ray incident directions with respect to the imaging target tomographic plane Ma during the imaging operation of the X-ray tube 2 or the imaging unit 3 are performed. The X-ray image is multiply exposed on the imaging material 3 to obtain an X-ray tomographic image.
[0006]
A drive control system of an X-ray tomography apparatus that obtains an X-ray tomography image of the tomographic plane Ma to be imaged based on the above principle is conventionally configured as follows.
[0007]
[First Conventional Example]
Please refer to FIG. In the first conventional example, the X-ray tube 2 is held by an X-ray tube holding member 22 that is moved horizontally along a rail 21 laid on the ceiling, for example, by an X-ray tube drive mechanism 11 such as a motor. The tube 2 is moved horizontally. An X-ray irradiation driving unit 12 including a high voltage generator is connected to the X-ray tube 2, and X-ray irradiation driving from the X-ray tube 2 is performed by the X-ray irradiation driving unit 12. In addition, the irradiation angle driving mechanism 13 such as a motor changes the X-ray irradiation angle irradiated from the X-ray tube 2 by rotating the X-ray tube 2 with respect to the X-ray tube holding member 22, for example. It is configured.
[0008]
Drive control of imaging drive systems such as the X-ray tube drive mechanism 11, the X-ray irradiation drive unit 12, and the irradiation angle drive mechanism 13 is performed by the control unit 10P1. The control unit 10P1 drives and controls these imaging drive systems 11, 12, and 13 to change the X-ray irradiation angle as described below from the X-ray tube 2 to the X-ray tube 2 while moving the X-ray tube 2 horizontally. Operate to irradiate a line. The X-ray irradiation angle is such that the central axis XJ of the X-ray bundle irradiated from the X-ray tube 2 is always imaged in the imaging target tomographic plane Ma in the subject M at each position during horizontal movement of the X-ray tube 2. It changes so that it may pass through center GC. Thereby, the incident direction of the X-ray with respect to the imaging target tomographic plane Ma (inside the imaging center GC) in the subject M placed and supported on the top board 1 is changed in various directions.
[0009]
The imaging unit 3 disposed on the opposite side of the X-ray tube 2 across the top plate 1 on which the subject M is placed and supported can be horizontally moved integrally with the X-ray tube 2 by an extendable connecting member 100. It is connected to the wire tube 2. The connecting member 100 is provided with a fulcrum 101. Accordingly, when the X-ray tube 2 is moved horizontally, the connecting member 100 is swung around the fulcrum 101, and accordingly, a transmission X-ray image of the imaging target tomographic plane Ma in the subject M is always captured by the imaging unit. The position of the image receiving surface 3a of the imaging unit 3 is changed in conjunction with the operation on the X-ray tube 2 side so as to be projected onto the same position on the third image receiving surface 3a. The position of the fulcrum 101 can be changed.
[0010]
With the above configuration, an X-ray tomographic image of a predetermined imaging range GH centered on the imaging center GC can be obtained from the imaging target tomographic plane Ma shown in FIG.
[0011]
By the way, in this first conventional example, the control unit 10P1 has only one type of drive data corresponding to one to-be-photographed tomographic plane Ma at a predetermined depth position as drive data for driving the imaging drive system. have. Then, when imaging is performed by changing the depth position of the imaging target tomographic plane Ma, the position of the fulcrum 101 is changed to a position corresponding to the depth position of the imaging target tomographic plane Ma to be imaged. The interlocking operation between the tube 2 side and the imaging unit 3 side is changed so that an operation corresponding to the depth position of the imaging target tomographic plane Ma to be imaged can be performed.
[0012]
[Second Conventional Example]
Please refer to FIG. In the first conventional example described above, the interlocking operation between the X-ray tube 2 side and the imaging unit 3 side necessary for obtaining an X-ray tomographic image of the tomographic plane Ma to be imaged is performed between the X-ray tube 2 and the imaging unit 3. The second conventional example is realized with the X-ray tube driving mechanism 11 that horizontally moves the X-ray tube 2 without connecting the X-ray tube 2 and the imaging unit 3. Separately, an imaging unit driving mechanism 14 such as a motor for horizontally moving the imaging unit 3 is provided, and the X-ray tube 2 and the imaging unit 3 are made independent and can be moved horizontally. Then, the X-ray tube driving mechanism 11 and the control unit 10P2 perform an interlocking operation between the X-ray tube 2 side and the imaging unit 3 side necessary for obtaining an X-ray tomographic image of the tomographic plane Ma to be imaged. The imaging unit drive mechanism 14 is driven and controlled. Other X-ray irradiation angle change control and X-ray irradiation drive control from the X-ray tube 2 are the same as in the first embodiment.
[0013]
Also in the second conventional example, the control unit 10P2 has only one type of drive data corresponding to one imaging target tomographic plane Ma at a predetermined depth position as drive data for driving the imaging drive system. ing. When imaging is performed by changing the depth position of the imaging target tomographic plane Ma, the top plate 1 is moved up and down by the top plate driving mechanism 15 that moves the top plate 1 up and down, and the subject M is moved to the X-ray tube 2. Accordingly, the positional relationship of the one to-be-photographed tomographic plane Ma in the subject M is changed in the depth direction.
[0014]
[Problems to be solved by the invention]
However, the conventional example having such a configuration has the following problems.
Usually, in a series of tomographic examinations, in order to specify the position of a lesioned part, imaging is performed by changing the depth position of the imaging target tomographic surface Ma by several points. It is necessary to change the position of the fulcrum 101 of the connecting member 100 every time imaging is performed while changing the depth position of the tomographic plane Ma. Since the changing operation of the fulcrum 101 of the connecting member 100 includes an operator's manual operation, there is a problem that the changing operation of the supporting point 101 of the connecting member 100 is laborious and a heavy burden on the operator.
[0015]
In the second conventional example, it is possible to perform imaging by changing the depth position of the imaging target tomographic plane Ma just by moving the top plate 1 up and down, and the top plate 1 can usually be moved up and down by a button operation or the like. The problem of the first conventional example is solved. However, as the table 1 is moved up and down, body movement of the subject M easily occurs on the table 1, and as a result, an X-ray tomographic image with respect to the imaging target tomographic plane Ma at a desired depth position can be accurately obtained. You may not be able to get to. In particular, in order to specify the position of the lesion, the depth position of the tomographic surface Ma to be imaged may be changed in units of (mm), and the depth position of the tomographic surface Ma to be imaged by the body movement of the subject M. Due to this deviation, the X-ray tomographic images of the tomographic surface Ma to be imaged at the respective depth positions changed in units of (mm) may not be obtained accurately, which may hinder a series of tomographic examinations. In addition, there is also a problem that psychological anxiety is given to the subject M when the top board 1 is frequently lifted and lowered during the tomographic examination.
[0016]
The present invention has been made in view of such circumstances, and can solve the drawbacks of the prior art and easily obtain X-ray tomographic images of imaging tomographic planes at various depth positions. An object is to provide an X-ray tomography apparatus.
[0017]
[Means for Solving the Problems]
In order to achieve such an object, the present invention has the following configuration. That is, the present invention is an X-ray tomography apparatus for obtaining an X-ray tomographic image of a tomographic plane to be imaged in a subject, comprising: (a) a supporting means for supporting the subject; and (b) the supporting means. X-ray irradiating means for irradiating the object to be supported with X-rays, and (c) X arranged on the opposite side of the X-ray irradiating means across the object supported by the supporting means and transmitted through the object An imaging means for receiving and picking up a line transmission image on an image receiving surface; and (d) driving for changing the incident direction of X-rays from the X-ray irradiation means to the tomographic surface to be imaged in the subject supported by the support means. X-ray incident direction changing driving means, X-ray irradiation driving means for performing X-ray irradiation driving from the X-ray irradiating means, and image receiving position changing driving means for changing and driving the position of the image receiving surface of the imaging means. Imaging drive means including: (e) inside the subject supported by the support means While irradiating the subject with X-rays while sequentially changing the incident direction of the X-rays from the X-ray irradiating unit to the imaging target tomographic plane, a transmitted X-ray image of the imaging target tomographic plane is always in the imaging unit. Drive control of the imaging drive means according to the drive data so as to change the position of the image receiving surface of the imaging means in conjunction with the change of the incident direction of the X-ray with respect to the tomographic plane to be imaged so as to be projected at the same position on the image receiving surface. Control means for changing the depth position of the to-be-photographed tomographic plane, and taking the image at the depth position according to the depth position of the to-be-photographed tomographic plane to be imaged. The imaging according to the depth position of the imaging target tomographic plane determined by the positional relationship between the target tomographic plane and the X-ray irradiation means and the positional relationship between the imaging target tomographic plane at the depth position and the image receiving plane of the imaging means. Driving The drive data of the means Under the condition that the moving range of the X-ray irradiation means is the same before and after changing the depth position of the tomographic plane to be imaged The calculation is performed according to the depth position of the tomographic plane to be imaged, and the imaging drive means is driven and controlled accordingly.
[0018]
[Action]
The operation of the present invention is as follows.
When the subject is supported by the support unit and the subject is positioned at a predetermined imaging position between the X-ray irradiation unit and the imaging unit, the control unit is configured to capture the imaging target in the subject supported by the support unit. X-rays are irradiated while sequentially changing the incident direction of the X-rays from the X-ray irradiation unit to the tomographic plane, and the transmitted X-ray image of the imaging target tomographic plane is always projected at the same position on the image receiving plane of the imaging unit. As described above, the X-ray incident direction changing driving means, the X-ray irradiation driving means, and the image receiving position changing driving means are changed so as to change the position of the image receiving surface of the imaging means in conjunction with the change of the X-ray incident direction with respect to the tomographic plane. The X-ray tomographic image of the imaging target tomographic plane is obtained by controlling the imaging driving means including
[0019]
Then, when imaging is performed by changing the depth position of the imaging target tomographic plane, the control means determines the imaging target tomographic plane at the depth position and the X-ray according to the depth position of the imaging target tomographic plane to be imaged. Driving data of the imaging driving means corresponding to the depth position of the imaging target tomographic plane determined by the positional relationship with the irradiation means and the positional relationship between the imaging target tomographic plane at the depth position and the image receiving plane of the imaging means Is calculated according to the depth position of the tomographic plane The X-ray tomographic image of the imaging target tomographic plane at the depth position is obtained by controlling the imaging driving means according to the above.
[0020]
The positional relationship between the imaging target tomographic plane and the X-ray irradiation unit and the positional relationship between the imaging target tomographic plane and the image receiving plane of the imaging unit can be replaced with a geometrical positional relationship.
[0021]
Further, changing the depth position of the imaging target tomographic plane is to make the imaging target tomographic plane near and far from the X-ray irradiation means (close to the image receiving surface of the imaging means).
[0022]
Therefore, the positional relationship between the imaging target tomographic plane at the depth position to be imaged and the X-ray irradiation means, and the positional relationship between the imaging target tomographic plane at the depth position and the image receiving surface of the imaging means are geometrically determined. I can grasp it.
[0023]
Based on this, in order to obtain an X-ray tomographic image on the tomographic plane to be imaged at the depth position, an operation range on the X-ray irradiation means side for changing the X-ray incident direction on the tomographic plane to be imaged Geometric calculation of drive data for the X-ray incident direction change drive means such as operation speed, and drive data for the image receiving position change drive means such as operation range and operation speed for changing the position of the image receiving surface of the imaging means in conjunction with the drive data Etc. In addition, if the operation range and operation speed on the X-ray irradiation means side, the operation range and operation speed for changing the position of the image receiving surface of the image pickup means, etc. are determined, it is also determined at what timing X-rays should be irradiated. The drive data of the line irradiation drive means is also determined. In this way, if the imaging drive means is driven and controlled according to the drive data determined for each imaging target tomographic plane at the depth position, X-ray tomographic images for the imaging target tomographic planes at various depth positions can be automatically obtained. it can.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an X-ray tomography apparatus according to an embodiment of the present invention.
In the following embodiments, in order to simplify the description, the X-ray tube 2 is moved horizontally, and the X-ray irradiation angle from the X-ray tube 2 is changed to change the imaging target tomographic plane in the subject M. An example of an apparatus that obtains an X-ray tomographic image of the imaging target tomographic plane Ma by changing the incident direction of the X-ray from the X-ray tube 2 with respect to Ma and moving the X-ray incident surface 3a of the imaging unit 3 horizontally according to the change. To explain. Further, in the embodiments, the portions denoted by the same reference numerals as those used in the description of the prior art are basically the same as those in the prior art, and therefore unnecessary redundant description is omitted.
[0025]
The imaging drive system of the X-ray tomography apparatus according to this embodiment is basically the same as that of the second conventional example. That is, the X-ray tube drive mechanism 11 holds the X-ray tube 2 on the X-ray tube holding member 22 that is horizontally moved along the rail 21 laid on the ceiling, for example, and the X-ray tube 2 is horizontally moved. It is like that. An X-ray irradiation driving unit 12 including a high voltage generator is connected to the X-ray tube 2, and X-ray irradiation driving from the X-ray tube 2 is performed by the X-ray irradiation driving unit 12. In addition, the irradiation angle driving mechanism 13 such as a motor changes the X-ray irradiation angle irradiated from the X-ray tube 2 by rotating the X-ray tube 2 with respect to the X-ray tube holding member 22, for example. It is configured.
[0026]
On the other hand, the image receiving surface 3a of the imaging unit 3 disposed on the opposite side of the X-ray tube 2 across the top plate 1 on which the subject M is placed and supported is horizontally moved by the imaging unit drive mechanism 14. Yes.
[0027]
In this embodiment, the top plate 1 is the support means, the X-ray tube 2 is the X-ray irradiation means, the imaging unit 3 is the imaging means, and the X-ray tube drive mechanism 11 and the irradiation angle drive mechanism 13 are X-ray incident. The X-ray irradiation driving unit 12 is the X-ray irradiation driving unit, the imaging unit driving mechanism 14 is the image receiving position changing driving unit, the X-ray tube driving mechanism 11, the X-ray irradiation driving unit 12, and the irradiation angle driving. An imaging drive system including the mechanism 13 and the imaging unit drive mechanism 14 corresponds to an imaging drive unit.
[0028]
Drive control of the imaging drive system including the X-ray tube drive mechanism 11, the X-ray irradiation drive unit 12, the irradiation angle drive mechanism 13, and the imaging unit drive mechanism 14 is performed by the control unit 10 corresponding to a control unit. The control unit 10 drives and controls the imaging drive systems 11, 12, 13, and 14 according to the drive data stored in the non-volatile memory 30, and the X-ray tomographic image of the imaging target tomographic plane Ma in the subject M is controlled. Take a picture.
[0029]
The memory 30 stores in advance a plurality of drive data corresponding to the imaging target tomographic plane Ma at various depth positions determined by a determination method as will be described later. When the operator sets the depth position of the imaging target tomographic plane Ma to be imaged from the setting panel 31, the control unit 10 drives the drive data according to the set depth position of the imaging target tomographic plane Ma. Is read from the memory 30, and the X-ray tomographic image is taken on the tomographic plane Ma to be imaged at the depth position set by driving the imaging driving systems 11 to 14 according to the drive data.
[0030]
Therefore, according to the configuration of this embodiment, the fulcrum 101 of the connecting member 100 connecting the X-ray tube 2 and the imaging unit 3 is changed as in the first conventional example, or as in the second conventional example. An X-ray tomographic image in which the depth position of the imaging target tomographic plane Ma has been changed can be taken simply by changing the drive of the imaging drive systems 11 to 14 without raising or lowering the top plate 1. Therefore, it is possible to accurately obtain X-ray tomographic images for the tomographic planes at various depth positions by reducing the movement of the subject M during imaging without burdening the operator and the operator. In addition, it is possible to eliminate the disadvantages of the first and second conventional examples, such as reducing psychological anxiety about the subject M during imaging.
[0031]
Further, the photographing drive system of the apparatus is basically the same as that of the second conventional example, and only the drive control content of the photographing drive system is changed. Therefore, the program of the microcomputer constituting the control unit 10 By simply rewriting the contents of the PROM that stores data and data so as to include drive data corresponding to the tomographic plane Ma to be imaged at various depth positions and to drive and control the imaging drive system using the drive data properly, The device assets of the second conventional example can be used without any remodeling. Therefore, when the device of the second conventional example is already installed in a medical institution or the like, it can be effectively used without wasting its assets.
[0032]
In the above embodiment, the top plate 1 is provided with a top plate driving mechanism for moving the top plate 1 in the horizontal direction such as front and rear, left and right, and moving up and down, and photographing by changing the depth position of the tomographic plane Ma to be imaged. Other than the purpose, for example, the top 1 (subject M) is moved between a position where the subject M gets on and off the top 1 and an imaging position between the X-ray tube 2 and the imaging unit 3. Therefore, the top plate 1 may be configured to be movable.
[0033]
Further, as will be described in detail in a drive data determination method to be described later, an imaging target tomographic plane Ma at a certain depth position is set as a reference imaging target tomographic plane MaS, and imaging driving corresponding to the reference imaging target tomographic plane MaS is performed. If the drive data of the systems 11 to 14 is set as the reference drive data, the drive data corresponding to the imaging target tomographic plane MaN at a depth position different from the depth position of the reference imaging target tomographic plane MaS is at the depth position. In some cases, it is only necessary to multiply the reference drive data by a coefficient corresponding to the tomographic plane MaN. In such a case, the drive data corresponding to the imaging target tomographic plane Ma at each depth position is not stored in the memory 30, but the reference driving data and the imaging target tomographic plane MaN at each depth position are stored. Are stored in the memory 30, and when an X-ray tomographic image of the imaging target tomographic plane MaN at each depth position is taken, the imaging target tomographic plane MaN at that depth position is used as reference drive data. The driving data corresponding to the tomographic surface MaN to be imaged at the depth position may be obtained by multiplying the coefficient according to. If comprised in this way, the memory | storage amount to the memory 30 can be reduced.
[0034]
Further, drive data corresponding to the imaging target tomographic plane Ma at each depth position, reference driving data, coefficients corresponding to the imaging target tomographic plane MaN at each depth position, and the like are stored in the memory 30. Instead, the control unit 10 is set every time a method for determining drive data, which will be described later, is programmed and the depth position of the tomographic plane Ma to be imaged from the setting panel 31 is set. The driving position corresponding to the depth position of the tomographic plane Ma to be imaged is calculated before the imaging, and the depth position set by driving the imaging driving systems 11 to 14 according to the driving data obtained as a result of the calculation. An X-ray tomographic image may be captured with respect to the imaging target tomographic plane Ma.
[0035]
Next, a method for determining drive data according to the to-be-photographed tomographic plane Ma at different depth positions will be described.
[0036]
<First determination method>
Please refer to FIG. As shown in FIG. 2, the positional relationship between the imaging target tomographic planes MaS and MaN and the X-ray tube 2 and the positional relationship between the imaging target tomographic planes MaS and MaN and the image receiving surface 3a of the imaging unit 3 are geometrical. It can be replaced with a positional relationship.
[0037]
In FIG. 2, one predetermined imaging target tomographic plane is set as a reference imaging target tomographic plane MaS, and the imaging target tomographic plane MaN has a depth position different from the depth position of the reference imaging target tomographic plane MaS. The tomographic plane to be imaged is shown. A point GCS in FIG. 2 is an imaging center when an X-ray tomographic image is taken in the reference tomographic plane MaS, and GCN is an X-ray tomographic image in the imaging target tomographic plane MaN. Shown as the center of shooting.
[0038]
Here, the imaging in which the depth position of the imaging target tomographic plane is changed basically means that when an X-ray tomographic image is acquired with the point GCS in the imaging target tomographic plane MaS as the imaging center, a different depth is obtained. The depth of the imaging center GCS of the imaging target tomographic plane MaS without changing the position in the horizontal direction (the left-right direction in FIG. 2 and the direction perpendicular to the paper surface in FIG. 2) in the imaging target tomographic plane MaN. This means that an X-ray tomographic image is taken with the point GCN shifted in the direction (vertical direction in FIG. 2) as the imaging center. That is, in FIG. 2, the respective photographing centers GNS and GCN are plotted on the photographing center axis CJ extending in the depth direction.
[0039]
In FIG. 2, a point XF indicates the focal position of the X-ray tube 2, and a point IF indicates the center position of the image receiving surface 3 a of the imaging unit 3. Point XC is the reference position of the focal point XF of the X-ray tube 2, while point IC is the reference position of the image receiving surface 3a. The above-described photographing center axis CJ is an axis connecting these reference positions XC and IC.
[0040]
That is, when X-ray tomographic images of the imaging target tomographic planes MaS and MaN are taken with the point GCS or GCN as the imaging center, the top plate is set so that the imaging centers GCS and GCN coincide with the imaging center axis CJ. 1 and the subject M are positioned.
[0041]
Further, the depth position of the reference imaging target tomographic plane MaS is determined by, for example, a distance XHS from the reference position XC of the focal point XF of the X-ray tube 2. That is, when the X-ray tomographic images of the imaging target tomographic planes MaS and MaN are acquired with the points GCS and GCN as the imaging center, the reference imaging target tomographic plane MaS is the reference of the focal point XF of the X-ray tube 2. The imaging center CGS, CGN is located on the imaging center axis CJ and is located at a position separated from the position XC by the distance XHS, and the top 1 and the subject M are positioned at such imaging positions. In this state, imaging is performed by changing the depth position of the imaging tomographic plane.
[0042]
Now, one imaging target tomographic plane Ma imaged by the driving data of the imaging drive systems 11 to 14 which the control unit 10P2 of the conventional example 2 has is set as a reference imaging target tomographic plane MaS, and using the driving data, Assume that imaging of the reference imaging target tomographic plane MaS is performed.
[0043]
In this imaging data, the reference position XC of the focal point XF of the X-ray tube 2 is set as the center of the movement range of the focal point XF of the X-ray tube 2 at the time of imaging. That is, in the imaging of the reference imaging target tomographic plane MaS, a position away from the reference position XC by a predetermined distance XWS in the left direction in FIG. 2 is set as the movement start position XSS of the focal point XF of the X-ray tube 2, and from the reference position XC. 2, the position separated by the same distance XWS in the right direction in FIG. 2 is set as a movement end position XES of the focal point XF of the X-ray tube 2, and a movement range (2 × XWS) between the movement start position XSS and the movement end position XES is defined. The X-ray tube 2 is horizontally moved so that the focal point XF of the X-ray tube 2 horizontally moves from left to right in FIG.
[0044]
The X-ray irradiation angle from the X-ray tube 2 during movement of the X-ray tube 2 within the moving range is the X-ray flux irradiated from the X-ray tube 2 at each position during horizontal movement of the X-ray tube 2. The central axis XJ is always changed so as to pass the imaging center GCS in the reference imaging target tomographic plane MaS. That is, the rotation range from a state where the angle is tilted by θS to the right with respect to the depth direction to a state where the angle is tilted by θS to the left with respect to the depth direction is adjusted to the horizontal movement of the X-ray tube 2. Then, the X-ray tube 2 is rotated clockwise around the horizontal axis with respect to the X-ray tube holding member 22.
[0045]
By performing the horizontal movement of the X-ray tube 2 and the change of the X-ray irradiation angle as described above, the reference imaging target tomographic plane MaS (inside the imaging center in the subject M) placed and supported on the top board 1 is obtained. The incident direction of X-rays to GCS) is changed in various directions.
[0046]
On the other hand, on the image receiving surface 3a of the imaging unit 3, the central axis XJ of the X-ray bundle irradiated from the X-ray tube 2 is always incident on the center IF of the image receiving surface 3a at each position during the horizontal movement of the X-ray tube 2. Thus, the X-ray tube 2 is moved horizontally in the opposite direction (from right to left in FIG. 2). As a result, the transmitted X-ray image of the reference imaging target tomographic plane MaS is always projected onto the same position of the image receiving surface 3a of the imaging unit 3 with respect to the reference imaging target tomographic plane MaS (inside imaging center GCS). The position of the image receiving surface 3a of the imaging unit 3 can be changed in conjunction with a change in the incident direction of the line (operation on the X-ray tube 2 side).
[0047]
In FIG. 2, the movement start position of the horizontal movement of the image receiving surface 3a of the imaging unit 3 is ISS, the movement end position is IES, the distance between the reference position IC of the image receiving surface 3a and the movement start position ISS, and the image receiving surface. The distance between the reference position IC 3a and the movement end position IES is indicated by IWS. Further, the distance XIH between the reference position XC of the focal point XF of the X-ray tube 2 and the reference position IC of the image receiving surface 3a is determined when the X-ray tube 2 and the imaging unit 3 are installed. If the distance XHS between the reference position XC of the focal point XF and the reference imaging target tomographic plane MaS is determined, the distance IHS between the reference position IC of the image receiving surface 3a and the reference imaging target tomographic plane MaS is determined.
[0048]
The drive data of the X-ray tube drive mechanism 11 that horizontally moves the X-ray tube 2 includes the moving speed of the X-ray tube 2 in addition to the moving range of the X-ray tube 2. Further, the drive data of the irradiation angle drive mechanism 13 for changing and driving the X-ray irradiation angle includes the rotation speed when the X-ray tube 2 is rotated in addition to the rotation range of the X-ray tube 2 described above. Furthermore, the drive data of the imaging unit drive mechanism 14 that horizontally moves the image receiving surface 3a of the imaging unit 3 includes the moving speed of the image receiving surface 3a of the imaging unit 3 in addition to the moving range of the image receiving surface 3a of the imaging unit 3. .
[0049]
An example of the moving speed VXS (t) and the rotating speed WXS (t) of the X-ray tube 2 and the moving speed VIS (t) of the image receiving surface 3a of the imaging unit 3 are shown by solid lines in FIGS. . In this example, the moving speed VXS (t) of the X-ray tube 2 is accelerated from the start of imaging t0 to t1, and when reaching the predetermined speed VX1, is made constant speed VX1 from t1 to t2, decelerated from t2, and then X at t3. The movement of the tube 2 is stopped and photographing is performed at time tS. The time between t0 and t1 and the time between t2 and t3 are set to be the same, for example. The rotation speed WXS (t) of the X-ray tube 2 and the moving speed XIS (t) of the image receiving surface 3a of the imaging unit 3 are set from the imaging start t0 to t1 in accordance with the moving speed VXS (t) of the X-ray tube 2. Is accelerated at a constant speed from t1 to t2, decelerated from t2, and at t3, the rotation of the X-ray tube 2 and the movement of the image receiving surface 3a of the imaging unit 3 are stopped, and imaging is completed at time tS. ing.
[0050]
In addition, the X-ray irradiation driving unit 2 is provided from the X-ray tube 2 between t0 and t3 (may be between t1 and t2 as necessary) as shown in FIGS. 3D and 3E, for example. Drive control is performed so that X-rays are always emitted or pulsed at regular intervals.
[0051]
Next, consider a case where an imaging target tomographic plane MaN having a depth position different from the depth position of the reference imaging target tomographic plane MaS is imaged.
[0052]
Here, the X-ray irradiation angle change range (change range of the X-ray incident direction with respect to the imaging target tomographic planes MaS and MaN), the rotation range of the X-ray tube 2 being used as a reference when imaging the imaging target tomographic plane MaS Consider the case of the same (2 × θS).
[0053]
In order to image the imaging target tomographic plane MaN by setting the rotation range of the X-ray tube 2 to be the same as that of imaging of the imaging target tomographic plane MaS (2 × θS), as shown in FIG. The range of (2 × XWN) where the start position is XSN and the movement end position is XEN is the movement range of the X-ray tube 2. On the other hand, the movement start position of the image receiving surface 3a of the imaging unit 3 is ISN, and the movement end position is It can be geometrically derived that the range of (2 × IWN) as IEN must be the moving range of the image receiving surface 3a of the imaging unit 3. Further, according to the distances XHS, IHS and SNH (all known) in FIG. 2, the distance XHN between the reference position XC of the focal point XF of the X-ray tube 2 and the depth position of the imaging target tomographic plane MaN, and the imaging unit The distance IHN between the reference position IC of the third image receiving surface 3a and the depth position of the imaging target tomographic plane MaN is obtained.
[0054]
The point at which the focal point XF of the X-ray tube 2 is located at the movement start position XSS when photographing the reference tomographic object tomographic surface MaS, the point at which the focal point XF of the X-ray tube 2 is located at the reference position XC, and the reference photographing object A triangle whose apex is the three points with the imaging center GCS of the tomographic plane MaS, a point at which the focal point XF of the X-ray tube 2 is located at the movement start position XSN at the time of imaging of the imaging target tomographic plane MaN, A triangle having apexes at the three points of the point where the focal point XF is located at the reference position XC and the imaging center GCN of the imaging target tomographic plane MaN is similar. In addition, the image receiving surface 3a of the imaging unit 3 is positioned at the movement start position ISS at the time of imaging the reference imaging target tomographic surface MaS, the point where the image receiving surface 3a of the imaging unit 3 is positioned at the reference position IC, and the reference A triangle having the three points of the photographing center GCSN of the photographing target tomographic plane MaS as vertices, a point where the image receiving surface 3a of the imaging unit 3 is located at the movement start position ISN at the time of photographing of the photographing target tomographic plane MaN, A triangle having apexes at the three points of the point where the image receiving surface 3a is located at the reference position IC and the photographing center GCN of the photographing target tomographic surface MaN is similar.
[0055]
Therefore, the distance XWN that determines the moving range of the X-ray tube 2 at the time of imaging the imaging target tomographic plane MaN and the distance IWN that determines the moving range of the image receiving surface 3a at the time of imaging of the imaging target tomographic plane MaN are known values. Using certain XWS, XHS, and XHN and IWS, IHS, and IHN, the following equations (1) and (2) can be used.
[0056]
XWN = KXN × XWS (1)
However, KXN = XHN / XHS
IWN = KIN × XIS (2)
However, KIN = IHN / IHS
[0057]
From the similar relationship, as indicated by the following formulas (3) and (4) and the two-dot chain lines in FIGS. 3A and 3B, the X-ray tube 2 at the time of imaging the tomographic plane MaN to be imaged Is set to a speed obtained by multiplying the moving speed VXS (t) of the X-ray tube 2 at the time of imaging of the reference imaging target tomographic plane MaS by the coefficient KXN of the above equation (1). The moving speed VIN (t) of the image receiving surface 3a of the imaging unit 3 at the time of imaging the imaging target tomographic plane MaN is set as the moving speed VIS (t) of the image receiving surface 3a of the imaging unit 3 at the time of imaging of the reference imaging target tomographic plane MaS. In addition, when driving at a speed multiplied by the coefficient KIN of the above equation (2), in the imaging of the imaging target tomographic plane MaN, the X-ray irradiation angle (at the same time t during imaging of the reference imaging target tomographic plane MaS) ( (An angle in the X-ray incident direction with respect to the tomographic planes MaS and MaN) It is possible to always be the same. Accordingly, the rotational speed of the X-ray tube 2 can be driven with the same drive data as the rotational speed WXS (t) (FIG. 3C) of the X-ray tube 2 at the time of imaging the reference tomographic plane MaS.
[0058]
VXN (t) = KXN × VXS (t) (3)
VIN (t) = KIN × VIS (t) (4)
[0059]
Further, when the horizontal movement of the X-ray tube 2 and the irradiation angle of the X-ray and the horizontal movement of the image receiving surface 3a of the imaging unit 3 are driven and controlled by the drive data described above, the imaging of the imaging target tomographic surface MaN is completed in time tS. Will do. Therefore, the X-ray irradiation drive can be performed with the same drive data (FIGS. 3D and 3E) as that at the time of imaging the reference imaging target tomographic plane MaS.
[0060]
The coefficients KXN and KIN are obtained when the imaging target tomographic plane MaN is further away from the X-ray tube 2 than the reference imaging target tomographic plane MaS as shown in FIG. 2 (closer to the image receiving surface 3a of the imaging unit 3). KXN> 1, 0 <KIN <1, and conversely, if the imaging target tomographic surface MaN is closer to the X-ray tube 2 than the reference imaging target tomographic surface MaS (away from the image receiving surface 3a of the imaging unit 3), 0 < The coefficients are KXN <1, KIN> 1.
[0061]
Further, in order to make it easy to understand the movement state of the image receiving surface 3a between the imaging of the reference imaging target tomographic plane MaS and the imaging of the imaging target tomographic plane MaN, FIG. Although the image receiving surface 3a and the image receiving surface 3a at the time of imaging the imaging target tomographic surface MaN are drawn slightly shifted up and down, they are actually moved on the same axis. Similarly, in the figures and graphs in FIG. 4 and subsequent figures, even when the overlapping portion is actually overlapped, the one at the time of photographing the reference photographing target tomographic plane MaS and the one at the time of photographing the photographing target tomographic surface MaN are distinguished. Sometimes it is drawn slightly shifted.
[0062]
<Second determination method>
First, the movement range of the X-ray tube 2 and the movement range of the image receiving surface 3a of the imaging unit 3 are determined by the same determination method as the first determination method (see FIG. 2). That is, the movement range of the X-ray tube 2 at the time of imaging of the imaging target tomographic plane MaN is set to a range of (2 × XWN) from the movement start position XSN to the movement end position XEN, and the movement range of the image receiving surface 3a of the imaging unit 3 is The range is (2 × IWN) from the movement start position ISN to the movement end position IEN.
[0063]
Next, the moving speed VXN (t) of the X-ray tube 2 is determined so that the speed when moving at a constant speed becomes the same VX1 as that at the time of imaging of the reference imaging target tomographic plane MaS. That is, as shown by the two-dot chain line in FIG. 4A, the imaging is accelerated from the start t0 to t1, and when reaching the predetermined speed VX1, the constant speed VX1 is reached from t1 to t4, and the speed is decelerated from t4 and X-rays at t5. The movement of the tube 2 is stopped and photographing is performed at time tN. The time between t4 and t5 is the same as the time between t2 and t3, for example. The moving speed VXS (t) of the X-ray tube 2 at the time of imaging the reference tomographic plane MaS is shown by a solid line in FIG.
[0064]
In order to match the moving speed VXN (t) of the X-ray tube 2, the moving speed VIN (t) of the image receiving surface 3a of the imaging unit 3 is as indicated by a two-dot chain line in FIG. The moving speed VIS (t) of the image receiving surface 3a of the imaging unit 3 at the time of photographing the reference tomographic plane MaS is shown by a solid line in FIG. 4B.
[0065]
As shown in FIGS. 4A and 4B, in this case, the time tN required for imaging the imaging target tomographic plane MaN is longer than the time tS required for imaging the reference imaging target tomographic plane MaS. In contrast to FIG. 2, when the imaging target tomographic plane MaN is closer to the X-ray tube 2 than the reference imaging target tomographic plane MaS (away from the image receiving surface 3 a of the imaging unit 3), the imaging target tomographic plane MaN is used. The time tN required for the imaging is shorter than the time tS required for the imaging of the reference imaging target tomographic plane MaS.
[0066]
In any case, since the imaging time varies, it is necessary to newly determine the X-ray irradiation angle changing speed (the rotational speed of the X-ray tube 2) accordingly. That is, in order to match the moving speed of the X-ray tube 2, the rotational speed WXN (t) of the X-ray tube 2 is as shown by a two-dot chain line in FIG. The rotational speed WXS (t) of the X-ray tube 2 at the time of imaging the reference tomographic plane MaS is shown by a solid line in FIG.
[0067]
Here, the constant speed WX2 in FIG. 4C is an unknown number, but this speed WX2 can be determined as follows, for example. First, as shown in FIG. 5, assuming that the position where the focal point XF of the X-ray tube 2 arrives after a predetermined time (for example, 1 second) from the reference position XC is XC1, the distance (movement) from the reference position XC to the position XC1 The quantity WC1 can be obtained from the moving speed VXN (t) (VX1) of the X-ray tube 2. This position XC1 is plotted on the movement locus of the focal point XF of the X-ray tube 2. At this time, the change angle per unit time of the X-ray irradiation angle at the constant speed WX2 is θ1 in FIG. In FIG. 5, there are three points: a point where the focal point XF of the X-ray tube 2 is located at the reference position XC, a point where the focal point XF of the X-ray tube 2 is located at the position XC1, and the photographing center GCN of the photographing target tomographic plane MaN. When attention is paid to the triangle as the vertex, θ1 can be obtained from the known distances XHN and XC1 by a trigonometric function. Accordingly, if the change angle θ1 per unit time of the X-ray irradiation angle at the constant speed WX2 is obtained, the constant speed WX2 is obtained.
[0068]
Further, if the above-mentioned constant speed WX2 is obtained, acceleration may be performed so that the speed is set to “0” to WX2 in a time (known) between t0 and t1, so that WXN (t) is accelerated from t0 to t1. The speed gradient at the time is determined, and similarly, the speed gradient at the time of deceleration from t4 to t5 is also determined.
[0069]
As described above, the rotation speed WXN (t) of the X-ray tube 2 at the time of imaging of the imaging target tomographic plane MaN can be determined. The rotation range of the X-ray tube 2 is the same (2 × θS) as in the first determination method. Therefore, drive data for the irradiation angle drive mechanism 13 can also be determined.
[0070]
Further, as the imaging time varies, the X-ray irradiation may be performed in the same manner as in FIGS. 3D and 3E between t0 and t5 (between t1 and t4 as necessary). .
[0071]
<Third determination method>
Here, as shown in FIG. 6, a case is considered in which the movement range of the X-ray tube 2 is the same during imaging of each imaging target tomographic plane MaS, MaN.
[0072]
At this time, the moving speed of the X-ray tube 2 can be made the same at the time of imaging of each imaging target tomographic plane MaS, MaN. That is, the drive data of the X-ray tube drive mechanism 11 can be made the same at the time of imaging of each imaging target tomographic plane MaS, MaN. Further, as a result, since the time required for imaging each of the imaging target tomographic planes MaS and MaN is the same, the drive data of the X-ray irradiation drive unit 12 is also set to be the same when imaging each of the imaging target tomographic planes MaS and MaN. Can do.
[0073]
However, as shown in FIG. 6, in this drive control, the rotation range of the X-ray tube 2, which is the change range of the X-ray irradiation angle (change range of the X-ray incident direction with respect to the tomographic planes MaS and MaN). Therefore, there is a difference between the time of photographing the tomographic surface MaS (2 × θS) and the time of photographing the tomographic surface MaN (2 × θN).
[0074]
This θN is a point where the focal point XF of the X-ray tube 2 is located at the movement start position XSS at the time of photographing the respective tomographic planes MaS and MaN, and a point where the focal point XF of the X-ray tube 2 is located at the reference position XC. If attention is paid to a triangle having apexes at three points with the imaging center GCN of the imaging target tomographic plane MaN, it can be obtained from the known distances XWS and XHN by a trigonometric function.
[0075]
Further, in the imaging of each imaging target tomographic plane MaS, MaN, the imaging time is the same (tS), and the X-ray irradiation angle changing speed ( It is necessary to newly determine the rotational speed of the X-ray tube 2. In order to match the movement of the X-ray tube 2, the rotational speed WXN (t) of the X-ray tube 2 is as shown by the two-dot chain line in FIG. The rotational speed WXS (t) of the X-ray tube 2 at the time of imaging of the reference imaging target tomographic plane MaS is shown by a solid line in FIG.
[0076]
The constant speed WX3 in FIG. 7A can be obtained by the same determination method as the WX2 determination method described in the second determination method described above. Therefore, the drive data of the irradiation angle drive mechanism 13 can be determined.
[0077]
In addition, as shown in FIG. 6, the imaging unit is associated with the same moving range of the X-ray tube 2 when imaging the tomographic planes MaS and MaN to be imaged (the rotation angle of the X-ray tube 2 has been changed). The moving range of the third image receiving surface 3a is changed. The distance IWN2 that determines the moving range of the image receiving surface 3a of the imaging unit 3 at the time of photographing the tomographic surface MaN to be photographed can be obtained as follows. That is, in FIG. 6, the image receiving surface 3a of the imaging unit 3 is located at the movement start position ISN at the time of imaging the imaging target tomographic plane MaN, the point where the image receiving surface 3a of the imaging unit 3 is located at the reference position IC, When attention is paid to a triangle having apexes at three points with the imaging center GCN of the imaging target tomographic plane MaN, a distance IWN2 is obtained by a trigonometric function from the distance IHN and the angle θN which are known values.
[0078]
In the imaging of the tomographic surfaces MaS and MaN to be imaged, the imaging time is the same (tS), and the image receiving surface of the imaging unit 3 is changed as the moving range of the image receiving surface 3a of the imaging unit 3 is changed. It is necessary to newly determine the moving speed of 3a. In order to match the movement of the X-ray tube 2, the moving speed VIN (t) of the image receiving surface 3 a of the imaging unit 3 is as shown by a two-dot chain line in FIG. A moving speed VIS (t) of the image receiving surface 3a of the imaging unit 3 at the time of photographing the reference tomographic plane MaS is shown by a solid line in FIG. 7B.
[0079]
Here, the constant speed VI2 in FIG. 7B is an unknown number, but this speed VI2 can be determined as follows, for example. That is, the third method is the same as the method for obtaining the change angle per unit time of the X-ray irradiation angle at a constant speed among the rotational speeds of the X-ray tube 2 described in the second determination method. The change angle θ2 per unit time of the X-ray irradiation angle at a constant speed WX3 in the rotational speed of the X-ray tube 2 in the case of the determination method is plotted including the image receiving surface 3a of the imaging unit 3 As shown in FIG. A position XC2 in FIG. 8 indicates a position at which the focal point XF of the X-ray tube 2 arrives after a predetermined time (for example, 1 second) from the reference position XC in the third determination method, and the distance WC2 is the reference WC2 The amount of movement from the position XC to the position XC2 is shown. As is apparent from FIG. 8, the moving amount WC3 of the image receiving surface 3a per unit time at a constant speed VI2 of the moving speed VIN (t) of the image receiving surface 3 of the imaging unit 3 is a known distance IHN and an angle θ2. And a trigonometric function, and a constant speed VI2 of the moving speed VIN (t) of the image receiving surface 3 of the imaging unit 3 is obtained. Accordingly, the moving speed VIN (t) of the image receiving surface 3 of the imaging unit 3 is determined, and the drive data of the imaging unit drive mechanism 14 is determined.
[0080]
In addition, the drive data of the imaging drive systems 11 to 14 can also be determined so that the movement range and movement speed of the image receiving surface 3a of the imaging unit 3 are the same during imaging of the imaging target tomographic planes MaS and MaN. In this case, it is necessary to newly determine the movement range, movement speed, rotation range, and rotation speed of the X-ray tube 2 at the time of imaging of the imaging target tomographic plane MaN, but these drive data are also as described above. It can be obtained geometrically.
[0081]
In the first to third determination methods, the driving data of the imaging drive systems 11 to 14 at the time of imaging the imaging target tomographic plane MaN has been described as an example. However, the imaging target tomographic planes at other depth positions are described. The drive data of the imaging drive systems 11 to 14 at the time of Ma imaging can also be determined by the same method.
[0082]
In the first to third determination methods, the driving data of the imaging drive systems 11 to 14 at the time of imaging the reference imaging target tomographic plane MaS is obtained using one predetermined imaging target tomographic plane MaS as a reference. The driving data of the imaging drive systems 11 to 14 at the time of imaging the imaging target tomographic plane MaN at other depth positions is determined, but the present invention is not limited to this, and the imaging target tomography at an arbitrary depth position is used. The drive data of the imaging drive systems 11 to 14 at the time of imaging the surface Ma can also be determined individually.
[0083]
That is, as is clear from the above description, when imaging the imaging target tomographic surface Ma at a certain depth position, the movement range of the X-ray tube 2, the rotation range of the X-ray tube 2, and the image receiving surface of the imaging unit 3. If any one of the moving ranges 3a is determined, the rest is also determined. If any one of the moving speed of the X-ray tube 2, the rotating speed of the X-ray tube 2, and the moving speed of the image receiving surface 3a of the imaging unit 3 is determined, the rest is also determined. Accordingly, the drive data of the X-ray tube drive mechanism 11, the irradiation angle drive mechanism 13, and the imaging unit drive mechanism 14 can be determined. Further, when the driving data of the X-ray tube driving mechanism 11, the irradiation angle driving mechanism 13, and the imaging unit driving mechanism 14 is determined, the imaging time is determined. Therefore, it is determined at what timing X-ray irradiation should be performed. The drive data of the unit 12 is also determined. Since the method for determining the drive data of the imaging drive systems 11 to 14 is the same even if the depth position of the imaging target tomographic plane Ma changes, imaging is performed for each imaging target tomographic plane Ma at an arbitrary depth position. The driving data of the photographing drive systems 11 to 14 at the time can also be determined individually.
[0084]
By the way, when X-rays are always irradiated during imaging, or when X-rays are always irradiated in the form of pulses at the same cycle, if the imaging time varies for each imaging of the imaging target tomographic plane Ma, each imaging of the imaging target tomographic plane Ma is performed. In addition, the amount of X-ray exposure to the subject M is not preferable. Therefore, it is preferable to determine the drive data of the imaging drive systems 11 to 14 so that the imaging time for each imaging of the imaging target tomographic plane Ma is always the same, but the imaging time for each imaging of the imaging target tomographic plane Ma varies. Even when determining the drive data of the imaging drive systems 11 to 14 as described above, for example, the X-rays are irradiated in a pulse shape, and the pulse cycle changes according to the imaging time for each imaging of the imaging target tomographic plane Ma. You may make it make it.
[0085]
Further, when changing the imaging center (imaging range) within the imaging target tomographic plane Ma at the same depth position, the subject M is moved in the horizontal direction on the top board 1 or the subject M is placed and supported. The top plate 1 may be moved in the horizontal direction, but may be configured as follows.
[0086]
The maximum movable range of each horizontal movement of the X-ray tube 2 and the image receiving surface 3a of the image pickup unit 3 is made sufficiently long so that the reference position XC of the focal point XF of the X-ray tube 2 and the reference of the image receiving surface 3a of the image pickup unit 3 If the position IC (imaging center axis CJ) is moved in the longitudinal direction of the top plate 1 (the body axis direction of the subject M), the imaging center (imaging range) is set within the imaging target tomographic plane Ma at the same depth position. The longitudinal direction of the plate 1 (the body axis direction of the subject M) can be changed. In addition, a drive mechanism for moving the entire unit for horizontally moving the X-ray tube 2 including the rails 21 in the lateral direction of the top board 1 (horizontal direction perpendicular to the body axis direction of the subject M) is provided. If the entire unit for horizontally moving the image receiving surface 3a of the image pickup unit 3 is also provided with a drive mechanism that moves in the same horizontal direction, and each unit is horizontally moved in the short direction of the top plate 1, the same depth is obtained. The imaging center (imaging range) can be changed in the lateral direction of the top board 1 (horizontal direction orthogonal to the body axis direction of the subject M) in the tomographic target tomographic plane Ma. If comprised in this way, the X-ray tomography image which changed the imaging | photography center (imaging | capture range) within the imaging | photography tomographic plane Ma of the same depth position will be image | photographed, without moving the top plate 1 or the subject M. You can also.
[0087]
In the above-described embodiment, the case where the X-ray tube 2 and the image receiving surface 3a of the imaging unit 3 are moved only in the horizontal one-axis direction to perform imaging of the imaging target tomographic surface Ma has been described. And the image receiving surface 3a of the imaging unit 3 are moved in a circular arc shape, or moved along a circular or elliptical orbit, a radial or spiral, a spiral orbit, a hypocycloid orbit, etc. in a horizontal plane. The present invention can be similarly applied to a configuration that takes a form and performs imaging of the tomographic plane Ma to be imaged. Note that, for example, an X-ray tube 2 or an image receiving surface 3a of the imaging unit 3 that moves along a circular trajectory in a horizontal plane and performs imaging of the imaging target tomographic surface Ma is usually an X-ray. Since the irradiation angle is fixed, in such a configuration, the driving mechanism for moving the X-ray tube 2 along one circular orbit in the horizontal plane corresponds to the X-ray incident direction changing driving means in the present invention. become.
[0088]
Further, the present invention is not limited to the case where an X-ray tomographic image of the tomographic plane Ma to be imaged is taken while the subject M is laid down, and in a state where the subject M is supported in an oblique state or supported in an upright state, The present invention can be similarly applied to the case where the X-ray tube 2 and the image receiving surface 3a of the imaging unit 3 are disposed with the subject M interposed therebetween and an X-ray tomographic image of the imaging target tomographic surface Ma is captured.
[0089]
【The invention's effect】
As is apparent from the above description, according to the present invention, X-ray tomographic images with respect to the imaging target tomographic planes at various depth positions are imaged only by changing the drive data for driving the imaging driving means. Therefore, it is possible to perform imaging while changing the depth position of the imaging target tomographic plane without burdening the operator and the operator. Further, the depth of the tomographic plane to be imaged without raising and lowering the support means (subject) such as the top plate to bring the subject into perspective with respect to the X-ray irradiation means (close to the image receiving surface of the imaging means). Since the imaging can be performed with the position changed, the body movement of the subject during imaging can be reduced, each X-ray tomographic image can be accurately obtained for the tomographic plane of the imaging at various depth positions, and the subject under imaging Can reduce psychological anxiety.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an X-ray tomography apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram when driving data of an imaging drive system when imaging is performed by changing the depth direction of an imaging target tomographic plane by the first and second determination methods.
FIG. 3 shows a moving speed of an X-ray tube and an image receiving surface of an imaging unit when driving data of an imaging drive system when imaging is performed by changing the depth direction of a tomographic plane to be imaged. It is a figure which shows a moving speed, the rotational speed of an X-ray tube, etc.
FIG. 4 shows the moving speed of the X-ray tube and the image receiving surface of the imaging unit when driving data of the imaging drive system when imaging is performed by changing the depth direction of the tomographic plane to be imaged. It is a figure which shows a moving speed and the rotational speed of an X-ray tube.
FIG. 5 is a diagram for explaining a method for determining the rotational speed of an X-ray tube when driving data of an imaging drive system when imaging is performed by changing the depth direction of an imaging target tomographic plane by the second determination method; FIG.
FIG. 6 is an explanatory diagram in a case where drive data of an imaging drive system at the time of imaging by changing the depth direction of an imaging target tomographic plane is determined by a third determination method.
FIG. 7 shows the rotational speed of the X-ray tube and the image receiving surface of the imaging unit when determining the drive data of the imaging drive system when imaging is performed by changing the depth direction of the tomographic plane to be imaged. It is a figure which shows a moving speed.
FIG. 8 illustrates a method for determining a moving speed of an image receiving surface of an imaging unit when driving data of an imaging drive system when imaging is performed by changing the depth direction of an imaging target tomographic plane using the third determination method. It is a figure for doing.
FIG. 9 is a diagram for explaining an imaging principle of an X-ray tomographic image of an imaging target tomographic plane.
FIG. 10 is a schematic configuration diagram of a drive control system of an X-ray tomography apparatus according to a first conventional example.
FIG. 11 is a schematic configuration diagram of a drive control system of an X-ray tomography apparatus according to a second conventional example.
[Explanation of symbols]
1: Top plate
2: X-ray tube
3: Imaging unit
3a: Image receiving surface of the imaging unit
10: Control unit
11: X-ray tube drive mechanism
12: X-ray irradiation drive unit
13: Irradiation angle drive mechanism
14: Imaging unit drive mechanism
M: Subject
Ma, MaS, MaN: imaging tomographic plane

Claims (1)

被検体内の撮影対象断層面のX線断層撮影画像を得るX線断層撮影装置であって、(a)被検体を支持する支持手段と、(b)前記支持手段に支持させた被検体にX線を照射するX線照射手段と、(c)前記支持手段に支持させた被検体を挟んで前記X線照射手段と反対側に配置され、被検体を透過したX線透過像を受像面で受像して撮像する撮像手段と、(d)前記支持手段に支持させた被検体内の撮影対象断層面に対する前記X線照射手段からのX線の入射方向を変更駆動するX線入射方向変更駆動手段と、前記X線照射手段からのX線の照射駆動を行うX線照射駆動手段と、前記撮像手段の受像面の位置を変更駆動する受像位置変更駆動手段とを含む撮影駆動手段と、(e)前記支持手段に支持させた被検体内の撮影対象断層面に対する前記X線照射手段からのX線の入射方向を順次変更しながら被検体に向けてX線を照射させるとともに、前記撮像対象断層面の透過X線像が常に前記撮像手段の受像面の同じ位置に投影されるように撮影対象断層面に対するX線の入射方向の変更と連動して前記撮像手段の受像面の位置を変更させるように前記撮影駆動手段を駆動データに従って駆動制御する制御手段とを備え、撮影対象断層面の深さ位置を変更して撮影するときには、前記制御手段は、撮影しようとする撮影対象断層面の深さ位置に応じて、その深さ位置の撮影対象断層面と前記X線照射手段との位置関係及びその深さ位置の撮影対象断層面と前記撮像手段の受像面との位置関係によって決まるその撮影対象断層面の深さ位置に応じた前記撮影駆動手段の駆動データを、当該撮影対象断層面の深さ位置を変更する前後で前記X線照射手段の移動範囲を同じとする条件下で撮影対象断層面の深さ位置に応じて算出し、それに従って前記撮影駆動手段を駆動制御することを特徴とするX線断層撮影装置。An X-ray tomography apparatus for obtaining an X-ray tomographic image of a tomographic plane in a subject, comprising: (a) a supporting means for supporting the subject; and (b) a subject supported by the supporting means. X-ray irradiating means for irradiating X-rays, and (c) an X-ray transmission image that is disposed on the opposite side of the X-ray irradiating means with the subject supported by the supporting means sandwiched therebetween, And (d) an X-ray incident direction change for driving to change the incident direction of the X-rays from the X-ray irradiating means to the imaging target tomographic plane in the subject supported by the supporting means. An imaging drive unit including a drive unit, an X-ray irradiation drive unit that performs X-ray irradiation drive from the X-ray irradiation unit, and an image receiving position change driving unit that drives to change the position of the image receiving surface of the imaging unit; (E) For the tomographic plane to be imaged in the subject supported by the support means While irradiating the subject with X-rays while sequentially changing the incident direction of the X-rays from the X-ray irradiation means, the transmitted X-ray image of the imaging target tomographic plane is always at the same position on the image receiving surface of the imaging means Control means for driving and controlling the imaging drive means according to the drive data so as to change the position of the image receiving surface of the imaging means in conjunction with the change of the X-ray incident direction with respect to the tomographic plane to be imaged. And when taking an image by changing the depth position of the imaging target tomographic plane, the control means, depending on the depth position of the imaging target tomographic plane to be imaged, and the imaging target tomographic plane at the depth position Driving data of the imaging drive means corresponding to the depth position of the imaging target tomographic plane determined by the positional relationship with the X-ray irradiation means and the positional relationship between the imaging target tomographic plane at the depth position and the image receiving surface of the imaging means. the, Calculated according to the depth position of the imaging target fault plane the moving range under the conditions the same of the X-ray irradiation unit before and after changing the depth position of the imaging target fault plane, the imaging drive means accordingly An X-ray tomography apparatus characterized by controlling driving.
JP30823498A 1998-10-29 1998-10-29 X-ray tomography equipment Expired - Fee Related JP4211098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30823498A JP4211098B2 (en) 1998-10-29 1998-10-29 X-ray tomography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30823498A JP4211098B2 (en) 1998-10-29 1998-10-29 X-ray tomography equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008199911A Division JP4428457B2 (en) 2008-08-01 2008-08-01 X-ray tomography equipment

Publications (2)

Publication Number Publication Date
JP2000126169A JP2000126169A (en) 2000-05-09
JP4211098B2 true JP4211098B2 (en) 2009-01-21

Family

ID=17978558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30823498A Expired - Fee Related JP4211098B2 (en) 1998-10-29 1998-10-29 X-ray tomography equipment

Country Status (1)

Country Link
JP (1) JP4211098B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940943B2 (en) * 2002-10-07 2005-09-06 General Electric Company Continuous scan tomosynthesis system and method
FR2875693B1 (en) * 2004-09-24 2006-12-08 Gen Electric X-RAY TOMOGRAPHY DEVICE
US7302033B2 (en) * 2005-06-29 2007-11-27 Accuray Incorporated Imaging geometry for image-guided radiosurgery
JP5587102B2 (en) * 2010-08-31 2014-09-10 富士フイルム株式会社 Radiation round wheel, radiographic imaging device, and radiographic imaging system
WO2017194434A1 (en) * 2016-05-11 2017-11-16 Koninklijke Philips N.V. Anatomy adapted acquisition with fixed multi-source x-ray system

Also Published As

Publication number Publication date
JP2000126169A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP6502192B2 (en) X-ray imaging apparatus for medical image diagnosis
US9265469B2 (en) Device for the acquisition of panoramic radiographies and CBCT volumetric radiographies
JP4537129B2 (en) System for scanning objects in tomosynthesis applications
US20170000451A1 (en) Mammography imaging arrangement for tomosynthesis
JP4428457B2 (en) X-ray tomography equipment
JP2002219127A (en) Panoramic x-ray ct photographing device
JP4378812B2 (en) Cone beam type radiation CT system
JP4211098B2 (en) X-ray tomography equipment
JP4712270B2 (en) Method for imaging a head region
JP2000316845A (en) X-ray diagnostic apparatus
EP2594201B1 (en) Panoramic dental X-ray unit
JP4174628B2 (en) X-ray equipment
JP2011072404A (en) Radiographic system
JP2009201928A (en) Radiographic imaging system
JPH11221206A (en) Device and method for x-ray ct imaging utilizing c-arm
JP4415786B2 (en) Mobile X-ray imaging device
JP3822463B2 (en) Dental X-ray equipment
JP4407005B2 (en) Cone beam type radiation CT system
JP4665358B2 (en) X-ray equipment
JP2007020869A (en) Radiographic apparatus
JPH0678919A (en) Dental tomographic device
JP2924134B2 (en) Medical imaging equipment
JP2005000372A (en) Radiographic equipment
US20110216882A1 (en) Radiographic image capturing method and apparatus, and radiographic image generating method and apparatus
KR102246090B1 (en) Radiology apparatus with FOV enlargement function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees